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A COMPUTATIONALLY EFFICIENT ALGORITHM TO APPROXIMATE THE
PARETO FRONT OF MULTI-OBJECTIVE LINEAR FRACTIONAL

PROGRAMMING PROBLEM

Bogdana Stanojević1,∗ and Milan Stanojević2

Abstract. The main contribution of this paper is the procedure that constructs a good approxima-
tion to the non-dominated set of multiple objective linear fractional programming problem using the
solutions to certain linear optimization problems. In our approach we propose a way to generate a
discrete set of feasible solutions that are further used as starting points in any procedure for deriving
efficient solutions. The efficient solutions are mapped into non-dominated points that form a 0th order
approximation of the Pareto front. We report the computational results obtained by solving random
generated instances, and show that the approximations obtained by running our procedure are better
than those obtained by running other procedures suggested in the recent literature. We evaluated the
quality of each approximation using classic metrics.
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1. Introduction

In [14], Ruzika and Wiecek emphasized the need of finding an approximate efficient set or an approximate
non-dominated set to multiple objective problems, especially when an exact description is not available, or the
decision maker is not interested to obtain the complete solution set due to overflow of information. They also
presented a survey of the approximation methods in multiple objective programming, proposed a classification
scheme for reviewing and comparing diverse approaches, and included a discussion on the quality measures for
approximations. In 2011, Hartikainen et al. [8] developed a theoretical approach to constructing a Pareto front
approximation to computationally expensive multi-objective optimization problems based on the concept of
inherent non-dominance. They underlined the usefulness of a Pareto front approximation for decision making.

In 2014, Kirlik and Sayin [9] introduced an algorithm based on ε-constraint method for generating all non-
dominated solutions of multi-objective discrete optimization problems. They proposed a novel way of partition-
ing the search space in terms of rectangles. In 2013, Pereyra et al. [12] described an approach for constructing
an equispaced Pareto front for constrained bi-objective optimization. In 2012, Ehrgott et al. [6] presented a dual
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variant of Benson’s “outer approximation algorithm” for multiple objective linear programming, thus making
the multiple objective optimization problems and the approaches for estimating the non-dominated sets of such
problems actual again.

Shen et al. [15] emphasized that fractional programming is one of the most successful fields today in nonlinear
optimization problems. The multiple-objective linear fractional programming (MOLFP) was widely studied and
several surveys can be found in literature (see for instance [16]). Ruan and Gao [13] proposed a way to finding
global solutions to fractional programming problem with ratio of non-convex functions. Addressing the bi-criteria
linear fractional problem, Choo and Atkins [3] shown that the Pareto frontier of such problem is the image of
a finite number of connected line segments of efficient solutions. They proposed a simple algorithm using a
one-dimensional parametric linear programming techniques to evaluate the Pareto frontier.

Hamacher et al. [7] developed two box algorithms to compute a finite representative system for the non-
dominated set of a discrete bi-criterion optimization problem. They applied the ε-constraint method to finding
an approximation of a given accuracy to the optimization problem by inspecting the criterion space, and used
the cardinality, accuracy, representation error and cluster density to evaluate the quality of their approximation.

Caballero and Hernández [1] introduced a method to estimate the weakly efficient set for the multi-objective
linear fractional programming problem. Costa [4] proposed a technique to compute the maximum of a weighted
sum of the objective functions in MOLFP, and Costa and Alves [5] introduced a reference point technique to
compute non-dominated solutions to the same problem. Recently, in [17,18] two – apparently different – iterative
procedures for finding efficient solutions to the MOLFP were presented. The purpose of Section 4 is to show
that the two procedures are, in essence, the same; hence, similar results are to be expected no matter which of
them is invoked.

