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FACET-INDUCING INEQUALITIES WITH ACYCLIC SUPPORTS
FOR THE CATERPILLAR-PACKING POLYTOPE

Javier Marenco1,2,∗

Abstract. A caterpillar is a connected graph such that the removal of all its vertices with degree 1
results in a path. Given a graph G, a caterpillar-packing of G is a set of vertex-disjoint (not necessarily
induced) subgraphs of G such that each subgraph is a caterpillar. In this work we consider the set of
caterpillar-packings of a graph, which corresponds to feasible solutions of the 2-schemes strip cutting
problem with a sequencing constraint (2-SSCPsc) presented by Rinaldi and Franz (Eur. J. Oper. Res.
183 (2007) 1371–1384). Facet-preserving procedures have been shown to be quite effective at explaining
the facet-inducing inequalities of the associated polytope, so in this work we continue this issue by
exploring such procedures for valid inequalities with acyclic supports. In particular, the obtained results
are applicable when the underlying graph is a tree.
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1. Introduction

A caterpillar is a (possibly empty) connected graph such that the removal of all its vertices with degree 1
results in a path, see Figure 1(a). Given a graph G = (V,E), the subgraph induced by an edge subset F ⊆ E
is GF = (VF , F ), where VF ⊆ V is the set of endpoints of the edges in F . A caterpillar-packing of G is a set
F = {F1, . . . , Fk} such that (a) Fi ⊆ E and GFi is a caterpillar, for i = 1, . . . , k, and (b) VFi ∩ VFj = ∅, for
i 6= j. In other words, a caterpillar-packing of G is a set of vertex-disjoint (not necessarily induced) subgraphs
of G such that each subgraph is a caterpillar.

Caterpillar-based structures in graphs have been tackled with integer programming techniques in previous
works. The minimum spanning caterpillar problem asks for a spanning caterpillar minimizing a linear cost func-
tion that assigns different costs to leaf edges and edges from the central path. Integer programming and heuristic
approaches for this problem are presented in [14, 15]. Theoretical developments concerning its approximability
include [4,5]. This structure is related to ring-stars, where the central path of the spanning caterpillar is replaced
by a cycle. Both integer programming (see [7,8]) and heuristic (see [2,3]) approaches have been pursued for the
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Figure 1. Panel a: a caterpillar. Panel b: the bipartite claw. Panel c: the incomplete bipartite
claw, with v its dangling vertex.

minimum ring-star problem. The natural generalization of this problem asking for more than one cycle is called
the m-ring-star problem and has been studied in [1, 12,16,17].

The interest in caterpillar-packings comes from an integer programming approach to the 2-schemes strip
cutting problem with a sequencing constraint (2-SSCPsc), a problem that arises in the context of corrugated
cardboard machines [13]. The 2-SSCPsc is essentially a unidimensional cutting stock problem with at most two
orders per pattern, with the additional sequencing constraint that requires every order to appear in consecutive
patterns. This last constraint makes the problem quite difficult in practice. If we define the schemes graph to be
SG = (O, S), where O is the set of orders and S = {ij : there exists a feasible pattern with orders i and j}, then
the two-order patterns present in any feasible solution induce a caterpillar-packing of SG [13]. This observation
motivated the introduction in [10] of an integer programming model aiming to exploit this structure.

If e ∈ E, we define ue ∈ R|E| to be the unit vector associated with the edge e, i.e., (ue)e′ = 1 if e′ = e
and (ue)e′ = 0 otherwise. If F ⊆ E, we define uF =

∑
e∈F ue to be its characteristic vector. We define the

caterpillar-packing polytope associated to the graph G to be

CPP (G) = conv{uF : F is the edge set ∪ F of a caterpillar-packing F of G}.

Families of valid inequalities for CPP (G) may be incorporated to a cutting-plane-based procedure for the
2-SSCPsc, thus motivating the study of this polytope. In [11] such a polyhedral study was started, showing
that CPP (G) has remarkable properties, key among them the existence of a straightforward lifting lemma and
the existence of facet-preserving procedures, which take as input a valid (respectively, facet-inducing) inequality
and produce an enlarged inequality that is also valid (respectively, facet-inducing if additional constraints hold).

