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INVENTORY AND PRICING DECISIONS FOR IMPERFECT QUALITY ITEMS
WITH INSPECTION ERRORS, SALES RETURNS, AND PARTIAL

BACKORDERS UNDER INFLATION

Aditi Khanna1, Aakanksha Kishore1, Biswajit Sarkar2,∗ and Chandra K. Jaggi1

Abstract. In this paper, an optimal replenishment inventory policy for imperfect quality items is pre-
sented with a selling price-dependent demand under inflationary conditions using a discounted cash flow
(DCF) approach. Due to the presence of defectives in the system, all items go through a 100% inspection
process. However, the screening process is also considered to be imperfect and involves errors, namely
Type-I and Type-II. In addition, shortages are allowed and are partially backlogged. An optimal solu-
tion for the proposed model is derived by maximizing the expected profit function by jointly optimizing
three decision variables: selling price, order quantity, and backorder level. To validate the theoretical
results, a numerical example along with comprehensive sensitivity analysis is offered. The model has
pertinence in industries like textiles, electronics, furniture, footwear, automobiles, and plastics.
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1. Introduction and literature overview

This section is subdivided into following sections as follows:

1.1. Motivation

In basic inventory analysis, numerous research articles have been based on the assumption that the different
costs involved in the inventory system remain constant in the planning horizon. However, this assumption
sounds impractical today as many countries experience high annual inflation rates. In consideration of this fact,
the present study explores the vital role of DCF approach used for the accuracy of all the costs involved in
the inventory system under inflationary conditions. A DCF approach not only permits an accurate recognition
of the financial implication of various operating costs in the system, but also provides accuracy for all cash
flows in the analysis. However, the financial decisions of the retailer can be inaccurate if the dynamism of
demand with respect to pricing is left unaccounted for because it plays a vital role in setting the mark-up
price. Generally,demand tends to decrease with an increase in selling price. In addition to the above described
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scenario of the classical inventory, many traditional economic order quantity (EOQ) models ignore the possibility
of occurrence of imperfect quality items in the received batches. However, due to such realities as improper
functioning of machines, design flaws, and imperfect sub parts, this assumption was soon replaced by the
rational assumption that defective merchandise occurs in a production lot. This has led to vast improvement
in the existing research and modernization in this field. Retailers now prefer to invest time, effort, and money
to inspect a whole lot so as to reduce or eliminate defects by a considerable extent. However, it is again not
viable to assume the screening process to be perfect due to unavoidable human errors, machine breakdowns,
and so on, which leads to the emergence of critical inspection errors, namely Type-I and Type-II. These errors
not only lessen the revenue, but also destroy customer trust. Also, to cut down on the inventory holding costs,
it is by and large beneficial for the retailer to allow few shortages. However, it is difficult to completely fill the
shortages, so partially backordered shortages are a more valid assumption. Consequently, the combination of
all of these individually impactful parameters – inflation and time values, price-dependent demand, imperfect
quality items, and screening errors – shows interesting results and brings the research closer to reality. This has
motivated us to investigate the lesser-researched real-life problems and to develop an economic order quantity
model allowing for all of these factors in order to fill the gap between EOQ and realism.

1.2. Literature review

1.2.1. Inflation and time value of money

Inflation and time value of money play crucial roles in the assessment of the cash flows, as they help provide
a real estimate of the costs involved. In general, inflation is associated with price increases and decreases in the
actual value of money. In the literature on inventory management, the initial studies related to constant inflation
rates were those of Buzacott [4], Misra [19], and Misra [20]. Furthermore, Bose [3] investigated the inventory
scenario for deteriorating items with two separate inflation rates, namely, the internal inflation rate for the
company and the external inflation rate for the general economy. Other interesting research papers in this field
are those of Moon and Lee [22] and Jaggi et al. [11]. The latter assumed demand to be inflation induced and
allowed the model to account for completely backlogged shortages. Soon after, Jaggi and Khanna [12] analyzed
the combined effect of permissible delay and credit-linked demand function on the procurement policy of a
retailer under inflationary conditions. However, some of the key changes in demand occur due to variations in
selling price. Other interesting research papers in this field include Abad and Jaggi [1] and Mondal et al. [21].
Sarkar and Moon [30] improved a production model with stochastic demand under inflation and time value of
money. Youjun et al. [38] constructed an inventory model with advance sales and a price-dependent demand
rate. Moreover, Uthayakumar and Palanivel [23] proposed a model to assist the retailer in minimizing the
overall inventory costs by considering demand as a function of price and advertisement for non-instantaneously
deteriorating items under inflation.

1.2.2. Imperfect quality items

Maintaining high standards of quality is a direct approach to long-term success through customer satisfaction.
This need has been analyzed by many researchers in different ways. Porteus [25], Rosenblatt [26], Lee (1987),
Schwaller [33], and Zhang and Gerchak [39] initiated vast research in the field of imperfect quality items by
creating some significant inventory models. Soon after, Salameh and Jaber [28] extended conventional inventory
models by incorporating the concept of imperfect quality items with a random defect percentage and known
probability distribution function. Furthermore, Papachristos and Konstantaras [24] investigated the disposal
time for imperfect items. In addition, Wee et al. [37] advanced the Salameh and Jaber [28] model by allowing
for fully backlogged shortages and showed that increasing backordering costs decreased the rate of change in
annual profit compared to the Salameh and Jaber [28] model. Eroglu and Ozdemir [7] further extended the
research of Salameh and Jaber [28] by evaluating expected profit-per-unit-time using a renewal reward theorem
and allowing for fully backlogged shortages. Further extension of the model was achieved by Maddah and
Jaber [17], who introduced simpler expressions for the decision variables and also for the profit values. Soon
after, Chang and Ho [5] applied a renewal reward theorem to obtain a closed-form solution for optimal lot
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size, backorder quantity, and net expected profit-per-unit-time by revisiting the work of Wee et al. [37]. Roy,
Sana, and Chaudhuri [27] constructed an EOQ model that begins with shortages, and their defect percentage of
items follows a uniform distribution function. Later, Sana [29] examined the production in an imperfect quality
environment for a three-tier supply chain. Tayyab and Sarkar [36] extended this research direction with variable
backorder rate under a multi-stage production system.

