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NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS USING
CONVEXIFACTORS FOR MATHEMATICAL PROGRAMS WITH EQUILIBRIUM

CONSTRAINTS

Bhawna Kohli1,∗

Abstract. The main aim of this paper is to develop necessary Optimality conditions using Convexifac-
tors for mathematical programs with equilibrium constraints (MPEC). For this purpose a nonsmooth
version of the standard Guignard constraint qualification (GCQ) and strong stationarity are introduced
in terms of convexifactors for MPEC. It is shown that Strong stationarity is the first order necessary
optimality condition under nonsmooth version of the standard GCQ. Finally, notions of asymptotic
pseudoconvexity and asymptotic quasiconvexity are used to establish the sufficient optimality condi-
tions for MPEC.
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1. Introduction

In this paper, we study following, mathematical programs with equilibrium constraints (MPEC):

(MPEC) Minimize f(x)
subject to g(x) ≤ 0, h(x) = 0,

G(x) ≥ 0, H(x) ≥ 0, G(x)tH(x) = 0,

where f : Rn → R, g : Rn → Rm, h : Rn → Rp, G : Rn → Rl, H : Rn → Rl.
Let K := {x ∈ Rn : g(x) ≤ 0, h(x) = 0, G(x) ≥ 0, H(x) ≥ 0, G(x)tH(x) = 0} denote the feasible set for

MPEC.
Before proceeding further, we define the following sets in the context of MPECs. From the complimentarity

term in MPEC, we have that for a feasible point x̄ ∈ K, either Gi(x̄) or Hi(x̄), i = 1, 2, . . . , l or both must be
zero. To differentiate between these cases, we divide the indices of G and H into three sets which are as follows:

A := A(x̄) := {i ∈ {1, 2, . . . , l} : Gi(x̄) = 0, Hi(x̄) > 0},
B := B(x̄) := {i ∈ {1, 2, . . . , l} : Gi(x̄) = 0, Hi(x̄) = 0},
D := D(x̄) := {i ∈ {1, 2, . . . , l} : Gi(x̄) > 0, Hi(x̄) = 0}.
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B is called degenerate set.
Throughout this paper, we assume that B is a nonempty set. A partition of B is of the form (B1, B2) where

B = B1 ∪B2 and B1 ∩B2 = φ. We denote the set of all partitions of B by P (B).
Now we recall a nonlinear program MPEC (B1, B2) as given by Ye [39], with respect to a partition (B1, B2)

of B.

MPEC(B1, B2) Minimize f(x)
subject to g(x) ≤ 0, h(x) = 0,

Gi(x) = 0, i ∈ A ∪B2, Hi(x) = 0, i ∈ D ∪B1,

Gi(x) ≥ 0, i ∈ B1, Hi(x) ≥ 0, i ∈ B2.

Obviously x̄ is a local optimal solution of MPEC if and only if it is a local optimal solution of MPEC (B1, B2)
for all partitions (B1, B2) ∈ P (B).

Let I := {1, 2, . . . ,m}, I ′ := {1, 2, . . . , p} and I(x̄) := {i ∈ I : gi(x̄) = 0}.
MPECs play an important role in modeling of many practical problems which appear in the field of engineering

design, economics, game equilibria and transportation planning. For applications of MPEC one can see [5,31,33].
However, because of their structures, they are difficult to handle. For detailed study of these programs one is
referred to the two monographs Luo et al. [25] and Outrata et al. [31].

We know that Karush–Kuhn–Tucker (KKT) type necessary optimality conditions are obtained using a con-
straint qualification (CQ). Unfortunately MPECs do not satisfy most of the common CQs such as Mangasarian–
Fromovitz CQ (MFCQ), Slater CQ etc. at any feasible point. Hence, the usual KKT conditions cannot be viewed
as first order optimality conditions for MPEC unless some strong assumptions are made. Therefore, it is the
subject of intensive investigation to determine a suitable CQ for MPEC under which a local minimal solution
of MPEC satisfies some first order optimality conditions. This has led to various stationarity concepts (or first
order optimality conditions) and CQs suitable for MPEC. The most commonly discussed stationarity concepts
in the literature are strong stationarity, M-stationarity and C-stationarity. Among these, strong stationarity is
the strongest stationarity notion for MPEC. In [9], Flegel and Kanzow proved that strong stationarity holds
under an MPEC variant of Linear independent CQ namely (MPEC–LICQ). Later on Flegel and Kanzow [10]
showed that strong stationarity is a necessary optimality condition under GCQ assuming the functions to be
continuously differentiable.

M-stationarity is the next strongest stationarity concept after strong stationarity. It was developed by many
authors like Ye and Ye [40], Outrata [29, 30], Ye [38], Flegel and Kanzow [11], Movahedian and Nobakhtian
[28], Kanzow and Schwartz [22], Guo and Lin [14]. Ye [39] gave M-stationarity condition for MPEC and proved
optimality conditions under some MPEC generalized convexity assumptions. Movahedian and Nobakhtian [28]
introduced M-stationarity concept for a feasible point of MPEC in terms of Clarke–Rockafellar subdifferential
and proved optimality conditions for a nonsmooth locally Lipschitz MPEC.

For more study on these stationarity conditions one is referred to Pang and Fukushima [32], Scheel and
Scholtes [34], Flegel and Kanzow [12], Flegel et al. [13], Movahedian and Nobakhtian [27], Henrion et al. [15]
etc. Movahedian and Nobakhtian [27] introduced strong and M-stationarity notions and also CQs such as MPEC
nonsmooth generalized Abadie CQ, MPEC GCQ and MPEC weak Abadie CQ (MPEC–WACQ). They showed
that these stationarity concepts are first order optimality conditions under MPEC–WACQ. Recently, Ardali et al.
[3] gave new types of MPEC stationarity conditions based on convexifactors for nonsmooth MPEC. Especially,
they derived generalized strong (GS)-stationarity as the first order necessary optimality condition under a
standard Abadie-type CQ. They also proved that generalized alternatively (GA)-stationarity is a necessary
optimality condition under a weaker Abadie-type CQ namely MPEC ACQ.