In this work we are interested in facet-inducing inequalities with acyclic supports for CPP (G), that could be
used when G is a tree or a forest. Only the first facet-preserving procedure presented in [11] can be applied when
G is a tree, since the remaining procedures generate cycles in the support of the obtained inequality. Hence, we
must consider new such procedures, generating inequalities with acyclic supports. Preliminary computational
experience suggests that the facet-preserving procedures presented in this work might give complete descriptions
of CPP (G) when G is a tree, and this fact would provide a crucial insight on the computational complexity
of the 2-SSCPsc over trees. The well-known equivalence between optimization and separation [6] provides the
theoretical background for such a study.

This paper is organized as follows. Section 2 presents the caterpillar-packing polytope in detail and provides
some properties of this polytope. Section 3 presents a new family of facet-inducing inequalities. Section 4 presents
the new facet-preserving procedures and proves them correct. Finally, Section 5 states some conclusions and
open problems.

2. Formulation and basic properties

We introduce in this section a natural integer programming formulation for CPP (G), based on the following
classical result. The bipartite claw is the graph depicted in Figure 1(b).
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Theorem 2.1 ([9]). A connected graph H is a caterpillar if and only if H does not contain any cycle and any
bipartite claw.

We assume E 6= ∅ throughout this work. We introduce a binary variable xe for each e ∈ E, such that xe = 1
if and only if the solution includes the edge e. We denote by C(G) the set of all (not necessarily induced) cycles
in G, and by B(G) the set of all (not necessarily induced) bipartite claws of G, in both cases regarded as sets of
edges. In this setting, CPP (G) is the convex hull of the points x ∈ {0, 1}|E| satisfying the following constraints:∑

e∈C
xe ≤ |C| − 1 ∀ C ∈ C(G), (2.1)∑

e∈B
xe ≤ 5 ∀ B ∈ B(G). (2.2)

The cycle constraints (2.1) ask feasible solutions not to contain any cycle, whereas the bipartite claw con-
straints (2.2) forbid bipartite claws. Hence, Theorem 2.1 ensures that integer points in CPP (G) represent
caterpillar-packings of G. Note that the definition of a caterpillar-packing does not ask every vertex to be
included in some caterpillar (e.g., the empty set of edges is a caterpillar-packing), so we do not have constraints
asking for such conditions.

It is easy to verify that CPP (G) is full-dimensional and that any facet-inducing inequality different from
xe ≥ 0 for any e ∈ E has non-negative coefficients. Also, the bipartite claw constraints (2.2) define facets
of CPP (G), even if the bipartite claw is not induced in G. On the other hand, the cycle constraints are not
facet-inducing in general [11].

The particular structure of caterpillars implies the following lifting and projection lemmas. If W ⊆ V , we
denote by E(W ) = {ij ∈ E : i, j ∈ W} the set of edges induced by W . We denote by GW the subgraph of G
induced by the vertex set W , i.e., GW = (W,E(W )). Finally, for E′ ⊆ E, we define πE′ to be the projection of
π onto the space of the variables associated with the edges in E′.

Lifting Lemma [11]. Let W ⊆ V and let πx ≤ π0 be a valid inequality such that πe = 0 for e 6∈ E(W ). If
πE(W )x ≤ π0 is facet-inducing for CPP (GW ), then πx ≤ π0 is facet-inducing for CPP (G).
Projection Lemma [11]. Let πx ≤ π0 be a facet-inducing inequality for CPP (G). Let e ∈ E with πe = 0 and
define G′ = (V,E′), where E′ = E\{e}. Then, πE′x ≤ π0 is facet-inducing for CPP (G′).

3. A family of facet-inducing inequalities

We present in this section a new family of facet-inducing inequalities, which will be one of the base cases for
the facet-preserving procedures introduced in the next section.

We define a central claw C ⊆ E to be the structure depicted in Figure 2, i.e., C = {u1u2} ∪ T ⊆ E, where
T = {u1v1, u1v2, u2v3, u2v4} ∪ {viwi}4i=1. We define

2xu1u2 +
∑
e∈T

xe ≤ 8 (3.1)

to be the central claw inequality associated with C. Figure 2 shows a picture of such a valid inequality, by
representing variables with coefficient 1 with single-line edges, and variables with coefficient 2 with double-line
edges. Note that the central claw C ⊆ E need not be induced in G (i.e., there may exist an edge ij ∈ E,
i, j ∈ VC , such that ij 6∈ C). Also note that this inequality cannot be obtained from a bipartite claw constraint
with the procedures presented in [11] and in this manuscript.