1.2.3. Inspection plans

Most of the above research articles did not consider any inspection plans for the separation of good- and
bad-quality items. One significant work in this direction is that of Duffuaa [6], who proposed an inspection plan
for critical components in the system. He also dealt with several misclassification errors during the inspection
process. Adding to this, Maddah [18] developed an ordering model under an order overlapping scheme, and Khan
et al. [14] assumed that the screening process is not free of error. Konstantaras et al. [16] considered that the
proportion of defectives follows a learning curve that is either S-shaped or takes a power form. Recently, Hsu and
Hsu [10] discussed cases when shortages are and are not allowed. For the latter, they used the order overlapping
approach as used in Maddah [18] to explore both cases with imperfect quality and imperfect screening scenarios.
In this direction, Sarkar and Saren [32] developed an improved inspection policy for the production model.

1.2.4. Inflation, imperfect quality items, inspection plans

Some researchers have contributed by simultaneously analyzing the features of inflation, imperfect quality,
and inspection plans. Taheri-Tolgari et al. [35] presented an inventory model using a DCF approach for imperfect
items and inspection errors under inflationary conditions in a finite time horizon. Furthermore, Jaggi et al. [13]
investigated the impact of defective items in a lot size model under inflation when both demand and price vary
with time. Soon after, Ghoreishi et al. [8] dealt with an economic production quantity model under inflationary
conditions considering customer returns for non-instantaneous deteriorating items. Later, Ghoreishi et al. [9]
extended the model by incorporating the dynamism of demand with respect to selling price and inflation. They
assumed customer returns to be a function of demand and price. Recently, Sharma [34] conducted a survey on
inventory models with inflation and Sarkar [31] introduced a three-stage inspection with some shelf-life products.
Kim et al. [15] developed a production model under a random controllable lead time.

1.2.5. Novelty in this model

The core problem considered in the current model is that of retail industries facing dynamism in the estimation
of all inventory-related costs due to the rise and fall of inflation rates. Additionally, pricing strategies are greatly
affected by the fluctuation in demand patterning and the price-sensitive nature of demand. The current study
considers price sensitivity in demand along with inflationary conditions. Another challenge faced by retail
industries is the presence of defectives in the received lot. To survive in today’s cut-throat competitive marker,
it becomes profitable for retailers to employ an inspection process to assess the quality of all products before
selling them to customers. However, the separation of good- and bad-quality items is also prone to crucial
inspection errors, Type-I and Type-II. Another key problem encountered during the process of reducing and
eliminating defects is that of shortages, which negatively impact speed to market, customer service, and security.
Here, we presume partially backlogged shortages where only some customers are satisfied as per demand, while
the rest of the demand is lost. The model is explored to identify the optimal replenishment and backorder
quantities in conjunction with the optimal selling price.

2. Model development

To develop this model, some basic assumptions and notation are considered in the following subsection.

2.1. Assumptions

The present model was formulated under the following fundamental assumptions.
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(1) Generally, demand is observed to have inverse relationship with mark-up price. So, demand rate D(p) is a
function of selling price and of form, D(p) = bp−e where b and e are positive constants.

(2) Screening process is not assumed to be perfect. Thus, it results in Type-I error (salvaging of good products as
defectives by mistake) and Type-II error (selling of defectives as good products by mistake). Screening rate
is set much higher than the demand rate as aim is to supply only good quality products to end customers.

(3) As a result of Type-II error, some of the defectives get sold to the customers as perfect items by mistake
resulting in Sales Returns due to customer dissatisfaction. Defect returns along with accumulated defectives
are salvaged at a cheaper price at the end of Inspection process. These defect returns are assumed to occur
continuously over complete cycle length beginning and ending at the completion of inspection process.

(4) Discounted Cash Flow (DCF) approach permits an accurate recognition of the financial implication of various
operating costs in the system Thus, to get the exact timing of cash flows; this approach is used for better
accuracy of results when inflation and time value of money are under consideration as in Jaggi et. al. [11]
paper.

(5) Shortages are allowed at the beginning of the inventory cycle and are partially backlogged with backlogging
parameter δ. The backordering rate of unsatisfied demand is taken as e−δ(t1−t), an exponential function
of shortage building time up to the next replenishment, where t1 is the waiting time for customers and
t ∈ [0, t1].

(6) Time period is infinite and lead time is insignificant.

2.2. Notation

The following notations are used for convenience in the paper.

Parameters
D(p) demand rate in units per unit time
b, e constant demand parameters; b > 0; e > 0
λ screening rate in units per unit time, λ > D(p)
x proportion of imperfect items (random variable with known probability density function)
q1 proportion of Type-I imperfection errors (random variable with known probability

density function)
q2 proportion of Type-II imperfection errors (random variable with known probability

density function)
t1 shortage building time
t2 shortage fulfillment time
t3 screening time
T ′ inventory down time
T cycle length
K0 order cost per cycle at time t = t1
c0 purchase cost per item ($/item) at time t = t1
s0 screening cost per item ($/item) at time t = t1
v0 salvage cost (<s) ($/item) at time t = t1
u0 disposal cost ($/item) at time t = t1
δ backlog parameter
d discount rate, representing time value of money
i inflation rate
R d− i; net discount rate of inflation, a constant
Ca0 cost of committing Type-I error ($/item) at time t = t1
Cr0 cost of committing Type-II error ($/item) at time t = t1
CB0 shortage cost at time t = t1
CL0 lost sale cost at time t = 0
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h0 inventory carrying cost per unit per unit time at time t = t1
h1 holding cost per defect return per unit time at time t = t1
z1 maximum on-hand inventory in units when the inspection process ends
z2 maximum on-hand inventory in units after partial fulfillment of shortages
p.d.f. probability distribution function

Decision variables
y order lot size for each cycle (in units)
B maximum backorder level allowed
p0 selling price at time t = t1

Functions
K(t) ordering cost per cycle at time t
C(t) purchasing cost per item ($/item) at time t
S(t) screening cost per item ($/item) at time t
V (t) salvage cost (<s) ($/item) at time t
U(t) disposal cost ($/ item) at time t
E1(t) cost of committing Type-I error ($/item) at time t
E2(t) cost of committing Type-II error ($/item) at time t
CB(t) shortage cost at time t
h(t) inventory carrying cost per unit per unit time at time t
P (t) selling price at time t
f(x) probability distribution function of defective items
f(q1) probability distribution function of Type-I error
f(q2) probability distribution function of Type-II error
T.C. retailer’s total cost
T.R. retailer’s total revenue
π (y,B, p) retailer’s present total profit, which is a function of three variables: y,B, and p.
E [π (y,B, p)] retailer’s expected total profit function

