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A PTAS FOR SINGLE-MACHINE SCHEDULING WITH RELEASE DATES
AND JOB DELIVERY TO MINIMIZE MAKESPAN

Lingfa Lu1,∗ and Liqi Zhang2

Abstract. We consider the single-machine scheduling problem with release dates and job delivery to
minimize makespan. Preemption is not allowed in the processing of the jobs. All jobs are first processed
on a single machine and then delivered by a capacitated vehicle to a single customer. The vehicle
can deliver at most c ≥ 1 jobs in each shipment. The round-trip transportation time between the
machine and customer is a constant T > 0. The problem was proved to be strongly NP-hard and a
3
2
-approximation algorithm was presented in the literature. In this paper we provide a polynomial-time

approximation scheme (PTAS) for the problem.
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1. Introduction

Machine scheduling has been one of the most important and active topics in operations research over the
last half century. However, most of the classical scheduling literature considers only job processing without
taking into account job delivery. To achieve overall optimality, we may need to consider coordination of the job
processing stage and the job delivery stage on different occasions.

Scheduling with job delivery was first studied by Potts [14]. In this model, it was assumed the number of
the vehicles is infinite. That is, the vehicles always send the finished jobs individually and immediately to
their customers. For this problem, he presented a heuristic algorithm with the worst-case performance ratio
3
2 . After that, machine scheduling problems with job delivery have been widely discussed in the context of
manufacturing. Herrmann and Lee [7], Yuan [17] and Chen [3] considered several batch scheduling problems
where each delivery batch incurs a delivery cost. Mastrolilli [13] studied a more general scheduling problem
than that in [14] on parallel machines with release dates and delivery times. For this problem, he proposed some
efficient approximation schemes. Hall and Potts [6] considered a variety of scheduling, batching and delivery
problems in the context of supply chain scheduling to minimize the overall scheduling and delivery cost. They
provided efficient dynamic programming algorithms for these problems. Chen and Vairaktarakis [5] studied
the integrated scheduling problem of minimizing a convex combination of completion times and total delivery
cost. They also provided exact or approximation algorithms for the studied problems. Kacem and Kellerer [9]
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introduced the concept of “no idle time” into the scheduling problem studied by Potts [14]. For the studied
problem, they provided a faster 3

2 -approximation algorithm and a polynomial time approximation scheme with
efficient time complexity.

Lee and Chen [10] considered several scheduling problems with batch delivery to minimize the makespan. In
their models, both the number and the capacity of the vehicles are limited. Two types of transportation situations
were considered in their models. The first type, Type-1, involves intermediate transportation of jobs from one
machine to another for further processing. The second type, Type-2, involves the transportation of jobs from the
machine to their customers. The Type-2 model was extended by Chang and Lee [1] by considering the situation
where each job might occupy a different amount of physical space in a vehicle. For the single-machine problem,
they provided a heuristic algorithm with the worst-case ratio 5

3 . Wang and Lee [16] considered logistics scheduling
with two transport mode choices, where the mode with a shorter delivery time will incur a higher delivery cost.
They provided a branch and bound algorithm with two different lower bounds. Chen and Lee [2] considered
logistics scheduling with multiple transportation mode choices to minimize the sum of weighted completion
times and total delivery cost. For the above problem, they also provided two approximation algorithms.

Recently, Chen [4] and Wang et al. [15] provided two comprehensive reviews for production-distribution
problems that integrate scheduling and delivery aspects. Thus, for more results on this topic, we refer the
reader to Chen [4] and Wang et al. [15].

2. Problem formulation

The single-machine scheduling problem with release dates and job delivery to minimize makespan can be
described as follows. There are n jobs J1, . . . , Jn to be first processed on a single machine and then delivered by
a capacitated vehicle to a single customer. Each job Jj has a processing time pj and a release date rj . Only one
vehicle is employed to deliver all the jobs. The vehicle can deliver at most c ≥ 1 jobs in each shipment. The set
of all the jobs delivered together in one shipment forms a delivery batch. The round-trip transportation time
between the machine and customer is a constant T > 0. The delivery completion time of Jj is defined as the time
at which the delivery batch containing Jj is delivered to the customer and the vehicle returns to the machine.
The objective is to minimize the makespan, i.e., the maximum delivery completion time of the jobs. Using
the general notation for schedule problems, this problem is denoted by 1 → D|rj , c ≥ 1|Cmax. If preemption
is allowed, the corresponding scheduling problem is denoted by 1 → D|rj ,pmtn, c ≥ 1|Cmax. Without loss of
generality, we only consider regular schedules in which no job can start earlier without affecting the processing
of other jobs.