For i ∈ V , we define δ(i) = {ij : ij ∈ E for some j ∈ V }. For A ⊆ E and x ∈ CPP (G), we define
x(A) =

∑
e∈A xe.
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Figure 2. The central claw inequality (3.1).

An incomplete bipartite claw is the graph H depicted in Figure 1(c), and we say that v is the dangling vertex
of H. If x = uS ∈ CPP (G), we say that v is a dangling vertex in x if S contains an incomplete bipartite claw
H such that v is the dangling vertex of H.

If πx ≤ π0 is a valid inequality, we call Eπ = {e ∈ E : πe 6= 0} the support of π. We denote by Gπ the
subgraph of G given by the edges in Eπ, i.e., Gπ = (Vπ, Eπ), where Vπ = {i ∈ V : ij ∈ Eπ for some j ∈ V }.
For u ∈ Vπ, we denote by dπ(u) the degree of u in Gπ. We define 0 ∈ R|E| to be the all-zeros vector with |E|
entries.

For e ∈ E, the valid inequalities xe ≥ 0 and xe ≤ 1 are called the trivial inequalities associated with e. An
inequality is nontrivial if it differs from xe ≥ 0 and xe ≤ 1, for any e ∈ E.

Theorem 3.1. The central claw inequality (3.1) is valid and facet-inducing for CPP (G).

Proof. Let x ∈ CPP (G) ∩ Z|E| be a feasible solution. If xu1u2 = 0 then
∑
e∈T xe ≤ 8 implies that (3.1) is

satisfied, so assume xu1u2 = 1. In this case, we cannot have xe = 1 for every e ∈ T , since x would then contain
the bipartite claw B = {v2u1, u1u2, u2v3, v3w3, u2v4, v4w4}. We also cannot have xe = 1 for every e ∈ T\{u1v1}
or xe = 1 for every e ∈ T\{v1w1}, since in these cases the bipartite claw B again appears in x. A similar
analysis shows that, for any e′ ∈ T , the configuration xe = 1 for every e ∈ T\{e′} and xe′ = 0 is not feasible.
We conclude that x(T ) ≤ 6, so (3.1) is satisfied.

Now for facetness. By the lifting lemma, we may assume that G is the subgraph induced by the vertices
{u1, u2} ∪ {vi, wi}4i=1. Call F the face of CPP (G) defined by (3.1), and assume λx = λ0 for every x ∈ F . We
shall prove that λ is a multiple of the coefficient vector of (3.1), thus showing that F is a facet of CPP (G).

Consider the solution x̄ = uu1u2 + uT\{v1w1,v3w3} and the solution x̄′ = uu1u2 + uT\{u1v1,v3w3}. Both points
are feasible and satisfy (3.1) with inequality, hence λx̄ = λ0 = λx̄′. Since x̄ and x̄′ differ in the variables xv1w1

and xu1v1 , then λv1w1 = λu1v1 . By a similar procedure with the edges in T , we can verify that λviwi = λujvi for
i = 1, . . . , 4 and j ∈ {1, 2} such that ujvi ∈ E.

Consider now the solution x̄′′ = uu1u2 +uT\{v2w2,v3w3}. Again, x̄′′ is feasible and satisfies (3.1) with inequality.
The points x̄ and x̄′′ only differ in the variables xv1w1 and xv2w2 , hence λv1w1 = λv2w2 . By a similar procedure
with the edges {viwi}4i=1, we get λviwi

= λvjwj
for i, j = 1, . . . , 4. By combining the previous observations, we

conclude that λe = λe′ for e, e′ ∈ T .
Finally, consider the solution x̃ = uT . Again, x̃ is feasible and satisfies (3.1) with equality. The existence of

the solutions x̄ and x̃ implies λu1u2 = λv1w1 + λv3w3 . Since λe = λe′ for e, e′ ∈ T , we conclude λu1u2 = 2λe for
any e ∈ T .