Optimal values
T∗ optimal cycle length
B∗ optimal backorder quantity
y∗ optimal order quantity per cycle
p∗ optimal selling price
E [π (y∗, B∗, p∗)] retailer’s expected optimal totalprofit function

3. Model formulation

In this section, a mathematical model relevant to the above exposed problem, assumptions and description
has been formulated. An inventory problem is analyzed in the study in which x% of defectives exist in every
received lot y, where defect proportion x is a random variable with known p.d.f. as f(x). Further, to deliver only
good quality products to customers, an inspection process is performed on the ordered lot (y) at a screening rate
λ. This results in the bifurcation of the lot (y) into imperfect items (xy) and perfect items (1− x)y. However,
screening errors namely Type-I and Type-II errors are generated by the inspection inspector with proportions
as q1 = Pr (items inspected as defective | non- defective item) and q2 = Pr (items not inspected as defective |
defective item) (0 < q1 < q2 < 1). The p.d.f. of q1 and q2 be f(q1) and f(q2) respectively. For mathematical
simplicity, it is assumed that q1 and q2 are independent of defect proportion x. So, all the items involving
screening errors are determined inter-dependently in terms of q1, q2, and y. Due to Type-I error, some perfect
items amounting to total (1−x)q1y units are sold at a cheaper price and leaving (1−x)(1−q1)y units to be sold
at mark-up price. Whereas, due to Type-II error, some imperfect items are sold as perfect quality viz. (xq2y)
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Figure 1. Sequence of events in the inventory cycle.

which come back as sales return later while (1 − q2)xy units remain unaffected by the error and get salvaged
correctly. Finally, a total of (1− x)(1− q1)y+ (xq2y) units are sold as perfect items and (1− x)q1y+ (1− q2)xy
units are sold as defective items in the current inventory scenario. A schematic of the above problem description
is shown in Figure 1.

The inventory behavior observed from the above mentioned flow of events is exhibited in Figure 2. Here,
the inventory system is followed by shortages from the previous cycle. These shortages start building up at the
beginning of the inventory cycle i.e. from time 0 to A1 and these are assumed to be partially backlogged with
backlogging parameter δ. We also presume that the backlogging rate of unsatisfied demand is an exponential
function of waiting time up to next refill during the stock out period. During the screening process, shortages are
met (from A1 to A2) parallel to the demand for the perfect items only. So, to elude them during the screening
period (from A2 to A3), the rate of screening is presumed to be greater than the demand rate: (λ > D(p)). After
the shortages have been eliminated (till time point A2), screening process continues and ends up in salvaging
of the accumulated defectives (say B1) along with sales returns (say B2) at time point A3. All the sales returns
are assumed to get accumulated over a complete cycle length T beginning and ending at the completion of
inspection process i.e. A3. After A3, the inventory depletes to zero as per the demand rate till time point A4.

From Figure 1, the total outcome of perfect items ready for sale after the integration of inspection errors
have been summed up as (1 − x)(1 − q1)y + (xq2y) units which are first used to satisfy the demand and then
the remaining perfect items are further used to eliminate shortages. So, from Figure 2, the shortage elimination
time can be calculated as:

t2 =
B

λ [(1− x) (1− q1) + xq2]−D (p)
=

B

Aλ
, (3.1)

where

A = (1− x) (1− q1) + xq2 −
D (p)
λ
· (3.2)

A comprises random variables x, q1, q2 and so is also a random variable.
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Figure 2. Behavior of the inventory system.

Hence,

E [A] = (1− E [x]) (1− [q1]) + E [x] [q2]− D (p)
λ

(3.3)

t2 is comprised of random variables x, q1, q2 and so is also a random variable. Hence, by using equations (3.1)
and (3.3), we get:

E [t2] =
1

E [A]
B

λ
=

B

λ {(1− E [x]) (1− [q1]) + E [x] [q2]} −D (p)
, (3.4)

Also, the total screening time can be calculated as

t3 =
y

λ
· (3.5)

As the imperfect screening process results in (1 − q2)xy and (1 − x)(1 − q1)xy actual defectives and non-
defectives, respectively. Thus, the total items sold at the selling price = [(1− x) (1− q1) + xq2] y

Therefore, the cycle length is given as

T =
[(1− x) (1− q1) + xq2] y

D (p)
(3.6)

T is a combination of random variables, x, q1, q2, and so is also a random variable. Therefore, the expected
value of cycle length T is given by

E [T ] =
{(1− E [x]) (1− [q1]) + E [x] [q2]} y

D (p)
· (3.7)

After the end of the imperfect screening process, the total count of defectives includes the sum of actual and
falsely classified defectives, calculated as

B1 = [x (1− q2) + q1 (1− x)] y. (3.8)
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Out of the total items sold to customers, wrongly classified perfect items lead to Sales Returns, denoted as

B2 = xq2y. (3.9)

Since, the backlogging rate of unsatisfied demand is an exponential function of backorder building time up to
the next refill during the stock out period. The following differential equation shows the change in back-ordering
level at any given time:

dB (t)
dt

= −
[
−D (p) e−δ(t1−t)

]
; 0 ≤ t ≤ t1. (3.10)

Using initial condition B (0) = 0, equation (3.10) is solved as

B (t) =
D (p)
δ

[
e−δ(t1−t) − e−δt1

]
. (3.11)

Again using boundary condition B (t1) = B, equation (3.11) is solved as

t1 = −1
δ

ln
(

1− Bδ

D (p)

)
· (3.12)

Due to such reasons as limited shelf space and poor catalog management, customers are not always able to
obtain the desired products; this leads to loss of gross profit and sometimes customer loss as well. Here, we
presume that all customers are not willing to wait for their orders; thus, the total lost sales are estimated as

L (t) =
∫ t1

0

D (p)
(

1− e−δ(t1−t)
)

dt = D (p)
[
t1 −

1
δ

(
1− e−δt1

)]
· (3.13)

As evident from Figure 2, y units are procured at time A1, and the whole lot goes through a 100% screening
process at the rate of λ units per unit time. From time A1 to A2, a portion of good-quality items fulfill the
demand and the rest are used to eliminate backorders. The following differential equation shows the change in
inventory level at any given time during (A1, A2).