If all the jobs are released at time zero, the corresponding problem is denoted by 1 → D|c ≥ 1|Cmax. Lee
and Chen [10] presented a polynomial-time algorithm for the problem. The problems 1→ D|rj , c ≥ 1|Cmax and
1→ D|rj ,pmtn, c ≥ 1|Cmax were first studied by Lu et al. [11]. For 1→ D|rj ,pmtn, c ≥ 1|Cmax, they presented
a polynomial-time algorithm. For 1 → D|rj , c ≥ 1|Cmax, they showed that the problem is strongly NP-hard
and presented a 5

3 -approximation algorithm. Their approximation algorithm is based on the online and greedy
strategy. For the latter problem, Liu and Lu [12] further proposed an improved 3

2 -approximation algorithm.
However, their method cannot lead to a polynomial-time approximation scheme (PTAS).

In this paper we consider further the scheduling problem 1 → D|rj , c ≥ 1|Cmax. By using more information
on the jobs, we provide a polynomial-time approximation scheme (PTAS).

3. Preliminaries

For a given instance I and a feasible schedule π, we will use the following notation:

• rmax, the maximum release date of the jobs, i.e., rmax = max{rj : 1 ≤ j ≤ n}.
• P , the total processing time of the jobs, i.e., P =

∑
1≤j≤n pj .

• ρj , the ready time of Jj , which represents the completion time of Jj on the machine.
• δj , the departure time of the vehicle from the machine to deliver Jj .
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Let C∗(I) and CA(I) be the makespan of an instance I given by an optimal schedule π∗ and an approximation
algorithm A, respectively. When no ambiguity occurs, we simplify C∗(I) and CA(I) by C∗ and CA, respectively.

For problem 1→ D|rj ,pmtn, c ≥ 1|Cmax, Lu et al. [11] presented a polynomial-time algorithm, called A1 in
the following, which will be used in Section 4.

Polynomial-time algorithm A1

Step 1: The jobs are processed on the machine by the smallest remaining processing time (SRPT) rule, i.e.,
at any decision time t, the available job with the smallest remaining processing time is selected for
processing.

Step 2: Assign the jobs into dn
c e delivery batches and transport all the delivery batches to the customer such

that (a) the job with a smaller ready time is delivered no later than that with a larger ready time, and
(b) each delivery batch, except the first delivery batch, contains exactly c jobs.

Step 3: Whenever the vehicle and a delivery batch are available, the vehicle always transports the delivery
batch with the smallest ready time. When all the jobs are delivered to the customer and the vehicle
returns to the machine, stop.

Notice that the jobs can be optimally delivered to the customer by the above strategy (Steps 2 and 3) when a
processing schedule of the jobs is given. Thus, the strategy is denoted by Optimal Delivery Strategy. Clearly,
Steps 2(a) and 3 can be proved by a pair-wise interchange in two delivery batches. Furthermore, if a delivery
batch, with the exception of the first delivery batch, contains less than c jobs, we can always fill the delivery
batch with more jobs from earlier delivery batches without increasing the objective value. Thus, it follows
that Step 2(b) is also reasonable. In [10], the authors used the same strategy to transport all the jobs to the
customer. Indeed, once the processing schedule is given, the remaining job delivery problem is equivalent to the
single-machine batch processing problem with release dates and identical processing times. Ikura and Gimple
[8] also used the same strategy to solve the latter problem.

4. A polynomial-time approximation scheme

To propose a polynomial-time approximation scheme, we make a series of transformations of the input
instance I such that its structure is simplified. Given ε = 1/E for some positive integer E, each transformation
may increase the objective value by εC∗. When we describe such a transformation, we say that it produces a
1 + ε loss.

Let ∆ = max{P, rmax} and δ = ε∆. Obviously, we have δ ≤ εC∗. We say that a job Jj is small if pj ≤ εδ,
and large otherwise. It is easy to see that there are at most E2 − 1 large jobs in any instance.

