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OPTIMIZING VENDOR-MANAGED INVENTORY SYSTEMS WITH LIMITED
STORAGE CAPACITY AND PARTIAL BACKORDERING UNDER

STOCHASTIC DEMAND

Ata Allah Taleizadeh∗, Iman Shokr and Fariborz Joali

Abstract. A supply chain member’s coordination is a challenging issue and a key factor of success
in business markets. In vendor-managed inventory systems, the vendor makes replenishment decisions
at the site of buyer by which the supply chain can be coordinated more efficiently. Two integrated
vendor managed inventory systems under continuous review and periodic review replenishment poli-
cies are developed considering partial backordering and limited storage capacity at the buyer’s side.
Furthermore, traditional retailer managed inventory systems under the same settings are developed to
compare against the integrated systems. Efficient algorithms are presented to derive the optimal values
of decision variables. Finally, numerical experiments and comprehensive sensitivity analysis are used to
show the applicability and efficiency of the proposed VMI systems.
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1. Introduction

Proper managing of inventory systems can result in reducing total cost of supply chains. Several partners such
as retailers and vendors are involved in supply chains, in which they need to be coordinated with each other to
gain more profit. Thus, coordination is a challenging issue in supply chain especially in inventory management
systems under which enhancing cost-efficiency of chains can be obtained [48]. Coordinating supply chains may
be achieved by using information technology (IT) and electronic data interchange (EDI), because vendors can
receive point-of-sale data [39]. Therefore, it is vital to manage supply chains properly to enhance competitive
advantages of commercial supply chains via integrating vendors and retailers. As a result of integration of
these parts of supply chains, vendor is able to determine the most appropriate order quantity, which should be
produced, and deliver them to retailers [38].

Two common concepts exist in literature to manage inventory systems: traditional retailed inventory (RMI)
systems and vendor-managed inventory (VMI). In RMI systems, retailers make decision about their own replen-
ishments variables. These decisions not only increase the total cost of a chain, but also reduce chain performances.
For overcoming these difficulties, integrating supply chains has been a topical issue among researchers and prac-
titioners. VMI is widely known as coordinating program among suppliers and buyers (i.e. retailers). In VMIs
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systems the vendor makes centralized replenishment decisions, such as deciding on timing and quantities [17]
for buyers in an integrated viewpoint by which a supply chain can be coordinated [16,46]. In VMI systems, the
vendor is responsible to place orders for buyers and to ship items [47]. In this light, enhancing service levels,
ordering cost reduction, brand improvements, more exact sales predicting, and precise production planning are
some well-known advantages of VMI systems. Companies such as Wal-Mart, Intel, and Shell Chemical have
employed VMI systems because of its benefits [8].

In VMI, the vendor is likely to ship more quantities to buyers as a result of employing centralized decisions. In
a same way, storage capacity at the site of buyers is not unlimited. Thus, the vendor is restricted from shipping
large quantities and he should keep inventory levels below a pre-agreed storage capacity [17, 40]. Glock [26]
stated that it is essential to develop integrated inventory models and VMI systems which are applicable in real-
life problems. A significant point for developing inventory systems is considering partial backordering (PBO)
situation. Under PBO, an inventory system may encounter with backorders and lost-sales simultaneously, which
is more applicable in reality than restricting a system with one of the backorders or lost-sales cases. To respond
to such practices, it is vital to develop VMI systems with considering of limited storage capacity (LSC) at the
site of buyer while PBO is permitted.

Benefits of employing VMI systems in comparison with traditional RMI systems are discussed above. There
are many successful paradigms resulting from the adoption of the VMI strategies as mentioned before. Contribut-
ing in VMI systems with developing more analytical models, which are closed to real world can be significant
point for commercial supply chains [13,26,51].

Two main well-known realistic assumptions for inventory systems are LSC and PBO. LSC is a valid as-
sumption, as well as PBO, which have not been involved in many previous studies in which VMI systems
are developed. In this paper, a single-vendor single-buyer problem is studied to integrate the production-
inventory systems under VMI policy. The significant contribution of this paper is presenting two novel VMI
systems with both continuous replenishment review system (r,Q) and periodic replenishment review sys-
tem (R, T ) considering LSC and PBO simultaneously. Also, two RMI systems in the same settings are pre-
sented in order to make comparison between effects of implementing the proposed VMI systems and tradi-
tional RMI systems. Theorems are established to solve the problems and necessary propositions are defined
and proved by which the conditions for convexities are achieved. The closed-form optimal solutions of de-
cision variables are obtained in both (r,Q) and (R, T ) review systems. Furthermore, efficient iterative algo-
rithms are presented to determine optimal values of decision variables with low computation complexities.
The proposed algorithms can be implemented with commercial software such as MATLAB. In brief, main
contributions of this paper can be summarized as developing VMI systems under PBO and LSC; Formu-
lating the problem under (r,Q) and (R, T ) replenishment review systems; Obtaining closed-form of optimal
decision variables with proved convexities; Proposing iterative algorithms for solving the proposed VMI sys-
tems under PBO and LSC; Developing counterpart RMI systems to make comparison between RMIs and
VMIs.

Remainder of this paper is structured as follows. Literature review is provided in Section 2. Developed
models are presented in Section 3. The proposed VMI problems under (r,Q) and (R, T ) as two replenish-
ment review systems are presented in Sections 3.1 and 3.2, respectively. Their RMI counterparts are pre-
sented in Sections 3.3 and 3.4. Comprehensive numerical experiments and sensitivity analysis are provided in
Section 4. Managerial implications are provided in Section 5 and conclusion and future works are performed in
Section 6.

2. Literature review

As mentioned before, VMI is able to enhance the performance of a chain. For instance, Dong and Xu [18] dis-
cussed applicability and profitability of VMI systems in long and short-term periods. Mishra and Raghunathan
[43] represented that VMI systems are capable of increasing competition among companies and manufactur-
ers. Claassen et al. [15] studied impact of VMI systems on supply chain performances. They stated improving
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customer’s satisfaction level, controlling a whole supply chain, and cost reduction are advantages of VMI sys-
tems. Yao et al. [54] examined VMI systems and expressed that replenishment quantities would be typically
reduced in a chain after implementing VMI.

Several related works exist in the literature aiming to integrate the whole chain. Cetinkaya and Lee [12]
studied on VMI systems to coordinate transportation scheduling and inventory management decisions and
[3] proposed an optimization solution procedure for solving the model presented by Cetinkaya and Lee [12].
Fry et al. [22] presented a single-vendor single-buyer problem in which vendor should be penalized if buyer’s
inventory level exceeds from a pre-agreed range. Ouyang et al. [45] developed the previous work when shortage is
permitted. They presented VMI systems for stochastic and deterministic lead-times. Choi et al. [14] developed an
inventory model under VMI in order to determine the vendor service levels. Jaruphongsa et al. [35] presented a
lot-sizing inventory problem while considering time windows to meet demands. Jaruphongsa et al. [36] extended
their previous work in which warehouses encounter limited storage capacities. Ben-Daya and Hariga [7] studied
a single-vendor single-buyer problem where demand through the lead-time is stochastic. Also, they considered
that lead-time might have been varied linearly with lot-size. Obviously, assuming demands as stochastic variables
are more realistic than considering them as deterministic parameters. Hsiao [32] extended the previous work
with allowing two reorder points and service levels. Ben-Daya and Hariga [7] and Hsiao [32] developed their
mathematical models under continuous review system (r,Q). Afterwards, Yedes et al. [55] reformulated the
previous works for a lot-for-lot problem and made a comparison among the achieved results and previous
researchers’ results. Zhou and Wang [58] proposed an integrated production-inventory system with single-vendor
single-buyer for deteriorating goods with shortages. Cardenas-Barron et al. [11] presented an algorithm to solve
a multi-constraint and multi-product VMI system under economic order quantity. It is noteworthy to mention
that in vendor-managed consignment inventory, the buyer does not charge the vendor or pay for delivered goods
until they are sold or used [20, 29]. Bazan et al. [6] developed a consignment stock under VMI when vendor
might produce defective items while these items may need to be scrapped or reworked. Omar and Supadi
[44] developed a single-vendor single-buyer problem when the demand rate would be decreased linearly during
finite time horizon. Also, Glock [26] reviewed works published in joint economic lot sizing (JELS) concepts and
stated that inventory models need to be developed practically to be consistent with real world applications. For
instance, entering partial back-ordering and limited storage capacities to the problems are more realistic than
assuming infinite volume of warehouses. Thus, to be more consistent with real world applications, Mandal and
Khan [42] developed a joint economic lot-sizing model under parameter uncertainties because parameters might
be imprecise in real world. Afterwards, Sadjadi et al. [49] proposed other joint economic lot-sizing model while
addressing budget limitations and stated that budget limitation should be considered as a real life problem.
Masud et al. [1] proposed an efficient solution algorithm to determine optimal decisions for an integrated reliable
production-inventory model. Braglia et al. [4] developed a VMI with considering consignment agreement and
introducing physical space occupation at the buyer as a capacity limitation. Bylka and Górny [9] presented a CS
for integrating a two-level supply chain when lot sizes can be equal or non-equal. Jaggi et al. [34] developed a
CS for integrating single-vendor single-retailer problem in which backorders are allowed and payment delays are
permitted for buyer. Khan et al. [39] proposed a CS agreement for single-vendor and single-buyer problem where
defective items might be produced. Afterwards, Giri et al. [24] extended Khan et al. [39]’s work for unequal-
sized deliveries. Another significant study is presented by Cai et al. [10] for multi-vendor and single-buyer
where substitutable brands are investigated under VMI using game theory. Notably, limited storage capacity
for buyer is not considered in their problem. Zahran and Jaber [57] proposed a CS contract for multi-vendor
and multi-buyer when upstream can suggest using delay-in-payments to downstream supply chain partners.
They proposed four coordination scenarios with combination of consignment and traditional inventory policies.
Also, backorders and limited storage capacity are not considered in their study. Kaasgari et al. [38] presented
a VMI with considering discount and perishable products for the problem of single-vendor and multi-retailers.
They devised two meta-heuristic algorithms to solve their proposed model. Verma and Chatterjee [52] developed
a problem of single-vendor and multi-retailers when the replenishment quantity for retailers is limited by an
upper bound. They presented a deterministic model and proposed a heuristic algorithm to solve the model.
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Jauhari et al. [37] investigated on a single-vendor single-buyer problem with considering freight rate discount
under stochastic demand but buyer’s space limitation is not considered in their study. Hemmati et al. [30]
proposed a CS with considering price- and stock- dependent demand with a deteriorating item for the problem
of single-vendor single-buyer. Braglia et al. [5] proposed an inventory replenishment policy for an integrated
supply chain including single buyer and single supplier when backorders and lost sales are permitted under
stochastic demand. Islam and Hoque [33] developed a single buyer single vendor in an integrated supply chain
under consignment policy and considered numerous factors which are applicable in real world such as capacity
constraint, work-in-process inventory, shipping time, and etc. Also, interested readers may refer to Sarker [50]
in which consignment policy works are reviewed and a comparative perspective is made.