But even Abadie constraint qualification (ACQ) which is considered to be the weakest CQ for standard
nonlinear programs does not hold in general for MPEC. Pang and Fukushima [32] showed that it holds for
MPEC under some restrictive assumptions.



NECC AND SUFF OPTIM COND USING CONVEXIFACTORS FOR MPEC 1619

In this paper, we consider GCQ, which is still weaker than ACQ to derive necessary and sufficient optimality
conditions for nonsmooth MPEC. In order to develop KKT type necessary optimality conditions for MPEC,
we have introduced nonsmooth versions of standard GCQ using the concept of convexifactors. Further, we have
introduced strong stationarity concept in terms of convexifactors and proved that it is first order necessary
optimality condition under a nonsmooth version of standard GCQ. Finally, we have defined the notions of
asymptotic pseudoconvexity and asymptotic quasiconvexity in terms of convexifactors to prove sufficient opti-
mality conditions for MPEC. Convexifactors are recent generalizations of the idea of subdifferential for scalar
valued functions and were given by Demyanov [6]. They are always closed sets but not necessarily convex or
compact (see [7,18]) though the most well known subdifferentials such as Clarke, Michel–Penot etc. are always
convex and compact. Due to these relaxations they can be applied to a large class of nonsmooth problems.
Also in the form of convexifactor we get a smaller set and using it we obtain sharp optimality conditions. Thus,
because of their immense importance, they have been explored by many researchers like Jeyakumar and Luc
[18], Dutta and Chandra [7, 8], Li and Zhang [24], Babahadda and Gadhi [4], Suneja and Kohli [35–37], Kohli
[23], Ardali et al. [3], Kabgani and Solemani-damaneh [19,20], Kabgani et al. [21], Jayswal et al. [16,17], Ahmad
et al. [1] and others.

The paper is organized as follows. In Section 2, we give definitions of convexifactors and some basic results
which are to be used in the proof of main results. We define notions of asymptotic pseudoconvex and asymptotic
quasiconvex functions and introduce the nonsmooth versions of standard GCQ in terms of convexifactors in
Section 3. In Section 4, we introduce strong stationarity concept and prove that it is necessary optimality con-
dition for MPEC. Finally, sufficient optimality conditions under the assumption of asymptotic pseudoconvexity
and asymptotic quasiconvexity on functions are established in Section 5.

2. Preliminaries

In this paper, we have focused on finite dimensional spaces. We begin by defining upper and lower Dini
derivatives as follows:

Let f : Rn → R ∪ {±∞} be an extended real valued function and let x ∈ Rn where f(x) is finite. Then the
upper and lower Dini derivatives of f at x in direction v are defined, respectively by

(f)+
d (x, v) := lim sup

t→0+

f(x+ tv)− f(x)
t

and

(f)−d (x, v) := lim inf
t→0+

f(x+ tv)− f(x)
t

·

Dini derivatives may be finite as well as infinite. In particular, if f is locally Lipschitz, both the upper and
lower Dini derivatives are finite.

For any set S ⊂ Rn, the closure, convex hull and the closed convex hull of S are denoted, respectively by
clS, convS and clconvS.

We now give the definitions of convexifactors as given by Dutta and Chandra [7].

Definition 2.1. Let f : Rn → R ∪ {±∞} be an extended real valued function and let x ∈ Rn where f(x) is
finite.

(i) f is said to admit an upper convexifactor (UCF) ∂uf(x) at x iff ∂uf(x) ⊆ Rn is a closed set and

(f)−d (x, v) ≤ sup
x∗∈∂uf(x)

〈x∗, v〉, for all v ∈ Rn.

(ii) f is said to admit a lower convexifactor (LCF) ∂lf(x) at x iff ∂lf(x) ⊆ Rn is a closed set and

(f)+
d (x, v) ≥ inf

x∗∈∂lf(x)
〈x∗, v〉, for all v ∈ Rn.
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(iii) f is said to admit a convexifactor (CF) ∂∗f(x) at x iff ∂∗f(x) is both (UCF) and (LCF) of f at x.
(iv) f is said to admit an upper semiregular convexifactor (USRCF) ∂usf(x) at x iff ∂usf(x) ⊆ Rn is a closed

set and

(f)+
d (x, v) ≤ sup

x∗∈∂usf(x)

〈x∗, v〉, for all v ∈ Rn.

In particular, if equality holds in above, then, ∂usf(x) is called an upper regular convexifactor (URCF) of
f at x.

(v) f is said to admit a lower semiregular convexifactor (LSRCF) ∂lsf(x) at x iff ∂lsf(x) ⊆ Rn is a closed set
and

(f)−d (x, v) ≥ inf
x∗∈∂lsf(x)

〈x∗, v〉, for all v ∈ Rn.

In particular, if equality holds in above, then, ∂lsf(x) is called a lower regular convexifactor (LRCF) of f
at x.

Definition 2.2. Given a nonempty subset S of Rn the negative polar cone of S is defined by

S− = {v ∈ Rn| 〈x, v〉 ≤ 0, ∀ x ∈ S}.

Now we give an important lemma which will be used in our main results.

Lemma 2.3. Let B be a nonempty, convex and compact set and A be a convex cone. If

sup
v∈B
〈v, d〉 ≥ 0, for all d ∈ A−,

then, 0 ∈ B +A.

3. Generalized convexity and constraint qualification

3.1. ∂u-asymptotic generalized convexity

We now define the notions of ∂u-asymptotic generalized convex functions in terms of upper convexifactors
on the lines of Luu [26] and Kabgani et al. [21]:

Definition 3.1. Let f :Rn→R be a function. Let f admits UCF ∂uf(x̄) at x̄.