Property 4.1. With a 1 + ε loss, we can assume that all the release dates in the instance are multiples of δ,
and there are at most E + 1 distinct release dates in the rounded instance.

Proof. We round every release date up to the nearest multiple of δ. Then, each release date is increased by a
value of at most δ. Let π∗ be an optimal schedule for the original instance. By increasing the starting time of
each job and the departure time of each delivery batch in π∗ by δ, we can obtain a feasible schedule of the
rounded instance with makespan increased by δ ≤ εC∗. Furthermore, there are at most E + 1 distinct release
dates in the rounded instance since Eδ ≥ rmax. �

We partition [0,+∞) into E + 1 disjoint intervals in the form [Ri, Ri+1), where Ri = (i − 1)δ for each
1 ≤ i ≤ E + 1 and RE+2 = +∞. Note that each of the first E intervals has a length δ. Thus, the first E
intervals is denoted by regular intervals. By Property 4.1, we can assume that each job is released at some Ri,
1 ≤ i ≤ E + 1.
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Property 4.2. There exists an optimal schedule such that the jobs starting at the same interval are processed
in the order of non-decreasing processing times; furthermore, there is no idle time between the jobs starting at
the same interval.

For each feasible schedule π, the machine configuration of the large jobs is defined by the vector Γ =
(A1, . . . , AE ;S1, . . . , SE), where Ai is exactly the set of the large jobs starting in interval [Ri, Ri+1) and Si

is the starting time of the first large job in Ai, 1 ≤ i ≤ E.

Property 4.3. With a 1 + ε loss, we can assume that each Si is a multiple of εδ, 1 ≤ i ≤ E.

Proof. Consider an optimal schedule with the properties in Properities 4.1 and 4.2. We delay the starting time
of the first large job in each regular interval up to the nearest multiple of εδ and shift the other jobs accordingly.
The new schedule does not change the processing order of the large jobs. Recall that there are exactly E regular
intervals. Thus, the ready time of each job is delayed at most Eεδ = δ. Therefore, by increasing the departure
time of each delivery batch by δ, we can obtain a feasible schedule with the objective value increased by at most
δ ≤ εC∗. �

Property 4.4. There are at most (E + 1)E2+E−1 distinct machine configurations of the large jobs.

Proof. Note that there are at most E2 − 1 large jobs and each large job has at most E + 1 choices in different
intervals. Thus, all the partitions of the large jobs have at most (E + 1)E2−1 possibilities. By Property 4.3, if
there are some large jobs processed in [Ri, Ri+1), we have Ri ≤ Si < Ri+1 and Si is a multiple of εδ. Thus,
each Si has at most E + 1 distinct choices. Consequently, there are at most (E + 1)E2+E−1 choices for vector
Γ = (A1, . . . , AE ;S1, . . . , SE). �

Approximation scheme A2

Step 1: Round each release date up to the nearest multiple of δ.
Step 2: Construct all the machine configurations of the large jobs. Then, for each of them, do the following:

Step 2.1: Assign the large jobs to the machine according to the machine configuration (if feasible). This
leaves several idle-time intervals on the machine. If some Ri with 1 ≤ i ≤ E + 1 is an interior
point of some idle-time interval H, we partition H into two idle-time intervals H ′ and H ′′ at
Ri. The resulting idle-time intervals are denoted by H1, H2, ...,Hm, Hm+1 from left to right in
this order, where Hm+1 is the unique unbounded idle-time interval.

Step 2.2: For i from 1 to m, assign as many as possible of the available unscheduled small jobs to the
time interval Hi in the order of non-decreasing processing times; if there is not enough space
for some small job, we stretch the length of this time interval by at most εδ such that the small
job can be exactly assigned.

Step 2.3: The remaining jobs (which may include both small jobs and large jobs) are assigned to Hm+1

by the rule that the available unscheduled jobs are scheduled in the order of non-decreasing
processing times.

Step 2.4: Transport all the jobs by the Optimal Delivery Strategy.
Step 3: Among all the schedules obtained above, select the one with the minimum makespan.

Clearly, we can re-index all the jobs in O(n log n) time such that p1 ≤ p2 ≤ . . . ≤ pn. For each machine
configuration of the large jobs, constructing the corresponding schedule can be done in O(n) time. Thus, the
time complexity of A2 is O(n log n+ n(E + 1)E2+E−1), which is polynomial in n when ε is a constant.