Considering LSC at the buyers’ sides is more realistic than considering existing unlimited capacity in different
types of inventory models. For instance, Hoque and Goyal [31] presented an integrated model for single-vendor
single-buyer problem in which buyer encounters capacity constraint of the transport equipment used to transfer
batches from the vendor to the buyer. Dye et al. [19] developed a deterministic inventory model with capacity
constraint. Also, Feng et al. [21] developed an economic lot-sizing problem with stochastic demand and space
limitation for buyer. Liu [41], and Giri and Moon [25] proposed economic lot-sizing problem with deterministic
demand and capacity constraints for the buyer. It should be noted that Liu [41] deals with time-varying in-
ventory capacity, while Giri and Moon [25] with static. Almehdawe and Mantin [2] exploited Stackelberg game
to coordinate single-vendor and multi-buyer when vendor encounters capacity constraint. Hariga [27] proposed
a stochastic inventory model in which buyer has limited space to store items. In another similar work, this
model is extended when vendor is encountered capacity constraint [28]. Giri et al. [23] presented a JELS model
with single-vendor single-buyer in which storage capacity at the vendor’s side and deterministic demand are
considered. These mentioned works are not under VMI and CS policies, but there are more VMI problems
in which space limitation is considered. For instance, Jaruphongsa et al. [36] has presented a two-echelon lot-
sizing model with considering limited storages for warehouses. Darwish and Odah [17] considered an upper
bound for buyer’s inventory level for their VMI problem. Hariga et al. [29] presented a VMI based on eco-
nomic order quantity (EOQ) model when shipment frequencies can be unequal. Yi and Sarker [56] proposed a
CS-VMI system for coordinating single-vendor and single-buyer with considering space limitation at buyer’s side
and permitting backorders. They assumed demand follows a normal probability distribution, but they could not
obtain closed-form of decision variables and tried to solve their model with meta-heuristic algorithms. In addi-
tion, their work lacks of proving convexity conditions of objective function. Also, Lee et al. [40] presented VMI
inventory systems using an EOQ where LSC at the buyer’s side limits the vendor to ship large quantities. Also,
they assumed shortages are allowed and the vendor would be penalized when the buyer encountered stockouts.

3. Models development

VMI systems would be applied to inventory management systems to coordinate between suppliers and buyers
(i.e. retailers). For this purpose, centralized decisions will be made by vendor assuming the vendor have access
to the necessary information of buyer such as replenishment decision parameters. The problem is to formulate a
single-vendor and single-buyer VMI system under continuous review system (r,Q) and periodic review (R, T ),
which are well-known as two popular replenishment policies, with permitting PBO and considering LSC at
the buyer’s side. These two main assumptions are not considered in most of the developed inventory systems
(i.e. RMI and VMI) which are reviewed in Section 2. In the point of applicability, considering PBO and LSC
are more practical. As mentioned before, PBO means lost-sales and backorders are permitted in an inventory
management system and a certain ratio of orders encounters backorders and others encounter lost-sales. Also,
it is vital to consider the storage capacity volume at the buyer’s side that needs to hold goods, because an
obtained solution might be infeasible for the buyer due to replenishment exceeding storage capacity.

Following assumptions are used to develop VMI and RMI systems under (r,Q) and (R, T ) review systems. It
is noteworthy to mention that the RMIs are developed to make comparison between the applicability of VMI
and RMI systems when PBO is allowed and storage capacity is limited.
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Assumptions

– Single-vendor, single-buyer and single-item situation is considered.
– Vendor is aware of buyer’s replenishment decision parameters (i.e. inventory level, demand, etc.).
– Production is permitted at vendor’s side with the finite rate of P which is greater than buyer demand

(P > D).
– One machine is available to vendor for producing the orders’ items.
– Buyer’s procurement lead-time varies linearly with lot sizes and shipping time.
– (r,Q) and (R, T ) replenishment policies can be used to review the inventory levels.
– Demand follows from normal distribution.
– Storage capacity for buyer is limited.
– Backorders and lost-sales are permitted for the buyer (PBO is permitted).

Parameters
D Demand rate of buyer (units/year)
P Production rate of vendor where P > D (units/year)
As Fixed ordering cost of vendor ($)
AB Fixed ordering cost of buyer ($)
hs Unit inventory holding cost of vendor ($/units)
hB Unit inventory holding cost of buyer ($/units)
α Fraction of the demand which will be backordered (0 ≤ α ≤ 1 )
π1 Unit backordering cost of buyer ($/units)
π2 Unit lost-sale cost of buyer ($/units)
b Shipping time from vendor to buyer
b̄ Average backlogged quantity of buyer (units)
SS Safety stock of buyer (units)
µ Demand during lead-time for buyer (units)
σ Standard deviation of demand through lead-time for buyer (units)
σL Standard deviation of demand through lead-time (units)
kp Inverse of service level (p) in normal distribution
Gu(kp) Right hand unit of normal linear-loss integral
l(Q) Buyer’s procurement lead-time under (r,Q)(l(Q) = Q/P + b)
l(DT) + T Buyer’s procurement lead-time under (R, T )(l(DT) + T = DT/P + T + b)
A Percentages of orders encountered with backorders
M Storage capacity of buyer (Units)
F (x) complementary cumulative distribution of x
KB Total cost of buyer in traditional inventory system ($)
KS Total cost of vendor in traditional inventory system ($)
TC Total cost of chain ($)

Decision variables

R Maximum level of inventory under (R, T ) policy (units)
r Reorder point in (r,Q) policy (units)
Q1 Quantity of items shipped from vendor to buyer under VMI and (r,Q) when LSC is not activated (units)
Q1 Quantity of items shipped from vendor to buyer under VMI and (r,Q) when LSC is activated (units)
Q2 Quantity of items shipped from vendor to buyer under RMI and (r,Q) when LSC is not activated (units)
Q2 Quantity of items shipped from vendor to buyer under RMI and (r,Q) when LSC is activated (units)
T1 cycle time under VMI and (R, T ) when LSC is not activated
T 1 cycle time under VMI and (R, T ) when LSC is activated
T2 cycle time under RMI and (R, T ) when LSC is not activated
T 2 cycle time under RMI and (R, T ) when LSC is activated
T Time-period or cycle time
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3.1. VMI under (r, Q) with PBO and LSC

In VMI systems, the vendor is responsible to make replenishment decisions of buyer and all of the costs (such
as ordering cost, holding costs, backordering costs, and lost-sale costs) will be carried to the vendor. Therefore,
we have KBr,QVMI = 0 meaning that total cost of the buyer is negligible in VMI systems [46, 54]. Additionally,
total cost of chain is TCr,QVMI = KBr,QVMI + KSr,QVMI = KSr,QVMI, in which KSr,QVMI is the total cost of the vendor. Let
denote the cost of chain under backorders and lost-sales with TCr,QVMIBO and TCr,QVMILS, respectively.

TCr,QVMIBO =

Fixed ordering cost︷ ︸︸ ︷
D(AB +AS)

Q
+

Buyer’s holding cost in BO︷ ︸︸ ︷
hB

(
Q

2
+ SS

)
+

Vendor’s holding cost︷ ︸︸ ︷
hS
Q

2

(
1− D

P

)
+

Backordering cost︷ ︸︸ ︷
π1
D

Q
b(r, l(Q)) (3.1)

TCr,QVMILS =

Fixed ordering cost︷ ︸︸ ︷
D(AB +AS)

Q
+

Buyer’s holding cost in lost-sales︷ ︸︸ ︷
hB

(
Q

2
+ SS + b(r, l(Q))

)
+

Vendor’s holding cost︷ ︸︸ ︷
hS
Q

2

(
1− D

P

)
+

lost-sale cost︷ ︸︸ ︷
π2
D

Q
b(r, l(Q)) . (3.2)

The first terms of equations (3.1) and (3.2) represent the fixed ordering costs associating to buyer and vendor.
The second terms denote holding costs of buyer containing costs relating to the average quantity of orders and
safety stocks. It is well-known that the amount of lost-sale will be involved when calculating the buyer’s holding
cost (Eq. (3.2)). The third terms are vendors holding costs and the fourth terms are backordered costs and
lost-sale cost in both equations (3.1) and (3.2), respectively.

As 1 − α percentage of orders encounter lost sales, total cost of chain under PBO can be calculated as
TCr,QVMI = αTCr,QVMIBO + (1−α)TCr,QVMILS under (r,Q) policy. Thus, we obtain total cost of chain under VMI and
PBO using equation (3.3) as below.

TCr,QVMI =
D(AB +AS)

Q
+ hB

(
Q

2
+ SS

)
+ (1− α)hBb(r, l(Q)) + hS

Q

2

(
1− D

P

)
+ απ1

D

Q
b(r, l(Q)) (3.3)

+ (1− α)π2
D

Q
b(r, l(Q)).

Demand through the lead-time is distributed normally x ∼ N
(
Dl (Q) , σ2l (Q)

)
, where l (Q) is the buyer’s

procurement lead-time and is equal to Q
P +b which varies linearly with lot-sizes plus shipping time. The parameter

b would be inspired by delay times of shipping goods from vendor to buyer because of moving, inspections, and
etc.

It is known that b̄ (r) = σ
√
Q/P + bGu(kp) (see Appendix A for proof). Thus, total cost of chain can be

reformulated as presented in equation (3.4):

TCr,QVMI =
D(AB +AS)

Q
+ hB

Q

2
+ hBSS + (1− α)hBσ

√
Q/P + bGu(kp) + hS

Q

2

(
1− D

P

)
(3.4)

+ (απ1 + (1− α)π2)
D

Q
σ
√
Q/P + bGu(kp).

Equation (3.4) shows the total cost of chain in which α precent of shortages would be back-ordered and 1 − α
precent would be lost-sale. Hence, we formulate the PBO for the considered problem, but LSC is not involved in the
formulations yet. As mentioned before, the buyer has a LSC, which the vendor should consider this point when places
orders. Therefore, storage capacity of buyer must be less than its capacity (M). The main problem is as follows:

min TCr,QVMI (3.5)
st : Q+ SS ≤M or Q+ r − µL ≤M.