dI1 (t)
dt

= − [Aλ+D (p)] ; t1 ≤ t ≤ t1 + t2. (3.14)

Using initial condition I1 (t1) = y, equation (3.14) is solved as

I1 (t) = y − [Aλ+D (p)] (t− t1) . (3.15)

Again, using boundary condition I1 (t1 + t2) = z2, equation (3.15) is solved as

z2 = y − [Aλ+D (p)] t2 = y − [Aλ+D (p)]
B

Aλ
(3.16)

z2 = y − B [xq2 + (1− x) (1− q1)]
[xq2 + (1− x) (1− q1)]λ−D (p)

· (3.17)

From time A2 to A3, maximum shortage level allowed has been partially fulfilled while the remaining shortages
have been completely lost by A2. So, all the perfect items coming out of the inspection process are used to satisfy
current demand only during this period. Also, all the accumulated defectives (B1) along with sales returns (B2)
get salvaged at the end of inspection process i.e. at A3. Sales returns occur as a consequence of customer
frustration as they have received faulty products in the name of good quality products by mistake during the
inspection process. Here, all the sales returns (B2) are assumed to get accumulated over a complete cycle length
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T beginning and ending at the completion of inspection process i.e. A3. The following differential equation
shows the change in inventory level at any given time in time interval (A2, A3).

dI2 (t)
dt

= −D (p) ; t1 + t2 ≤ t ≤ t1 + t3. (3.18)

Using initial condition I2 (t1 + t2) = z2, equation (3.18) is solved as

I2 (t) = z2 −D (p) (t− t1 − t2) . (3.19)

Again, using boundary condition I2 (t1 + t3) = z1 +B1 +B2, equation (3.19) is solved as

z1 = z2 −B1 −B2 − [D (p) (t3 − t2)] (3.20)

z1 = y − B [xq2 + (1− x) (1− q1)]
[xq2 + (1− x) (1− q1)]λ−D (p)

− [x (1− q2) + q1 (1− x)] y − xq2y

−
[
D (p)

(
y

λ
− B

λ [(1− x) (1− q1) + xq2]−D (p)

)]
· (3.21)

After the end of the screening process at A3, the inventory decreases only as per the demand rate till it finally
reaches zero at point A4. So, in one complete cycle, the demand is satisfied for a total duration of T ′. At time
point A3, there is selling off of defectives (B1) along with sales returns (B2) at a reduced price in a secondary
market. Moreover, the financial impact of sales returns is visible in total cost also (via Type II error cost) as
these are entertained with full price refunds in the study. The following differential equation shows the change
in inventory level at any given time during period (A3, A4).

dI3 (t)
dt

= −D (p) ; t1 + t3 ≤ t ≤ t1 + T ′. (3.22)

Using initial condition I3 (t1 + t3) = z1 +B1 +B2, equation (3.22) is solved as

I3 (t) = z1 +B1 +B2 −D (p) (t− t1 − t3) . (3.23)

Again, using boundary condition I3 (t1 + T ′) = 0, equation (3.23) is solved as

T ′ =
z1 +B1 +B2

D (p)
+ t3. (3.24)

3.1. Relevant costs

The various cost components integrated in the model are the set-up cost, purchase cost, screening cost,
Misclassification error 1 cost, Misclassification error 2 cost, disposal cost, inventory carrying cost, backordering
cost, and lost sale cost. Total revenue includes three components: the sale of perfect items, the loss of defect
returns, and the sale of scrap items. Because shortages of previous cycles start building up at time t = 0,
and orders and purchases are made at time t = t1, the effect of inflation can be observed on all of these
costs:

K (t) = K0eit; C (t) = c0eit; S (t) = s0eit; E1 (t) = ca0eit; E2 (t) = cr0eit;

V (t) = v0eit; U (t) = u0eit; CB (t) = CB0eit; L (t) = CL0eit; h (t) = h0eit; P (t) = p0eit;

Therefore, using the DCF approach, the present worth of various cost components for the first replenishment
cycle is estimated as follows:

(a) The present ordering cost is
Ca = K0e−Rt1 . (3.25)



296 A. KHANNA ET AL.

(b) The present purchasing cost is

CP = c0ye−Rt1 . (3.26)

(c) So as to deliver only good-quality products to customers, the screening process begins at time A1and con-
tinues to time A3. Thus, the present screening cost is given as

Cscr = s0ye−Rt3e−Rt1 . (3.27)

(d) As a result of Type-I error, a fraction (1−x)q1y of the total non-defectives (1−x)y are wrongly classified as
defectives, thereby causing monetary loss to the firm by directly losing an opportunity to increase the sales
of good-quality items. Thus, the present Type-I error cost is obtained as

Ce1 = ca0 (1− x) q1ye−Rt3e−Rt1 . (3.28)

(e) With the emergence of Type-II error, there are more penalty and goodwill losses to the retailer compared to
financial losses because a fraction (xq2y) of the total defectives (xy) is wrongly classified as non-defectives,
resulting in defect returns. The present Type-II error cost is thus determined as

Ce2 = cr0xq2ye−RT
′
e−Rt1 . (3.29)

(f) The defectives collected after an imperfect inspection process number ((1−q2)xy+xq2y+(1−x)q1y), which
include the actual defectives, sales returns, and falsely classified defectives, respectively. The present cost
incurred by the retailer for disposing of these items is calculated as

Cd = u0 [x+ q1 (1− x)] ye−R(t1+t3). (3.30)

(g) When the retailer runs out of stock for any particular product in demand, a shortage in the inventory
system occurs, and a back-order cost is incurred. So, the present shortage cost is calculated as Csho =
CB0

∫ t1+t2
0

Be−Rtdt, i.e.

Csho = CB0

B

R

[
1− e−R(t1+t2)

]
. (3.31)

(h) Because all shortages are unable to be filled, there is a penalty cost to the retailer due to the loss of a few
sales. The present lost sales cost is estimated as

CLS = CL0L (t) e−Rt1 = CL0D (p)
[
t1 −

1
δ

(
1− e−δt1

)]
. (3.32)

(i) Inventory holding cost is defined as the cost incurred in carrying all non-defective and defective items plus
the sales returns. Due to customer frustration and quality dissatisfaction, wrongly classified defectives sold
to customers re-enter the system continuously until the end of screening process. Thus, the present holding
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cost of all the items held in inventory is given as:

Ch = h0

∫ t1+T
′

t1

I (t) e−Rtdt+ h1

∫ T+t1+t3

t1+t3

B2e−Rtdt i.e.