Theorem 4.5. Approximation scheme A2 is a polynomial-time approximation scheme for the problem 1 →
D|rj , c ≥ 1|Cmax.
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Proof. Let I be an arbitrary original instance. Let I1 be the instance obtained from I by Step 1. By Property
4.1, we have Cmax(I1) ≤ (1 + ε)C∗. Note that after Step 2(2.1), there are m + 1 ≤ 2E + 1 idle-time intervals.
Since Hm+1 is unbounded, the total length of the time space caused by stretching the time slots in Step
2(2.2) is at most mεδ ≤ 2εC∗. Let I2 be the instance obtained from I1 by Step 2. Thus, we have Cmax(I2) ≤
Cmax(I1) + 2εC∗ ≤ (1 + 3ε)C∗. Let π∗ be a restricted optimal schedule of I2 satisfying Property 4.3. Thus, we
have Cmax(π∗) ≤ Cmax(I2) + εC∗ ≤ (1 + 4ε)C∗. By Property 4.2, we can assume that the jobs starting in the
last interval are processed in the order of non-decreasing processing times under π∗.

The processing of the large jobs in π∗ represents a machine configuration Γ in Step 2. For the machine
configuration Γ, the algorithm produces a feasible schedule π of I2. Note that each job is released at some Ri,
1 ≤ i ≤ E + 1. Thus, π schedules all the small jobs by the SRPT rule.

Now we consider the feasible schedules of I2 under the restriction that the processing of the large jobs is the
same as that in π∗. Such schedules are called π∗-restricted schedules of I2.

Claim 1: π is an optimal π∗-restricted schedule of I2.

Indeed, we will prove a stronger statement by contradiction that π is an optimal preemptive π∗-restricted
schedule of I2. Let Π be the set which consists of all optimal preemptive π∗-restricted schedules of I2. We assume
to the contrary that π 6∈ Π. Let σ with σ ∈ Π be an arbitrary optimal preemptive π∗-restricted schedule of I2.
We define t(π, σ) to be the maximum time t such that the sub-schedules of π and σ are identical in the time
interval [0, t). Let π′ with π′ ∈ Π be a schedule such that t(π, π′) ≥ t(π, σ) holds for any schedule σ ∈ Π. Set
t′ = t(π, π′). Clearly, t′ is the minimum time such that π′ does not coincide with π. Suppose that π processes
job Jj at time t′ and π′ processes job Ji at time t′. Note that both π and π′ are π∗-restricted schedule of I2.
Thus, the processing of the large jobs is identical in π and π′. That is, both Jj and Jj are small jobs. Let pj(t′)
and pi(t′) be the (remaining) processing times of Jj and Ji, respectively. By the implementation of A2, both Ji

and Jj are available at time t′. Thus, we have pj(t′) ≤ pi(t′).
Let S be the interval set consisting of all the time slots starting after or at t′ in which Ji and Jj are

processed in π′. Define a new schedule π′′ from π′ by rescheduling the remaining parts of Ji and Jj in such a
way that, in the time slots in S, the remaining parts of Jj are processed before Ji. Note that pj(t′) ≤ pi(t′)
and π′ and π′′ process Ji and Jj at time t′, respectively. One can easily see that ρj(π′′) < min{ρi(π′), ρj(π′)},
ρi(π′′) = max{ρi(π′), ρj(π′)} and ρk(π′′) = ρk(π′) for all k 6= i, j. The early finished jobs are delivered no
later than the later finished jobs and the number of jobs in each delivery batch is the same as that in π′.
Then we obtain a feasible preemptive π∗-restricted schedule π′′ with Cmax(π′′) ≤ Cmax(π′). This implies that
π′′ is also an optimal preemptive π∗-restricted schedule of I2. That is, π′′ ∈ Π. By the definition of π′′, the
subschedules of π′′ and π are identical in the time interval [0, t′). Note further that Jj is processed at time
t′ in both π′′ and π. Thus, we have t(π, π′′) > t(π, π′). This contradicts the choice of π′. Therefore, we can
conclude that π ∈ Π. This follows that π is an optimal preemptive π∗-restricted schedule of I2. The claim follows.

By Claim 1, we have CA2 ≤ Cmax(π) = Cmax(π∗) ≤ (1 + 4ε)C∗. The result follows. �
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