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FACET-INDUCING INEQUALITIES WITH ACYCLIC SUPPORTS
FOR THE CATERPILLAR-PACKING POLYTOPE

JAVIER MARENCOM2*

Abstract. A caterpillar is a connected graph such that the removal of all its vertices with degree 1
results in a path. Given a graph G, a caterpillar-packing of G is a set of vertex-disjoint (not necessarily
induced) subgraphs of G such that each subgraph is a caterpillar. In this work we consider the set of
caterpillar-packings of a graph, which corresponds to feasible solutions of the 2-schemes strip cutting
problem with a sequencing constraint (2-SSCPsc) presented by Rinaldi and Franz (Eur. J. Oper. Res.
183 (2007) 1371-1384). Facet-preserving procedures have been shown to be quite effective at explaining
the facet-inducing inequalities of the associated polytope, so in this work we continue this issue by
exploring such procedures for valid inequalities with acyclic supports. In particular, the obtained results
are applicable when the underlying graph is a tree.
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1. INTRODUCTION

A caterpillar is a (possibly empty) connected graph such that the removal of all its vertices with degree 1
results in a path, see Figure 1(a). Given a graph G = (V, E), the subgraph induced by an edge subset F' C E
is Gp = (Vp, F), where Vg C V is the set of endpoints of the edges in F. A caterpillar-packing of G is a set
F = {Fi,...,F}} such that (a) F; C E and Gp, is a caterpillar, for i = 1,...,k, and (b) Vi, N Vg, = 0, for
1 # j. In other words, a caterpillar-packing of G is a set of vertex-disjoint (not necessarily induced) subgraphs
of GG such that each subgraph is a caterpillar.

Caterpillar-based structures in graphs have been tackled with integer programming techniques in previous
works. The minimum spanning caterpillar problem asks for a spanning caterpillar minimizing a linear cost func-
tion that assigns different costs to leaf edges and edges from the central path. Integer programming and heuristic
approaches for this problem are presented in [14, 15]. Theoretical developments concerning its approximability
include [4,5]. This structure is related to ring-stars, where the central path of the spanning caterpillar is replaced
by a cycle. Both integer programming (see [7,8]) and heuristic (see [2,3]) approaches have been pursued for the
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FIGURE 1. Panel a: a caterpillar. Panel b: the bipartite claw. Panel c: the incomplete bipartite
claw, with v its dangling vertex.

manimum ring-star problem. The natural generalization of this problem asking for more than one cycle is called
the m-ring-star problem and has been studied in [1,12,16,17].

The interest in caterpillar-packings comes from an integer programming approach to the 2-schemes strip
cutting problem with a sequencing constraint (2-SSCPsc), a problem that arises in the context of corrugated
cardboard machines [13]. The 2-SSCPsc is essentially a unidimensional cutting stock problem with at most two
orders per pattern, with the additional sequencing constraint that requires every order to appear in consecutive
patterns. This last constraint makes the problem quite difficult in practice. If we define the schemes graph to be
SG = (0, 5), where O is the set of orders and S = {ij : there exists a feasible pattern with orders ¢ and j}, then
the two-order patterns present in any feasible solution induce a caterpillar-packing of SG [13]. This observation
motivated the introduction in [10] of an integer programming model aiming to exploit this structure.

If e € E, we define u, € RI”l to be the unit vector associated with the edge e, i.c., (u.)e = 1if ¢/ = ¢
and (ue)er = 0 otherwise. If FF C E, we define up = ZSGF u. to be its characteristic vector. We define the
caterpillar-packing polytope associated to the graph G to be

CPP(G) = conv{up : F is the edge set UF of a caterpillar-packing F of G}.

Families of valid inequalities for CPP(G) may be incorporated to a cutting-plane-based procedure for the
2-SSCPsc, thus motivating the study of this polytope. In [11] such a polyhedral study was started, showing
that C PP(G) has remarkable properties, key among them the existence of a straightforward lifting lemma and
the existence of facet-preserving procedures, which take as input a valid (respectively, facet-inducing) inequality
and produce an enlarged inequality that is also valid (respectively, facet-inducing if additional constraints hold).