(i) f is said to be ∂u-asymptotic pseudoconvex at x̄ iff for all x ∈ Rn

f(x) < f(x̄) ⇒ 〈ξ∗, x− x̄〉 < 0 for all ξ∗ ∈ clconv ∂uf(x̄).

(ii) f is said to be ∂u-asymptotic quasiconvex at x̄ iff for all x ∈ Rn

f(x) ≤ f(x̄) ⇒ 〈ξ∗, x− x̄〉 ≤ 0 for all ξ∗ ∈ clconv ∂uf(x̄).

(iii) f is said to be ∂u-asymptotic quasilinear at x̄ iff f is ∂u-asymptotic pseudoconvex and ∂u-asymptotic
quasiconvex at x̄.



NECC AND SUFF OPTIM COND USING CONVEXIFACTORS FOR MPEC 1621

3.2. ∂∗-GCQ

Using the concept of upper convexifactors, now we introduce nonsmooth versions of standard GCQ,
namely ∂∗-GCQ(B1, B2), (B1, B2) ∈ P (B) for nonlinear program MPEC (B1, B2) and ∂∗-GCQ for
MPEC.

Let x̄ ∈ K be feasible for MPEC. We assume that the functions gi, i ∈ I(x̄), hi, i = 1, 2, . . . , p, −Gi, Gi,
i ∈ A, i ∈ B, −Hi, Hi, i ∈ D, i ∈ B admit upper convexifactors ∂ugi(x̄), i ∈ I(x̄), ∂uhi(x̄), i = 1, 2, . . . , p,
∂u(−Gi)(x̄), ∂u(Gi)(x̄), i ∈ A, i ∈ B, ∂u(−Hi)(x̄) and ∂u(Hi)(x̄), i ∈ D, i ∈ B, respectively at x̄.
∂∗-GCQ(B1, B2) holds at x̄ if( ⋃

i∈I(x̄)

conv ∂ugi(x̄)
⋃ p⋃

i=1

conv ∂uhi(x̄)
⋃ ⋃

i∈A∪B2

(conv ∂u(Gi)(x̄) ∪ conv ∂u(−Gi)(x̄))

⋃ ⋃
i∈D∪B1

(conv ∂u(Hi)(x̄) ∪ conv ∂u(−Hi)(x̄))
⋃ ⋃

i∈B1

conv ∂u(−Gi)(x̄)
⋃ ⋃

i∈B2

conv ∂u(−Hi)(x̄)
)−

⊆ clconv T (K, x̄).

∂∗-GCQ holds at x̄ if( ⋃
i∈I(x̄)

conv ∂ugi(x̄)
⋃ p⋃

i=1

conv ∂uhi(x̄)
⋃⋃

i∈A

(conv ∂u(Gi)(x̄) ∪ conv ∂u(−Gi)(x̄))

⋃ ⋃
i∈D

(conv ∂u(Hi)(x̄) ∪ conv ∂u(−Hi)(x̄))
⋃ ⋃

i∈B

conv ∂u(−Gi)(x̄)
⋃ ⋃

i∈B

conv ∂u(−Hi)(x̄)
)−

⊆ clconvT (K, x̄).

In view of equation (15) in Ye [39], we can say that if ∂∗-GCQ(B1, B2) holds for all MPEC (B1, B2), (B1, B2) ∈
P (B), then ∂∗-GCQ holds.

4. Necessary optimality conditions

In this section, we derive necessary optimality conditions for MPEC.
We begin by introducing ∂∗−strong stationarity concept in terms of upper convexifactors for MPEC.

Definition 4.1. A feasible point x̄ of MPEC is said to be ∂∗-strong stationary point if there exist vectors
0 6= (λg, λh, λG, λH , µG, µH) ∈ Rm+p+2l+2l such that the following conditions hold:

0 ∈ cl
[
conv ∂uf(x̄) +

{ m∑
i=1

λg
i conv ∂ugi(x̄) +

p∑
i=1

λh
i conv ∂uhi(x̄)

+
l∑

i=1

[
λG

i conv ∂u(−Gi)(x̄) + λH
i conv ∂u(−Hi)(x̄)

]
+

l∑
i=1

[
µG

i conv ∂u(Gi)(x̄) + µH
i conv ∂u(Hi)(x̄)

]}]
, (4.1)

λg
i ≥ 0, λg

i gi(x̄) = 0, i ∈ I, λh
i ≥ 0, i ∈ I ′, λG

i = 0, i ∈ D, λG
i ≥ 0, i ∈ B, i ∈ A, λH

i = 0, i ∈ A, λH
i ≥ 0, i ∈ B,

i ∈ D, µG
i ≥ 0, i ∈ A ∪B2, µG

i = 0, i ∈ B1 ∪D, µH
i ≥ 0, i ∈ D ∪B1, µH

i = 0, i ∈ A ∪B2, with[
m∑

i=1

λg
i +

p∑
i=1

λh
i +

l∑
i=1

λG
i +

l∑
i=1

λH
i +

l∑
i=1

µG
i +

l∑
i=1

µH
i

]
= 1.
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Remark 4.2. If f, gi, i ∈ I, hi, i ∈ I ′, −Gi, −Hi, Gi, Hi, i := 1, 2, . . . , l are differentiable and admit upper reg-
ular convexifactors ∂uf(x̄), ∂ugi(x̄), i ∈ I, ∂uhi(x̄), i ∈ I ′, ∂u(−Gi)(x̄), ∂u(−Hi)(x̄), ∂u(Gi)(x̄) and ∂u(Hi)(x̄),
i := 1, 2, . . . , l, respectively at x̄ and λG

i free, i ∈ A, λH
i free, i ∈ D and µG

i = 0 = µH
i , i := 1, 2, . . . , l in the

above stationarity condition, then it becomes close to the strongly stationarity condition given by Flegel and
Kanzow [9, 10]. Also in the present form it is close to generalized strong stationarity condition given by Ardali
et al. [3] and if λG

i free, i ∈ A, λH
i free, i ∈ D, µG

i = 0, i ∈ A, µH
i = 0, i ∈ D in the above, then it becomes close

to the strong stationarity condition given by Ye [39].