We now show that λe = 0 for e ∈ E\C. For every e ∈ δ(w3)\C, it is not hard to verify that x̄′+ue ∈ CPP (G),
hence we have x̄′ ∈ F and x̄′+ ue ∈ F , implying λe = 0. By repeating this argument with {wi}i6=3, we conclude
that λe = 0 for e ∈ δ(wi)\C and i = 1, . . . , 4.

Finally, for each e ∈ δ(v1)\C, construct the solution x̂ = uu1u2 + uT\{u1v1,u2v2}. Again, we have x̂ ∈ F and
x̂ + ue ∈ F , implying λe = 0. By repeating this argument with {vi}i 6=1, we get λe = 0 for e ∈ δ(vi)\C and
i = 1, . . . , 4.

We conclude that λ is a multiple of the coefficient vector of (3.1) which, therefore, defines a facet of
CPP (G). �
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Figure 3. The construction specified by Procedure 1.

It must be noted that the central claw inequalities can be separated in polynomial time by exhaustive
enumeration. The structure obtained from a central claw by splitting u1u2, thus generating an extra vertex z
connected to u1 and u2, gives the following valid inequality by Theorem 4 of [11]:∑

e∈T
xe + 2(xu1z + xzu2) ≤ 10. (3.2)

However, in spite of Theorem 3.1, there is a feasible solution x in the face defined by the central claw inequality
(3.1) such that u2 is a dangling vertex in x, which means that Theorem 4 of [11] cannot be applied to guarantee
facetness. Indeed, (3.2) is not facet-inducing since it can be obtained as the result of the addition of two bipartite
claw constraints, both including u1z and zu2.

4. Facet-preserving procedures with acyclic supports

The polytope CPP (G) admits many families of facet-inducing inequalities involving different graph struc-
tures. Interestingly, many of these families of facets can be explained in terms of facet-preserving procedures.
Each such procedure takes as input a facet-inducing inequality and produces a sligthly modified inequality that
is also facet-inducing. This section explores two such procedures for CPP (G) that do not introduce cycles in
the obtained inequality, hence are applicable when G is a tree.

4.1. First facet-preserving procedure

The first facet-preserving procedure takes as input a valid inequality with at least one variable with coeffi-
cient 2, and turns the associated edge into three new edges in a modified graph G′. The new inequality is valid
for CPP (G′) and, if the original inequality is facet-inducing for CPP (G) and additional technical hypotheses
hold, then it is also facet-inducing for CPP (G′).
Procedure 1. Let πx ≤ π0 be a nontrivial valid inequality. Let uv ∈ Eπ with πuv = 2. Call L ⊆ V the
connected component of Gπ\{uv} including u, and call R ⊆ V the connected component of Gπ\{uv} including
v (see Fig. 3). Let G′ = (V ′, E′) be the graph defined by V ′ = V ∪ {w, s} and E′ = E\{uv} ∪ {uw,wv,ws}. In
this setting, the procedure constructs the inequality∑

e∈E\{uv}

πexe + (xuw + xwv + xws) ≤ π0 + 1. (4.1)

Theorem 4.1. Assume the hypotheses of Procedure 1 hold. If

(a) L and R are disjoint,
(b) there exists t ∈ L with ut ∈ E and πut = 1,
(c) there exists t ∈ R with vt ∈ E and πvt = 1,
(d) at most one edge ut ∈ Eπ with t ∈ L has πut ≥ 2, and in this case every edge tp ∈ Eπ with p 6= u has

πtp = 1,
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(e) at most one edge vt ∈ Eπ with t ∈ R has πvt ≥ 2, and in this case every edge tp ∈ Eπ with p 6= v has
πtp = 1,

then (4.1) is valid for CPP (G′).

Proof. Denote (4.1) by π̂x ≤ π̂0. Let x̄ ∈ CPP (G′) ∩ {0, 1}|E
′|, and define T = {uw, vw,ws}.

If x̄(T ) ≤ 1, construct x̄′ ∈ CPP (G) by x̄′uv = 0, x̄′e = x̄e for e ∈ Eπ̂\T , and x̄′e = 0 for e ∈ E\Eπ̂. Let A be
the edge set of the solution represented by x̄. Since the edge set of the solution represented by x̄′ is A\T , then
x̄′ ∈ CPP (G), hence πx̄′ ≤ π0. This implies

π̂x̄ = πx̄′ + x̄(T ) ≤ π0 + 1 = π̂0.

