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A GENERALIZED DEA MODEL FOR INPUTS (OUTPUTS) ESTIMATION
UNDER INTER-TEMPORAL DEPENDENCE

Saeid Ghobadi1,∗

Abstract. This paper extended the inverse Data Envelopment Analysis (DEA) to the framework of
dynamic DEA. The following question is studied under inter-temporal dependence assumption: among
a set of decision making units (DMUs), to what extent should the input (output) levels of the DMU
change if the efficiency index of a DMU remains unchanged, yet the output (input) levels change? This
question is answered using (periodic weak) Pareto solutions of multiple-objective linear programming
(MOLP) problems in the framework of dynamic DEA. In this study, unlike other proposed methods,
the simultaneous increase and decrease of the various input (output) levels are considered under inter-
temporal dependence. In addition, a numerical example with real data is provided to illustrate the
objective of this research.

Mathematics Subject Classification. 90C05, 90C29, 90C39, 90C90, 90B50, 47N10.

Received February 3, 2018. Accepted November 10, 2018.

1. Introduction

Dynamic Data Envelopment Analysis (DEA) is a nonparametric technique based on mathematical pro-
gramming for evaluating the performance of Decision Making Units (DMUs) in presence of time factor and
inter-temporal dependence of input-output levels. This technique is an interesting research issue in DEA field
because of its importance in evaluating the performance of a company or organization in the assessment win-
dow. Fallah-Fini et al. [10] reported that the situations at which inter-temporal dependence of input-output
levels may occur can be divided into five cases as follows: (i) production delays; (ii) inventories; (iii) capital or
quasi-fixed factors; (iv) adjustment costs; and (v) incremental improvement and learning models. This paper
deals with the case of dynamic DEA where the inter-temporal dependence takes place by changing the capital
stock among various production periods. In this case, Emrouznejad [6] and Emrouznejad and Thanassoulis [7]
proposed a linear programming (LP) model for evaluating the performance of DMUs. This model was revised by
Jahanshahloo et al. [25]. Emrouznejad and Thanassoulis [8] provided a dynamic DEA model for estimating the
dynamic Malmquist index. Another case of the inter-temporal dependence refers to the production processes in
which some of the output levels produced in a time period are used as inputs in the next period. This kind of
the inter-temporal dependence has been studied in many theoretical and applied publications, including Färe
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and Grosskopf [11], Sengupta [29], Nemoto and Goto [28], Sueyoshi and Sekitani [31], Tone and Tsutsui [32,33],
Soleimani-Damaneh [30], and Ghobadi et al. [16]. Note that, the topic discussed in this paper under this kind
of the inter-temporal dependence can be worth studying as well, though we do not pursue them in the present
study.

A class of DEA models is called inverse DEA. The aim of a conventional DEA model is to estimate the
efficiency score of a specific DMU with certain inputs and outputs, while the basic concept in an inverse DEA
is to estimate the input and output levels for a special DMU to achieve a given efficiency target. An important
general question in the field of inverse DEA is posed by Hadi-Vencheh and Foroughi [17] as follows: among a set
of DMUs, to what extent should the input (output) levels of the DMU change if the efficiency index of a DMU
remains unchanged, yet the output (input) levels change? Its question in a special case is studied by Wei et al.
[34]. In Wei et al. [34] the input (output) increases of a specific DMU are estimated for its given output (input)
increases under preserving the efficiency score. The question introduced by Wei et al. [34] in the traditional DEA
is extended to the dynamic DEA of framework by Jahanshahloo et al. [24]. In the mentioned work, preserving
the performance index under only increase some or all of the inputs (outputs) have been investigated.

In this paper, the above general question introduced by Hadi-Vencheh and Foroughi [17] in the field of inverse
DEA is extended to dynamic DEA of framework. Note that, inputs (outputs) change means that some of the
inputs (outputs) would be increased and some others decreased or remain the same. Therefore, answering this
question in the framework of dynamic DEA is more general and includes Jahanshahloo et al. [24] as a special
case. The problem of change in inputs (outputs) with maintaining the performance index, under inter-temporal
dependent data, has not been studied, yet. This paper considers the arbitrary change in input (output) levels,
while the other offered method [24] fail to simultaneously consider the arbitrary change of the various input
(outputs) levels.

The result of this study can help policy makers to take better decisions for any change in the
resources/products of a particular unit preserving the efficiency criterion.

The rest of the paper is organized as follows: Section 2 reviews literature on inverse DEA. Section 3 gives
some preliminaries from inter-temporal dependence between input and output levels. Section 4 is devoted to
the main results of the paper. A general model to estimate input (output) levels in the inverse DEA is extended
in the framework of dynamic DEA. A numerical example with real data is presented to confirm the credibility
(substantiate the accuracy) and applicability of our method in Section 5. Section 6 presents the conclusions of
the paper.

2. Literature review on inverse DEA

The idea of inverse DEA for the first time was appeared in Zhang and Cui [36] to estimate inputs of a DMU
under increasing outputs and preserving the efficiency score. Since then, some of the researches in the field
of DEA from both theoretical and practical viewpoints have focused on inverse DEA. The general question
introduced by Hadi-Vencheh and Foroughi [17] in the traditional DEA is answered based on Pareto solutions
of MOLP problems by themselves, though its question in a special case is answered by Wei et al. [34]. In fact,
they considered this question: among a set of decision making units (DMUs), if the efficiency index of a DMU
remains unchanged, yet the output (input) levels increase, to what extent should the output (output) levels of
the DMU increase? To answer this question, Wei et al. [34] proposed a MOLP and LP model where the DMU is
inefficient and weakly efficient, respectively. The question introduced by Wei et al. [34] in the traditional DEA is
extended to the dynamic DEA of framework by Jahanshahloo et al. [24]. In the mentioned work, preserving the
performance index under only increase some or all of the inputs (outputs) have been investigated. In addition,
this question is extended to the fuzzy data under inter-temporal dependence assumption by Ghobadi et al.
[15]. The inverse DEA models can be used for sensitivity analysis [23], firms restructuring [3] setting revenue
target [4, 27], preserve (improve) efficiency values [21, 22, 26, 34, 35], resource allocation [18], and merging the
banks [1, 2, 12]. Other studies on inverse DEA include: Jahanshahloo et al. [20], Ghobadi and Jahangiri [14],
Hadi-vencheh et al. [19], Ghobadi [13], and Emrouznejad et al. [9].