= h0

(∫ t1+t2

t1

I1(t)e−Rtdt+
∫ t1+t3

t1+t2

I2(t)e−Rtdt+
∫ t1+T

′

t1+t3

I3(t)e−Rtdt

)
+ h1

∫ T+t1+t3

t1+t3

xq2ye−Rtdt

=
h0

R
{y + [Aλ+D (p)] t1}

(
e−Rt1 − e−R(t1+t2)

)
− h0

R2
[Aλ+D (p)]

{
e−Rt1 (1 +Rt1)− e−R(t1+t2) [1 +R (t1 + t2)]

}
+
h0

R
[z2 +D (p) (t1 + t2)]

(
e−R(t1+t2) − e−R(t1+t3)

)
− h0

R2
D (p)

{
e−R(t1+t2) [1 +R (t1 + t2)]− e−R(t1+t3) [1 +R (t1 + t3)]

}
+
h0

R
D (p) (t1 + T ′)

(
e−R(t1+t3) − e−R(t1+T ′)

)
− h0

R2
D (p)

{
e−R(t1+t3) [1 +R (t1 + t3)]− e−R(t1+T ′) [1 +R (t1 + T ′)]

}
+ h1

xq2y

R
e−R(t1+t3)

(
1− e−RT

)
(3.33)

Therefore, by using equations (3.25)–(3.33), the present total cost is calculated as follows: T.C. = Ca+Cp+
Cscr + Ce1 + Ce2 + Cd + Csho + CLS + Ch0 i.e.

= K0e−Rt1 + c0ye−Rt1 + s0ye−Rt3e−Rt1 + cr0 (1− x) q1ye−Rt3e−Rt1 + ca0xq2ye−RT
′/2e−Rt1

+ u0 [x+ (1− x) q1] ye−R(t1+t3)

+ CB0

B

R

[
1− e−R(t1+t2)

]
+ CL0D (p)

[
t1 −

1
δ

(
1− e−δt1

)]
+
h0

R
{y + [Aλ+D (p)] t1}

(
e−Rt1 − e−R(t1+t2)

)
− h0

R2
[Aλ+D (p)]

{
e−Rt1 [1 +Rt1]− e−R(t1+t2) [1 +R (t1 + t2)]

}
+
h0

R
[z2 +D (p) (t1 + t2)]

(
e−R(t1+t2) − e−R(t1+t3)

)
− h0

R2
D (p)

{
e−R(t1+t2) [1 +R (t1 + t2)]− e−R(t1+t3) [1 +R (t1 + t3)]

}
+
h0

R
D (p) (t1 + T ′)

(
e−R(t1+t3) − e−R(t1+T ′)

)
− h0

R2
D (p)

{
e−R(t1+t3) [1 +R (t1 + t3)]− e−R(t1+T ′) [1 +R (t1 + T ′)]

}
+ h1

xq2y

R
e−R(t1+t3)

(
1− e−RT

)
.

(3.34)

3.2. Sales revenue

The present total sales revenue consists of three parts. During the cycle, the retailer sells the service-
able/perfect items at a unit price of p0, generating sales revenue. The present revenue from total demand
is given as

R1 = p0

∫ t1+T
′

t1

D (p) e−Rtdt. (3.35)
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(a) Due to consumer returns of falsely inspected defectives, the retailer experiences loss due to full price refunds
of the sold defectives. The present revenue from sales returns is calculated as

R2 = −p0B2e−R(t1+t3). (3.36)

(b) All accumulated defectives are considered as scrap and sold at a cheaper price v0 than retails price at time
point A3 in a lesser restrictive inventory. Thus, the present revenue from total scrap items is

R3 = v0 (B1 +B2) e−R(t1+t3). (3.37)

Therefore, using equations (3.35)–(3.37),
The present worth of total revenue (T.R.) = R1 +R2 +R3

T.R. =
p0

R
D (p)

[(
e−Rt1 − e−R(t1+T ′)

)]
− p0B2e−R(t1+t3) + v0 (B1 +B2) e−R(t1+t3). (3.38)

3.3. Retailer’s total profit

The retailer’s total profit function π (y, B, p) is composed of the following components:
π (y, B, p) = Present Total Revenue – Present Ordering Cost – Present Purchase Cost – Present Screening

Cost – Present Type-I Error Cost – Present Type-II Error Cost – Present Disposal Cost – Present Shortage
Cost – Present Lost Sales Cost – Present Holding Cost

To obtain the present total profit π (y, B, p), we subtract equation (3.34) from (3.38), i.e.,

π (y,B, p) = T.R.− T.C. = T.R.− Ca − Cp − Cscr − Ce1 − Ce2 − Cd − Csho − CLS − Ch

π (y,B, p) = e
R
δ

ln
(
1− Bδ

D(p)

)






p0
R
D (p)

(
1− e

−R [(1−x)(1−q1)+xq2]y−B
D(p)

)
− p0xq2y

−R y
λ + (v0 − u0) [x (1− q2) + q1 (1− x) + xq2] ye−R

y
λ

−K0 − c0y − s0ye−R
y
λ − cr0 (1− x) q1ye−R

y
λ − ca0xq2ye

−R [(1−x)(1−q1)+xq2]y−B
D(p)

−CB0
B
R

[
1− e

−R
(

B
λ[xq2+(1−x)(1−q1)]−D(p)

)]
− CL0D (p) e

−R
δ

ln
(
1− Bδ

D(p)

)

×
[
−R
δ

ln
(

1− Bδ
D(p)

)
− 1

δ

(
1− e

R ln
(
1− Bδ

D(p)

))]

−h0
R

{
y + {λ [xq2 + (1− x) (1− q1)]}

[
−R
δ

ln
(

1− Bδ
D(p)

)]}(
1− e

− RB
λ[xq2+(1−x)(1−q1)]−D(p)

)

+ h0
R2 {λ [xq2 + (1− x) (1− q1)]}

{(
1− R

δ
ln
(

1− Bδ
D(p)

))
− e
− RB
λ[xq2+(1−x)(1−q1)]−D(p)

×
[
1 +RB

(
− 1
δ

ln
(

1− Bδ
D(p)

)
+ 1

λ[xq2+(1−x)(1−q1)]−D(p)