If x̄uw = x̄vw = 1 (implying x̄(T ) ≥ 2), then construct x̄′ ∈ Z|E| by x̄′uv = 1, x̄′e = x̄e for e ∈ Eπ̂\T , and
x̄′e = 0 for e ∈ E\Eπ̂. By contradiction, if x̄′ has a cycle (resp. bipartite claw) B, then x̄ contains the cycle
(resp. bipartite claw) B\{uv} ∪ {uw, vw}, hence x̄′ ∈ CPP (G). This implies πx̄′ ≤ π0, and

π̂x̄ = πx̄′−2x̄′uv + x̄(T )︸ ︷︷ ︸
≤1

≤ π0 + 1 = π̂0.

Finally, if x̄(T ) = 2 but x̄uw 6= x̄vw, we either have x̄uw = x̄ws = 1 or x̄vw = x̄ws = 1. Construct x̄′ as in
the previous paragraph. Since x̄(T ) = 2 and x̄′uv = 1, we have π̂x̄ = πx̄′ − 2x̄′uv + x̄(T ) = πx̄′. If x̄′ ∈ CPP (G),
then πx̄′ ≤ π0, hence

π̂x̄ = πx̄′ − 2x̄′uv + x̄(T ) = πx̄′ ≤ π0 ≤ π̂0.

So assume x̄′ 6∈ CPP (G), hence x̄′ contains a bipartite claw B (x̄′ cannot contain a cycle since x̄L and x̄R do
not contain any cycle, and the hypothesis (a) holds). We must have uv ∈ B, since otherwise B is included within
L or R, a contradiction since x̄ is feasible. This implies that B has one of the configurations shown in Figure 4,
or their symmetrical counterparts with L. Assume w.l.o.g. that B has one of the configurations presented in
Figure 4. In both cases we have x̄vw = 0, since otherwise B\{uv} ∪ {vw} in case (i) and B\{uv, ut} ∪ {vw,ws}
in case (ii) is a bipartite claw in x̄, a contradiction. We now identify an edge ē such that x̄′ − uē ∈ CPP (G)
and πē = 1, as follows.

• In case (i), we cannot have x̄vq = 1 for q ∈ R, q 6= p, since in this case the bipartite claw B\{uv} ∪ {vq}
belongs to R. Hence, x̄′ − uvp ∈ CPP (G). If πvp = 1 then we set ē := vp. On the other hand, if πvp ≥ 2
then the hypothesis (e) ensures that πpr = 1 for every pr ∈ Eπ with r 6= v, so we take ē to be any such edge
within B.

• In case (ii), the hypotheses (c) and (e) ensure that there exists p ∈ R with πvp = 1. We have x̄′−uvp ∈ CPP (G)
since otherwise x̄ contains a bipartite claw B′ 6= B with uv ∈ B′ and having at least four edges in E(R) (see
Fig. 5), which translates into x̄, a contradiction. We take, therefore, ē := vp.

In all cases, we have x̄′ − uē ∈ CPP (G) and πē = 1. This implies π(x̄′ − uē) ≤ π0, hence

π̂x̄ = πx̄′ = π(x̄′ − uē) + πē ≤ π0 + 1 = π̂0.

Since x̄ is an arbitrary feasible solution in CPP (G′), we conclude that π̂x ≤ π̂0 is a valid inequality for this
polytope. �

Theorem 4.2. Assume the hypotheses of Procedure 1 and the conditions (a)–(e) hold. If (i) πx ≤ π0 defines
a facet F of CPP (G), (ii) there exists x ∈ F with xuv = 0 such that u is not a dangling vertex in x, and (iii)
there exists x ∈ F with xuv = 0 such that v is not a dangling vertex in x, then (4.1) induces a facet of CPP (G′).