For solving the above mathematical model, first we calculate the value of optimal decision variables without
considering the constraint. If the solution satisfies the constraint (Q + r − µL ≤ M), the optimal values for
decision variables are obtained. Otherwise, the solution procedure will continue considering the constraint.
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Proposition 3.1. TCr,QVMI is continues, strictly increasing, and concave in r and Q when β + η > γ

where β = 8DPAB (bP +Q)
√
b+ Q

P + 8DPAS (bP +Q)
√
b+ Q

P , γ = Q3hBσ ((1− α) Gu(kp) + kp), and
η = DGu(kp)σ (απ1 + π2 (1− α))

(
8b2P 2 + 12bPQ+ 3Q2

)
.

Proof of Proposition 3.1. See Appendix B. �

It should be noted that if a problem does not satisfy conditions of Proposition 3.1, decision makers need to utilize
other optimization techniques such as using optimization software and solving the problem with different solvers.

For solving the model as a non-constrained model we need the partial derivative with respect to r and Q as
shown in equations (3.6) and (3.8). Note that ∂b(r,l(Q))

∂r = −F (r) ([46], Appendix B)

∂TCr,QVMI

∂r
= hB + (απ1 + (1− α)π2)

D

Q

[
−F (r)

]
+ (1− α)hB

[
−F (r)

]
= 0. (3.6)

Thus the reorder point (r) from its complementary cumulative distribution for the (r,Q) policy can be
calculated using equation (3.7):

F (r) =
hBQ

(απ1 + (1− α)π2)D + (1− α)hBQ
· (3.7)

Totally, to calculate the optimal value of decision variable r partial derivative of cost function with respect to r
is used and it is equalled to zero to optimize the function. Therefore, we obtained equation (3.6). Also, according
to Appendix B of [46] we know ∂b(r,l(Q))

∂r = −F (r). After some transformations, we obtained equation (3.7) as
the complementary cumulative distribution. Thus, using F (r) we can obtain r as explained in algorithms. The
safety stock can be calculated with SS = kpσL, where kp is inverse of service level and σL is standard deviation
of demand through lead-time which can be calculated using σL = σ

√
Q/P + b. Therefore, SS = kpσ

√
Q/P + b

is replaced in total cost wherever is needed. Consequently, for deriving Q we have:

∂TCr,QVMI

∂Q
= − D(AB +AS)

Q2
+
hB
2

+
hBkpσ

2P
√
Q/P + b

+
hS
2

(
1− D

P

)
+

(1− α)hBσGu(kp)
2P
√
Q/P + b

(3.8)

+ (απ1 + (1− α)π2)

[
DσGu(kp)

2PQ
√
Q/P + b

− D

Q2
× σ

√
Q/P + bGu(kp)

]
= 0.

Thus, the order quantity (Q) can be calculated using equation (3.9):

Q1 =

√√√√ 2D(AB +AS) + 2D (απ1 + (1− α)π2)σ
√
Q/P + bGu(kp)

hB + hBkpσ

P
√
Q/P+b

+ hS(1− D
P ) + (1−α)hBσGu(kp)

P
√
Q/P+b

+ (απ1 + (1− α)π2) DσGu(kp)

PQ
√
Q/P+b

· (3.9)

Since Q is a function of an initial Q, an efficient algorithm should be developed to determine the optimal value
of Q. Initial value of order quantity (Q0) can be obtained from equation (3.10) with assuming that backorders
and lost-sales are not permitted (PBO is not allowed) in cost functions (π1 = π2 = 0 and b(r, l(Q)) = 0).

Q0 =

√
D(AB +AS)

hB
2 + hS

2

(
1− D

P

) · (3.10)

Theorem 3.2. (a) If Q1 + r − µL ≤ M , then r and Q1 are optimal for VMI system. Hence Q∗VMI = Q1 and
r∗VMI = r.

(b) If Q1 + r − µL > M then Q1 will be assumed as initial order quantity and will be updated by equation (3.9)
and denoted by Q1. Therefore, Q∗VMI = Q1 and r∗VMI = M + µL −Q∗VMI.
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Proof of Theorem 3.2.

(a) It has proven with the unconstrained problem before.
(b) If Q1 + r − µL > M then we should have Q1 + r − µL = M which results in r = M + µL −Q1.

Therefore, Q1 will be considered as another initial order quantity Q0 and after reformulating the reorder point,

kp and Gu(kp) needs to be updated. Where kp =
[
r −D

(
Q0
P + b

)]
/σ
√

Q0
P + b (see Appendix A for proof. Just

simply insert
(
Q0
P + b

)
instead of l(Q) in Appendix A). Afterwards, equation (3.9) can be utilized to recalculate

the order quantity when LSC is activated.
As mentioned before Q1 is a function of an initial value of Q in equation (3.9). For this purpose, equation

(3.10) may be utilized to determine the initial value of Q. Thus, we need to develop an efficient algorithm in
order to compute their optimal values. Algorithm 1 is presented not only for calculating the decision variables,
but also for showing the optimization procedure for the developed VMI systems with PBO and LSC. �

Algorithm 1:

Q0 ←
√

D(AB+AS)
hB
2 +

hS
2 (1−DP )

, compute F̄ and find r, compute kp and Gu(kp)

Calculate Q1

While | Q1 −Q0 | = 0 do
Q0 ← Q1

Compute F̄ and find r

kp ←
r−D(Q0

P +b)
σ
√
Q0
P +b

Gu(kp)← φ(kp)− kφ(kp)
Calculate Q1

End while
If Q1 + r − µL ≤M

Q∗VMI ← Q1

r∗VMI ← r

Calculate total cost of chain
Else

Q0 ← Q1

r = M + µL −Q1

kp ←
r−D(Q0

P +b)
σ
√
Q0
P +b

Gu(kp)← φ(kp)− kpφ(kp)
Recalculate Q1 and denote it with Q1

Q∗VMI ← Q1

r∗VMI ←M + µL −Q∗VMI

Calculate total cost of chain
End if

3.2. VMI under (R, T ) with PBO and LSC

We denote the total cost of chain under (R, T ) policy with TCR,TVMI. As mentioned before, vendor accounts for
replenishing inventory at buyer’s side and incurs all of the involved costs where cost of the buyer is negligible
(KBR,TVMI = 0) and TCR,TVMI = KBR,TVMI + KSR,TVMI = KSR,TVMI [46, 54]. As explained before, total cost of chain under
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PBO is a convex combination of costs associating with backordered (TCR,TVMIBO) and lost-sales (TCR,TVMILS).
Therefore, we have:

TCR,TVMIBO =

Fixed ordering cost︷ ︸︸ ︷
(AB +AS)

T
+

Buyer’s holding cost︷ ︸︸ ︷
hB

(
DT
2

+ SS
)

+

Vendor’s holding cost︷ ︸︸ ︷
hS

DT
2

(
1− D

P

)
+

Backording cost︷ ︸︸ ︷
π1
b(r, l(DT) + T )

T
(3.11)

TCR,TVMILS =

Fixed ordering cost︷ ︸︸ ︷
(AB +AS)

T
+

Buyer’s holding cost︷ ︸︸ ︷
hB

(
DT
2

+ SS + b(r, l(DT) + T )
)

+

Vendor’s holding cost︷ ︸︸ ︷
hS

DT
2

(
1− D

P

)
+

Lost-sale cost︷ ︸︸ ︷
π2
b(r, l(DT) + T )

T
·

(3.12)

The first terms of equations (3.11) and (3.12) show the fixed ordering costs which should be paid in whole
cycles. The second terms, are buyer’s holding costs including costs which should be paid for holding average
order quantities, safety stocks, and average amount of backlogged in lost-sale. The third terms are vendor’s
holding cost and the last terms are cost of backorders and lost-sales.

To obtain the total cost of chain under PBO, equations (3.11) and (3.12) should be combined using the
formulation of TCR,TVMI = αTCR,TVMIBO + (1 − α)TCR,TVMILS. Thus, total cost of chain under PBO is obtained as
presented in equation (3.13):

TCR,TVMI =
(AB +AS)

T
+ hB

DT
2

+ hBSS + (1− α)hBb(r, l(DT) + T ) + hS
DT
2

(
1− D

P

)
(3.13)

+ απ1
b(r, l(DT) + T )

T
+ (1− α)π2

b(r, l(DT) + T )
T

·

Demand through lead-time follows normal probability distribution x ∼ N
(
D (l (DT) + T ) , σ2 (l (DT) + T )

)
.

Also, lead-time in (R, T ) replenishment review system varies linearly with cycle time and can be calculated with
l (DT)+T + b = DT

P +T + b. On the other hand we know b̄ (R, l (DT) + T ) = σ
√

(DT/P ) + T + bGu(kp) (Proof
is similar to Appendix A). Also, we know SS = kpσL+T = kpσ

√
(DT/P ) + T + b under (R, T ) policy. Hence,

the total cost of chain under (R, T ) is reformulated as equation (3.14).

TCR,TVMI =
(AB +AS)

T
+ hB

DT
2

+ hBkpσ
√

(DT/P ) + T + b+ hS
DT
2

(
1− D

P

)
(3.14)

+ (απ1 + (1− α)π2)
σ
√

(DT/P ) + T + bGu(kp)
T

+ (1− α)hBσ
√

(DT/P ) + T + bGu(kp).

After adding the LSC constraint to problem, the main problem with considering LSC is as follows:

min TCR,TVMI (3.15)
st : DT + SS ≤MorDT +R− µL+T ≤M.

To solve the above model, first the unconstrained model should be solved. If the obtained optimal values
of decision variables satisfy the constraint, the calculated value for decision variables are optimal for the con-
strained problem as well. Therefore, first we try to derive the optimal value of decision variables (R, T ) without
considering the constraint. For this purpose the derivation technique would be utilized. Therefore, the maxi-
mum level of inventory in (R, T ) policy can be derived using equation (3.16). It is noteworthy to mention that
∂b(r,l(DT)+T )

∂r = −F (R) (proof is similar to Appendix B of [46]).

∂TCR,TVMI

∂R
= hB − (απ1 + (1− α)π2)

F (R)
T
− (1− α)hBF (R) = 0. (3.16)



188 A.T. TALEIZADEH ET AL.

Thus, the complementary cumulative distribution of maximum level of inventory can be calculated using
equation (3.17)

F (R) =
hBT

απ1 + (1− α)π2 + (1− α)hBT
· (3.17)

Safety stock can be computed using equation SS = kpσL+T in which σL+T is the standard deviation during
lead-time in (R, T ) policy. As demand during the lead-time follows x ∼ N

(
D (l (DT) + T ) , σ2 (l (DT) + T )

)
,

we have σL+T = σ
√
l(DT) + T + b = σ

√
DT/P + T + b.