The work presented in [19] is a continuation of [18] by the same authors. They improved their previous
procedure by splitting the feasible set in convenient regions, and then generating a non-dominated point in
each of them. The set of regions is dynamically changed in accordance to the currently obtained non-dominated
point. The distance between each two generated non-dominated points is controlled to be greater than or equal
to a given threshold. Their algorithm has elements of an ε-constraints method, since they define their special
regions by adding constraints on the lower values of the objective functions. Three issues remained hidden in
their algorithm: the sequence of the regions to be analyzed, the selection of the starting point inside each region,
and the way to choose the weights in the objective function. Their method is able to control the cardinality of
the resulting approximation set through a given upper bound parameter. Stopping the algorithm by reaching
the upper bound on the number of efficient solutions generated might leave uncovered an important part of the
Pareto frontier, depending on the sequence rule for a region to be analyzed. In their numerical example, the
authors maximized the first objective function over the current region in order to obtain the starting point, and
this particular rule automatically reduced the general algorithm to an ε-constraints algorithm. Reporting the
results for a 3-objective linear fractional programming problem from the literature, we compare our approach
to the approach introduced in [19].

The above mentioned approaches that aimed to compute Pareto front approximations of 0th order, first
analyzed the criterion space, and then introduced some bounding constraints to the original feasible set according
to the values of one objective function (see again [3,4,7,12,19]). On the other side, our method from the beginning
inspects the feasible set, and then efficiently approaches the Pareto front.

Our solution approach is presented in Section 5 and constructs a 0th order approximation of the Pareto front
of multi-objective linear fractional programming problems. Our algorithm generates in a special way the feasible
solutions that are further used as starting points in any procedure for deriving efficient solutions, thus mapping
them into non-dominated points that form a good approximation of the Pareto front. We call our new approach
“the convex combination of efficient solutions” (CCES) due to the generation of new starting points from the
convex combinations of p (that is the number of the objective functions) efficient solutions already generated.

Our computational results are presented in Section 6. A statistic of the results obtained for random generated
instances of bi-objective problems, including the evaluations of the quality of the approximations based on the
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metrics (hyper-area difference, Pareto spread, accuracy, number of distinct choices, and cluster) introduced in
[20], is reported in Section 6.2. Section 7 concludes the paper with final remarks.

2. Problem’s formulation

The MOLFP problem is defined as follows:

“ max ”
x∈X

{
N1 (x)
D1 (x)

, . . . ,
Np (x)
Dp (x)

}
(2.1)

where

(i) X = {x ∈ Rn|Ax ≤ b, x ≥ 0} is a convex and bounded set,
(ii) A is an m× n constraint matrix. x is an n-dimensional vector of decision variables and b ∈ Rm,

(iii) Ni (x) = cTi x+ αi, Di (x) = dTi x+ βi,∀i = 1, . . . , p,
(iv) ci, di ∈ Rn, αi, βi ∈ R,∀i = 1, . . . , p,
(vi) dTi x+ βi > 0,∀i = 1, . . . , p, ∀x ∈ X,
(vii) p ≥ 2.

The notation zi (x) = Ni(x)
Di(x) , i = 1, . . . , p is also used through the paper. We follow [11] in assuming that

cTi x+ αi > 0, ∀i = 1, . . . , p, ∀x ∈ X.
The term “max” being used in problem (2.1) is for finding all efficient solutions in a maximization sense in

terms of the following definition.

Definition 2.1. A feasible solution x∗ ∈ X is said to be efficient solution to problem (2.1) if and only if there

is no x ∈ X such that Ni(x)
Di(x) ≥

Ni(x
∗)

Di(x∗) , for all i = 1, . . . , p, and
Ni0

(x)

Di0
(x) >

Ni0 (x∗)

Di0
(x∗) for at least an index i0.