In this work we are interested in facet-inducing inequalities with acyclic supports for CPP(G), that could be
used when G is a tree or a forest. Only the first facet-preserving procedure presented in [11] can be applied when
G is a tree, since the remaining procedures generate cycles in the support of the obtained inequality. Hence, we
must consider new such procedures, generating inequalities with acyclic supports. Preliminary computational
experience suggests that the facet-preserving procedures presented in this work might give complete descriptions
of CPP(G) when G is a tree, and this fact would provide a crucial insight on the computational complexity
of the 2-SSCPsc over trees. The well-known equivalence between optimization and separation [6] provides the
theoretical background for such a study.

This paper is organized as follows. Section 2 presents the caterpillar-packing polytope in detail and provides
some properties of this polytope. Section 3 presents a new family of facet-inducing inequalities. Section 4 presents
the new facet-preserving procedures and proves them correct. Finally, Section 5 states some conclusions and
open problems.

2. FORMULATION AND BASIC PROPERTIES

We introduce in this section a natural integer programming formulation for C PP(G), based on the following
classical result. The bipartite claw is the graph depicted in Figure 1(b).
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Theorem 2.1 ([9]). A connected graph H is a caterpillar if and only if H does not contain any cycle and any
bipartite claw.

We assume E # () throughout this work. We introduce a binary variable z. for each e € E, such that z, = 1
if and only if the solution includes the edge e. We denote by C(G) the set of all (not necessarily induced) cycles
in G, and by B(G) the set of all (not necessarily induced) bipartite claws of G, in both cases regarded as sets of
edges. In this setting, C PP(Q) is the convex hull of the points € {0, 1}/”! satisfying the following constraints:

Yz <ICl-1 VCeC@), (2.1)
eeC
> @ <5 V B € B(Q). (2.2)
eeB

The cycle constraints (2.1) ask feasible solutions not to contain any cycle, whereas the bipartite claw con-
straints (2.2) forbid bipartite claws. Hence, Theorem 2.1 ensures that integer points in CPP(G) represent
caterpillar-packings of GG. Note that the definition of a caterpillar-packing does not ask every vertex to be
included in some caterpillar (e.g., the empty set of edges is a caterpillar-packing), so we do not have constraints
asking for such conditions.

It is easy to verify that CPP(G) is full-dimensional and that any facet-inducing inequality different from
ze > 0 for any e € E has non-negative coeflicients. Also, the bipartite claw constraints (2.2) define facets
of CPP(QG), even if the bipartite claw is not induced in G. On the other hand, the cycle constraints are not
facet-inducing in general [11].

The particular structure of caterpillars implies the following lifting and projection lemmas. If W C V| we
denote by E(W) = {ij € E :4,j € W} the set of edges induced by W. We denote by Gy the subgraph of G
induced by the vertex set W, i.e., Gy = (W, E(W)). Finally, for E’ C E, we define g/ to be the projection of
7 onto the space of the variables associated with the edges in E’.

Lifting Lemma [11]. Let W C V and let mx < mg be a valid inequality such that 7, = 0 for e ¢ E(W). If
Tpw)T < g is facet-inducing for CPP(Gw), then mx < mq is facet-inducing for CPP(G).

Projection Lemma [11]. Let 7z < mg be a facet-inducing inequality for CPP(G). Let e € E with m. = 0 and
define G' = (V, E'), where E' = E\{e}. Then, mpx < my is facet-inducing for CPP(G").

3. A FAMILY OF FACET-INDUCING INEQUALITIES

We present in this section a new family of facet-inducing inequalities, which will be one of the base cases for
the facet-preserving procedures introduced in the next section.

We define a central claw C C E to be the structure depicted in Figure 2, i.e., C = {ujus} UT C E, where
T = {uyv1, u1v2, ugv3, ugva } U {v;w; i ;. We define

2uyuy + P e < 8 (3.1)
ecT

to be the central claw inequality associated with C. Figure 2 shows a picture of such a valid inequality, by
representing variables with coefficient 1 with single-line edges, and variables with coefficient 2 with double-line
edges. Note that the central claw C' C E need not be induced in G (i.e., there may exist an edge ij € E,
i,j € Vo, such that ij ¢ C). Also note that this inequality cannot be obtained from a bipartite claw constraint
with the procedures presented in [11] and in this manuscript.