Before proceeding further, we give below an example to demonstrate the existence of above mentioned
stationarity condition.

Example 4.3. Consider the problem

Minimize f(x, y) :=


x+ y, x ≥ 0, y ≥ 0
|x|+ y2, x ≥ 0, y < 0
|x|+ y2, x < 0, y ≤ 0
y, x < 0, y > 0

subject to g(x, y) :=


|x|+ |y|, x > 0, y ∈ R√
−xy, x = 0, y < 0
−
√
−xy2, x ≤ 0, y ≥ 0√
−x2y, x < 0, y < 0

≤ 0,

G(x, y) := y ≥ 0, H(x, y) := x2 + |y| ≥ 0, G(x, y)tH(x, y) := y(x2 + |y|) = 0,

where f, g,G,H : R× R→ R.
It can be seen that f , g,−G,G,−H andH admit UCFs ∂uf(0, 0) := {(1, 1), (0, 1), (−1, 0), (1, 0)}, ∂ug(0, 0) :=

{(x∗, 0)|x∗ ≥ 0}, ∂u(−G)(0, 0) := {(0,−1)}, ∂u(G)(0, 0) := {(0, 1)}, ∂u(−H)(0, 0) := {(0, 1), (0,−1)} and
∂u(H)(0, 0) := {(0,−1), (0, 1)}, respectively at (0, 0).

Then, there exist scalars λg = 1
12 , λ

G = 1
12 , λ

H = 1
4 , µ

G = 1
3 , µ

H = 1
4 , with λg + λG + λH + µG + µH = 1

such that

(0, 0) ∈ cl
[
conv ∂uf(0, 0) +

{
λgconv ∂ug(0, 0) + λGconv ∂u(−G)(0, 0)

+ λHconv ∂u(−H)(0, 0) + µGconv ∂u(G)(0, 0)

+ µHconv ∂u(H)(0, 0)
}]
.

We now derive necessary optimality conditions for MPEC in the form of the following theorem.

Theorem 4.4. Let x̄ be a local optimal solution of MPEC. Assume that f is locally Lipschitz and admits a
bounded upper semiregular convexifactor ∂usf(x̄) at x̄. Let gi, i = 1, 2, . . . ,m, hi, i = 1, 2, . . . , p, −Gi, Gi, i ∈ A,
i ∈ B, −Hi, Hi, i ∈ D, i ∈ B admit upper convexifactors ∂ugi(x̄), i = 1, 2, . . . ,m, ∂uhi(x̄), i = 1, 2, . . . , p,
∂u(−Gi)(x̄), ∂u(Gi)(x̄), i ∈ A, i ∈ B, ∂u(−Hi)(x̄) and ∂u(Hi)(x̄), i ∈ D, i ∈ B, respectively at x̄. Suppose that
∂∗-GCQ(B1, B2) holds for all (B1, B2) ∈ P (B) and hence ∂∗-GCQ holds at x̄. Then, x̄ is a ∂∗-strong stationary
point.

Proof. Let v ∈ cl(conv(T (K, x̄))) be arbitrary. Then there exists a sequence vk ∈ conv(T (K, x̄)) such that
vk → v as k →∞.
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Since vk ∈ conv(T (K, x̄)), using Carathéodary’s Theorem, we can find elements vs
k ∈ T (K, x̄) and λs

k ≥ 0,

with
n+1∑
s=1

λs
k = 1 such that

vk =
n+1∑
s=1

λs
kv

s
k, for all k ∈ N.

Then, on taking limit k →∞, above gives

v = lim
k→∞

(
n+1∑
s=1

λs
kv

s
k

)
. (4.2)

As vs
k ∈ T (K, x̄), by definition of tangent cone, we can find sequences vs,j

k → vs
k and ts,j

k ↓ 0 such that
x̄+ ts,j

k vs,j
k ∈ K, for all j ∈ N.

Since x̄ is a minimum of f over K, therefore, we have

f(x̄+ ts,j
k vs,j

k )− f(x̄)

ts,j
k

≥ 0, for sufficiently large k, j ∈ N. (4.3)

Now

f(x̄+ ts,j
k vs,j

k )− f(x̄)

ts,j
k

=
f(x̄+ ts,j

k vs,j
k )− f(x̄+ ts,j

k vs
k)

ts,j
k

+
f(x̄+ ts,j

k vs
k)− f(x̄)

ts,j
k

· (4.4)

Since f is locally Lipschitz, therefore

f(x̄+ ts,j
k vs,j

k )− f(x̄+ ts,j
k vs

k)

ts,j
k

→ 0 as k →∞.

Taking Limit supremum on both sides of equation (4.4) and using above and (4.3), we get

lim sup
ts,jk →0+

f(x̄+ ts,j
k vs,j

k )− f(x̄)

ts,j
k

= (f)+
d (x̄, vs

k) ≥ 0, s = 1, 2, . . . , n+ 1.

That is,
(f)+

d (x̄, vs
k) ≥ 0, for all vs

k ∈ T (K, x̄) as vs
k is arbitrary, s = 1, 2, . . . , n+ 1.

Thus, we have λs
k(f)+

d (x̄, vs
k) ≥ 0, as λs

k ≥ 0, s = 1, 2, . . . , n+ 1.
Now because Dini derivatives are positively homogeneous in direction (Ansari et al. [1], Thm. 2.8(a)), so we

have from above
(f)+

d (x̄, λs
kv

s
k) ≥ 0, s = 1, 2, . . . , n+ 1.