)]}

−h0
R

[
y − B[xq2+(1−x)(1−q1)]

[xq2+(1−x)(1−q1)]λ−D(p)
+B

(
1 + D(p)

λ[xq2+(1−x)(1−q1)]−D(p)

)](
e
− RB
λ[xq2+(1−x)(1−q1)]−D(p) − e−R

y
λ

)

+ h0
R2D (p)

{
e
− RB
λ[xq2+(1−x)(1−q1)]−D(p)

[
1 +R

(
− 1
δ

ln
(

1− Bδ
D(p)

)
+ B

λ[xq2+(1−x)(1−q1)]−D(p)

)]

−e−R
y
λ

[
1 +R

(
− 1
δ

ln
(

1− Bδ
D(p)

)
+ y

λ

)]}

−h0
R
D (p)

(
− 1
δ

ln
(

1− Bδ
D(p)

)
+ [(1−x)(1−q1)+xq2]y−B

D(p)

)(
e−R

y
λ − e

−R [(1−x)(1−q1)+xq2]y−B
D(p)

)

+ h0
R2D (p)

{
e−R

y
λ

[
1 +R

(
− 1
δ

ln
(

1− Bδ
D(p)

)
+ y

λ

)]
− e
−R [(1−x)(1−q1)+xq2]y−B

D(p)

×
[
1 +R

(
− 1
δ

ln
(

1− Bδ
D(p)

)
+ [(1−x)(1−q1)+xq2]y−B

D(p)

)]}

−h1
xq2y
R

e−R
y
λ

(
1− e

−R [(1−x)(1−q1)+xq2]y
D(p)

)






. (3.39)
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3.4. Retailer’s expected total profit

As present total profit is comprised of random variables, x, q1, q2, we calculate the expected present total
profit function E [π (y,B, p)] as follows:

E [π (y,B, p)] = e
R
δ

ln
(
1− Bδ

D(p)

)


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R
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−R {(1−E[x])(1−E[q1])+E[x]E[q2]}y−B
D(p)

)
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(
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δ
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

(3.40)

4. Retailer’s optimal policy

The retailer aims to maximize the expected value the total profit function by jointly optimizing the replenish-
ment quantity, the backorder quantity, and the selling price. In this section, concavity of the objective function
is proved graphically due to the mathematical complexity of the derivatives.

The result is established in the form of a lemma.

Lemma 4.1. The function of the retailer’s expected total profit is concave.

Proof. To prove the global optimality of the expected present total profit, comprised of three decision variables,
the following sufficient conditions for global optimality must hold:

D1 (y,B, p) < 0, D2 (y,B, p) > 0, and D3 (y,B, p) < 0. (4.1)
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Figure 3. Concavity of the expected value of the present total profit function.

Here, the Hessian matrix H is used in calculating the second-order partial derivatives as follows:

H =


∂2E[π(y,B,p)]

∂y2
∂2E[π(y,B,p)]

∂y∂B
∂2E[π(y,B,p)]
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∂B∂p
∂2E[π(y,B,p)]

∂p∂y
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∂p∂B
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∂p2
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D1 =
∂2E [π (y,B, p)]

∂y2
, D2 =

∣∣∣∣∣ ∂
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∂y2
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∂y∂B
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∂B∂y
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∂B2

∣∣∣∣∣ ,

D3 = detH =
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∂y2
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where D1, D2, andD3 are the minors of the Hessian matrix H. �

Because the derivatives of these minors are very complex, the concavity of the objective function has been
proven graphically, as shown in Figure 3.

To determine the optimal values, say y∗, B∗, and p∗, which maximize the function of E[π(y,B, p)], the
necessary conditions of first-order derivatives must hold:

∂E [π (y,B, p)]
∂y

= 0;
∂E [π (y,B, p)]

∂B
= 0;

∂E [π (y,B, p)]
∂p

= 0 (4.2)

which gives the optimal values of y,B and p.
The profit function is highly nonlinear in nature. Thus, the numerical method is used to check the global

optimality of the model.

5. Numerical analysis

5.1. Example

This subsection provides validation of the developed model with the help of an example. Here, the optimal
replenishment quantity (y∗), optimal backorder quantity (B∗), optimal selling price (p∗), and expected value of
total profit E[π∗(y∗, B∗, p∗)] are determined using a hypothetical data set.
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Table 1. Impact of x on the optimal replenishment policy.

x y∗ B∗ p∗($) T ∗(in days) D∗(p∗) E[π∗(y∗,B∗,p∗)]

0.03 1491.42 706.61 61.36 23.06 23 901.23 6 57 909.48
0.05 1393.74 647.47 61.98 21.97 23 422.42 6 57 707.89
0.07 1309.80 596.38 62.62 21.05 22 944.67 6 57 409.59
0.09 1236.93 551.72 63.29 20.29 22 467.93 6 57 006.97
0.11 1172.90 512.28 63.97 19.60 21 991.99 6 56 494.26

Table 2. Impact of q1 on the optimal replenishment policy.

q1 y∗ B∗ p∗($) T ∗(in days) D∗(p∗) E[π∗(y∗,B∗,p∗)]

0.00 1343.58 636.97 61.37 20.75 23 895.00 6 93 244.73
0.02 1393.66 647.43 61.98 21.96 23 422.36 6 57 708.01
0.04 1439.18 654.87 62.62 23.15 22 948.49 6 23 477.36
0.06 1478.10 658.52 63.28 24.28 22 474.04 5 90 546.60
0.08 1508.31 657.65 63.96 25.30 21 998.92 5 58 909.88

Defect proportion (x), Type-I error percentage (q1), and Type-2 error percentage (q2) are assumed to follow
a uniform distribution function with a respective probability distribution function as follows:

f(x) =
{

50, 0.04 ≤ x ≤ 0.06
0, otherwise f(q1) =

{
50, 0.01 ≤ q1 ≤ 0.03
0, otherwise f(q2) =

{
25, 0.02 ≤ q2 ≤ 0.06
0, otherwise.

Other parameters assume their values as follows:
B = 9 00 00 000, e = 2, λ = 50 000 units/year, K0 = $100/order, c0 = $30/unit, v0 = $20/unit, u0 = $2/unit,

s0 = $2/unit, Ca0 = $100/unit, Cr0 = $500/unit, CB0 = $6/unit, CL0 = $5/unit/year, h0 = $5/unit/year,
x = 0.05, q1 = 0.02, q2 = 0.04, R = 0.06, δ = 0.6.