The set of all efficient solutions is called efficient set.
The image of the efficient set through the objective functions is called non-dominated set. The non-dominated

set of the multiple objective optimization problem is called Pareto front.
The classic idea for solving the MOLFP problems is to weighting the objective functions and to solve a

parametric single-objective optimization problem

max
x∈X

p∑
i=1

wi
Ni (x)
Di (x)

, (2.2)

where wi ∈ R+, i = 1, p. This method can be used either in an a priori context, i.e. one efficient solution is
desired and wi, i = 1, p are chosen according to the relative importance of the criteria; or in an a posteriori
context, i.e. all extreme points that are efficient solutions to problem (2.1) are desired and they are obtained as
solutions to problem (2.2) for different values of the parameters wi. The objective function in (2.2) is not linear
fractional anymore, thus it is hard to solve problem (2.2) directly, even for fixed values of the parameters wi,
i = 1, p.

Several approaches for generating an efficient solution to the MOLFP problem can be found in literature.
Two of them, introduced in [17] (let us call it “deviational variables approach” (DVA)) and [18] (let us call it
“parametric approach” (PA)), are essential to our work. Both use a starting point that may be any feasible
solution, and improve iteratively the values of the objective functions at the current solutions until an efficient
solution is reached. We can use any of them as part of our new approach CCES. In Section 4 we will compare
them from the theoretical point of view, and show that they are extremely similar.

Practically any approach that generates an efficient solution can be involved in a wider approach for ap-
proximating the non-dominated set, but it is important to obtain an approximation of a good quality. A draft
overview of the metrics used for measuring the quality of the approximation of the non-dominated set is given
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Figure 1. Overview of the specified terminology for a bi-objective maximization problem.

in Section 3. Both papers [17, 18] suggested an approach for approximating the efficient set of the MOLFP
problems.

The approach mentioned in [17] – let us call it “the convex combination of the marginal solutions” (CCMS) –
promoted the idea of using the feasible solutions that are convex combination of marginal solutions as starting
points in DVA. The authors used the weights that represent the coefficients of the relative importance of the
objective functions as weights in constructing the convex combination.

The approach mentioned in [18] – let us call it “the random generation” (RG) – recommended to partition
the feasible set in a certain number of rectangles, and then, from each partition, to select randomly a starting
point for PA. Then, the generated efficient solutions form the approximation.

In our experiments with computational results reported in Section 5, we compare the approximation obtained
by running our new method CCES to the approximations obtained by running CCMS and RG.

3. Measures of approximation

In this section we briefly present the metrics introduced in [20] for measuring the quality of the approximation
of the non-dominated set of MOLFP problems. In [20] the metrics were described for a problem where all
objectives were minimized, and according to the so called “good point” and “bad point” that are estimations
of the ideal point and max point of the problem. We restrict our attention to the MOLFP problems where the
objectives have to be maximized. Also, we define all metrics according to the ideal point and nadir point. All
definitions in this section are adapted from [20].

Let us denote by Pgen the set of the generated non-dominated points.
The surface inferior to a given point is the hyper-rectangle defined by the given point and the nadir point of

the problem. The inferior set of a set of given points is the union of the inferior sets of the given points. Similar,
the dominant set of a given point is the hyper-rectangle defined by the given point and the ideal point; and the
dominant set of a set of given points is the union of the dominant sets of the given points.

For a graphical visualization of the specified terminology we refer the reader to Figure 1. In this figure the
set of the generated efficient solutions is Pgen = {M1,M2, A,B,C}, and the inferior and dominant sets of Pgen

are distinctly shaded.

3.1. The hyper-area difference

The hyper-area difference of Pgen (denoted by HD (Pgen)) is the difference between the Lebesgue measure of
the inferior set of the ideal point and the Lebesgue measure of the inferior set of Pgen. The Lebesgue measure
is an extension of the classical notions of length and area to more complicated sets. The Lebesgue measure of
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a p-dimensional hyper-rectangle is its p-volume. An approximation P 1
gen is considered better than another one

P 2
gen if and only if HD

(
P 1

gen

)
< HD

(
P 2

gen

)
.