By upper semiregularity of ∂usf(x̄) at x̄, it follows that

sup
ξ∈∂usf(x̄)

〈ξ, λs
kv

s
k〉 ≥ 0, for all vs

k ∈ T (K, x̄), s = 1, 2, . . . , n+ 1.

Adding above for all s = 1, 2, . . . , n+ 1, we get

sup
ξ∈∂usf(x̄)

〈ξ,
n+1∑
s=1

λs
kv

s
k〉 ≥ 0.
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Taking limit as k →∞ and using (4.2), we get

sup
ξ∈∂usf(x̄)

〈ξ, v〉 ≥ 0, for all v ∈ cl(conv(T (K, x̄))).

That is,
sup

ξ∈clconv ∂usf(x̄)

〈ξ, v〉 ≥ 0, for all v ∈ cl(conv(T (K, x̄))).

Since ∂∗-GCQ(B1, B2) holds for every (B1, B2) ∈ P (B) at x̄, we have

sup
ξ∈clconv ∂usf(x̄)

〈ξ, v〉 ≥ 0, for all v ∈ A−,

where A− is the negative polar cone of A and A is defined by

A := coneconv
( ⋃

i∈I(x̄)

conv ∂ugi(x̄)
⋃ p⋃

i=1

conv ∂uhi(x̄)

⋃ ⋃
i∈A∪B2

(conv ∂u(Gi)(x̄) ∪ conv ∂u(−Gi)(x̄))

⋃ ⋃
i∈D∪B1

(conv ∂u(Hi)(x̄) ∪ conv ∂u(−Hi)(x̄))

⋃ ⋃
i∈B1

conv ∂u(−Gi)(x̄)
⋃ ⋃

i∈B2

conv ∂u(−Hi)(x̄)
)
.

Using Lemma 2.3, we get

0 ∈ clconv
(

clconv ∂usf(x̄) + coneconv
{ ⋃

i∈I(x̄)

conv ∂ugi(x̄)
⋃ p⋃

i=1

conv ∂uhi(x̄)

⋃ ⋃
i∈A∪B2

(conv ∂u(Gi)(x̄) ∪ conv ∂u(−Gi)(x̄))

⋃ ⋃
i∈D∪B1

(conv ∂u(Hi)(x̄) ∪ conv ∂u(−Hi)(x̄))

⋃ ⋃
i∈B1

conv ∂u(−Gi)(x̄)
⋃ ⋃

i∈B2

conv ∂u(−Hi)(x̄)
})

.

Using convex hull property of subsets S1 and S2 of Rn, conv (S1 + S2) = convS1 + convS2, we have

0 ∈ cl
(

convclconv∂usf(x̄) + convconeconv
{ ⋃

i∈I(x̄)

conv ∂ugi(x̄)
⋃ p⋃

i=1

conv ∂uhi(x̄)

⋃ ⋃
i∈A∪B2

(conv ∂u(Gi)(x̄) ∪ conv ∂u(−Gi)(x̄))

⋃ ⋃
i∈D∪B1

(conv ∂u(Hi)(x̄) ∪ conv ∂u(−Hi)(x̄))

⋃ ⋃
i∈B1

conv ∂u(−Gi)(x̄)
⋃ ⋃

i∈B2

conv ∂u(−Hi)(x̄)
})

.
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Since convclS ⊂ clconvS for any subset S of Rn, we have from above

0 ∈ cl
(

clconv ∂usf(x̄) + coneconv
{ ⋃

i∈I(x̄)

conv ∂ugi(x̄)
⋃ p⋃

i=1

conv ∂uhi(x̄)

⋃ ⋃
i∈A∪B2

(conv ∂u(Gi)(x̄) ∪ conv ∂u(−Gi)(x̄))

⋃ ⋃
i∈D∪B1

(conv ∂u(Hi)(x̄) ∪ conv ∂u(−Hi)(x̄))

⋃ ⋃
i∈B1

conv ∂u(−Gi)(x̄)
⋃ ⋃

i∈B2

conv ∂u(−Hi)(x̄)
})

.

Using closure property of subsets S1 and S2 of Rn, cl(S1 + clS2) = cl(S1 + S2), we get

0 ∈ cl
(

conv ∂usf(x̄) + coneconv
{ ⋃

i∈I(x̄)

conv ∂ugi(x̄)
⋃ p⋃

i=1

conv ∂uhi(x̄)

⋃ ⋃
i∈A∪B2

(conv ∂u(Gi)(x̄) ∪ conv ∂u(−Gi)(x̄))

⋃ ⋃
i∈D∪B1

(conv ∂u(Hi)(x̄) ∪ conv ∂u(−Hi)(x̄))

⋃ ⋃
i∈B1

conv ∂u(−Gi)(x̄)
⋃ ⋃

i∈B2

conv ∂u(−Hi)(x̄)
})

,

which implies that there exists a sequence

xk ∈
(

conv ∂usf(x̄) + coneconv
{ ⋃

i∈I(x̄)

conv ∂ugi(x̄)
⋃ p⋃

i=1

conv ∂uhi(x̄)

⋃ ⋃
i∈A∪B2

(conv ∂u(Gi)(x̄) ∪ conv ∂u(−Gi)(x̄))

⋃ ⋃
i∈D∪B1

(conv ∂u(Hi)(x̄) ∪ conv ∂u(−Hi)(x̄))

⋃ ⋃
i∈B1

conv ∂u(−Gi)(x̄)
⋃ ⋃

i∈B2

conv ∂u(−Hi)(x̄)
})