Afterwards, the total cost of chain is derived according to T to find the optimal value of cycle time:

∂TCR,TVMI

∂T
= − (AB +AS)

T 2
+
hBD

2
+

kphBσ

2
√

(DT/P ) + T + b
+
hSD

2

(
1− D

P

)
(3.18)

+ (1− α)hBσ
Gu(kp)

2
√

(DT/P ) + T + b

+ (απ1 + (1− α)π2)

[
σGu(kp)

2T
√

(DT/P ) + T + b
−
σ
√

(DT/P ) + T + bGu(kp)
T 2

]
·

Therefore, the cycle time (T ) can be computed using equation (3.19) as below:

T1 =

√√√√ 2(AB +AS) + 2 (απ1 + (1− α)π2)σ
√

(DT/P ) + T + bGu(kp)

hBD + hSD(1− D
P ) + kphBσ√

(DT/P )+T+b
+ (1−α)hBσGu(kp)√

(DT/P )+T+b
+ (απ1+(1−α)π2)σGu(kp)

T
√

(DT/P )+T+b

· (3.19)

As the optimal cycle time is a function of an initial T , an efficient algorithm needs to be developed to calculate
the optimal value of T . Initial value of cycle time (T0) can be computed by equation (3.2) which is achieved
without considering PBO and LSC (π1 = π2 = 0 and b(r, l(DT) + T ) = 0) in the developed VMI system:

T0 =

√
2(AB +AS)

hB + hS(1−D/P )
· (3.20)

Proposition 3.3. TCR,TVMI is continues, strictly increasing, and concave in R and T when ω + ψ > ν + κ

where ω = 8 (AB +As) (b+ DT/P + T )3/2, ψ = 8Gu(kp)σ (απ1 + π2 (1− α)) (b+ DT/P + T )2,
ν = 4Gu(kp)σT (απ1 − π2 (α− 1)) (b+ DT/P + T ), and κ = ((1− α) Gu(kp)σ + σkp)T 3hB −
Gu(kp)σT 2 (απ1 + π2 (1− α)).

Proof of Proposition 3.3. See the Appendix B. �

Theorem 3.4. (a) If DT1 +R− µL+T ≤M then T ∗RT = T1 and R∗VMI = R.
(b) If DT1 + R − µL+T > M then T1 will be considered as initial cycle time. Afterwards, optimum cycle

time can be recalculated using equation (3.19) and will be denoted by T 1. Hence, T ∗VMI = T 1 and R∗VMI =
M + µL+T −DT∗VMI.

Proof of Theorem 3.4. (a) It has proven with the unconstrained problem before.
(b) If DT1 +R− µL+T > M then we have DT1 +R− µL+T = M , and accordingly R = M + µL+T −DT1.

Then T1 would play the role of another initial cycle time T0 and we know that with changing the R, inverse

of service level
(
kp =

(
R−D

(
DT0
P + T0 + b

))
/σ
√(

DT0
P + T0 + b

))
will be altered and Gu(kp) needs to be

updated. Afterwards, optimal cycle time should be recalculated using equation (3.19).
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Optimization procedure is presented through an efficient algorithm as follows in order to solve the proposed
VMI systems under (R, T ) policy with considering PBO and LSC.

Algorithm 2:

T0 ←
√

2(AB+AS)

hB+hS(1−DP )
, Compute F̄ and find R, compute kp and Gu(kp)

Calculate T1

While | T1 − T0 | = 0 do
Compute F̄ and find R

kp ← (r −D (DT0/P + T0 + b)) /
(
σ
√

DT0/P + T0 + b
)

Gu(kp)← φ(kp)− kφ(kp)
T0 ← T1

Calculate T1

End while
If DT1 +R− µL+T ≤M

T ∗VMI ← T1

R∗VMI ← R
Calculate total cost of chain

Else
T0 ← T1

R←M + µL+T −DT1

kp ← (r −D (DT0/P + T0 + b)) /σ
√

DT0/P + T0 + b
Gu(kp)← φ(kp)− kφ(kp)
Recalculate T1 and denote it with T 1

T ∗VMI ← T 1

R∗VMI ←M + µL+T −DT∗VMI

Calculate total cost of chain
End if

A comprehensive flowchart for solving the proposed VMI systems is provided in Figure 1. �

3.3. Traditional RMI under (r, Q) with PBO and LSC

The buyer is responsible to make orders in traditional RMI system under (r,Q) replenishment review policy.
It means that the buyer determines his own optimal reorder point (r) and order quantity (Q) which are not
necessary the optimal value for the vendor. Let us denote the total cost of buyer in RMI under (r,Q) with
KBr,QRMI and cost of buyer with considering backordering and lost-sales with KBr,QRMIBO and KBr,QRMILS, respectively.
According to the definitions, we have:

KBr,QRMIBO =

Fixed ordering cost︷ ︸︸ ︷
DAB
Q

+

Buyer’s holding cost︷ ︸︸ ︷
hB

(
Q

2
+ SS

)
+

Backordering cost︷ ︸︸ ︷
π1
D

Q
b(r, l(Q)) (3.21)

KBr,QRMILS =

Fixed ordering cost︷ ︸︸ ︷
DAB
Q

+

Buyer’s holding cost︷ ︸︸ ︷
hB

(
Q

2
+ SS + b(r, l(Q))

)
+

Lost-sale cost︷ ︸︸ ︷
π2
D

Q
b(r, l(Q)) . (3.22)

The first terms of equations (3.21) and (3.22) denote the fixed ordering cost that the buyer has to pay in
cycles. Their second terms, represent buyer’s holding cost associated with holding average quantity orders,
average safety stocks, and average backlogged in lost-sale. Finally, the third terms calculate backordering and
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lost-sale costs. Thus, for calculating the total cost of retailer with partial backordering (KBr,QRMI = αKBr,QRMIBO +
(1− α)KBr,QRMILS) we have:

KBr,QRMI =
DAB
Q

+ hB
Q

2
+ hBSS + (1− α)hBb(r, l(Q)) + απ1

D

Q
b(r, l(Q)) + (1− α)π2

D

Q
b(r, l(Q)). (3.23)

Since demand through the lead-time follows x ∼ N
(
Dl (Q) , σ2l (Q)

)
and b̄ (r, l (Q)) = σ

√
Q/P + bGu(kp),

and SS = r − µL the total cost of retailer can be reformulated as equation (3.24):

KBr,QRMI =
DAB
Q

+ hB
Q

2
+ hBSS + (1− α)hBσ

√
Q/P + bGu(kp)

+ (απ1 + (1− α)π2)
D

Q
σ
√
Q/P + bGu(kp). (3.24)

The main problem, which considers LSC and PBO simultaneously, is as follows:

min KBr,QRMI (3.25)
st : Q+ SS ≤M or Q+ r − µL ≤M.

As explained before, for solving the constrained managed inventory systems, the unconstrained problem
should be solved first. If the obtained results satisfy the problem (3.25), the final optimal values are obtained
as well. Otherwise the solution procedure should be continued considering the constraint.

Proposition 3.5. KBr,QRMI is continues, strictly increasing, and concave in r and Q when υ + ς > ϑ

where υ = 8DPAB (bP +Q)
√
b+ Q

P , ς = Gu(kp)σD (π1α+ (1− α)π2)
(
8b2P 2 + 12bPQ+ 3Q2

)
, and ϑ =

(1− α) Gu(kp)σQ3hB.

Proof of Proposition 3.5. See Appendix B for proof. �

For obtaining the reorder point (r) the above formulation is derived with respect to r and the complementary
cumulative distribution at r̂ is obtained as follows:

F (r̂) =
hBQ

(απ1 + (1− α)π2)D + (1− α)hBQ
· (3.26)

As it is known SS = kpσ
√

Q
P + b, the total cost of retailer is derived with respect to Q to obtain the order

quantity as below:

∂KBr,QRMI

∂Q
= − DAB

Q2
+
hB
2

+
hBkpσ

2
√
PQ

+
(1− α)hBσGu(kp)

2P
√
Q/P + b

(3.27)

+ (απ1 + (1− α)π2)

[
DσGu(kp)

2PQ
√
Q/P + b

− D

Q2
× σ

√
Q/P + bGu(kp)

]
.

Hence, the optimal order quantity for the unconstrained problem can be computed using equation (3.28):

Q2 =

√√√√ 2DAB + 2Dσ (απ1 + (1− α)π2)
√
Q/P + bGu(kp)

hB + hBkpσ√
PQ

+ (1−α)hBσGu(kp)

P
√
Q/P+b

+ (απ1 + (1− α)π2) DσGu(kp)

PQ
√
Q/P+b

· (3.28)

The initial value of Q in the above equation can be calculated as follows:

Q0 =
√

2DAB
hB

· (3.29)

It is noteworthy to mention that the initial value of Q is obtained with solving the RMI problem (Eq. (3.23))
when PBO and LSC is not permitted (π1 = π2 = 0 and b(r, l(Q)) = 0).
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Theorem 3.6. (a) If Q2 + r − µL ≤M then Q∗RMI = Q2 and r∗RMI = r
(b) If Q2 + r − µL > M then Q2 plays the role of initial order quantity. Then optimal order quantity will be

recalculated using equation (3.28) and will be denoted by Q2. Therefore, Q∗RMI = Q2 and r∗RMI = M + µL −
Q∗RMI.

Proof of Theorem 3.6.

(a) It has proven with the unconstrained problem before.
(b) If Q2 + r − µL > M then we should have Q2 + r − µL = M . Hence, we have r = M + µL − Q2. Then

Q2 can be considered as a new initial order quantity Q0 and one should update the inverse level of service

level
(
kp =

(
r −D

(
Q0
P + b

))
/

(
σ
√

Q0
P + b

))
, and obtain Gu(kp) and recalculate the order quantity using

equation (3.28).