3.2. The Pareto spread

The Pareto spread of an approximation refers to the ranges of the objective functions and ranges covered by
the solutions in the approximation. The Pareto spread is described by two metrics: the overall Pareto spread and
the Pareto spread with respect to each objective. The Pareto spread of Pgen with respect to the ith objective
function, i = 1, . . . , p, is defined as

OSi (Pgen) =
zimax − zimin

zimax − zimin

,

where
zimax = max {ei|e ∈ Pgen} , zimin = min {ei|e ∈ Pgen} ,
zimax = max {zi (x) |x ∈ X} , zimin = min {zi (x) |x ∈ X} .

The overall Pareto spread of Pgen is defined as

OS (Pgen) = OS1 (Pgen) · . . . ·OSp (Pgen) .

An approximation P 1
gen is considered better than another one P 2

gen if and only if OS
(
P 1

gen

)
> OS

(
P 2

gen

)
.

Similar, an approximation P 1
gen is considered better with respect to the ith objective than another one P 2

gen if
and only if OSi

(
P 1

gen

)
> OSi

(
P 2

gen

)
. For those approximations that contain the efficient marginal solutions, the

Pareto spread with respect to each objective is equal to 1, and consequently the overall Pareto spread is also
equal to 1.

3.3. The accuracy

For measuring the accuracy of an approximation Pgen the so called frontier approximation of Pgen (denoted
by AP (Pgen)) is involved. AP (Pgen) is defined as the Lebesgue measure of the region bounded by the inferior
and the dominant sets of Pgen. The entire Pareto front falls in the region described above, and the accuracy of
an approximation is defined as

AC (Pgen) =
1

AP (Pgen)
·

The approximation Pgen is as accurate as AP (Pgen) is closer to zero, and as AC (Pgen) is closer to infinity.

3.4. The number of distinct choices

The number of distinct choices provided by an approximation is related to a parameter ν used for establishing
whether two different non-dominated points are distinct or not from the point of view of the Decision Maker.
The parameter ν represents the number of distinct choices. Partitioning the criterion space by a grid of size ν,
a number of νp small hypercubes of dimension µ1 × µ2 × . . .× µp are obtained, where

µi =
zimax − zimin

ν
, i = 1, . . . p. (3.1)

Counting the hyper-rectangles of the grid that have non-empty intersection with Pgen, the number of distinct
choices NDCµ (Pgen) is obtained.

Comparing two approximations, the better is the one that has greater number of distinct choices.
The ratio between the cardinality of Pgen and the number of distinct choices defines another metric, the

cluster CLµ. Thus the cluster is defined as

CLµ (Pgen) =
|Pgen|

NDCµ (Pgen)
·

Comparing two approximations, the better is the one that is less clustered, i.e. it has smaller value for the
metric cluster.
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4. The comparison of DVA and PA

The aim of this section is to compare theoretically the approaches DVA and PA in order to involve the more
convenient one in procedures for generating approximations to the Pareto front of the BOLFP. The conclusions
will be drawn for the MOLFP problem (2.1).

4.1. The DVA procedure

The DVA (Procedure PsMOLF in [17]) uses as inputs an instance of problem (2.1), and an arbitrary feasible
starting point x1 ∈ X. It consists of the following steps:

Algorithm 4.1. The DVA procedure.
Step 1. Set x∗ = x1 and k = 1.
Step 2. Solve problem (4.1)

max
p∑
i=1

(
d−i + d+

i

)
s.t. cTi x+ αi − d+

i = niθi, i = 1, . . . , p,
dTi x+ βi + d−i = miθi, i = 1, . . . , p,
x ∈ X
d+
i , d

−
i , θi ≥ 0 i = 1, . . . , p,

(4.1)

where ni = cix
∗ + αi, mi = dix

∗ + βi, for each i = 1, p. Let
(
xk,
(
θki , d

k+
i , dk−i

)
i=1,p

)
be its optimal solution.

Set tk =
∑p
i=1

(
dk−i + dk+

i

)
.

Step 3. If tk = 0, then STOP, xk is an efficient solution to (2.1). Otherwise, set x∗ = xk, k = k+ 1 and go to
Step 2.