A GENERALIZED DEA MODEL FOR INPUTS (OUTPUTS) ESTIMATION UNDER INTER-TEMPORAL DEPENDENCE 1793

Figure 1. Production flow.

3. DEA dynamic

In this section, a mathematical programming model is reviewed to estimate the efficiency score of DMU under
inter-temporal dependent data.

Suppose that there exist a set of n observations of DMUs, whose performance is assessed in a time horizon, say
t = 1, 2, . . .. Furthermore, a window of periods w = {t | t = τ, τ + 1, . . . , τ + T} is considered as the assessment
window. Assume that each DMU uses two kinds of inputs in each time period: period-specific inputs (denoted by
x) and capital inputs (denoted by z) to produce a kind of output in each time period (denoted by y). The initial
stock inputs supply capital inputs in any time period of assessment window. Since τ is considered as the initial
time period in assessing window, so the initial stock input is represented by Zτ−1. Because the DMU survives
after the terminal time period in the assessing window, so having more terminal capital stock is desirable. The
terminal capital stock is denoted by Zτ+T , because τ +T is considered as the terminal time period in assessing
window.

According to the above discussion, the set of inputs of DMUj (j = 1, 2, . . . , n) is as follows:

period-specific input paths: xwj = (xτij , x
τ+1
ij , . . . , xτ+Tij : ∀i ∈ I1),

change in stock paths: zwj = (zτij , z
τ+1
ij , . . . , zτ+Tij : ∀i ∈ I2),

initial-stock inputs: Zτ−1
j = (Zτ−1

ij : ∀i ∈ I2),

where the set of inputs, I = {1, 2, . . . ,m} is divided into two subsets I1, I2 ⊂ I, such that I1 ∪ I2 = I and
I1 ∩ I2 = φ.

The set of outputs of DMUj is as follows:

output paths: ywj = (yτrj , y
τ+1
rj , . . . , yτ+Trj : ∀r ∈ O = {1, 2, . . . , s}),

terminal-stock inputs as outputs: Zτ+Tj = (Zτ+Tij : ∀i ∈ I2).

It is clear that
Zτ+Tij = Zτ−1

ij −
∑
t∈w z

t
ij ∀i ∈ I2. (3.1)

Figure 1 indicates a production flow in the assessment window:
To clarify the above discussion, it can be assumed that the evaluation of the performance of a set of research

organizations (as DMUs) is under study. The main products of a research organization is invention, discovery,
publications, etc. To produce these products, each research organization uses various resources including the
resources received from the government, facilities (personnel, the research spaces, etc.) and equipment. In
addition to usual inputs (resources), the research organizations have some capital grants which can be used
to unpredictable expenses when the managers are not able to continue by the usual inputs. These inputs are
called capital inputs and denoted by zt.

The input matrixes Xt
|I1|×n and Zt|I2|×n and output matrix Y ts×n, for each t ∈ w, can be represented as

Xt = [xt1, x
t
2, . . . , x

t
n], Zt = [zt1, z

t
2, . . . , z

t
n], Y t = [yt1, y

t
2, . . . , y

t
n].
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Also, the initial-stock input matrix Zτ−1
|I2|×n and terminal-stock input matrix Zτ+T|I2|×n can be represented as

Zτ−1 = [Zτ−1
1 , Zτ−1

2 , . . . , Zτ−1
n ], Zτ+T = [Zτ+T1 , Zτ+T2 , . . . , Zτ+Tn ].

Suppose that (xwj , z
w
j , y

w
j , Z

τ−1
j , Zτ+Tj ) denote the assessment path of DMUj ; j = 1, 2, . . . , n, in the assess-

ment window w. Emrouznejad and Thanassoulis [7] introduced an LP model to estimate the efficiency score of
the assessment path corresponding to a DMU. This model has been improved by Jahanshahloo et al. [25]. They
proposed the following LP to evaluate the performance of the assessment path of (xwo , z

w
o , y

w
o , Z

τ−1
o , Zτ+To ),

o ∈ {1, 2, . . . , n}:

ρo = min
∑T+τ
t=τ θ

t

T + 1

s.t. Xtλ ≤ θtxto, ∀t ∈ w,
Ztλ ≤ θtzto, ∀t ∈ w,
Y tλ ≥ yto, ∀t ∈ w,
Zτ+Tλ ≥ Zτ+To ,

Zτ−1λ ≤ Zτ−1
o ,

θt ≤ 1, ∀t ∈ w,
λ ∈ Ω,

(3.2)

where
Ω =

{
λ|λ ∈ Rn≥0, δ1(eλ+ δ2(−1)δ3ν) = δ1, ν ≥ 0, e = (1, 1, . . . , 1) ∈ Rn

}
.

Here, δ1, δ2, and δ3 are parameters with 0−1 values. It is obvious that:

(i) If δ1 = 0, then model (3.2) is under a constant returns to scale (CRS) assumption of the production
technology.

(ii) If δ1 = 1 and δ2 = 0, then model (3.2) is under a variable returns to scale (VRS) assumption of the
production technology.