For ¢ € V, we define §(i) = {ij : ij € E for some j € V}. For A C E and v € CPP(G), we define

SL’(A) = ZeGA Le-
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FIGURE 2. The central claw inequality (3.1).

An incomplete bipartite claw is the graph H depicted in Figure 1(c), and we say that v is the dangling vertex
of H. If x = ug € CPP(G), we say that v is a dangling vertex in z if S contains an incomplete bipartite claw
H such that v is the dangling vertex of H.

If 7z < mp is a valid inequality, we call E; = {e € E : m, # 0} the support of m. We denote by G, the
subgraph of G given by the edges in F, i.e., Gr = (V,E;), where V; = {i € V : ij € E, for some j € V}.
For u € V., we denote by d,(u) the degree of u in G,. We define 0 € RIF| to be the all-zeros vector with |E|
entries.

For e € F, the valid inequalities z. > 0 and z. < 1 are called the trivial inequalities associated with e. An
inequality is nontrivial if it differs from z. > 0 and z. < 1, for any e € E.

Theorem 3.1. The central claw inequality (3.1) is valid and facet-inducing for CPP(G).

Proof. Let x € CPP(G) N Z*l be a feasible solution. If x,,,, = 0 then Y ecr Te < 8 implies that (3.1) is
satisfied, so assume z,,,, = 1. In this case, we cannot have z. = 1 for every e € T, since  would then contain
the bipartite claw B = {vau, ujus, uav3, V3ws, uavy, vawy ;. We also cannot have z, = 1 for every e € T\{ujv1}
or z. = 1 for every e € T\{vjw;}, since in these cases the bipartite claw B again appears in x. A similar
analysis shows that, for any ¢’ € T, the configuration . = 1 for every e € T\{¢'} and 2, = 0 is not feasible.
We conclude that z(T') < 6, so (3.1) is satisfied.

Now for facetness. By the lifting lemma, we may assume that G is the subgraph induced by the vertices
{u1,uz} U {v;,w; }4_,. Call F the face of CPP(G) defined by (3.1), and assume Az = )¢ for every = € F. We
shall prove that A is a multiple of the coefficient vector of (3.1), thus showing that F' is a facet of CPP(G).

Consider the solution = Wy, u, + U7\ {0, w;,05ws} and the solution =y, + UT\ {u,v1,v3ws}- BOth points
are feasible and satisfy (3.1) with inequality, hence AT = A9 = AZ’. Since Z and Z’ differ in the variables x4,
and Ty, o, , then Ay w, = Ay o, - By a similar procedure with the edges in T, we can verify that \,,,,, = Aujo; for
i=1,...,4and j € {1,2} such that u;v;, € E.

Consider now the solution " = Wy, u, + U\ {vws, 05w, }- Again, 2" is feasible and satisfies (3.1) with inequality.
The points Z and '’ only differ in the variables x4, and Zyyu,, hence Ay w, = Apyw,. By a similar procedure
with the edges {v;w;}i, we get Ay, = Avw; for i, =1,...,4. By combining the previous observations, we
conclude that \c = A\ for e, e’ € T

Finally, consider the solution & = uy. Again, Z is feasible and satisfies (3.1) with equality. The existence of
the solutions Z and & implies Ay, uy = Avyjw, + Avgws- Since Ae = A for e, e’ € T, we conclude Ay, 4, = 2, for
anyeecT.

We now show that A\, = 0 for e € E\C. For every e € d(w3)\C, it is not hard to verify that '+u. € CPP(QG),
hence we have z’ € F and ' +u. € F, implying A. = 0. By repeating this argument with {w;};x3, we conclude
that Ac =0 for e € §(w;)\C and i = 1,...,4.

Finally, for each e € §(v1)\C, construct the solution & = Wy,u, + U\ fu vy uzvs}- Again, we have & € I and
&+ u, € F, implying A\ = 0. By repeating this argument with {v;},z1, we get Ac = 0 for e € §(v;)\C and
i=1,...,4.