Proof. Denote (4.1) by π̂x ≤ π̂0. By the lifting lemma, we may assume G = Gπ. Since CPP (G) is full-
dimensional, let x1, . . . , x|E| be affinely independent points such that πxi = π0 for i = 1, . . . , |E|. For i =
1, . . . , |E|, construct x̄i from xi as follows.
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Figure 4. Possible configurations for B in the proof of Theorem 4.1.
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Figure 5. Appearance of a bipartite claw B′ in case (ii) of the proof of Theorem 4.1.

• If xiuv = 0, then set x̄ie = xie for e ∈ E\{uv}, x̄iuw = x̄ivw = 0, and x̄iws = 1.
• If xiuv = 1, then set x̄ie = xie for e ∈ E\{uv} and x̄iuw = x̄ivw = x̄iws = 1.

In both cases we get that x̄i is a feasible solution and π̂x̄i = π̂0 since πxi = π0. Furthermore, since
the projection of x̄i onto the variables associated with E\{uv} ∪ {uw} coincides with xi, then x̄i is affinely
independent with {x̄j}j<i.

Let t ∈ {1, . . . , |E|} such that xtuv = 0 and such that u is not a dangling vertex in xt (the hypothesis (ii)
ensures that such a point exists), and construct the point x̃t by setting x̃te = xte for e ∈ E\{uv}, x̃tvw = x̃tws = 0,
and x̃tuw = 1. This point is feasible, has π̂x̃t = πxt + π̂uw = π0 + 1 = π̂0, and is affinely independent with
{x̄1, . . . , x̄|E|} since x̃tuw 6= x̃tvw but x̄iuw = x̄ivw for i = 1, . . . , |E|.

Finally, let k ∈ {1, . . . , |E|} such that xkuv = 0 and such that v is not a dangling vertex in xk (the hypothesis
(iii) ensures that such a point exists), and construct the point x̂k by setting x̂ke = xke for e ∈ E\{uv}, x̂kuw =
x̂kws = 0, and x̂kvw = 1. Again, this point is feasible, has π̂x̂k = π̂0, and is affinely independent with S =
{x̄1, . . . , x̄|E|} ∪ {x̃t} since xuw = 1− xws + xvw for x ∈ S but x̂kuw 6= 1− x̂kws + x̂kvw.

We have, therefore, constructed |E|+2 = |E′| affinely independent points satisfying (4.1) with equality which,
therefore, defines a facet of CPP (G′). �

A central claw satisfies the conditions of Theorem 4.2. Consequently, if Procedure 1 is applied to the facet-
inducing inequality (3.1), then the resulting inequality∑

e∈T
xe + (xu1z + xzu2 + xzs) ≤ 9 (4.2)

is also facet-inducing.

4.2. Second facet-preserving procedure

We now introduce the second facet-preserving procedure. This procedure takes as input a valid inequality
having a claw in its support, and adds an edge to the support while changing at the same time two coefficients
from the original inequality. Again, the new inequality is valid and, if some additional technical conditions
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Figure 6. The construction specified by Procedure 2.

hold, this procedure also preserves facetness.

Procedure 2. Let πx ≤ π0 be a nontrivial valid inequality. Let uw, vw,ws ∈ Eπ with πuw = πvw = πws = 1,
dπ(w) = 3, and dπ(s) = 1 (see Fig. 6). Let t ∈ V \Vπ such that st ∈ E. In this setting, the procedure constructs
the inequality ∑

e∈E
πexe + (xuw + xwv + xst) ≤ π0 + 2. (4.3)

Theorem 4.3. Assume the hypotheses of Procedure 2 hold. If every point x ∈ CPP (G) with xuw = xvw =
xws = 1 has πx ≤ π0 − 1, then (4.3) is valid for CPP (G).

Proof. Denote (4.3) by π̂x ≤ π̂0. Let x̄ ∈ CPP (G) ∩ Z|E| (which, therefore, has πx̄ ≤ π0) and define T =
{uw, vw,ws, st}. Assume w.l.o.g. x̄e = 0 for e 6∈ Eπ̂. If x̄uw+x̄wv+x̄st ≤ 2, we have π̂x̄ = πx̄+(x̄uw+x̄wv+x̄st) ≤
π0 + 2 = π̂0. So, assume x̄uw = x̄wv = x̄st = 1. If x̄ws = 0 then x̄′ := x̄− ust + uws is also feasible, since w has
exactly two incident edges in the solution induced by x̄ and s has no incident edges in the solution induced by
x̄−ust (since x̄e = 0 for e 6∈ Eπ̂). The fact that x̄′ is feasible shows that x̄ cannot satisfy πx̄ ≤ π0 with equality
(if this was the case, then πx̄′ = πx̄+ πws = π0 + 1, a contradiction). Since πx̄′ ≤ π0, we have

π̂x̄ = πx̄+ (x̄uw + x̄wv + x̄st)
= πx̄′ + (x̄uw + x̄wv)
≤ π0 + 2 = π̂0.