,

such that xk → 0 as k →∞.
Since convexifactors are in general nonconvex sets, therefore, there exist sequences of scalars {λg

ik} , λ
g
ik ≥ 0,

i ∈ I(x̄),
{
λh

ik

}
, λh

ik ≥ 0, i = 1, 2, . . . , p,
{
λG

ik

}
, λG

ik ≥ 0, i ∈ A ∪ B2 ∪ B1,
{
λH

ik

}
, λH

ik ≥ 0, i ∈ B2 ∪ D ∪ B1,{
µG

ik

}
, µG

ik ≥ 0, i ∈ A ∪B2,
{
µH

ik

}
, µH

ik ≥ 0, i ∈ D ∪B1, with

lim
k→∞

[ ∑
i∈I(x̄)

λg
ik +

p∑
i=1

λh
ik +

∑
i∈A∪B2∪B1

λG
ik +

∑
i∈B2∪D∪B1

λH
ik

+
∑

i∈A∪B2

µG
ik +

∑
i∈D∪B1

µH
ik

]
:= 1
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such that

xk ∈
[
conv ∂usf(x̄) +

{ ∑
i∈I(x̄)

λg
ikconv ∂ugi(x̄) +

p∑
i=1

λh
ikconv ∂uhi(x̄)

+
∑

i∈A∪B2∪B1

λG
ikconv ∂u(−Gi)(x̄)

+
∑

i∈B1∪D∪B2

λH
ikconv ∂u(−Hi)(x̄)

+
∑

i∈A∪B2

µG
ikconv ∂u(Gi)(x̄) +

∑
i∈D∪B1

µH
ikconv ∂u(Hi)(x̄)

}]
.

Since the sequences {λg
ik} , i ∈ I(x̄),

{
λh

ik

}
, i = 1, 2, . . . , p,

{
λG

ik

}
, i ∈ A ∪ B,

{
λH

ik

}
, i ∈ B ∪ D,

{
µG

ik

}
,

i ∈ A ∪B2,
{
µH

ik

}
, i ∈ D ∪ B1 are bounded, we may assume that the sequences λg

ik → λg
i , i ∈ I(x̄), λh

ik → λh
i ,

i = 1, 2, . . . , p, λG
ik → λG

i , i ∈ A ∪ B, λH
ik → λH

i , i ∈ B ∪D, µG
ik → µG

i , i ∈ A ∪ B2, µ
H
ik → µH

i , i ∈ D ∪ B1 as
k →∞.

Thus, we have

0 ∈ cl
[
conv ∂usf(x̄) +

{ ∑
i∈I(x̄)

λg
i conv ∂ugi(x̄) +

p∑
i=1

λh
i conv ∂uhi(x̄)

+
∑

i∈A∪B

λG
i conv ∂u(−Gi)(x̄) +

∑
i∈B∪D

λH
i conv ∂u(−Hi)(x̄)

+
∑

i∈A∪B2

µG
i conv ∂u(Gi)(x̄) +

∑
i∈D∪B1

µH
i conv ∂u(Hi)(x̄)

}]
,

with  ∑
i∈I(x̄)

λg
i +

p∑
i=1

λh
i +

∑
i∈A∪B

λG
i +

∑
i∈B∪D

λH
i +

∑
i∈A∪B2

µG
i +

∑
i∈D∪B1

µH
i

 := 1.

Now, gi(x̄) := 0 for i ∈ I(x̄), therefore λg
i gi(x̄) := 0 for i ∈ I(x̄).

For i /∈ I(x̄), gi(x̄) < 0, so let λg
i = 0, i /∈ I(x̄).

Thus, we have λg
i gi(x̄) := 0, i ∈ I.

Also Gi(x̄) = 0 for i ∈ A ∪B2.
For i /∈ A ∪B2, that is, for i ∈ D ∪B1, Gi(x̄) > 0. Let λG

i = 0, i ∈ D ∪B1.
Similarly proceeding as above, since Hi(x̄) = 0 for i ∈ D ∪B1, we get λH

i = 0, i ∈ A ∪B2.
Also by taking µG

i = 0, i ∈ B1 ∪D, µH
i = 0, i ∈ A ∪B2, we get

0 ∈ cl
[
conv ∂usf(x̄) +

{ m∑
i=1

λg
i conv ∂ugi(x̄) +

p∑
i=1

λh
i conv ∂uhi(x̄)

+
l∑

i=1

λG
i conv ∂u(−Gi)(x̄) +

l∑
i=1

λH
i conv ∂u(−Hi)(x̄)

+
l∑

i=1

µG
i conv ∂u(Gi)(x̄) +

l∑
i=1

µH
i conv ∂u(Hi)(x̄)

}]
,

with [
m∑

i=1

λg
i +

p∑
i=1

λh
i +

l∑
i=1

λG
i +

l∑
i=1

λH
i +

l∑
i=1

µG
i +

l∑
i=1

µH
i

]
= 1.
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Hence, the theorem is proved. �

To illustrate above theorem, we provide the following example.

Example 4.5. Consider the problem

Minimize f(x, y) :=


|x|+ |y|, x ≥ 0, y ≥ 0
|y|, x ≥ 0, y < 0
x2 + |y|, x < 0, y ∈ R

subject to g(x, y) :=


−
√
x−√y, x ≥ 0, y ≥ 0√
−y, x ≥ 0, y < 0√
−x+

√
−y, x < 0, y ≤ 0√

−x, x < 0, y > 0

≤ 0,

G(x, y) := y ≥ 0, H(x, y) := x2 + |y| ≥ 0, G(x, y)tH(x, y) := y(x2 + |y|) = 0,

where f, g,G,H : R× R→ R.
It can be seen that f admits an USRCF ∂usf(0, 0) := {(1, 1), (0, 1), (0,−1)},
g, −G, G, −H and H admit UCFs ∂ug(0, 0) := {(x∗, y∗) |x∗ ≤ 0, y∗ ≤ 0}, ∂u(−G)(0, 0) := {(0,−1)},
∂u(G)(0, 0) := {(0, 1)}, ∂u(−H)(0, 0) := {(0,−1), (0, 1)} and ∂u(H)(0, 0) := {(0, 1), (0,−1)}, respectively
at (0, 0).
∂∗-GCQ holds at (0, 0).
Here T (K, (0, 0)) := {(x, 0)|x ≥ 0} and K ⊂ R× R is given by K := {(x, 0)|x ≥ 0}.
(0, 0) is an optimal solution of the problem.
Then, there exist scalars λg = 1

6 , λ
G = 1

4 , λ
H = 1

6 , µ
G = 1

4 , µ
H = 1

6 , with λg + λG + λH + µG + µH = 1 such
that

(0, 0) ∈ cl[conv ∂usf(0, 0) + {λgconv ∂ug(0, 0) + λGconv ∂u(−G)(0, 0)

+ λHconv ∂u(−H)(0, 0) + µGconv ∂u(G)(0, 0) + µHconv ∂u(H)(0, 0)}],
λgg(0, 0) = 0.