We conclude that A is a multiple of the coefficient vector of (3.1) which, therefore, defines a facet of
CPP(G). O
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F1cURE 3. The construction specified by Procedure 1.

It must be noted that the central claw inequalities can be separated in polynomial time by exhaustive
enumeration. The structure obtained from a central claw by splitting ujus, thus generating an extra vertex z
connected to uy and ug, gives the following valid inequality by Theorem 4 of [11]:

D @+ 2T,z + 220y) <10, (3.2)
ecT

However, in spite of Theorem 3.1, there is a feasible solution x in the face defined by the central claw inequality
(3.1) such that usy is a dangling vertex in x, which means that Theorem 4 of [11] cannot be applied to guarantee
facetness. Indeed, (3.2) is not facet-inducing since it can be obtained as the result of the addition of two bipartite
claw constraints, both including u;z and zus.

4. FACET-PRESERVING PROCEDURES WITH ACYCLIC SUPPORTS

The polytope CPP(G) admits many families of facet-inducing inequalities involving different graph struc-
tures. Interestingly, many of these families of facets can be explained in terms of facet-preserving procedures.
Each such procedure takes as input a facet-inducing inequality and produces a sligthly modified inequality that
is also facet-inducing. This section explores two such procedures for CPP(G) that do not introduce cycles in
the obtained inequality, hence are applicable when G is a tree.

4.1. First facet-preserving procedure

The first facet-preserving procedure takes as input a valid inequality with at least one variable with coeffi-

cient 2, and turns the associated edge into three new edges in a modified graph G’. The new inequality is valid
for CPP(G’) and, if the original inequality is facet-inducing for CPP(G) and additional technical hypotheses
hold, then it is also facet-inducing for CPP(G").
Procedure 1. Let mx < my be a nontrivial valid inequality. Let uv € FE, with m,, = 2. Call L C V the
connected component of G \{uv} including u, and call R C V the connected component of G\ {uv} including
v (see Fig. 3). Let G’ = (V', E’) be the graph defined by V' =V U {w, s} and E' = E\{uv} U {vw, wv, ws}. In
this setting, the procedure constructs the inequality

Z TeZe + (Tuw + Two + Tws) < 7o + 1. (4.1)
ee E\{uv}

Theorem 4.1. Assume the hypotheses of Procedure 1 hold. If

(a) L and R are disjoint,

(b) there exists t € L with ut € E and my =1,

(c) there exists t € R with vt € E and 7y = 1,

(d) at most one edge ut € E, with t € L has 7, > 2, and in this case every edge tp € E. with p # u has
Ttp = 1,
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(e) at most one edge vt € E; with t € R has my > 2, and in this case every edge tp € E. with p # v has
Ttp = 17

then (4.1) is valid for CPP(G").

Proof. Denote (4.1) by 7z < 7ty. Let Z € CPP(G') N {0, I}IE/I, and define T' = {uw, vw, ws}.

If z(T) < 1, construct z’ € CPP(G) by 7, =0, T, = T, for e € E;\T, and Z, = 0 for e € E\F;. Let A be
the edge set of the solution represented by Z. Since the edge set of the solution represented by ' is A\T, then
z' € CPP(G), hence 7%’ < mp. This implies

iz = 7% +3(T) < mo+1 = #o.

If oy = Ty = 1 (implying #(T) > 2), then construct &’ € Z\Fl by 7/, = 1, ¥, = z, for e € E;\T, and
Z. = 0 for e € E\E;. By contradiction, if Z' has a cycle (resp. bipartite claw) B, then Z contains the cycle
(resp. bipartite claw) B\{uv} U {uw,vw}, hence z’ € CPP(G). This implies 77’ < 7, and

7z = 717 =27, +T(T) < m+1 = 7.
~—_———

<1

Finally, if Z(T) = 2 but Ty # Tyw, We either have Ty = Tys = 1 OF Ty = Ty = 1. Construct 7’ as in
the previous paragraph. Since Z(T) = 2 and Z,,, = 1, we have 7% = 7%’ — 2%, + Z(T) = n%’. i ' € CPP(G),
then 7z’ < 7o, hence

iz = m¥ =22, +3(T) = 78 < my < Ao.
/!