(iii) If δ1 = δ2 = 1 and δ3 = 0, then model (3.2) is under a non-increasing returns to scale (NIRS) assumption
of the production technology.

(iv) If δ1 = δ2 = δ3 = 1, then model (3.2) is under a non-decreasing returns to scale (NDRS) assumption of the
production technology.

In model (3.2), (λ, θw) is variables vector. ρo in model (3.2) is called the input-oriented efficiency score of the
assessment path corresponding to DMUo. It is not difficult to see that ρo ≤ 1.

The output-oriented version of model (3.2) is as follows:

Φo = max
∑T+τ
t=τ ϕ

t

T + 1

s.t. Xtλ ≤ xto, ∀t ∈ w,
Ztλ ≤ zto, ∀t ∈ w,
Y tλ ≥ ϕtyto, ∀t ∈ w,
Zτ+Tλ ≥ Zτ+To ,

Zτ−1λ ≤ Zτ−1
o ,

ϕt ≥ 1, ∀t ∈ w,
λ ∈ Ω.

(3.3)



A GENERALIZED DEA MODEL FOR INPUTS (OUTPUTS) ESTIMATION UNDER INTER-TEMPORAL DEPENDENCE 1795

In the above model (λ, ϕw = ϕτ,τ+1,...,τ+T ) is variables vector. Φo in model (3.3) is called the output-oriented
efficiency score of the assessment path corresponding to DMUo. It is obvious that Φo ≥ 1.

The assessment path corresponding to DMUo is called input-(res. output-) oriented weakly efficient if ρo = 1
(res. Φo = 1).

4. Inverse DEA under inter-temporal dependence

In this section, the questions introduced by Hadi-Vencheh and Foroughi [17] in the traditional DEA are
extended to dynamic DEA of framework. The basic concept in an inverse DEA is to estimate the input and
output levels for a special DMU to achieve a given efficiency target, while the aim of a traditional DEA model
is to estimate the efficiency score of a DMU with certain inputs and outputs.

In the beginning, the example mentioned in Section 2 is considered to illustrate the motivation of our work.
Suppose that some research organizations define targets for some criterion, which are wished to get in future.
For example, it is possible that the general policy in a research organization is decreasing the resources received
from the government up to 10% (reducing government dependency) and increasing the research possibility up
to 5% in the next 5 years preserving the efficiency criterion. The question is that to what extent the products
should be changed to achieve this aim. The inverse DEA specifies to what extent the products should change.
This section deals with this questions.

At first, the following question studied under inter-temporal dependence.

Question 1. If the efficiency index ρo remains unchanged, but the outputs change, to what extent should the
inputs of DMUo change?

To attain this goal, suppose the outputs of DMUo are changed from ywo to βwo = ywo +∆ywo in which ∆ywo ∈ Rs.
We find (αw∗o , ηw∗o ,Γτ−1∗

o ) provided that the efficiency score of DMUo is still ρo. In fact,

(αw∗o , ηw∗o ) = (xwo , z
w
o ) + (∆xwo ,∆z

w
o ), (∆xwo ,∆z

w
o ) ∈ R|I1| ×R|I2|, (4.1)

Γτ−1∗
o = Zτ−1

o + ∆Zτ−1
o , ∆Zτ−1

o ∈ R|I2|. (4.2)

Note that, since zwo value may change, according to (3.1), the initial and/or terminal capital stocks may also
change. Since Zτ+To is considered as output here, we supply the changes of zwo value by changing the initial
capital stock, Zτ−1

o .
Suppose DMUn+1 represents the unit generated after changing the input and output vectors. The following

model is proposed to measure the efficiency score of DMUn+1:

ρn+1 = min
∑T+τ
t=τ θ

t

T + 1

s.t. Xtλ+ λn+1α
t∗
o ≤ θtαt∗o , ∀t ∈ w,

Ztλ+ λn+1η
t∗
o ≤ θtηt∗o , ∀t ∈ w,

Y tλ+ λn+1β
t
o ≥ βto, ∀t ∈ w,

Zτ+Tλ+ λn+1Z
τ+T
o ≥ Zτ+To ,

Zτ−1λ+ λn+1Γτ−1∗
o ≤ Γτ−1∗

o ,

θt ≤ 1, ∀t ∈ w,
(λ, λn+1) ∈ Ω+,

(4.3)

where
Ω+ =

{
(λ, λn+1)|λ ∈ Rn≥0, δ1(eλ+ λn+1 + δ2(−1)δ3ν) = δ1, ν ≥ 0, λn+1 ≥ 0

}
.

The variable vector of the above model is (λ, λn+1, θ
τ , θτ+1, . . . , θτ+T ).
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If the optimal values of models (3.2) and (4.3) are equal, then the efficiency score of DMUo remains unchanged,
i.e.,

eff(αw∗o , ηw∗o , βwo ,Γ
τ−1∗
o , Zτ+To ) = eff(xwo , z

w
o , y

w
o , Z

τ−1
o , Zτ+To )2.

To solve the question, the following MOLP model is proposed;

min (αto ∈ R|I1| & ηto ∈ R|I2|) ∀t ∈ w

s.t. Xtλ ≤ θt∗αto, ∀t ∈ w
Ztλ ≤ θt∗ηto, ∀t ∈ w
Y tλ ≥ βto, ∀t ∈ w
Zτ+Tλ ≥ Zτ+To ,

Zτ−1λ ≤ Γτ−1
o ,

ηto + Zτ+1
o = Γτ−1

o ,

λ ∈ Ω.

(4.4)

(λ, αwo , η
w
o ,Γ

τ−1
o ) is the variables vector in MOLP (4.4). (θt∗ : ∀t ∈ w) is the optimal solution of LP (3.2).