4.2. The PA procedure

The PA (Algorithm 4.1 in [18]) uses as inputs an instance of problem (2.1), an arbitrary feasible starting
point x0, a set of weights wi > 0, i = 1, p,

∑p
i=1 wi = 1, and an admissible tolerance ε > 0. It consists of the

following steps:

Algorithm 4.2. The PA procedure.
Step 1. Set λ0 =

(
zi
(
x0
))
i=1,p

, k = 0, Xk = X ∩
{
x ∈ Rn|zi (x) ≥ λki , i = 1, p

}
. Set w = 1

min{w1,...,wp} .

Step 2. Solve problem (4.2)

max
p∑
i=1

wi
(
Ni (x)− λkiDi (x)

)
s.t. x ∈ Xk

(4.2)

and denote by xk+1 and vk+1 the optimal solution and the optimal value, respectively. Then, set uk+1 = wvk+1.
Step 3. If uk+1 < ε, then go to Step 4; else k = k + 1, λk =

(
z1

(
xk
)
, . . . , zp

(
xk
))

, Xk = X ∩{
x ∈ Rn|zi (x) ≥ λki , i = 1, . . . , p

}
, and return to Step 2.

Step 4. If uk+1 = 0, then stop, xk+1 is an efficient solution to (2.1); else STOP, xk+1 is an ε-efficient solution
to (2.1) where ε = (ε, . . . , ε) ∈ Rp. Also, every x ∈ Xk is an ε-efficient solution to (2.1) which approximates an
efficient solution.
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4.3. The comparison

We may replace problem (4.1) by (4.3)

max
p∑
i=1

wi
(
µid
−
i + d+

i

)
s.t. cTi x+ αi − d+

i = niθi, i = 1, . . . , p,
dTi x+ βi + d−i = miθi, i = 1, . . . , p,
x ∈ X
d+
i , d

−
i , θi ≥ 0 i = 1, . . . , p,

(4.3)

in the DVA, with the same meaning for ni and mi. We may favor either the negative or positive deviational
variables to become faster or slower equal to 0, as the corresponding µi is less or greater than 1; and/or certain
objectives to reach higher values, as their weights wi are relatively greater or less. Using µi, i = 1, . . . , p,
a normalization of numerators and denominators before aggregation may be achieved, but not a complete
equivalence between linear fractional functions and the corresponding linear functions. Using wi, i = 1, . . . , p
a refined aggregation of the objectives may be achieved, but, unfortunately, in practice, when the objective
functions describe quantities that have incomparable units of measuring, the values of these weights are rather
irrelevant.

Choosing

µi =
Ni (x∗)
Di (x∗)

, i = 1, . . . , p,

and putting the deviational variables as subjects in their constraints, we obtain

d+
i = cTi x+ αi − niθi = Ni (x)−Ni (x∗) θi, i = 1, . . . , p,

d−i = miθi −
(
dTi x+ βi

)
= Di (x∗) θi −Di(x), i = 1, . . . , p,

and the following problem (4.4),

max
p∑
i=1

wi

(
Ni (x∗)
Di (x∗)

(Di (x∗) θi −Di (x)) +Ni (x)−Ni (x∗) θi

)
s.t. Ni (x)−Ni (x∗) θi ≥ 0, i = 1, . . . , p,

Di (x∗) θi −Di (x) ≥ 0, i = 1, . . . , p,
x ∈ X,
θi ≥ 0, i = 1, . . . , p,

(4.4)

that is equivalent to problem (4.3).
Further, problem (4.4) is equivalent to problem (4.5)

max
p∑
i=1

wi

(
Ni (x)− Ni (x∗)

Di (x∗)
Di (x)

)
s.t. Ni (x) ≥ Ni (x∗) θi, i = 1, . . . , p,

Di (x) ≤ Di (x∗) θi, i = 1, . . . , p,
θi ≥ 0, i = 1, . . . , p,
x ∈ X.