So assume T’ ¢ CPP(G), hence Z’' contains a bipartite claw B (Z’' cannot contain a cycle since Ty, and T do
not contain any cycle, and the hypothesis (a) holds). We must have uv € B, since otherwise B is included within
L or R, a contradiction since T is feasible. This implies that B has one of the configurations shown in Figure 4,
or their symmetrical counterparts with L. Assume w.l.0.g. that B has one of the configurations presented in
Figure 4. In both cases we have Z,,, = 0, since otherwise B\{uv} U {vw} in case (i) and B\{uv, ut} U {vw, ws}
in case (ii) is a bipartite claw in Z, a contradiction. We now identify an edge € such that Z’' — uz; € CPP(G)
and 7z = 1, as follows.

e In case (i), we cannot have Z,, = 1 for ¢ € R, ¢ # p, since in this case the bipartite claw B\{uv} U {vg}
belongs to R. Hence, &’ — u,, € CPP(G). If m,, = 1 then we set € := vp. On the other hand, if m,, > 2
then the hypothesis (e) ensures that m,,. = 1 for every pr € E. with r # v, so we take € to be any such edge
within B.

e In case (ii), the hypotheses (c) and (e) ensure that there exists p € R with 7,, = 1. We have 2’—u,, € CPP(G)
since otherwise Z contains a bipartite claw B’ # B with uv € B’ and having at least four edges in E(R) (see
Fig. 5), which translates into Z, a contradiction. We take, therefore, e := vp.

In all cases, we have T’ — uz € CPP(G) and 7z = 1. This implies 7(Z’ — uz) < 7, hence
iz = 7% = 7@ —ug) +7 < mo+1 = 7.

Since Z is an arbitrary feasible solution in CPP(G"), we conclude that 72 < 7 is a valid inequality for this
polytope. O

Theorem 4.2. Assume the hypotheses of Procedure 1 and the conditions (a)-(e) hold. If (i) mx < my defines
a facet F' of CPP(G), (ii) there exists x € F with x4, = 0 such that u is not a dangling vertez in x, and (iii)
there exists x € F with x,, = 0 such that v is not a dangling vertex in x, then (4.1) induces a facet of CPP(G").

Proof. Denote (4.1) by &z < 7. By the lifting lemma, we may assume G = G,. Since CPP(G) is full-
dimensional, let z!,..., 2!/l be affinely independent points such that wa’ = my for i = 1,..., |E|. For i =
1,...,|E|, construct ¢ from z* as follows.
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(ii)

FIGURE 4. Possible configurations for B in the proof of Theorem 4.1.

FIGURE 5. Appearance of a bipartite claw B’ in case (ii) of the proof of Theorem 4.1.

e If 2, =0, then set T

' for e € E\{w}, ¢, =%, =0, and ¢, = 1.
o If 2/ =1, then set = ‘

' for e € E\{uv} and 7, = 2!, =z = 1.
In both cases we get that Z’ is a feasible solution and #Z' = #( since ma’ = my. Furthermore, since
the projection of Z¢ onto the variables associated with E\{uv} U {uw} coincides with x?, then #’ is affinely
independent with {#7};;.

Let t € {1,...,|E|} such that z!, = 0 and such that u is not a dangling vertex in z' (the hypothesis (ii)
ensures that such a point exists), and construct the point Z* by setting 7! = z! for e € E\{uv}, 7t, = 2!, =0,
and 7!, = 1. This point is feasible, has 7! = 7x! + %y = mo + 1 = 7, and is affinely independent with
{z',..., 2P} since ¢, # &%, but 7%, =z fori=1,...,|F|.

Finally, let k € {1,...,|E|} such that ¥ = 0 and such that v is not a dangling vertex in x* (the hypothesis
(iii) ensures that such a point exists), and construct the point #* by setting 2% = 2% for e € E\{uv}, &%, =
#%. =0, and #F, = 1. Again, this point is feasible, has #2* = #(, and is affinely independent with S =
{z1, .. 2Py U {3} since Ty = 1 — Tups + T for z € S but 28, #1— 2k + 2k .