Total cost of chian including costs of retailer and vendor is obtained as follows:

TCr,QRMI =
DAB
Q

+ hB
Q

2
+ hBSS +

DAs
Q

+ hs
Q

2

(
1− D

P

)
+ απ1

D

Q
b(r, l(Q)) + (1− α)π2

D

Q
b(r, l(Q)). (3.30)

It is noteworthy to mention that Algorithm 1 should be adopted to determine the optimal decision variables
for the developed traditional RMI under (r,Q) policy under LSC and PBO. �

3.4. Traditional RMI under (R, T ) with PBO and LSC

Total cost of buyer under (R, T ) policy is denoted with KBR,TRMI. Cost of retailer under fully backordering and
fully lost-sales are denoted with KBR,TRMIBO and KBR,TRMILS, respectively. Therefore, costs of retailer under full
backordering and full lost-sales can be formulated as follows:

KBR,TRMIBO =

Fixed ordering cost︷︸︸︷
AB
T

+

Buyer’s holding cost︷ ︸︸ ︷
hB

(
DT
2

+ SS
)

+

Backordering cost︷ ︸︸ ︷
π1
b(r, l(DT) + T )

T
(3.31)

KBR,TRMILS =

Fixed ordering cost︷︸︸︷
AB
T

+

Buyer’s holding cost︷ ︸︸ ︷
hB

(
DT
2

+ SS + b(r,DT + T )
)

+

Lost-sale cost︷ ︸︸ ︷
π2
b(r, l(DT) + T )

T
· (3.32)

The first terms of equations (3.31) and (3.32) calculate fixed ordering costs for buyer. The second terms
denote buyer’s holding cost including average order quantities and average safety stocks. In addition, average
of backlogged should be involved for calculating holding costs in lost-sales. As mentioned in previous sections,
the 1 − α precent of demands encounter lost-sales. Thus, the total cost of chain can be determined using
KBR,TRMI = αKBR,TRMIBO + (1− α)KBR,TRMILS.

KBR,TRMI =
AB
T

+ hB
DT
2

+ hBSS + (1− α)hBb(r, l(DT) + T )

+ απ1
b(r, l(DT) + T )

T
+ (1− α)π2

b(r, l(DT) + T )
T

· (3.33)

Asdemandduring lead-timefollowsnormalprobabilitydistribution
(
x ∼ N

(
D (l (DT) + T ) , σ2 (l (DT) + T )

))
,

total cost of buyer can be reformulated as equation (3.34). After some algebra we have:

KBR,TRMI =
AB
T

+ hB
DT
2

+ hBSS + (1− α)hBσ
√

(DT/P ) + T + bGu(kp) (3.34)

+ (απ1 + (1− α)π2)
σ
√

(DT/P ) + T + bGu(kp)
T

,
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where SS = kpσ
√

(DT/P ) + T + b. Therefore, the main problem for the developed RMI systems with PBO and
LSC is as follows:

min KBR,TRMI (3.35)
st : DT + SS ≤M or DT +R− µL+T ≤M.

First, the above problem should be solved without considering the LSC. If the obtained solutions satisfy
the LSC, optimal value of decision variables are achieved as well. Otherwise, the solution procedure continues
considering LSC as follows.

Proposition 3.7. KBR,TRMI is continues, strictly increasing, and concave in R and T when χ + ζ + φ > 0

where χ = 8PAB (bP + T (D + P ))
√
b+ DT

P + T , φ = T 3hB (D + P )2 σ ((α− 1) Gu(kp)− kp) ζ =

Gu(kp) (απ1 + (1− α)π2)σ
(

8b2P 2 + 12bPT (D + P ) + 3T 2 (D + P )2
)

.

Proof of Proposition 3.7. See Appendix B for proof. �

For solving the unconstrained problem, first the complementary cumulative distribution at point R can be
calculated using equation (3.36) which is similar to the procedure used in Section 4.2:

F (R) =
hBT

απ1 + (1− α)π2 + (1− α)hBT
· (3.36)

Using the first derivative of total cost of buyer with respect to T we have:

∂KBR,TRMI

∂T
= −AB

T 2
+
hBD

2
+σ
(
D

P
+ 1
)

kphB

2
√

(DT/P ) + T + b
+(1−α)hBσ

(
D

P
+ 1
)

Gu(kp)
2
√

(DT/P ) + T + b
(3.37)

+ (απ1 + (1− α)π2)

[
σ

(
D

P
+ 1
)

Gu(kp)
2T
√

(DT/P ) + T + b
−
σ
√

(DT/P ) + T + bGu(kp)
T 2

]
·

Therefore, the cycle time for the unconstrained traditional RMI system is:

T2 =

√√√√√ 2AB + 2 (απ1 + (1− α)π2)σ
√

(DT/P ) + T + bGu(kp)

hBD + σ
(
D
P + 1

) [ kphB√
(DT/P )+T+b

+ (1− α)hB
Gu(kp)√

(DT/P )+T+b
+ (απ1 + (1− α)π2) Gu(kp)

T
√

(DT/P )+T+b

] ·
(3.38)

The initial value for cycle time is determined as follows, which is the optimal value for the unconstrained
problem without considering PBO and LSC:

T0 =
√

2AB
hB
· (3.39)

Theorem 3.8. (a) If DT2 +R− µL+T ≤M then T ∗RT = T2 and R∗RMI = R
(b) If DT2 +R−µL+T > M then T2 will be considered as initial cycle time. Hence, the optimal cycle time can be

recalculated using equation (3.38) and denoted with T 2. Hence, T ∗RMI = T 2 and R∗RMI = M+µL+T −DT∗RMI.

Proof of Theorem 3.8.

(a) It has proven with the unconstrained problem before.
(b) If DT2 +R−µL+T > M then we should have DT2 +R−µL+T = M , Thus T2 can be considered as the new

initial cycle time T0 and service level (kp) and Gu(kp) should be updated. Afterwards, we can recalculate
the cycle time using equation (3.38) with the new initial cycle time and denote that with T 2. Finally, the
maximum level of i nventory can be calculated using R = M + µL+T −DT 2.
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For solving the decision variable, Algorithm 2 can be used for the developed RMI systems as well as the VMI
system. Notably, total cost of chain for the developed RMI system under (R, T ) policy can be calculated as
follows:

TCR,TRMI =
AB
T

+ hB
DT
2

+ hBSS +
As
T

+ hs
DT
2

(1− D

P
) + (1− α)hBb(r, l(DT) + T ) + απ1

b(r, l(DT) + T )
T

(3.40)

+ (1− α)π2
b(r, l(DT) + T )

T
·

�

4. Computational and practical results

Efficient algorithms are developed in previous sections to ensure that the proposed VMI and RMI systems
would be solved in reasonable time and low complexity, especially for large-scale inventory problems. Notably,
computational complexities and required time are small for the presented algorithms. All the algorithms are
implemented and coded in well-known commercial software MATLAB R2010a running on laptop with Core i5
CPU and 4 GB of RAM.

To represent the applicability of the proposed VMI systems accounting for PBO and LSC, and show efficacy of
the proposed algorithms, numerical experiments are provided in this section inspired from a real case of Iranian
automaker and parts. In Section 4.1 decision variables associated with numerical examples are calculated under
different storage capacities and results are discussed. In Section 4.2 sensitivity analysis is implemented on the
key parameters to show how decisions would be varied with changing parameters and how one can improve the
supply chains performances.

4.1. Numerical experiment

An illustrative example is presented in this section based on a real case inspired from an automaker and parts
companies located in Iran. The considered company produces lighting systems and audio systems. Its customer
is one of the Iranian automotive manufacturers. PBO and LSC are the main challenges which automakers
and parts industries should cope with them. For instance the automotive manufacturer may be provided with
another automaker and part company in shortages. Therefore the considered automaker and parts provider
encounter PBO. The Iranian automaker supply required parts from single-vendor (i.e. part manufacturer).
Thus, coordinating between the single-vendor and single-buyer is vitally important and the proposed VMI
systems can be helpful. Demand for automakers depends on a variety of socioeconomic criteria, such as income,
age, saving, season, preferences, and etc., which might be varied during a time horizon. Thus, the automaker
encounters stochastic demands apparently. The objective of implementing VMI in this automaker is reducing
inventory and warehousing costs, enhancing supply chain performances by optimizing the chain and keeping
tighter control on inventory. Figure 2 illustrates the chain for the considered automaker and parts provider.

Thus, the following parameters are used for numerical experiment: hB = $30 per unit and per month,
AB = $100 per order, hs = $65 per unit and per month, As = $80 per order, D = 250 000 units per month,
σ2 = 20000 units per month, P = 350 000 units per month, π1 = $180 per unit backordered and per month,
π2 = $200 per unit lost-sales and per month, ratio of backordered demands are equal to α = 80%, and buyer’s
procurement lead-time is equal to 0.1 month. Each of developed VMI and RMI systems are solved under different
storage capacity levels and results are provided in Tables 1 and 2.

From Table 1, the LSC is activated from capacity volume 2000–6000 in the developed VMI and RMI systems
under (r,Q). It is concluded from Table 1 that the developed VMI system under (r,Q) is more beneficial than its
counterpart RMI system. Improving cost-efficiency after implementing VMI systems are calculated and results
are reported. More storage capacities result in higher reorder points and fewer order quantities with fewer total
cost of chain.

The proposed VMI and RMI systems under (R, T ) system are solved with the provided example and results
are shown in Table 2. According to the obtained results, cycle time would be reduced while the LSC is activated
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Vendor (Parts Provider) Buyer (Automaker) Buyer (Warehouse)

Figure 2. Supply chain network for the considered automaker and parts provider.

Table 1. Results for developed VMI and RMI under (r,Q) review system.

M VMI RMI Cost

r∗VMI Q∗
VMI TCr,Q

VMI

(
×107

)
LSC r∗RMI Q∗

RMI TCr,Q
RMI

(
×107

)
LSC reduction

2000 18 884 28 405 1.5964 X 17 540 33 111 1.8126 X 11.93%
3000 19 917 28 290 1.3974 X 18 557 33 050 1.6397 X 14.78%
4000 20 961 28 136 1.1982 X 19 578 32 975 1.4667 X 18.31%
5000 22 023 27 919 0.9988 X 20 606 32 880 1.2936 X 22.78%
6000 23 118 27 587 0.7992 X 21 642 32 754 1.1205 X 28.67%

because of limited storage of buyer. On the other hand maximum level of inventories increases with increasing
the capacity storage, which leads to place more order quantities in less cycle time and fewer safety stocks. Cost
reduction column, which is provided in Table 2, demonstrates that cost-efficiency of the proposed VMI is better
than its counterpart RMI. Also, convergence of algorithms is tested through several test instances and results
are reported in Table 3. Results represents that algorithms are capable of converging to final solutions efficiently.