Definition 4.1. Let Λ = (λ, αwo , η
w
o ,Γ

τ−1
o ) be a feasible solution to MOLP (4.4). Then

(a) Λ is called a weak pareto (efficient) solution to MOLP (4.4) if there does not exist another feasible solution
Λ = (λ, αwo , η

w
o ,Γ

τ−1

o ) such that (αwo , η
w
o ) < (αwo , η

w
o ).

(b) Λ is called a periodic weakly pareto (efficient) solution to MOLP (4.4) if there does not exist another feasible
solution Λ = (λ, αwo , η

w
o ,Γ

τ−1

o ) and some p ∈ w such that (αpo, η
p
o) < (αpo, η

p
o) and (αto, η

t
o) ≤ (αto, η

t
o) for

each t ∈ w − {p}.
(c) Λ is called a pareto (efficient) solution to MOLP (4.4) if there does not exist another feasible solution

Λ = (λ, αwo , η
w
o ,Γ

τ−1

o ) such that
(i) αtio ≤ αtio (∀i ∈ I1) and ηtio ≤ ηtio (∀i ∈ I2) for each t ∈ w;
(ii) for some t ∈ w, αtio < αtio for some i ∈ I1 or ηtio < ηtio for some i ∈ I2.

Suppose that the sets XE , XW , and XPWP are denoted pareto, weak pareto, periodic weakly pareto solutions
to MOLP (4.4), respectively. It is not difficult to see that XE ⊆ XPWP ⊆ XW . See Jahanshahloo et al. [24]. The
following theorem characterizes the periodic weak Pareto solutions of MOLP (4.4) using the same procedure of
Theorem 4.5 in [24].

Theorem 4.2. Let Λ = (λ, αwo , η
w
o ,Γ

τ−1
o ) be a feasible solution to MOLP (4.4). Λ is a periodic

weakly Pareto solution of MOLP (4.4) if and only if there exist nonzero nonnegative weight row-vectors
(uτ , vτ ), (uτ+1, vτ+1), (uτ+T , vτ+T ) ∈ R|I1| × R|I2| such that Λ is an optimal solution to the following LP:

min
∑
t∈w u

tαto +
∑
t∈w v

tηto

s.t. The constraints of MOLP (4.4).
(4.5)

The following Theorem shows how the above MOLP can be used for input estimation.

Theorem 4.3. Suppose that the efficiency score of DMUo is ρo = 1. If Λ = (λ∗, αw∗o , ηw∗o ,Γτ−1∗
o ) is an pareto

solution to (4.4), in which (αw∗o , ηw∗o ) = (xwo , z
w
o ) or xto 6= αt∗o for t ∈ w, then

eff(αw∗o , ηw∗o , βwo ,Γ
τ−1∗
o , Zτ+To ) = eff(xwo , z

w
o , y

w
o , Z

τ−1
o , Zτ+To ).

2Hereafter, we use the notation “eff” instead of “efficiency” for simplicity.
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Proof. To prove the theorem, ρn+1 = ρo = 1 should be shown. By contradiction assume that ρn+1 < ρo = 1.
On the other hand, θt+ ≤ 1 for each t ∈ w. Therefore, θt+ < 1 for some t ∈ w.
Suppose ((λ = (λ+

1 , . . . , λ
+
n ), λ+

n+1), θτ+, . . . , θτ+T+) is an optimal solution of problem (4.3). Therefore,

Xtλ+ λ+
n+1α

t∗
o ≤ θt+αt∗o , ∀t ∈ w, (4.6)

Ztλ+ λ+
n+1η

t∗
o ≤ θt+ηt∗o , ∀t ∈ w, (4.7)

Y tλ+ λ+
n+1β

t
o ≥ βto, ∀t ∈ w, (4.8)

Zτ+Tλ+ λ+
n+1Z

τ+T
o ≥ Zτ+To , (4.9)

Zτ−1λ+ λ+
n+1Γτ−1∗

o ≤ Γτ−1∗
o , (4.10)

λ+ = (λ, λ+
n+1) ∈ Ω+. (4.11)

On the other hand, Λ is a feasible solution of MOLP (4.4) and θt∗ = 1 for each t ∈ w because ρo = 1. Therefore,
we have

Xtλ∗ ≤ θt∗αt∗o = αt∗o , ∀t ∈ w, (4.12)

Ztλ∗ ≤ θt∗ηt∗o = ηt∗o , ∀t ∈ w, (4.13)

Y tλ∗ ≥ βto, ∀t ∈ w, (4.14)

Zτ+Tλ∗ ≥ Zτ+To , (4.15)

Zτ−1λ∗ ≤ Γτ−1∗
o , (4.16)

λ∗ ∈ Ω. (4.17)

�

According to (4.12)–(4.17), it is obvious that ((λ∗, 0), θt = 1; ∀t ∈ w) is a feasible solution of LP (4.3) and
hence ρn+1 ≤ 1. Now according to (4.6) and (4.12),

θt+αt∗o ≥ Xtλ+ λ+
n+1α

t∗
o ≥ Xtλ+ λ+

n+1X
tλ∗ = (λ+ λ+

n+1λ
∗)Xt, ∀t ∈ w. (4.18)

Let λ̃ = λ+ λ+
n+1λ

∗, and write (4.18) as

θt+αt∗o ≥ Xtλ̃, ∀t ∈ w. (4.19)

Using a similar method we have

θt+ηt∗o ≥ Ztλ̃, ∀t ∈ w, (4.20)

βto ≤ Y tλ̃, ∀t ∈ w, (4.21)

Zτ+To ≤ Zτ+T λ̃, (4.22)

Γτ−1∗
o ≥ Zτ−1λ̃, (4.23)