We have, therefore, constructed |E|+2 = |E’| affinely independent points satisfying (4.1) with equality which,
therefore, defines a facet of CPP(G"). O

A central claw satisfies the conditions of Theorem 4.2. Consequently, if Procedure 1 is applied to the facet-
inducing inequality (3.1), then the resulting inequality

Z Te + (mu12 + xzug + xzs) S 9 (42)
eeT

is also facet-inducing.

4.2. Second facet-preserving procedure

We now introduce the second facet-preserving procedure. This procedure takes as input a valid inequality
having a claw in its support, and adds an edge to the support while changing at the same time two coefficients
from the original inequality. Again, the new inequality is valid and, if some additional technical conditions
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hold, this procedure also preserves facetness.

Procedure 2. Let mx < mg be a nontrivial valid inequality. Let uw, vw, ws € FE; with Ty, = Tpw = Tws = 1,
dr(w) =3, and d.(s) =1 (see Fig. 6). Let t € V\V, such that st € E. In this setting, the procedure constructs
the inequality
Z TeTe + (Tuy + Tapw + Tst) < o + 2. (4.3)
eckE

Theorem 4.3. Assume the hypotheses of Procedure 2 hold. If every point x € CPP(G) with Tyy = Tyw =
Tws = 1 has mx < mp — 1, then (4.3) is valid for CPP(G).

Proof. Denote (4.3) by 7z < #y. Let Z € CPP(G) N ZFl (which, therefore, has 7% < 7o) and define T =
{uw, vw, ws, st}. Assume w.l.o.g. T, = 0 for e & Fz. If Typy+Topp+ZTst < 2, we have 7% = T+ (Tyw + Two+Tst) <
To + 2 = 7p. S0, assume Ty = Twy = Tst = 1. If Ty = 0 then T’ := T — uy; + uy, is also feasible, since w has
exactly two incident edges in the solution induced by Z and s has no incident edges in the solution induced by
T —ug (since T, =0 for e € E;). The fact that Z’ is feasible shows that T cannot satisfy 7% < 7y with equality
(if this was the case, then 7%’ = 7% + my,s = 7 + 1, a contradiction). Since 7z’ < 7, we have

T = 7T + (:Euw + Zwo + jst)
= Tf/ + (i'uw + ﬂ_fwv)

§7T0+2 = 7?(0.

On the other hand, if Z,,s = 1 then the hypothesis ensures that 7z < my — 1, hence

7T = T+ (Tyw + Two +Tst) < (Mg —1)+3 = 7. (4.4)

In all cases, we get 7% < 7p. Since Z is an arbitrary feasible solution, we conclude that (4.3) is a valid
inequality. (]

The hypothesis in Theorem 4.3 asking for every point & € CPP(G) with Xy = Ty = Zys = 1 to have
mx < g — 1 is quite unsatisfactory, since it involves a nontrivial check on mx < my. Unfortunately, additional
hypotheses are indeed required in order to ensure the validity of the inequality constructed by the procedure,
as the counterexample in Figure 7 shows. The first inequality 72 < 11 in the figure is valid but does not satisfy
this hypothesis. The second inequality 7z < 13 in the figure is the inequality obtained by applying Procedure 2
to mz < 11, but it is not valid since the point Z = ug for S = E;\{e1,e2} has #Z = 14.

Theorem 4.4. Assume the hypotheses of Procedure 2 and Theorem 4.3 hold. If (i) mx < my defines a facet F' of
CPP(G), (ii) there exist 2, ..., z!Fl € F affinely independent such that noi € {1,...,|E|} has x%, =2, =0
and 2, = 1 and (iii) some i € {1,...,|E|} has i, = xi , =i =1, then (4.3) induces a facet of CPP(G).
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<13

F1GURE 7. Counterexample to the validity of the inequality generated by Procedure 2 when
the hypothesis in Theorem 4.3 does not hold.