(4.5)

Noticing that the first three constraints together are equivalent to zi(x) ≥ zi (x∗), i = 1, . . . , p we derive the
equivalence of problems (4.2) and (4.3). Therefore, the optimization problems solved in each iteration of both
DVA and PA are slightly different due to the coefficients wi and µi, but in essence they are the same.



1236 B. STANOJEVIĆ AND M. STANOJEVIĆ

The problem solved in PA has m + p constraints and n variables while the DVA solves one with m + 2p
constraints and n + 3p variables. Both procedures PA and DVA have the same complexity with respect to m
and n. Note that p is generally a small number comparing to m and n.

The only nontrivial difference among PA and DVA is the use of the tolerance vector ε in PA. This tolerance
vector is in fact an implementation detail, that is useful to avoid the possible numerical instability arising in
some solvers, or to reduce the running time in the detriment of the approximation quality. The repeated process
of solving the mathematical model in each of the procedures PA and DVA theoretically can assure the efficiency
of the generated solutions, and no tolerance vector is needed to stop the algorithm. On the other side, replacing
the DVA’s stopping condition by tk < ε, the ε-efficiency of the current solution in DVA is assured as well.

See the discussion in Example 6.1, Section 6.1 for a numerical comparison of the approaches DVA and PA.

5. The CCES method

Our algorithm is a recursive procedure that generates p + pk−1
p−1 efficient solutions to problem (2.1), where

k represents the depth of the recursion. Let us denote by Egen the set of the generated efficient solutions that
approximates the efficient set.

Our approach is based on “divide et impera” principle. In the beginning we insert the efficient marginal
solutions Mi, i = 1, p in Egen. Then we use the centroid of the points M1,M2, . . . ,Mp as the starting point
in DVA, generate a new efficient solution e1, and insert it in Egen. In this way we split the initial problem of
finding p + pk−1

p−1 efficient solutions starting from Mi, i = 1, p in p sub-problems. The ith sub-problem consists

in generating pk−1−1
p−1 efficient points starting from M1, . . . ,Mi−1, e1,Mi+1, . . . ,Mp. Each such sub-problem will

consist in generating pk−1−1
p−1 efficient points, since

p+ pk−1
p−1 − p− 1

p
=

(
pk−1 + pk−2 + . . .+ 1− 1

)
p

= pk−2 + pk−3 + . . .+ 1 =
pk−1 − 1
p− 1

·

Further, we recursively break down each problem into p sub-problems of the same type, until k comes to 1,
and the corresponding sub-problems are simply solved by adding one more efficient solution to Egen. As in any
classic “divide et impera” based algorithm, the solutions to the sub-problems are combined to give the solution
to the original problem.

The formalized recursive procedure for generating the approximation of the efficient set is presented in
Algorithm 5.1. The input values of the function called recursion () are: k – the depth of the recursion, and
si, i ∈ {1, . . . , p} – the efficient solutions between which pk−1

p−1 new efficient solutions have to be generated.
The output L of the recursive function is the set of the generated efficient solutions. Inside the function, s0 is
the centroid of the set {M1,M2, . . . ,Mp}; e is the efficient solution generated by the DVA using the starting
point s0; and the list of points Li is obtained by solving the ith sub-problem. In the main program, the final
approximation Egen will be obtained as Egen = {M1,M2, . . . ,Mp} ∪ recursion (M1,M2, . . . ,Mp, k).

The steps of the recursive function for the CCES are given below.

Algorithm 5.1. L← recursion (s1 . . . , sp, k)

Step 1. s0 ←
1
p

p∑
i=1

si;

Step 2. Generate the efficient solution e← DVA (s0);
Step 3. If k == 1 then return {e}.
Step 4. For i = 1, . . . , p do: Li ← recursion (s1, . . . , si−1, e, si+1, . . . , sp, k − 1);

Step 5. Return

(
p⋃
i=1

Li

)
∪ {e}.
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Figure 2. A simple example showing graphically, in the solution space, how CCES works.