5. Sufficient optimality conditions

We begin this section by defining the following index sets.

B+
G :=

{
i ∈ B : µG

i = 0, µH
i > 0

}
, B+

H :=
{
i ∈ B : µH

i = 0, µG
i > 0

}
,

B+ :=
{
i ∈ B : µG

i > 0, µH
i > 0

}
, A+ :=

{
i ∈ A : µG

i > 0
}
,

D+ :=
{
i ∈ D : µH

i > 0
}
.

The following theorem gives sufficient optimality conditions for MPEC.

Theorem 5.1. Let x̄ be a feasible solution of MPEC and ∂∗-strong stationarity condition holds at x̄. Let f be
∂u-asymptotic pseudoconvex, gi, i ∈ I(x̄), −Gi, i ∈ A ∪ B, −Hi, i ∈ B ∪D be ∂u-asymptotic quasiconvex at x̄
and hi, i = 1, 2, . . . , p be ∂u-asymptotic quasilinear at x̄. If A+ ∪D+ ∪ B+

G ∪ B
+
H ∪ B+ = ∅, then x̄ is a global

optimal solution of MPEC.

Proof. Suppose that x̄ is not an optimal solution of MPEC. Then there exists a feasible sequence {xk} of MPEC
such that f(xk) < f(x̄). Since f is ∂u-asymptotic pseudoconvex at x̄, we have

〈ξ, xk − x̄〉 < 0 for all ξ ∈ clconv ∂uf(x̄). (5.1)
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By (4.1), there exist ξk ∈ conv ∂uf(x̄), ζik ∈ conv ∂ugi(x̄), i = 1, 2, . . . ,m, ςik ∈ conv ∂uhi(x̄), i = 1, 2, . . . , p,
γ∗ik ∈ conv ∂u(−Gi)(x̄), γ∗∗ik ∈ conv ∂u(Gi)(x̄), ξ∗ik ∈ conv ∂u(−Hi)(x̄), ξ∗∗ik ∈ conv ∂u(Hi)(x̄), i = 1, 2, . . . , l such
that

lim
k→∞

[
ξk +

{ m∑
i=1

λg
i ζik +

p∑
i=1

λh
i ςik +

l∑
i=1

λG
i γ
∗
ik +

l∑
i=1

λH
i ξ
∗
ik

+
l∑

i=1

µG
i γ
∗∗
ik +

l∑
i=1

µH
i ξ
∗∗
ik

}]
= 0.

Thus, for any feasible solution {xk} of MPEC, we have

lim
k→∞

[
〈ξk, xk − x̄〉+

{〈 m∑
i=1

λg
i ζik, xk − x̄

〉
+

〈
p∑

i=1

λh
i ςik, xk − x̄

〉

+

〈
l∑

i=1

λG
i γ
∗
ik, xk − x̄

〉
+

〈
l∑

i=1

λH
i ξ
∗
ik, xk − x̄

〉

+

〈
l∑

i=1

µG
i γ
∗∗
ik , xk − x̄

〉
+

〈
l∑

i=1

µH
i ξ
∗∗
ik , xk − x̄

〉}]
= 0. (5.2)

Now, because ξ ∈ clconv ∂uf(x̄), there exists ξ′k ∈ conv ∂uf(x̄) such that

lim
k→∞

ξ′k = ξ. (5.3)

Using above in (5.1), we get

lim
k→∞

〈ξ′k, xk − x̄〉 < 0, for some ξ′k ∈ conv ∂uf(x̄).

Thus, for every ξ ∈ clconv ∂uf(x̄), there exists ξ′k ∈ conv ∂uf(x̄) such that (5.3) holds.
In particular, it is true for ξ ∈ clconv ∂uf(x̄) for which there exists ξk ∈ conv ∂uf(x̄) such that

lim
k→∞

ξk = ξ.

Thus, we have

lim
k→∞

〈ξk, xk − x̄〉 < 0 as ξk ∈ conv ∂uf(x̄). (5.4)

Since xk is feasible for MPEC, we have

gi(xk) ≤ 0 = gi(x̄), i ∈ I(x̄).

As gi, i ∈ I(x̄) is ∂u-asymptotic quasiconvex at x̄, we have

〈ζi, xk − x̄〉 ≤ 0 for all ζi ∈ clconv ∂ugi(x̄), i ∈ I(x̄),

which, on proceeding as earlier, gives

lim
k→∞

〈ζik, xk − x̄〉 ≤ 0 as ζik ∈ conv ∂ugi(x̄), i ∈ I(x̄).

Thus, we have

lim
k→∞

〈 ∑
i∈I(x̄)

λg
i ζik, xk − x̄

〉
≤ 0 as λg

i ≥ 0, i ∈ I(x̄).
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Now, gi(x̄) < 0, i /∈ I(x̄), taking λg
i = 0 for i /∈ I(x̄), we get

lim
k→∞

〈
m∑

i=1

λg
i ζik, xk − x̄

〉
≤ 0 as ζik ∈ conv ∂ugi(x̄). (5.5)

Since,
hi(xk) = 0 = hi(x̄), i = 1, 2, . . . , p,

using ∂u-asymptotic quasilinearity of hi, i = 1, 2, . . . , p at x̄, we have

〈ςi, xk − x̄〉 = 0 for all ςi ∈ clconv ∂uhi(x̄), i = 1, 2, . . . , p.