On the other hand, if x̄ws = 1 then the hypothesis ensures that πx̄ ≤ π0 − 1, hence

π̂x̄ = πx̄+ (x̄uw + x̄wv + x̄st) ≤ (π0 − 1) + 3 = π̂0. (4.4)

In all cases, we get π̂x̄ ≤ π̂0. Since x̄ is an arbitrary feasible solution, we conclude that (4.3) is a valid
inequality. �

The hypothesis in Theorem 4.3 asking for every point x ∈ CPP (G) with xuw = xvw = xws = 1 to have
πx ≤ π0 − 1 is quite unsatisfactory, since it involves a nontrivial check on πx ≤ π0. Unfortunately, additional
hypotheses are indeed required in order to ensure the validity of the inequality constructed by the procedure,
as the counterexample in Figure 7 shows. The first inequality πx ≤ 11 in the figure is valid but does not satisfy
this hypothesis. The second inequality π̂x ≤ 13 in the figure is the inequality obtained by applying Procedure 2
to πx ≤ 11, but it is not valid since the point x̄ = uS for S = Eπ̂\{e1, e2} has π̂x̄ = 14.

Theorem 4.4. Assume the hypotheses of Procedure 2 and Theorem 4.3 hold. If (i) πx ≤ π0 defines a facet F of
CPP (G), (ii) there exist x1, . . . , x|E| ∈ F affinely independent such that no i ∈ {1, . . . , |E|} has xiuw = xivw = 0
and xiws = 1 and (iii) some i ∈ {1, . . . , |E|} has xiuw = xivw = xiws = 1, then (4.3) induces a facet of CPP (G).
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Figure 7. Counterexample to the validity of the inequality generated by Procedure 2 when
the hypothesis in Theorem 4.3 does not hold.

Proof. Denote (4.3) by π̂x ≤ π̂0. By the lifting lemma, we may assume G = Gπ̂. Let x1, . . . , x|E| be affinely
independent points satisfying the hypotheses (ii) and (iii). By the projection lemma, πx ≤ π0 is facet-defining for
CPP (G)∩{x ∈ {0, 1}|E| : xst = 0}. Let E′ = E\{st}. Since xi ∈ {0, 1}|E| for i = 1, . . . , |E|, then the projection
of {x1, . . . , x|E|} onto all the variables with the exception of xst contains |E′| = |E| − 1 affinely independent
points, say x1, . . . , x|E

′|. Assume w.l.o.g. that x1 satisfies the hypothesis (iii), i.e., x1
uw = x1

vw = x1
ws = 1.

No i ∈ {1, . . . , |E′|} has xiuw = xivw = 1 and xiws = 0, since in this case the vertex w only has two incident
edges in the solution induced by x, hence the point xi + uws is feasible and π(xi + uws) > π0, a contradiction
since πx ≤ π0 is valid. Also note that no i ∈ {1, . . . , |E′|} has xiuw = xivw = xiws = 0, since again the point
xi + uws is feasible and π(xi + uws) > π0, a contradiction.

Let T = {uw, vw,ws}. For i = 1, . . . , |E′|, construct x̄i from xi as follows.

• If xi(T ) = 3, then take x̄ie = xie for e ∈ E\{st} and x̄ist = 0. We have π̂x̄i = πxi + (xiuw +xivw) = π0 + 2 = π̂0.
• If xi(T ) ≤ 2, then take x̄ie = xie for e ∈ E\{st} and x̄ist = 1. By the previous observations, we cannot have
xi(T ) = 0 and the hypothesis (ii) implies that xiuw + xivw ≥ 1. We have already verified that in this case we
cannot have xiuw = xivw = 1, hence xiuw + xivw = 1. We conclude that

π̂x̄i = πxi + (x̄iuw + x̄ivw︸ ︷︷ ︸
=1

+ x̄iws︸︷︷︸
=1

) = π0 + 2 = π̂0.