The optimal production lot size y∗ = 1393 units/cycle, optimal backorder quantity B∗ = 647 units/cycle, op-
timal selling price p∗ = $61.98 with corresponding E [π∗ (y∗, B∗, p∗)] = $6 57 708.01 units/year, T ∗ = 21.96 days,
and D∗ (p∗) = 23 422.36 units/year.

5.2. Sensitivity analysis

A comprehensive sensitivity analysis was performed to analyze the variations in the values of parameters
x, q1, q2, δ, and R over the decision variables: optimal replenishment quantity y∗, optimal backordering variable
B∗, optimal selling price p∗, optimal cycle length T ∗, optimal demand D(p∗), and corresponding expected
present total profit E[π∗(y∗, B∗, p∗)].

Results are summarized in Tables 1–5 using the above values.
From the computational results shown in Tables 1–5, we obtain the following managerial insights.
As shown in Table 1, with a growing proportion of bad-quality items, x, the retailer experiences a decline in

optimal profit values (E[π∗(y∗,B∗,p∗)]) and also a decrement in optimal order quantity (y∗), optimal backorder
quantity (B∗), and optimal demand values (D∗(p∗)). However, there is slight increment in the optimal mark-up
price (p∗). It is explained as with the increase in defectives in the system, the retailer needs to elevate the prices
to compensate for the loss of demand and thus the unachieved sales. With lesser demand, the order quantity is
bound to decrease as so are the allowable shortages. The decrement in the demand values justifies the purpose
of taking price sensitive nature of demand. These trends result in shortening of the cycle length also. In view
of this result, it is advisable forthe retailer to analyze the source of imperfections by defect tracking, analyzing
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Table 3. Impact of q2 on the optimal replenishment policy.

q2 y∗ B∗ p∗($) T ∗(in days) D∗(p∗) E[π∗(y∗,B∗,p∗)]

0.00 1285.44 596.07 62.06 20.29 23 364.64 6 83 711.61
0.02 1336.54 620.34 62.02 21.08 23 393.30 6 70 719.98
0.04 1393.66 647.43 61.98 21.96 23 422.36 6 57 708.01
0.06 1458.00 677.93 61.94 22.96 23 451.97 6 44 676.27
0.08 1531.34 712.61 61.90 24.10 23 482.22 6 31 625.89

Table 4. Impact of δ on the optimal replenishment policy.

δ y∗ B∗ p∗($) T ∗(in days) D∗(p∗) E[π∗(y∗,B∗,p∗)]

0.40 868.89 404.63 62.06 13.63 23 365.49 6 55 569.93
0.50 1048.36 487.78 62.03 16.48 23 386.08 6 56 521.08
0.60 1393.66 647.43 61.98 21.96 23 422.36 6 57 708.01
0.70 2329.37 1077.81 61.86 36.96 23 514.64 6 59 422.71
0.80 4815.02 2203.20 61.53 77.76 23 771.29 6 62 556.99

complaints, and identifying causes; so as to minimize the proportion of defectives as these efforts can help
increase the total profit of the system.

As evident from Table 2, by committing more misclassification errors of Type-I (q1), an increment in optimal
order quantity (y∗), optimal backorder quantity (B∗), optimal mark-up price (p∗) is observed. However, the
optimal demand values (D∗(p∗)) and optimal profit values (E[π(y∗,B∗,p∗)]) tend to decrease with this type of
error. Due to this error, the retailer is unable to sell all of the perfect items to satisfy the demand and erroneously
discards some of them as scrap. This restricts the retailer from achieving maximum possible sales and lowers
profit values considerably. Because demand is fulfilled only by perfect items, the retailer ought to order a larger
quantity. The loss incurred due to the inspection error is balanced out through a slight increase inthe selling
price, which results in a decrease in demand due to its price-sensitive nature. The increase in cycle length is
dueto the ordering of a higher order quantity. Thus, it is beneficial for the retailer to reduce the proportion of
Type-I error (q1), as these can be helpful in increasing sales directly.

• Table 3 shows that, as the proportion of Type-II errors (q2) increases, an increment in optimal order quantity
(y∗), optimal backorder quantity (B∗), optimal demand values (D∗(p∗)) is exhibited while the optimal mark-
up price (p∗) and optimal profit values (E[π∗(y∗,B∗,p∗)]) show a decreasing trend. With this type of error,
there is an increase in defect returns, for which the retailer suffers a penalty cost and goodwill loss. Since
some defectives have been wrongly classified as non-defectives by mistake, the increased sales of perfect
items increase the order quantity to satisfy the elevated demand. However, due to frustration and quality
dissatisfaction, customers might not be willing to purchase more; hence, there is a substantial increase in
the value of B∗. Price reduction is justified to enhance sales in such an imperfect environment. Therefore, it
is advisable for the retailer to reduce the proportion of Type-II error (q2), as they have an inverse relation
with the total profit value.

• Table 4 reveals that, on increasing the value of backlogging parameter (δ), there is an increment in optimal
order quantity (y∗), optimal backorder quantity (B∗), optimal demand values (D∗(p∗)) while the optimal
mark-up price (p∗) and optimal profit values (E[π∗(y∗,B∗,p∗)]) tend to decrease. Also, as the value of
backlogging parameter (δ) increases, the backlog rate decreases, this means that a lesser amount of shortages
will get backlogged. The amount of unsatisfied shortages increases; therefore, to fulfill these, an increase in
order quantity is observed along with an eventual increment in cycle length. Order quantity increases,
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Table 5. Impact of R on the optimal replenishment policy.

R y∗ B∗ p∗($) T ∗(in days) D∗(p∗) E[π∗(y∗,B∗,p∗)]

0.02 6380.16 2920.64 61.53 103.05 23,768.69 6 62 480.56
0.04 2259.97 1047.14 61.90 35.78 23 482.78 6 59 187.44
0.06 1393.66 647.43 61.98 21.96 23 422.36 6 57 708.01
0.08 1077.30 500.94 62.01 16.90 23 400.30 6 56 674.73

bringing higher sales of perfect items, which contributes to higher profit level. The reduction in price helps
in increasing the demand rate significantly.