λ̃ ∈ Ω. (4.24)
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If (αw∗o , ηw∗o ) = (xwo , z
w
o ), then by (4.19) and (4.20) we have

Xtλ̃ ≤ θt+αt∗o = θt+xto, ∀t ∈ w, (4.25)

Ztλ̃ ≤ θt+ηt∗o = θt+zto, ∀t ∈ w. (4.26)

In addition,
Γτ−1∗
o = Zτ+To −

∑
t∈w

ηt∗o = Zτ+To −
∑
t∈w

zto = Zτ−1
o . (4.27)

Hence, equations (4.21)–(4.27) imply that (λ̃, θt+; ∀t ∈ w) is a feasible solution to LP (3.2). Therefore,

ρo ≤
∑τ+T
t=τ θt+

T+1 < 1. But this is against the assumption that ρo = 1 is the optimal value of LP (3.2).
Now, suppose xto 6= αt∗o for t ∈ w. According to contradiction assume and without loss of generality, we

assume that θp+ < 1. By equations (4.19) and (4.20), we have

Xtλ̃ ≤ θt+αt∗o ≤ αt∗o = θt∗αt∗o , ∀t ∈ w − {p}, (4.28)

Xpλ̃ ≤ θp+αp∗o < αt∗o = θp∗αp∗o . (4.29)

There exists a 0 < µ < 1 such that

Xpλ̃ ≤ θp∗(µαp∗o ). (4.30)

Now, define Γ̄τ−1
o = Γτ−1∗

o , η̄wo = ηw∗o , and

ᾱto =

αt∗o if t ∈ w − {p},

µαp∗o if t = p.

Feasibility of Λ to MOLP (4.4) and definition of Γ̄τ−1
o and η̄to, implies

Γ̄τ−1
o −

∑
t∈w

η̄to = Γτ−1∗
o −

∑
t∈w

ηt∗o = Zτ+To . (4.31)

By (4.20) and (4.23), we have

Ztλ̃ ≤ θt+ηt∗o ≤ ηt∗o = θt∗ηt∗o , ∀t ∈ w, (4.32)

Zτ−1λ̃ ≤ Γτ−1∗
o = Γ̄τ−1

o . (4.33)

Λ̄ = (λ̃, ᾱwo , η̄
w
o , Γ̄

τ−1
o ) is a feasible solution to MOLP (4.4) by equations (4.21), (4.22), (4.24), (4.28), and

(4.30)–(4.33). It is obvious (ᾱwo , η̄
w
o ) ≤ (αw∗o , ηw∗o ) and (ᾱwo , η̄

w
o ) 6= (αw∗o , ηw∗o ). But this is impossible because Λ

is a pareto solution of MOLP (4.4).

Remark 4.4. If min (αto ∈ R|I1| : ∀t ∈ w) replaces the objective function of MOLP (4.4), then Theorem 4.3
will remain valid.

The proof of the following theorem is similar to the proof given by Theorem 4.2 in [24]. This theorem is a
converse version of Theorem 4.3.

Theorem 4.5. Suppose that Λ = (λ, αwo , η
w
o ,Γ

τ−1
o ) is a feasible solution to (4.4) in which

eff(αwo , η
w
o , β

w
o ,Γ

τ−1
o , Zτ+To ) = eff(xwo , z

w
o , y

w
o , Z

τ−1
o , Zτ+To ).

Then Λ is a (periodic) weak Pareto solution to (4.4).



A GENERALIZED DEA MODEL FOR INPUTS (OUTPUTS) ESTIMATION UNDER INTER-TEMPORAL DEPENDENCE 1799

Now consider this question:

Question 2. If the efficiency index ϕo remains unchanged, but the inputs change, to what extent should the
outputs of DMUo change?

In fact, if the efficiency index ϕo remains unchanged, but the input levels of DMUo are changed from (xwo , z
w
o )

to (αwo , η
w
o ) = (xwo , z

w
o )+(∆xwo ,∆z

w
o ) in which (∆xwo ,∆z

w
o ) ∈ R|I1|×R|I2|, how much should the output levels of

DMUo change? Note that, according to (3.1), the initial stock input has to change to Γτ−1
o = Zτ+To +

∑
t∈w η

t
o.

The following MOLP model is proposed to estimate the output vector βwo = ywo + ∆ywo in which ∆ywo ∈ Rs,
provided that the efficiency score of DMUo is unchanged.

max βwo = (βtro; ∀t ∈ w, ∀r ∈ O)

s.t. Xtλ ≤ αto, ∀t ∈ w
Ztλ ≤ ηto, ∀t ∈ w
Y tλ ≥ ϕt∗βto, ∀t ∈ w
Zτ+Tλ ≥ Zτ+To ,

Zτ−1λ ≤ Γτ−1
o ,

λ ∈ Ω.

(4.34)

(λ, βwo ) is the variables vector in MOLP (4.34). (ϕt∗ : ∀t ∈ w) is the optimal solution of LP (3.2).
Suppose DMUn+1 represents DMUo after changing the input and output levels. The following model is

proposed to measure the efficiency score of DMUn+1:

ϕn+1 = max
∑T+τ
t=τ ϕ

t

T + 1

s.t. Xtλ+ λn+1α
t
o ≤ αto, ∀t ∈ w,

Ztλ+ λn+1η
t
o ≤ ηto, ∀t ∈ w,

Y tλ+ λn+1β
t∗
o ≥ ϕtβt∗o , ∀t ∈ w,

Zτ+Tλ+ λn+1Z
τ+T
o ≥ Zτ+To ,

Zτ−1λ+ λn+1Γτ−1∗
o ≤ Γτ−1∗

o ,

ϕt ≥ 1, ∀t ∈ w,
(λ, λn+1) ∈ Ω+.