Proof. Denote (4.3) by 7z < #o. By the lifting lemma, we may assume G = G3. Let z',..., z!Fl be affinely
independent points satisfying the hypotheses (ii) and (iii). By the projection lemma, 7z < 7y is facet-defining for
CPP(G)Nn{z € {0,1}Fl .z, = 0}. Let E' = E\{st}. Since z* € {0,1}/® for i = 1,...,|E|, then the projection

of {z',...,z!FI} onto all the variables with the exception of z,; contains |E’| = |E| — 1 affinely independent
points, say z',...,z/E'l. Assume w.lo.g. that z' satisfies the hypothesis (iii), d.e., xl, =2l =2l =1.

Noi € {1,...,|E'|} has 2, = !, = 1 and 2, = 0, since in this case the vertex w only has two incident
edges in the solution induced by z, hence the point z* + 1, is feasible and 7T({,Ci + uys) > 7o, a contradiction
since mx < mp is valid. Also note that no i € {1,...,|E’|} has 2%, = x! , = x! . = 0, since again the point
' + Uy, is feasible and 7(2° + uys) > 7, a contradiction.

Let T = {uw,vw,ws}. For i = 1,...,|E’|, construct ' from z° as follows.

e If 2°(T) = 3, then take 7! = 2! for e € E\{st} and z%, = 0. We have 77" = 7z’ + (2!, +21,,) = mo +2 = 0.

o If 2/(T) < 2, then take #! = z¢ for e € E\{st} and z%, = 1. By the previous observations, we cannot have
24(T) = 0 and the hypothesis (ii) implies that z¢,, + 2, > 1. We have already verified that in this case we
cannot have z¢,, = zi =1, hence 2!, + z¢, = 1. We conclude that

77" = wat 4+ (3L, + T, T) = m+2 = Ao
—_——— =

The projection of ' and z* onto all the variables with the exception of x,; coincide, hence #' is affinely
independent w.r.t. {Z7},;.
Finally, construct #! by #! = z! for e € E\{ws, st}, . =0, and &, = 1. We have
7l = (72! = M) + (g + Tyw + Tst)
= <7T0—1)+3 = 7.

The point #! is affinely independent w.r.t. the points z*, ..., zZl since 2, + 2%, +ai, =2fori=1,...,|F|
but 7!, + 2L, + 2L, =3.
This way, we construct the set {z!,... ,:?‘E/‘} U {Z'} of |E| affinely independent points satisfying 7z < g

with equality which, therefore, defines a facet of CPP(G). |
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The hypothesis of Theorem 4.3 in Theorem 4.4 can be replaced by the condition that (4.3) is valid. Procedure 2
can be applied to the inequality (4.2), which in turn was generated by Procedure 1, in order to obtain a new
inequality. The hypotheses of the previous theorems hold in this case, hence the resulting inequality is valid and
facet-inducing.

5. CONCLUDING REMARKS

In this work we have studied facet-preserving procedures that generate facet-inducing inequalities with acyclic
supports from existing strong valid inequalities. Similar procedures presented in previous works create cycles in
the support of the constructed valid inequalities, so they cannot be applied to CPP(G) when G is a tree.

The theorems guaranteeing that the obtained inequalities are valid involve hypotheses that may be quite
difficult to check in practice, hence we do not expect the procedures presented in this work to be useful in
practice (contrary to the practical effectiveness of previously-presented procedures). In particular, the hypothesis
(b)—(e) in Theorem 4.1 may complicate the search for violated inequalities generated by Procedure 1, and the
hypothesis in Theorem 4.3 asking every feasible point x with ., = Ty, = Tys = 1 to satisfy 7z < mp — 1 may
be intractable to check in practice. We leave as an open problem the search for procedures with hypotheses
more amenable to a practical treatment.

The main interest in these results is theoretical, and stems from the fact that a complete description of
CPP(G) with constraints separable in polynomial time would automatically yield a proof of the computational
tractability of the 2-SSCPsc over trees. Computational experiments with polyhedral software on small instances
suggest that the results presented in this work might provide such complete descriptions for small instances, and
it would be interesting to explore whether such complete descriptions are possible for arbitrarily-sized instances.

Acknowledgements. The author is grateful to the anonymous reviewers for their thorough comments and instructive
suggestions.
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