• Further, Table 5 reflects that as the net discount rate (R) increases, the optimal order quantity (y∗), optimal
backorder quantity (B∗), optimal demand values (D∗(p∗)), and optimal profit values (E[π∗(y∗,B∗,p∗)])
tend to decrease while the optimal mark-up price (p∗) increases. An increase in net discount rate (R)
implies a decrease in the inflation rate. Due to a low inflation rate, the decision maker should order a smaller
quantity more frequently as the cycle length decreases, which is helpful in reducing the total cost of inventory.
With reduction in order quantity, maximum allowable shortages also exhibit reduction. Moreover, there is
a marginal price increase with an eventual decrement in demand so as to balance the diminishing of profit
values.

6. Cross interactions of the decision variables

Figure 4 illustrates the relative patterns of different model parameters, x, q1, q2, and R on the decision
variable y∗. The contribution of R has the greatest impact on the order quantity y∗ compared to the other key
parameters, x, q1, and q2. The rate of inflation decreases with an increase in R, which lowers the prices and
hence influences the demand positively, resulting in a higher order quantity. Moreover, the y∗ value tends to
decrease with rise in the supply of defectives. This is because the retailer will experience reduced demand under
imperfect quality environment and hence the will need to order less.

Figure 5 exhibits the changing trends in the values of key parameters x, q1, q2, and R on the decision variable
B∗, which is similar to the effect of these parameters on y∗. The shortage level is observed to increase with rise in
the model parameters, q1,q2, and decrease with increase of x,R. Due to a larger number of defects, there is more
loss of perfect items as scrap (outcome of Type-I error), and there is an increase in returns/refunds (outcome
of Type-II error). As a result, the retailer will have difficulty in satisfying the demand with fewer perfect items,
and so won’t be able to fulfill the shortages also. Hence, there is no profit in raising the maximum shortage
level. Furthermore, the increase in R leads to lower inflation which further decreases the shortage levels.

Figure 6 illustrates the effects of the considered parameters x, q1, q2, and R on decision variable D∗(p). It
shows that increase in the count of defect-related parameters, x and q1, the demand shows a declining pattern,
which confirms that the retailer cannot compromise on quality issues. Also, with an increasing proportion
of sales of falsely classified perfect products, q2, a slightly upward trend of demand is observed due to the
100% returns/refunds by the retailer, which boosts the retailer’s reputation, followed by more customers and
increased demand. To balance the losses related to defects, the retailer experiences a small price increase for
perfect items in the model so as to maintain profit margins. This also justifies the pupose of using the selling
price-dependent demand function because downfall in the demand values is compensated for by relatively higher
prices. Furthermore, the decrease in demand is marginal due to an increase in R, which indirectly leads to the
lowering of price.

Figure 7 depicts the change in the pattern of model parameters x, q1, q2, and R on the decision variable
E[π∗(y∗, B∗, p∗)]. Since demand is fulfilled only through perfect items, the total profit values tend to decrease
with elevation in the count of defective-related parameters x, q1, and q2. This proves that both errors have a
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Figure 4. Sensitivity of the
optimal order quantity y∗ w.r.t
x, q1, q2, R.

Figure 5. Sensitivity of the opti-
mal shortage level B∗ w.r.t. x, q1, q2,
and R.

Figure 6. Sensitivity of the
demand function D∗(p) w.r.t
x, q1, q2, R.

Figure 7. Sensitivity of the ex-
pected present total profit function
E[π∗ (y∗, B∗, p∗)] w.r.t. x, q1, q2, R.

negative effect on the profit values and hence cannot be ignored in the model. It is also seen from the graph
that, in the absence of Type-I error (i.e. q1), more profit is observed compared to that in the absence of Type-II
error (i.e., q2). Thus, it is beneficial for the manager to work on increasing the efficiency of inspection processes
so that these errors are less damaging to profits. Moreover, with the increase in the value of R, inflation rate i
decreases because R = d− i. With the decrease in i, there is a decrease in price and hence profit. Also, with a
small change at lower values of R, not much change is observed in profit values; however, when the change in
inflation rate becomes large, there is a considerable decline in the profit values.

7. Summary

The application of the model and the outcomes of this research are explained in this section.

7.1. Applicability of this model

The current model is widely applied in many real-world industries like textiles, electronics, furniture, footwear,
and plastics, which are at a risk of dynamic pricing due to inflationary conditions. In several developing countries
like India, Bangladesh, Bhutan, and Indonesia, where inflation is severe, its effect should not be neglected when
determining various inventory policies. Owing to these dynamic economic conditions, there is fluctuation of prices
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in the market. As a result, the demand for items is also affected by the selling price of products. In addition,
the model finds wide applicability in all competitive sectors where the managers are trying to achieve supreme
standards of quality and hence cannot afford to overlook quality control issues if they wish to dominate global
markets. Though it comes at a relatively higher cost, it pays off tremendously through customer satisfaction,
gradually converting into boosted reputation and thus increased revenue.

7.2. Conclusions and future research

The proposed model targets the realistic challenges encountered by the retail industry, one of which is inflation
and its effects on inventory policies. To survive in today’s competitive market; one cannot ignore the ramifications
of inflation as it strongly affects inventory-related costs, pricing strategies, and ultimately customer demand. The
results show that consideration of inflation is vital for better accuracy of cash flows and hence should be taken
into account. The assumption of static demand also does not seem viable enough to be integrated in the study,
and the results indicate that the price-sensitive nature of demand has a considerable impact on performance
measures. Retailers also face rigorous competition in terms of quality standards. Because these industries rely
on products they do not produce, it is essential for them to integrate a rigorous inspection process to sort out
the defectives in the received lot. However, despite modernization in techniques, certain manual errors cause
Type-I and Type-II inspection errors. Retailers should identify the causes of errors to eliminate or reduce them
or change suppliers. Finally, the model assumes partially backlogged shortages, which have a tendency to reduce
the inventory costs. Hence, an economic order model is established to investigate the optimal replenishment
quantity, optimal backorder level, and optimal pricing by maximizing the expected value of the present total
profit in an imperfect environment. A numerical example along with a comprehensive sensitivity analysis is
employed to demonstrate the pragmatism of the model. As per the authors’ knowledge, such a real-life set-up
has not been presented in the research field of inventory management.

In the future, the present model can be extended under different practical parameters such as deterioration,
warehousing, and rework. Another direction might be integrating different forms of trade credit decisions into
the present model. The study can also be extended for different demand functions such as time-dependent
demand, stock-dependent demand, or both.
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