(4.35)

The variables vector of the above model is (λ, λn+1, ϕ
τ , ϕτ+1, . . . , ϕτ+T ).

If the optimal values of Model (3.3) and Model (4.35) are equal, then the efficiency score of DMUo remains
unchanged, i.e.,

eff(αwo , η
w
o , β

w∗
o ,Γτ−1

o , Zτ+To ) = eff(xwo , z
w
o , y

w
o , Z

τ−1
o , Zτ+To ).

The following theorem solves the above question. The proof of this theorem is similar to the proof given by
Theorem 4.3 with some minor modifications.

Theorem 4.6. Suppose that the efficiency score of DMUo is Φo = 1. If Λ = (λ∗, βw∗o ) is a (periodic weak)
Pareto solution to (4.34), in which yto 6= βt∗o for t ∈ w, then

eff(αwo , η
w
o , β

w∗
o ,Γτ−1

o , Zτ+To ) = eff(xwo , z
w
o , y

w
o , Z

τ−1
o , Zτ+To ).

The following theorem is a converse version of Theorem 4.6. The proof of this theorem is similar to the proof
given by Theorem 4.5.
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Theorem 4.7. Suppose Λ = (λ, βwo ) is a feasible solution to (4.34) in which

eff(αwo , η
w
o , β

w
o ,Γ

τ−1
o , Zτ+To ) = eff(xwo , z

w
o , y

w
o , Z

τ−1
o , Zτ+To ).

Then Λ is a (periodic) weak Pareto solution to (4.34).

5. A numerical illustration

In this section, we consider the dataset of 20 branches of an Iranian commercial bank in Isfahan province
in a three-month period. The dataset is picked up from the Central Branch Data Center and given in Table
A.1 in the appendix. Generally, there are two approaches to determine the inputs and outputs of a bank: the
production approach and the intermediation approach. In the production approach, the bank is considered as a
manufacturer which is exactly the same manufacturer in the product market. Therefore, inputs and outputs are
considered physical entities (labour and capital) and all deposits, respectively. However, the selection is based
on the assets and liabilities of the bank in the intermediation approach, so purchased funds, borrowed funds
(time deposits and other borrowed funds), core deposits, labour, and capital are considered usually as input
and total loans, securities and other earning assets are considered usually as outputs. In this study, input and
output items are defined according to the intermediation approach.

Here, the inter-temporal dependence occurred in 3-month period (w = {1, 2, 3}). For each time, two period-
specific inputs, a capital input, and three outputs are defined. Period-specific inputs consist of employees score
(x1) and deferred claims (x2). In addition to the usual resources, each branch of the bank receives financial
assistance from the central branch when the managers are not able to continue by the usual resources. Such
grants are considered as capital stock. According to the level and rank of the branch, the maximum amount of
donation is fixed in a given time period (assessment window). Therefore, we consider it as an initial capital or
overall fund (Zτ−1). During this period, initial capital is divided between branches for different periods of time,
the remaining amount is represented by ZT+τ as terminal-stock. Outputs consist of the loans (y1), deposit (y2)
and profit (y3). The related data is listed in Table A.1 in the appendix.

Using Model (3.2), under constant returns to scale (CRS) assumption, the efficiency score for each of the
branches of the bank is obtained and reported in Table 1.

From Table 1, for example, it can be seen that B04 is efficient (ρ∗04 = 1). An inverse DEA case is illustrated in
the following: Consider B04 defines targets for some criteria, which are wished to be achieved in the future. In
other words, suppose that B04 aims to investigate this issue: among banks under study, to what extent should
the input levels (usual and capital) change if its efficiency index remains unchanged, yet the output levels (loans,
deposit, and profit) change from yw to βw as in Table 2. More precisely, the percentage of expected changes in
the deposit (y1), loans (y2), and income commission (y3) are given in Table 2 and Figure 2.

As it can be seen from Table 2, outputs y1
1 , y2

1 , y2
2 , y3

1 , and y3
2 have increased up to 5%, 10%, 5%, 10%, and

5%, respectively, while outputs y1
2 , y1

3 , and y2
3 have decreased up to 10%, 5%, and 10%, respectively. In addition,

y3
3 and terminal stock have not changed.

Considering MOLP (4.4) corresponding to B04 and using the weight-sum method [5], two Pareto solutions are
generated to estimate the input vector (usual, capital, and initial stock) as reported in Table 3. More precisely,
the percentage of necessary changes of the input levels (usual and stock inputs) should be similar to Table 3.

Existing inputs and proposed inputs for B04 are shown in Figure 3.
Therefore, due to Theorem 4.3, when the output levels of B04 change from yw to βw, the input levels (usual

and input stock) should change to (αw, ηw) if we would like to preserve the efficiency score of this bank. In
other words, in order to preserve the efficiency index, B04 can choose one of the following two approaches:

(i) The period-specific input paths x1
1, x2

1, and x3
1 should increase up to 1.58%, 1.72%, and 1.75%, respectively,

while all the period-specific input paths of x1
2, x2

2, and x3
2 should decrease up to 31.99%. In addition, the

stock input z1 should increase up to 19.75% and the stock inputs z2 and z3 should decrease up to 11.48%
and 0.47%, respectively. Consequently, the initial capital stock should increase up to 16.42%.
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Table 1. The efficiency score of 20 bank branches in the three-month period.