Applicability and efficacy of the proposed algorithms for solving the developed VMI and RMI under (r,Q)
and (R, T ) review systems with PBO and LSC are examined in this section via the provided illustrative example.
Also, it is represented that how the integrated decisions in VMI systems can enhance the performances of a
chain when the problem encounters LSC and PBO.

4.2. Sensitivity analysis

To study how decision variables vary when key parameters change, a comprehensive sensitivity analysis is
implemented. Key parameters include buyer holding cost, buyer ordering costs, supplier holding cost, supplier
ordering cost, demand, and backordering rates. Parameters are varied with 5% in each iteration and the presented
VMI and RMI systems are solved. The obtained optimal value of replenishment variables are presented in
Tables 4 and 5. Also, the cost reductions as a result of implementing VMI systems are calculated. Figure 3 is
provided to show how order quantities vary for (r,Q) policy upon changing the key parameters. Similar results
for the (R, T ) review system are shown in Figure 4. It is noteworthy to mention that in all of the numerical
experiments in this section, the storage capacity (M) of buyer assumed to be equal to 2000 units by which LSC
constraint is activated.

4.2.1. Effects of supplier’s and buyer’s holding costs

Figure 3(a) and (b) provides the general trend of changing order quantities when buyer and supplier unit
holding costs vary. From the mentioned figures, increasing buyer holding cost leads to decrease the order quan-
tities in (r,Q) policy under VMI and RMI. Because the buyer has to pay more total holding costs for inventories
and prefer to reduce the ordering costs by increasing reordering points. Also, it is obvious from Figure 3(b) that
varying unit holding cost for the supplier has no effect on order quantities in RMI system. In fact, the buyer



196 A.T. TALEIZADEH ET AL.

Table 2. Results for developed VMI and RMI under (R, T ) review system.

M VMI RMI Cost

R∗
VMI T ∗VMI TCR,T

VMI

(
×106

)
LSC R∗

RMI T ∗RMI TCR,T
RMI

(
×102

)
LSC reduction

2000 47 462 0.1146 3.8205 X 45 178 0.1018 4.5060 X 15.21%
3000 48 391 0.1142 3.4416 X 46 159 0.1017 4.1058 X 16.18%
4000 49 298 0.1137 3.0618 X 47 136 0.1016 3.7055 X 17.37%
5000 50 171 0.1130 2.6809 X 48 106 0.1014 3.3051 X 18.89%
6000 50 986 0.1119 2.2979 X 49 067 0.1012 2.9045 X 20.88%

Table 3. Convergence test for developed algorithms

Test VMI RMI

problem # of iterations Time (s)×10−2 # of iterations Time (s)

1 4 1.541 3 1.414
2 4 1.802 4 1.654
3 6 2.163 7 1.958
4 5 2.639 6 2.429
5 8 3.273 7 3.003
6 10 4.091 10 3.755
7 10 4.827 11 4.427
8 11 5.743 11 5.298
9 13 6.951 14 6.380
10 14 8.341 14 7.656

makes decisions in RMI system without considering and involving supplier’s conditions and decisions would be
made for optimizing the cost of buyer which are not essentially optimal for the supplier.

As a result from Table 4, in both of the VMI and RMI systems, reordering point would be increased with
increasing buyer’s unit holding cost, because backorders and lost-sales would be prevented as much as pos-
sible. As mentioned, supplier’s unit holding cost has not any effect on reordering points in RMI systems. In
addition, order quantities in VMI system are lower than that of RMI system. In VMI systems the vendor
tends to place lower order quantities for buyer with larger reorder point to benefit from implementing VMI
system.

Thus, vendor prefer to send lower order quantities to buyer as much as possible with larger reorder points
when buyer encounters LSC, which is evident in Table 1 in a constant unit holding cost. Notably, order quantities
and reorder points may act vice versa because of LSC. Because ordering more quantities requires less safety
stocks, by which the storage capacity does not exceed its limitation.

Figure 4(a) and (b) represents the behaviour of optimal cycle times in (R, T ) replenishment review system
when the unit holding costs varies. In the proposed VMI system with LSC, increasing unit holding costs results
in decreasing cycle times, which means the vendor place orders for the buyer in shorter periods. Therefore, the
average of order quantities in (R, T ) replenishment review systems would be reduced with decreasing cycle time.
Increasing buyer unit holding cost leads to decreasing the maximum level of inventories (R) and reducing cycle
times, and consequently reducing average of order quantities. Hence, the chain would not encounter lost-sales
and backorders as much as possible. Notably, supplier’s unit holding cost changes has not any effect on the
decisions in RMI systems because the buyer has made decisions without considering supplier’s viewpoint. It is
noteworthy to mention that, cycle times in VMI systems are longer than RMI systems. It means vendor is able
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Table 4. Changes of decision variables based on changing key parameters under (r,Q).

Changes VMI RMI Cost

r∗VMI Q∗
VMI TCr,Q

VMI × 107 r∗RMI Q∗
RMI TCr,Q

RMI × 107 reduction

−10% 18 708 29 021 1.6279 17 197 34 310 1.8655 12.74%
−5% 18 798 28 707 1.6119 17 375 33 689 1.8383 12.32%

hB 0% 18 884 28 405 1.5964 17 540 33 111 1.8126 11.93%
5% 18 967 28 116 1.5815 17 694 32 571 1.7883 11.56%
10% 19 046 27 837 1.5670 17 839 32 065 1.7652 11.23%
−10% 18 779 28 773 1.6134 17 540 33 111 1.8126 10.99%
−5% 18 832 28 587 1.6048 17 540 33 111 1.8126 11.46%

hs 0% 18 884 28 405 1.5964 17 540 33 111 1.8126 11.93%
5% 18 935 28 228 1.5882 17 540 33 111 1.8126 12.38%
10% 18 984 28 055 1.5801 17 540 33 111 1.8126 12.83%
−10% 18 887 28 105 1.5958 17 543 33 099 1.8120 11.93%
−5% 18 886 28 300 1.5961 17 541 33 105 1.8123 11.93%

AB 0% 18 884 28 405 1.5964 17 540 33 111 1.8126 11.93%
5% 18 883 28 610 1.5967 17 538 33 117 1.8129 11.93%
−10% 18 886 27 997 1.5959 17 540 33 111 1.8126 11.96%
−5% 18 885 28 201 1.5962 17 540 33 111 1.8126 11.94%

As 0% 18 884 28 405 1.5964 17 540 33 111 1.8126 11.93%
5% 18 883 28 609 1.5967 17 540 33 111 1.8126 11.91%
10% 18 882 29 013 1.5969 17 540 33 111 1.8126 11.91%
−10% 14 999 26 602 1.3575 13 087 31 957 1.5842 14.31%
−5% 16 913 27 494 1.4746 15 289 32 544 1.6977 13.14%

D 0% 18 884 28 405 1.5964 17 540 33 111 1.8126 11.93%
5% 20 914 29 343 1.7231 19 835 33 661 1.9289 10.67%
10% 23 005 30 312 1.8549 22 173 34 194 2.0464 9.36%
−10% 18 908 28 252 1.5820 17 568 32 991 1.7971 11.97%
−5% 18 896 28 324 1.5892 17 554 33 061 1.8048 11.95%

α 0% 18 884 28 405 1.5964 17 540 33 111 1.8126 11.93%
5% 18 872 28 547 1.6036 17 525 33 171 1.8204 11.91%
10% 18 861 28 688 1.6108 17511 33 221 1.8282 11.89%

to provide buyer with more average order quantities in VMI systems as a result of longer cycle time and lower
backlogged and ordering costs in an integrated viewpoint.

4.2.2. Effects of supplier’s and buyer’s ordering costs

Figure 3(c) and (d) demonstrate how order quantities might be changed when buyer’s and supplier’s unit
ordering costs vary in (r,Q) review system. Increasing unit ordering costs of buyer and supplier results in
increasing order quantities for buyer in VMI system, which helps to reduce total ordering cost of chain and
backlogged costs. Optimal order quantities may be increased as much as storage capacity of the buyer permits.
Therefore, reorder points would be reduced because lower reorder point results in fewer order frequencies. Thus,
the vendor tries to place orders for the buyer with more quantities in fewer order frequencies. Similar to the
analysis for the holding costs, optimal quantity orders in VMI system is lower than that of RMI system under
(r,Q) policy because vendor makes integrated decisions which helps to coordinate chain. On other hand the
unit ordering cost of buyer affect the optimal decision variables in RMI under (r,Q) policy which encounters
buyer larger quantities.

Figure 4(c) and (d) are used to show the results of (R, T ) replenishment review system when buyer’s and
supplier’s unit ordering costs change. Increasing ordering costs of buyer and supplier leads to increase the cycle
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Table 5. Changes of decision variables based on changing key parameters under (R, T ).

Changes VMI RMI Cost

R∗
VMI T ∗VMI TCR,T

VMI × 106 R∗
RMI T ∗RMI TCR,T

RMI × 106 reduction

−10% 47 997 0.1176 3.8736 45 940 0.1061 4.6054 15.89%
−5% 47 723 0.1161 3.8465 45 544 0.1038 4.5544 15.54%

hB 0% 47 462 0.1146 3.8205 45 178 0.1018 4.5060 15.21%
15% 47 212 0.1132 3.7955 44 838 0.0999 4.4599 14.90%
20% 46 973 0.1119 3.7716 44 521 0.0981 4.4158 14.59%
−10% 47 780 0.1164 3.8347 45 178 0.1018 4.5060 14.90%
−5% 47 619 0.1155 3.8275 45 178 0.1018 4.5060 15.06%

hs 0% 47 462 0.1146 3.8205 45 178 0.1018 4.5060 15.21%
15% 47 310 0.1137 3.8137 45 178 0.1018 4.5060 15.36%
20% 47 161 0.1129 3.8070 45 178 0.1018 4.5060 15.51%
−10% 47 455 0.1141 3.8193 45 171 0.1014 4.5048 15.22%
−5% 47 458 0.1143 3.8199 45 175 0.1016 4.5054 15.22%

AB 0% 47 462 0.1146 3.8205 45 178 0.1018 4.5060 15.21%
5% 47 466 0.1149 3.8211 45 182 0.1020 4.5066 15.21%
10% 47 470 0.1152 3.8217 45 186 0.1022 4.5072 15.21%
−10% 47 456 0.1125 3.8196 45 178 0.1018 4.5060 15.23%
−5% 47 459 0.1134 3.8200 45 178 0.1018 4.5060 15.22%

As 0% 47 462 0.1146 3.8205 45 178 0.1018 4.5060 15.21%
15% 47 465 0.1156 3.8210 45 178 0.1018 4.5060 15.20%
20% 47 468 0.1167 3.8215 45 178 0.1018 4.5060 15.19%
−10% 40 908 0.1134 3.4261 39 967 0.1069 4.0305 15.00%
−5% 44 109 0.1139 3.6227 42 555 0.1043 4.2678 15.12%

D 0% 47 462 0.1146 3.8205 45 178 0.1018 4.5060 15.21%
5% 50 981 0.1155 4.0199 47 836 0.0995 4.7451 15.28%
10% 54 681 0.1165 4.2210 50 526 0.0973 4.9851 15.33%
−10% 47 391 0.1142 5.1873 45 115 0.1014 6.2943 17.59%
−5% 47 427 0.1144 4.5047 45 147 0.1016 5.4010 16.60%

α 0% 47 462 0.1146 3.8205 45 178 0.1018 4.5060 15.21%
5% 47 498 0.1148 3.1347 45 210 0.102 3.6093 13.15%
10% 47 533 0.115 2.4474 45 242 0.1022 2.7110 9.72%

time in VMI systems. Therefore, vendor is able to provide buyer with longer periods and consequently with
larger average of order quantities in order to reduce total ordering costs of the chain. Also, for controlling the
LSC of buyer the vendor has to increase the maximum level of inventory and cycle times. Hence the buyer is
able to stock inventories in accordance to the space limitations. Besides, similar effect can be obtained in RMI
systems under (R, T ) with increasing unit ordering cost for the buyer. On the other hand changing the supplier’s
unit ordering costs does not vary the optimal value of cycle times and maximum level of inventories.