In what follows we explain how the procedure CCES works on a very simple example. Let us consider that
the efficient set of a bi-objective linear fractional programming problem is the line ABCD shown in Figure 2. If
the task is to find 5 efficient solutions, the procedure works as follows: the efficient marginal solutions – A and
D – are automatically included in the generated efficient set; next efficient solution that will be included in the
generated efficient set is E0, and it is obtained by applying the procedure DVA to the starting point x0 that
is the midpoint (centroid) of the line segment AD; further, in the same way as E0 was obtained from A and
D, the point E1 is obtained from A and E0 – it is generated by running DVA with the midpoint of [AE0] as
starting point. The point E2 is obtained by running DVA with the midpoint of [E0D] as starting point. Finally,
Egen = {A,E1, E0, E2, D}.

Remark 5.2. In the case of choosing starting points on line segments AE0 and E0D instead of choosing
them on the line segment AD, the total number of iterations in DVA decreases. The total number of iterations
decreases even more by considering the starting points on the line segments [AE1], [E1E0], [E0E2] and [E2D].
Therefore, from the point of view of the total number of iteration in DVA, the new proposed method is more
efficient than the method that uses the starting points that lie on the line segment formed by the marginal
solutions (as proposed in [17]).

In addition, the particular cases of the sub-problems of finding efficient solutions between A and E1, and
between E2 and D, are solved extremely fast since DVA has only to confirm, in one iteration, the efficiency of
the corresponding midpoints.

6. Numerical results

For our examples and also for our experiments on the random generated instances, we used ν = 20 in formula
(3.1) to compute the sizes of the hyper-rectangles that form the grid required in the definition of the number
of distinct choices. Experiments were performed on Intel® Core� i3 at 1.80 GHz and 8 GB RAM using Scilab
5.5.2.

6.1. Examples

The first example is recalled from [17], and is used to show graphically how the new approach CCES works;
to compare numerically the approaches DVA and PA; and to compare the approximations obtained by running
RG, CCMS, and CCES – all combined with the procedure DVA.

Example 6.1 (Example 4 in [17]). Let us consider the following instance of the bi-objective linear fractional
programming problem.
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Figure 3. The feasible set, the efficient set and the first two steps in running CCES for solving
problem (6.1).

“ max ”
(
z1 (x) =

x1 + 3x2 + 1
x1 + 5x2 + 5

, z2 (x) =
−21x1 − 19x2 + 219
−x1 − x2 + 11

)
s.t. x1 + x2 ≤ 10,

0 ≤ x1 ≤ 8,
0 ≤ x2 ≤ 7.

(6.1)

The feasible set of problem (6.1) – the pentagon OABCD – is shown in Figure 3. The marginal solutions are
A and C, and the efficient set is the line CFGA.

Figure 3 also shows the first two steps in running the procedure CCES for solving problem (6.1). For this
instance, the efficient set contains interior points of the feasible set that are all together mapped in a single
non-dominated point in the criterion space, thus making the example more complex than that one discussed in
the end of Section 5. First, the efficient marginal solutions A and C are added to Egen. The feasible solution x0
is the midpoint of [AC] and it generates the efficient solution E0. The midpoint of CE0 is x1 and it generates
E1. The midpoint of AE0 is E2 that is an efficient solution. Thus, Egen = {C,E1, E0, E2, A} is obtained by
calling recursion (C,A, {C,A} , 2).

Both DVA and PA behaved in the same way when were used for solving problem (6.1). About 300 distinct
starting points were generated by running CCES, CCMS, and RG. Both DVA and PA generated the same
efficient solution each time when they started from the same point. The weights w were all set to 1 in PA.

Running the three procedures RG, CCMS, and CCES we obtained the results reported in Table 1. These
results show that CCES outperforms CCMS regarding hyper-area difference, accuracy and number of iterations;
and they have the same values for the rest of the metrics. Both CCES and CCMS outperform RG regarding all
metrics except the cluster.