DMUs B01 B02 B03 B04 B05 B06 B07 B08 B09 B10

Efficiency in
1th period
(θ1∗)

0.4129 1.0000 1.0000 1.0000 1.0000 0.9392 1.0000 1.0000 1.0000 0.9313

Efficiency in
2th period
(θ2∗)

0.5997 1.0000 0.6173 1.0000 1.0000 0.7621 1.0000 1.0000 1.0000 0.7348

Efficiency in
3th period
(θ3∗)

0.6005 1.0000 0.6445 1.0000 1.0000 0.7628 1.0000 1.0000 1.0000 0.7357

Efficiency
Score (ρ∗)

0.5377 1.0000 0.7539 1.0000 1.0000 0.8214 1.0000 1.0000 1.0000 0.8006

DMUs B11 B12 B13 B14 B15 B16 B17 B18 B19 B20
Efficiency in
1th period
(θ1∗)

1.0000 1.0000 0.9631 1.0000 1.0000 1.0000 1.0000 1.0000 0.9853 1.0000

Efficiency in
2th period
(θ2∗)

1.0000 1.0000 0.9797 1.0000 1.0000 1.0000 1.0000 1.0000 0.8403 1.0000

Efficiency in
3th period
(θ3∗)

1.0000 1.0000 0.8698 1.0000 1.0000 1.0000 1.0000 1.0000 0.8392 1.0000

Efficiency
Score (ρ∗)

1.0000 1.0000 0.9375 1.0000 1.0000 1.0000 1.0000 1.0000 0.8883 1.0000

Table 2. The percentage of expected changes in the outputs B04.

Period t = 1 t = 2 t = 3 t = 34

Outputs Loans (y1) Deposit (y2) Profit (y3) Loans (y1) Deposit (y2) Profit (y3) Loans (y1) Deposit (y2) Profit (y3) Terminal stock (Z)

Old output (yw) 65 413 851 101 707 340 3 898 218 69 347 301 100 617 551 3 917 817 73 820 219 100 647 643 3 924 818 10 348 292

New output (βw) 68 684 544 91 536 606 3 703 307 76 282 031 105 648 429 3 526 035 81 202 241 105 680 025 3 924 818 10 348 292

Percentage changes 5% –10% –5% 10% 5% –10% 10% 5% 0% 0%

Figure 2. The old and new outputs B04 in the three-month period.
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Table 3. The percentage of necessary changes in the inputs B04.

Period t = 1 t = 2 t = 3 Initial stock

Inputs Employees Deferred Change Employees Deferred Change Employees Deferred Change Overall

Score (x1) Claims (x2) Stock (z) Score (x1) Claims (x2) Stock (z) Score (x1) Claims (x2) Stock (z) Fund (Z)

New Inputs-1 (αw, ηw) 15.146 704 050 8 398 000 7.822 704 050 5 454 400 7.8344 702 780 9 804 700 34 005 392

Percentage Changes 1.58% –31.99% 19.75% 1.72% –31.99% –11.84% 1.75% –31.99% –0.47% 16.42%

New Inputs-2 (αw, ηw) 16.401 1 138 700 4 140 200 8.459 1 138 700 6 805 600 8.47 1 136 500 10 837 000 32 131 092

Percentage Changes 10% 10% 46.65% 8.14% 10% 10% 8.11% 10% 10% 10%

Figure 3. The old and proposed inputs B04 in the three-month period.

(ii) The period-specific input paths x1
1, x2

1, x3
1, x1

2, x2
2, and x3

2 should increase up to 10%, 10%, 8.14%, 10%, 8.11%,
and 10%, respectively. The stock inputs z1, z2, and z3 should increase up to 46.65%, 10%, and 10%,
respectively. In this case, the initial capital stock should increase up to 10%.

6. Conclusion

This paper extended the following question in the field of inverse DEA to the dynamic DEA: how should
decision maker control the changes in inputs (outputs) of a given DMU in which the efficiency score of the
DMU is preserved? This question is answered using periodic weak Pareto solutions to MOLP problems under
inter-temporal dependence.

In this study, the simultaneous increase and the decrease of the various inputs (outputs) are considered while
other methods are studied estimate outputs (inputs) for a given DMU when some or all inputs (or outputs) are
increased. In other words, the given results in this paper are more general and includes Jahanshahloo et al. [24]
as a special case. To illustrate the provided inverse DEA method, an application in banking sector is discussed
to achieve a given efficiency target.

The given results are important practically, because these can be used for firms restructuring, merging the banks,
sensitivity analysis, resource allocation, and setting revenue target. These can help policy makers to take better
decisions for any change in the resources/products of a particular DMU preserving the efficiency criterion.

Here, following research topics are suggested:

– Similar models can be investigated for the other case of inter-temporal dependence (when some of the output
levels produced in a time period is used as inputs in the next period).

– Similar models can be investigated for dynamically inefficient DMUs.
– Similar models can be developed in presence of stochastic or negative data.
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Appendix A.

Table A.1. The data of 20 bank branches in the three-month period.

Period Bank B01 B02 B03 B04 B05 B06 B07 B08 B09 B10

Employees Score

(x1)

19.83 7.08 4.01 14.91 5.33 12.84 15.72 10.94 13.08 15.97

Deferred Claims

(x2)

4 603 910 9547 136 115 1 035 215 1 030 194 2 664 633 1 086 083 225 665 7 480 348 3 486 536

t = 1 Change Stock (z) 25 415 944 631 223 39 350 793 2 823 106 3 536 597 56 976 524 260 385 226 22 036 925 310 092 163 475 721

Loans (y1) 75 097 467 25 258 238 60 530 507 65 413 851 45 667 593 157 015 854 462 186 659 105 618 280 54 863 663 274 163 028

Deposit (y2) 80 023 776 40 413 775 48 420 589 101 707 340 67 411 796 163 070 472 397 280 289 130 611 124 90 586 108 229 181 190

Profit (y3) 2 211 465 767 801 1 770 276 3 898 218 1 291 753 4 334 957 16 849 485 4 072 227 2 335 849 5 869 352