4.2.3. Effects of buyer’s demand

Figures 3(e) and 4(e) are drawn to show the changes of decision variable based on changes in buyer’s demand
in (r,Q) and (R, T ) replenishment review systems, respectively. From Figure 3(e), increasing buyer’s demand
leads to increase the order quantities for both of the VMI and RMI systems under (r,Q) policy. It is obvious
that for meeting more demands the vendor has to place larger order quantities for buyer in VMI systems. Also,
in RMI system the buyer has to place more order quantities which is similar to analysis of VMI system, but his
decision is not essentially optimal for the chain and increases total cost of chain. Another significant point is
that, increasing demands increases demands during lead-times (µL) in (r,Q) review systems. Therefore, vendor
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Figure 3. Changes in order quantities based on changing key parameters in (r,Q) system
(M = 2000).
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Figure 4. Changes in cycle times based on changing key parameters in (R, T ) systems (M =
2000).
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in VMI system and buyer in RMI systems decide to increase their reorder points by which they are able to place
orders sooner with lower safety stocks. This circumstance enables them to order more quantities in VMI and
RMI systems. Note that VMI systems are more sensitive than RMI systems to increasing demands and cost
reduction is remarkable after implementing VMI systems.

As can be concluded from Figure 4(e) increasing in buyer’s demand rate leads to increase the optimal cycle
time in VMI under (R, T ) policy and increase maximum level of inventory. It means, the average order quantities
would be increased with increasing demand. Hence, the vendor is capable of managing placing larger order
quantities. On the other hand, increase in demand leads to reduce optimal cycle time in RMI systems under
(R, T ) replenishment review system. Thus, buyer makes orders in fewer order frequencies with determining
more maximum level of inventories. Shorter cycle times results in smaller averages of order quantities. On
the other hand, increasing in demands causes to increase demands during lead-times (µL+T ) in (R, T ) review
systems. Afterwards, buyer is able to stock more inventories at its own site leading to increase maximum level
of inventories. From Figure 4(e) cycle times would be reduced during increasing in demand under RMI, because
the buyer prefer to place larger order quantities in shorter cycle time to meet demand. But it is not optimal
for the chain and imposes more costs to the chain in RMI systems. In addition, optimal cycle times in VMI
systems under (R, T ) is longer than that of RMI systems where the vendor acts in integrated view and makes
optimal decisions with considering the whole chain.

4.2.4. Effects of backordering rate

As mentioned before, α precent of demands will be backordered and 1 − α precent will be lost-sale. It is
beneficial to help decision makers to show how then can improve performance of chain with altering backordering
rate. As can be observed from Table 4, with reducing the backordering rate, total cost of chain under (r,Q)
would be reduced and the chain tends to increase lost-sale to be more profitable. It is because of that the buyer
has LSC and it has to encounter LSC constraint for meeting backorders but in lost-sale, the chain has not to
satisfy the LSC constraint as much as possible. Also, Table 5 shows that with increasing the backordering rate
under (R, T ) policy, total cost of chain will be reduced significantly. Therefore, letting demands be backordered
is more beneficial than letting them be lost-sale when (R, T ) replenishment review system is applied, because
decision maker should order for items more conservatism and has to increase the maximum level of inventory
by which the backlogged level decreased. Consequently, cost of backlogs will be reduced in (R, T ). Figure 3(f)
shows the behaviour of order quantities of VMI and RMI with changing backordering rate. With increasing
backordering rate, order quantities would be increased under (r,Q) in VMI and RMI policies, since the chain
has to meet more unmet demands in future. This behaviour leads to increase the average on hand inventory
and the total cost of chain. In addition, Figure 4(f) represents the effect of varying backordering rate on cycle
time under (R, T ) in VMI and RMI policies. With increasing backordering rate, cycle times would be increased
and the chain has to order more quantities.

4.2.5. Cost reductions

Cost reductions after implementing VMI systems are calculated when key parameters are changed. Tables 4
and 5 reveal cost reductions in the presented VMI systems under (r,Q) and (R, T ) replenishment review systems.
As can be concluded from the both figures, cost reductions are positive in both settings meaning implementing
VMI systems are beneficial when the buyer encounters LSC and partial backordering by which performance
of commercial supply chains can be improved. When buyer’s demand is high, cost savings are more significant
after implementing VMI systems under (R, T ) than that of (r,Q) policies. Similar results can be obtained about
holding cost of buyer for VMI under (r,Q) review system. In this way, implementing VMI systems under (r,Q)
and (R, T ) policies, when ordering cost for buyer and holding cost for supplier increase, results in positive cost
reductions but fewer than that of previous parameters. Thus, positive effect of employing VMI systems with
LSC and PBO is proved through the sensitivity analysis and numerical experiments (see Tabs. 4 and 5). Totally,
it is concluded that total cost of chain with VMI and (R, T ) polices is lower than that of (r,Q) with considering
LSC and PBO. It may imply that because of the LSC, the buyer should make decisions himself. In this paper
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it is shown that, sharing information of buyer with vendor not only about replenishment parameters, but also
about storage capacities can result in more profitable decision for the chain.

5. Managerial implications

According to the comprehensive sensitivity analysis conducted and behaviour of inventory in proposed VMI
and RMI systems, the main managerial implications are extracted and listed below:

– All the firms with single-vendor single-buyer, which encounters with LSC and PBO can get benefit and
enhance the performance of chain by implementing the proposed VMI systems.

– If firms has the ability to select between implementing (r,Q) and (R, T ) policies with same settings studied
in this paper, it is better to implement (R, T ), because total cost of chain under (R, T ) would be less than
that of (r,Q).

– Cost reductions after implementing proposed VMI systems in (R, T) policy are more than (r,Q) policy.
– Letting unmet demand be lost-sale in (r,Q) replenishment system is more beneficial than letting them be

backordered for chains where buyer has LSC and planned backorders may be applied. Also, letting unmet
demand be back-ordered is more beneficial than letting them be lost-sale in (R, T ) replenishment system.
Overall, if the chain uses (R, T ) it is profitable to increase the backordering rate and if it utilizes (r,Q), it
is desirable to decrease the backordering rate.

6. Conclusion

In VMI systems the vendor is responsible to make replenishment decisions by which help the chain to be
more coordinated and beneficial. For this purpose, buyer provides vendor with online inventory information
such as inventory level, demands, costs, and etc. Advantages of implementing VMI systems in superior to RMI
systems are well-discussed in the literature. PBO and LSC are two main assumptions in many real-world cases
which should be addressed while developing VMI systems. In VMI systems, vendor is more intended to place
large quantity of orders for buyer as a result of making centralized decisions. On the other hand, buyer might
encounter with limited storage capacities. Also, considering partial backordering where a certain ratio of demand
encounter with backorder and others encounter with lost-sale is more realistic.

In this paper, two VMI systems for single-vendor and single-buyer with considering PBO and LSC are
developed which account for stochastic demands. VMI systems are developed based on continuous review system
(r,Q) and periodic review systems (R, T ). Convexity conditions and required solution procedures are provided
in order to solve the proposed VMI systems. Also, efficient algorithms are presented which are easy to implement
for large scale inventory problems. In addition, counterpart RMI systems under (r,Q) and (R, T ) replenishment
review systems with considering PBO and LSC are developed to compare VMI systems with RMI systems.

A comprehensive numerical example inspired from a real case of Iranian automaker and parts providers is
provided to represent the applicability and efficacy of the proposed VMI systems and presented algorithms. Also,
sensitivity analyses are provided on key parameters and significant differences between VMI and RMI systems
are discussed in (r,Q) and (R, T ) review systems. According to the obtained results of numerical example and
sensitivity analysis, superiority of the proposed VMI systems to their counterpart RMI systems can be concluded.
It is demonstrated that the cost-efficiency of the chain can be enhanced after implementing the proposed VMI
systems. Future work may consider backordering rate as a decision variables or a decreasing function of waiting
time. Besides, some essential parameters such as demand and shipping times might be encountered uncertainties.
Some coordination mechanism can be applied in the model in order to make centralized decisions which are
profitable for buyer and vendor.

Appendix A.

For calculating backorders b̄ (r) in (r,Q) inventory review systems, suppose that demand in lead time is
distributed normally and follows x ∼ N

(
Dl (Q) , σ2l (Q)

)
. Thus, probability function of its normal distribution
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is as follows:

f(x) =
1

σ
√

2π
√
l(Q)

e
−1/2

(
x−Dl(Q)

σ
√
l(Q)

)2

. (A.1)

As mentioned before l(Q) = Q/P + b. Therefore, buyer’s backorders during the lead time can be calculated
as below:

b̄ (r, l (Q)) =

∞∫
r

(x− r)f(x)dx. (A.2)

Thus, we have:

b̄ (r, l (Q)) =

∞∫
r

(x−Dl(Q))√
2πσ

√
l (Q)

e
− 1

2

(
x−Dl(Q)

σ
√
l(Q)

)2

dx (A.3)

To calculate the equation we have:

x−Dl(Q)
σ
√
l (Q)

= u→ dx = σ
√
l (Q)du (A.4)

r −D (l (Q))
σ
√
l(Q)

= kp → r = kpσ
√
l(Q) +Dl (Q) . (A.5)

Finally we can reformulate the backorders during lead time as follows:

b̄ (r, l (Q)) = σ
√
l (Q)

∞∫
k

(u− k)
1√
2π

e−
1
2 (u)2du = σ

√
l (Q)Gu(kp) = σ

√
Q/P + bGu(kp). (A.6)

Where right hand unit of normal linear-loss integral can be determined by Gu(k) = ϕ(k) − kϕ(k). Similar
procedures can be performed to calculate the backorders during lead-time in (R, T ) policy. Note that in (R, T )
review systems we have l(DT) + T = DT

P + T + b.