Thus,
lim

k→∞
〈ςik, xk − x̄〉 = 0 as ςik ∈ conv ∂uhi(x̄), i = 1, 2, . . . , p,

which gives

lim
k→∞

〈
p∑

i=1

λh
i ςik, xk − x̄

〉
= 0 as λh

i ≥ 0, ςik ∈ conv ∂uhi(x̄), i = 1, 2, . . . , p. (5.6)

Now, −Gi(xk) ≤ 0 = −Gi(x̄), i ∈ A ∪B.
Since −Gi, i ∈ A ∪B is ∂u-asymptotic quasiconvex at x̄, we have

〈γ∗i , xk − x̄〉 ≤ 0 for all γ∗i ∈ clconv ∂u(−Gi)(x̄), i ∈ A ∪B.

Then as earlier, we have

lim
k→∞

〈γ∗ik, xk − x̄〉 ≤ 0 as γ∗ik ∈ conv ∂u(−Gi)(x̄), i ∈ A ∪B. (5.7)

Similarly, since −Hi(xk) ≤ 0 = −Hi(x̄), i ∈ B ∪D, using ∂u-asymptotic quasiconvexity of −Hi, i ∈ B ∪D
at x̄ and proceeding as earlier, we get

lim
k→∞

〈ξ∗ik, xk − x̄〉 ≤ 0 as ξ∗ik ∈ conv ∂u(−Hi)(x̄), i ∈ B ∪D. (5.8)

Since A+ ∪ D+ ∪ B+
G ∪ B

+
H ∪ B+ = ∅, multiplying (5.7) and (5.8) by λG

i , i ∈ A ∪ B and λH
i , i ∈ B ∪ D,

respectively and adding, we get

lim
k→∞

〈
l∑

i=1

λG
i γ
∗
ik, xk − x̄

〉
≤ 0 as λG

i = 0, i ∈ D (5.9)

and

lim
k→∞

〈
l∑

i=1

λH
i ξ
∗
ik, xk − x̄

〉
≤ 0 as λH

i = 0, i ∈ A. (5.10)

Adding (5.4), (5.5), (5.6), (5.9) and (5.10), we get

lim
k→∞

[
〈ξk, xk − x̄〉+

{〈 m∑
i=1

λg
i ζik, xk − x̄

〉
+

〈
p∑

i=1

λh
i ςik, xk − x̄

〉

+

〈
l∑

i=1

λG
i γ
∗
ik, xk − x̄

〉
+

〈
l∑

i=1

λH
i ξ
∗
ik, xk − x̄

〉}]
< 0,

which contradicts (5.2).
Hence x̄ is a global optimal solution of MPEC. �
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Now we give an example to illustrate the above theorem.

Example 5.2. Consider the problem

Minimize f(x, y) :=

{√
x+ y2, x ≥ 0, y ∈ R

x2, x < 0, y ∈ R

subject to g(x, y) := y2 + y ≤ 0,

G(x, y) :=

{
x2, x ≥ 0, y ∈ R
x, x < 0, y ∈ R

≥ 0,

H(x, y) :=

{√
x+ y2, x ≥ 0, y ∈ R
−
√
−x− y2, x < 0, y ∈ R

≥ 0,

G(x, y)tH(x, y) :=

{
x2(
√
x+ y2), x ≥ 0, y ∈ R

x(−
√
−x− y2), x < 0, y ∈ R

= 0,

where f, g,G,H : R× R→ R.
It can be seen that f is ∂u-asymptotic pseudoconvex at (0, 0) with respect to ∂uf(0, 0) := {(x∗ + 1

n , y
∗ +

1
n )|x∗ ≥ 0, y∗ ≤ 0, n ∈ N} ∪ {(x∗, y∗)|x∗ ≥ 0, y∗ ≤ 0}.
g, −G and −H are ∂u-asymptotic quasiconvex with respect to ∂ug(0, 0) := {(0, y∗ + 1

n )|y∗ ≥ 0, n ∈ N} ∪
{(0, y∗)|y∗ ≥ 0}, ∂u(−G)(0, 0) := {(−1 + 1

n , 0), ( 1
n , 0)|n ∈ N}∪{(−1, 0)} and ∂u(−H)(0, 0) := {(x∗+ 1

n , 0)|x∗ ≤
0, n ∈ N} ∪ {(x∗, 0)|x∗ ≤ 0}, respectively at (0, 0).
A+ ∪ D+ ∪ B+

G ∪ B
+
H ∪ B+ = ∅. Since ∂∗-strong stationarity condition holds at (0, 0), there exist scalars

λg = 1
2 , λ

G = 1
4 , λH = 1

4 , with λg + λG + λH = 1 such that

(0, 0) ∈ cl[conv ∂uf(0, 0) + {λgconv ∂ug(0, 0) + λGconv ∂u(−G)(0, 0)

+ λHconv ∂u(−H)(0, 0)}],
λgg(0, 0) = 0.

(0, 0) is an optimal solution of the problem.

6. Conclusions

In this paper, using tool of nonsmooth analysis, convexifactors, a nonsmooth version of the standard GCQ
and strong stationarity concept are introduced for MPEC. It is proved that strong stationarity is the first order
necessary optimality condition under nonsmooth version of standard GCQ. Finally, under the assumption of
asymptotic pseudoconvexity and asymptotic quasiconvexity on the functions, sufficient optimality conditions
are established for MPEC.

Acknowledgements. The author would like to thank Prof. C. S. Lalitha for her helpful suggestions while preparation of
this article. The author would also like to thank the two anonymous referees of this paper for their helpful comments.
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