Employees Score

(x1)

9.38 5.66 4.76 7.69 3.67 11 11.04 7.7 10.44 12.24

Deferred Claims

(x2)

4 258 676 9547 136 115 1 035 215 837 568 1 217 053 406 113 22 915 7 479 093 3 674 116

t = 2 Change Stock (z) 33 423 425 2 635 237 42 532 282 6 186 940 7 640 404 73 818 634 237 525 938 21 522 051 3 651 731 193 337 240

Loans (y1) 77 540 480 28 099 162 63 386 263 69 347 301 51 678 971 165 665 373 457 271 922 111 799 242 63 460 385 300 159 210

Deposit (y2) 75 205 729 40 501 342 49 871 113 100 617 551 69 103 984 158 442 184 408 482 255 141 070 488 96 511 315 241 263 111

Profit (y3) 2 372 091 767 801 1 779 213 3 917 817 1 387 823 4 786 804 17 214 726 4 089 487 2 467 889 6 667 268

Employees Score

(x1)

9.39 5.67 4.76 7.7 3.68 11.01 11.06 7.71 10.46 12.25

Deferred Claims

(x2)

4 164 067 9 547 136 115 1 033 215 786 287 1 267 053 395 522 225 915 7 477 837 3 657 016

t = 3 Change Stock (z) 34 302 366 6 014 493 39 988 455 9 851 458 13 105 122 70 323 601 229 207 401 17 014 036 10 980 081 213 492 432

Loans (y1) 79 100 108 31 026 240 64 986 239 73 820 219 58 194 638 174 946 921 465 979 022 116 557 642 79 367 959 308 891 608

Deposit (y2) 76 524 475 39 083 163 53 471 773 100 647 643 70 522 315 174 602 767 426 766 238 156 249 562 107 494 554 239 236 387

Profit (y3) 2 608 693 767 801 1 936 626 3 924 818 1 400 253 4 898 347 17 976 626 4 304 301 2 469 807 7 726 739

t = 0 Overall Fund

(Z0)

117 244 609 26 566 357 158 665 116 29 209 796 39 252 881 267 062 245 1 037 209 839 87 622 951 30 043 956 729 364 697

t = 3 Terminal Stock

(Z3)

24 102 874 17 285 404 36 793 586 10 348 292 14 970 758 65 943 486 310 091 274 27 049 939 15 102 052 159 059 304

Table A.1. Continued.

Period Bank B11 B12 B13 B14 B15 B16 B17 B18 B19 B20

Employees Score

(x1)

4.53 3.88 14.6 12.19 9.93 3.2 19.25 6.18 6 7.86

Deferred Claims

(x2)

1 531 195 106 162 430 201 288 733 79 572 23 274 655 170 70 840 5 771 009 604 842

t = 1 Change Stock (z) 1 978 878 2 484 718 55 740 403 45 231 323 3 673 025 10 685 654 45 300 766 63 930 945 25 973 395 5 532 201

Loans (y1) 27 052 607 32 767 317 164 983 122 142 754 970 48 940 586 30 547 469 178 762 561 88 958 994 49 562 263 40 493 880

Deposit (y2) 40 188 125 48 484 615 175 915 348 155 702 255 72 499 127 32 161 835 209 467 807 67 461 848 44 092 348 54 972 684

(y3) 557 744 1 044 161 6 675 662 4 650 278 2 145 795 923 161 9 683 107 4 552 123 695 511 1 539 726

Employees Score

(x1)

3.22 4.07 11.19 9.09 5.14 3.37 12.02 6.33 5.64 4.1

Deferred Claims

(x2)

1 512 675 106 162 430 201 288 733 79 572 23 274 654 770 68 785 152 093 604 842

t = 2 Change Stock (z) 4 830 066 3 853 539 50 458 213 63 179 340 2 663 053 16 251 577 36 316 407 61 785 788 29 507 223 2 316 070

Loans (y1) 28 785 809 37 246 308 174 059 672 147 933 524 56 425 243 32 096 496 186 258 838 92 482 607 51 036 143 44 447 422

Deposit (y2) 37 491 612 52 947 228 195 596 771 144 033 211 87 184 148 29 011 554 234 294 279 72 931 204 43 318 395 68 159 592

Profit (y3) 559 513 1 059 440 6 683 103 5 174 718 2 518 669 925 370 10 570 787 4 761 568 695 511 1 563 397

Employees Score

(x1)

3.22 4.07 11.2 9.1 5.15 3.37 12.04 6.33 5.65 4.1

Deferred Claims

(x2)

1 512 675 106 162 430 201 277 182 79 572 23 274 654 770 68 211 148 329 604 842

t = 3 Change Stock (z) 8 979 634 5 806 457 60 083 361 91 013 826 6 205 102 14 326 858 39 962 610 61 511 021 31 628 113 6 803 359

Loans (y1) 31 425 356 40 643 483 175 858 151 153 347 359 60 613 709 33 842 858 215 702 229 93 642 456 54 119 292 47 543 624

Deposit (y2) 35 479 015 54 711 936 186 753 718 128 483 906 86 298 673 33 071 151 274 686 310 74 504 425 45 692 855 63 980 358

Profit (y3) 579 594 1 069 796 6 685 865 5 174 718 2 764 479 966 104 10 576 311 5 066 401 698 963 1 571 893

t = 0 Overall Fund

(Z0)

34 213 206 34 626 288 218 101 708 282 355 290 27 056 255 51 708 898 234 220 827 254 370 473 134 860 848 25 822 016

t = 3 Terminal Stock

(Z3)

18 424 628 22 481 574 51 819 731 82 930 801 14 515 075 10 444 809 112 641 044 67 142 719 47 752 117 11 170 386
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