Appendix B.

Proof of proposition 3.1. To proof the Proposition 3.1, we should prove how the hessian matrix of TCr,QVMI is
positive. For this purpose, we have:

H(1) =

 ∂2TCr,QVMI
∂2Q

∂2TCr,QVMI
∂Q∂r

∂2TCr,QVMI
∂2r

∂2TCr,QVMI
∂r∂Q

 (B.1)

where

∂2TC(r,Q)
∂2Q

=

(
8DPAB (bP +Q)

√
b+ Q

P + 8DPAS (bP +Q)
√
b+ Q

P −Q
3hBσ ((1− α) Gu(kp) + kp)

+DGu(kp)σ (απ1 + π2 (1− α))
(
8b2P 2 + 12bPQ+ 3Q2

) )
4PQ3 (bP +Q)

√
b+ Q

P

(B.2)

∂2TCr,QVMI

∂Q∂r
= 0 (B.3)

∂2TCr,QVMI

∂2r
=
− ((απ1 + (1− α)π2)D + (1− α)hB)

Q
f(r) (B.4)

∂2TCr,QVMI

∂r∂Q
=

(απ1 + (1− α)π2)D
Q2

F (r). (B.5)
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Let us define:

β = 8DPAB (bP +Q)

√
b+

Q

P
+ 8DPAS (bP +Q)

√
b+

Q

P
(B.6)

γ = Q3hBσ ((1− α) Gu(kp) + kp) (B.7)
η = DGu(kp)σ (απ1 + π2 (1− α))

(
8b2P 2 + 12bPQ+ 3Q2

)
. (B.8)

Therefore, the first and second principal minors of H(1) is determined by equations (B.9) and (B.10), respec-
tively:

∣∣∣H(1)
11

∣∣∣ =
∂2TCr,QVMI

∂2Q
> 0→ β + η > γ (B.9)∣∣∣H(2)

22

∣∣∣ =
(απ1 + (1− α)π2)DF (r)

Q2

×

(
8DPAB (bP +Q)

√
b+ Q

P + 8DPAS (bP +Q)
√
b+ Q

P −Q
3hBσ ((1− α) Gu(kp) + kp)

+DGu(kp)σ (απ1 + π2 (1− α))
(
8b2P 2 + 12bPQ+ 3Q2

) )
4PQ3 (bP +Q)

√
b+ Q

P

·

(B.10)

As the second principal minor of Hshould be positive, we have:∣∣∣H(2)
22

∣∣∣ > 0→ β + η > γ. (B.11)

�

Proof of Proposition 3.3. To proof the Proposition 3.3, there is a need to find conditions which the hessian
matrix of TCR,TVMI is positive:

H(2) =

[
∂2TCR,TVMI
∂2T

∂2TCR,TVMI
∂T∂R

∂2TCR,TVMI
∂2R

∂2TCR,TVMI
∂R∂T

]
(B.12)

where

∂2TCR,TVMI

∂2T
=

 8 (AB +As)
(
b+ DT

P + T
)3/2

+ 8Gu(kp)σ (απ1 + π2 (1− α))
(
b+ DT

P + T
)2

−4LσT (απ1 − π2 (α− 1))
(
b+ DT

P + T
)
− ((1− α) Gu(kp)σ + σkp)T 3hB

−Gu(kp)σT 2 (απ1 + π2 (1− α))


4T 3

(
b+ DT

P + T
)3/2 (B.13)

∂2TCR,TVMI

∂T∂R
= 0 (B.14)

∂2TCR,TVMI

∂2R
= − (απ1 + (1− α)π2 + (1− α)hB) f(R)

T
(B.15)

∂2TCR,TVMI

∂R∂T
=

(απ1 + (1− α)π2)F (R)
T 2

· (B.16)
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Following notations are defined to continue the formulations:

ω = 8 (AB +As)
(
b+

DT
P

+ T

)3/2

(B.17)

ψ = 8Gu(kp)σ (απ1 + π2 (1− α))
(
b+

DT
P

+ T

)2

(B.18)

ν = 4Gu(kp)σT (απ1 − π2 (α− 1))
(
b+

DT
P

+ T

)
(B.19)

κ = ((1− α) Gu(kp)σ + σkp)T 3hB −Gu(kp)σT 2 (απ1 + π2 (1− α)) . (B.20)

As the first principal minor of H(2)should be positive, we have:

21
∣∣∣H(2)

11

∣∣∣ =
∂2TC(R, T )

∂2T
> 0→ ω + ψ > ν + κ. (B.21)

And the second principal minor of H(2) is as follows:

∣∣∣H(2)
22

∣∣∣ =
(απ1 + (1 − α)π2)F (R)

4T 5
(
b+ DT

P
+ T

)3/2




8 (AB +As)

(
b+ DT

P
+ T

)3/2
+ 8Gu(kp)σ (απ1 + π2 (1− α))

(
b+ DT

P
+ T

)2

−4LσT (απ1 − π2 (α− 1))
(
b+ DT

P
+ T

)
− ((1− α) Gu(kp)σ + σkp)T 3hB

−Gu(kp)σT 2 (απ1 + π2 (1− α))





(B.22)

As the second principal minor H(2)
22 should be positive, we have:∣∣∣H(2)

22

∣∣∣ > 0→ ω + ψ > ν + κ. (B.23)

�

Proof of Proposition 3.5. H(3) denotes the hessian matrix of KBr,QRMI which its first and second minors should
be positive:

H(3) =

 ∂2KBr,QRMI
∂2Q

∂2KBr,QRMI
∂Q∂r

∂2KBr,QRMI
∂2r

∂2KBr,QRMI
∂r∂Q

 (B.24)

where we have:

∂2KBr,Q
RMI

∂2Q
=

(
8DPAB (bP +Q)

√
b+ Q

P
+ Gu(kp)σ

(
(π1α+ (1 − α)π2)D

(
8b2P 2 + 12bPQ+ 3Q2

)
− (1 − α)Q3hB

))

(
4PQ3 (bP +Q)

√
b+ Q

P

)

(B.25)

∂2KBr,Q
RMI

∂Q∂r
= 0 (B.26)

∂2KBr,Q
RMI

∂2r
=
− ((απ1 + (1 − α)π2)D + (1 − α)hB)

Q
f(r) (B.27)

∂2KBr,Q
RMI

∂r∂Q
=

(απ1 + (1 − α)π2)D

Q2
F (r). (B.28)
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Let us define:

υ = 8DPAB (bP +Q)

√
b+

Q

P
(B.29)

ς = Gu(kp)σD (π1α+ (1− α)π2)
(
8b2P 2 + 12bPQ+ 3Q2

)
(B.30)

ϑ = (1− α) Gu(kp)σQ3hB (B.31)

As the first principal minor should be positive, we have:∣∣∣H(3)
11

∣∣∣ > 0→ υ + ς > ϑ. (B.32)

In addition, the second principal can be calculated as follows:∣∣∣H(3)
22

∣∣∣ =
(απ1 + (1− α)π2)DF (r)

Q2

×

(
8DPAB (bP +Q)

√
b+ Q

P + Gu(kp)σ
(

(π1α+ (1− α)π2)D
(
8b2P 2 + 12bPQ+ 3Q2

)
− (1− α)Q3hB

))
(

4PQ3 (bP +Q)
√
b+ Q

P

) ·

(B.33)

As the second principal should be positive, we have:∣∣∣H(3)
22

∣∣∣ > 0→ υ + ς > ϑ. (B.34)

�

Proof of Preposition 3.7. H(4) as the hessian matrix of KBR,TRMIneeds to be positive:

H(4) =

[
∂2KBR,TRMI
∂2T

∂2KBR,TRMI
∂T∂R

∂2KBR,TRMI
∂2R

∂2KBR,TRMI
∂R∂T

]
(B.35)

where we have:

∂2KBR,TRMI

∂2T
=

1

4P 2T 3
(
b+ DT

P + T
)3/2


8PAB (bP + T (D + P ))

√
b+ DT

P + T

+

Gu(kp) (απ1 + (1− α)π2)σ
(

8b2P 2 + 12bPT (D + P )
+3T 2 (D + P )2

)
+T 3hB (D + P )2 σ ((α− 1) Gu(kp)− kp)




(B.36)

∂2KBR,TRMI

∂T∂R
= 0 (B.37)

∂2KBR,TRMI

∂2R
= − (απ1 + (1− α)π2 + (1− α)hB) f(R)

T
(B.38)

∂2KBR,TRMI

∂R∂T
=

(απ1 + (1− α)π2)F (R)
T 2

· (B.39)

Let assume:

χ = 8PAB (bP + T (D + P ))

√
b+

DT
P

+ T (B.40)

ζ = Gu(kp) (απ1 + (1− α)π2)σ
(

8b2P 2 + 12bPT (D + P ) + 3T 2 (D + P )2
)

(B.41)

φ = T 3hB (D + P )2 σ ((α− 1) Gu(kp)− kp) . (B.42)
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As the first principal minor of H(4) should be positive, we have:∣∣∣H(4)
11

∣∣∣ > 0→ χ+ ζ + φ > 0 (B.43)

Also, the second principal minor of H(4) is obtained as follows:∣∣∣H(4)
22

∣∣∣ =
(απ1 + (1− α)π2)F (R)

T 2

×


8PAB (bP + T (D + P ))

√
b+ DT

P + T

+

Gu(kp) (απ1 + (1− α)π2)σ
(

8b2P 2 + 12bPT (D + P )
+3T 2 (D + P )2

)
+T 3hB (D + P )2 σ ((α− 1) Gu(kp)− kp)




4P 2T 3
(
b+ DT

P + T
)3/2 · (B.44)

For positivity of the second principal minor, we have:∣∣∣H(4)
22

∣∣∣ > 0→ χ+ ζ + φ > 0. (B.45)

�
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