The projection of x̄i and xi onto all the variables with the exception of xst coincide, hence x̄i is affinely
independent w.r.t. {x̄j}j<i.

Finally, construct x̃1 by x̃1
e = x1

e for e ∈ E\{ws, st}, x̃1
ws = 0, and x̃1

st = 1. We have

π̂x̃1 = (πx1 − πws) + (x̃1
uw + x̃1

vw + x̃1
st)

= (π0 − 1) + 3 = π̂0.

The point x̃1 is affinely independent w.r.t. the points x̄1, . . . , x̄|E
′| since xist+xiuw+xivw = 2 for i = 1, . . . , |E′|

but x̃1
st + x̃1

uw + x̃1
vw = 3.

This way, we construct the set {x̄1, . . . , x̄|E
′|} ∪ {x̃1} of |E| affinely independent points satisfying π̂x ≤ π̂0

with equality which, therefore, defines a facet of CPP (G). �
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The hypothesis of Theorem 4.3 in Theorem 4.4 can be replaced by the condition that (4.3) is valid. Procedure 2
can be applied to the inequality (4.2), which in turn was generated by Procedure 1, in order to obtain a new
inequality. The hypotheses of the previous theorems hold in this case, hence the resulting inequality is valid and
facet-inducing.

5. Concluding remarks

In this work we have studied facet-preserving procedures that generate facet-inducing inequalities with acyclic
supports from existing strong valid inequalities. Similar procedures presented in previous works create cycles in
the support of the constructed valid inequalities, so they cannot be applied to CPP (G) when G is a tree.

The theorems guaranteeing that the obtained inequalities are valid involve hypotheses that may be quite
difficult to check in practice, hence we do not expect the procedures presented in this work to be useful in
practice (contrary to the practical effectiveness of previously-presented procedures). In particular, the hypothesis
(b)–(e) in Theorem 4.1 may complicate the search for violated inequalities generated by Procedure 1, and the
hypothesis in Theorem 4.3 asking every feasible point x with xuw = xwv = xws = 1 to satisfy πx ≤ π0 − 1 may
be intractable to check in practice. We leave as an open problem the search for procedures with hypotheses
more amenable to a practical treatment.

The main interest in these results is theoretical, and stems from the fact that a complete description of
CPP (G) with constraints separable in polynomial time would automatically yield a proof of the computational
tractability of the 2-SSCPsc over trees. Computational experiments with polyhedral software on small instances
suggest that the results presented in this work might provide such complete descriptions for small instances, and
it would be interesting to explore whether such complete descriptions are possible for arbitrarily-sized instances.

Acknowledgements. The author is grateful to the anonymous reviewers for their thorough comments and instructive
suggestions.
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[2] H. Calvete, C. Galé and J. Iranzo, An efficient evolutionary algorithm for the ring star problem. Eur. J. Oper. Res. 231 (2013)
22–33.

[3] T. Dias, G. de Sousa, E. Macambira, L. Cabral and M. Fampa, An efficient heuristic for the ring star problem. In: Proceedings
of the 5th International Workshop on Experimental Algorithms WEA 2006, Menorca, Spain. In Vol. 4007 of Lect. Note Comput.
Sci. (2006) 24–35.

[4] M. Dinneen and M. Khosravani, A linear time algorithm for the minimum spanning caterpillar problem for bounded treewidth
graphs. In: Proceedings of the 17th International Colloquium on Structural Information and Communication Complexity, Sirince.
In Vol. 6058 of Lect. Notes Comput. Sci. (2010) 237–246.

[5] M. Dinneen and M. Khosravani, Hardness of approximation and integer programming frameworks for searching for caterpillar
trees. In: Proceedings of the Seventeenth Computing on The Australasian Theory Symposium, Perth, Australia (2011) 145-150.

[6] M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, Berlin
(1993).

[7] S. Kedad-Sidhoum and V. Nguyen, An exact algorithm for solving the ring star problem. Optimization 59 (2010) 125–140.
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