For the rest of our experiments we used the DVA for generating efficient solutions.

Example 6.2 (Problem DEB in [12]). Let us consider the following instance of the bi-objective linear fractional
programming problem.
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Table 1. The values of the metrics that evaluate of quality of the approximations obtained by
the three methods when solving problem (6.1).

RG CCMS CCES

|Pgen|↑ 60 129 129
#it ↓ 315 256 134
HD↓ 0.493526 0.475419 0.475051
OS↑ 0.836359 1 1
OS1↑ 0.909419 1 1
OS2↑ 0.919664 1 1
AC↑ 25.46681 189.4665 212.84288
NDC↑ 23 36 39
CL↓ 2.60869 3.58333 3.30769

“ min ”
(
z1 (x) = x1, z2 (x) = x2+1

x1

)
s.t. 9x1 + x2 ≥ 16

9x1 − x2 ≥ 1
0.1 ≤ x1 ≤ 1
0 ≤ x2 ≤ 5

(6.2)

Running the three procedures RG, CCMS, and CCES for solving problem (6.2) we obtained the approxi-
mations of the Pareto front shown in Figure 4. We refer the reader to this graphical representation to let him
observe the performance of CCES comparing to RG and CCMS, but also to conclude about the accuracy of the
approximation, since the exact representation of the Pareto front can be found in the literature ([12], Fig. 1).

Example 6.3. The subject of this example is one instance of the bi-objective linear fractional programming
with n = 10. We used RG, CCMS and CCES combined with DVA to solve the instance, and compared their
performance.

In Table 2, we report the values of the metrics obtained by running RG, CCMS, and CCES with 129 and
4097 distinct starting points. RG had a bad performance comparing to both CCMS and CCES, from the point
of view of all metrics. The presence of the marginal solutions in the generated efficient set makes the values of
the Pareto spread and Pareto spread with respect to each objective to be greater for CCMS and CCES than for
RG. The values of the hyper-area difference are similar for CCMS and CCES. The main advantages of CCES
over CCMS are related to the accuracy, number of distinct choices, and cluster.

The graphical representations of the non-dominated points generated by RG, CCMS, and CCES are shown
in Figure 5. The approximation obtained by running CCES is more accurate and less clustered, comparing to
those obtained by running CCMS and RG.

Comparing the results obtained with 4097 starting points to the results obtained with only 129 starting points
one can see that there is no improvement considering the number of distinct choices for CCMS, and a very small
improvement (7.89%) for CCES, when the number of starting points increased approximately 32 times. This is
not the case for RG, where the number of distinct choices increased with 75%; but the reached value is still not
significant, comparing to CCMS and CCES. The accuracy increased very little (less than 2.5 times) for RG and
CCMS, and a lot (32.13 times) for CCES. The total number of iterations is also significantly smaller for CCES
comparing to CCMS and RG.

Example 6.4. problem (6.3), was introduced in [10] in order to describe some difficulties that might appear
when solving MOLFP problems. The example was recalled in [19] and used to illustrate the performance of the
algorithm presented there.



1240 B. STANOJEVIĆ AND M. STANOJEVIĆ

Figure 4. Graphical comparison of the three methods when using 129 starting points for
solving problem (6.2).

Table 2. Computational results for Example 6.3 – the values of the metrics related to the
approximations shown in Figure 5.

129 starting points 4097 starting points

RG CCMS CCES RG CCMS CCES

|Pgen| ↑ 120 125 129 1435 3076 4097
#it ↓ 434 360 190 13986 11484 4253
Time (s) 0.281 0.223 0.089 10.108 7.058 3.478
HD ↓ 209.71998 207.24428 206.098 208.16195 207.19808 205.90125
OS ↑ 0.0080573 1 1 0.0850226 1 1
OS1 ↑ 0.1722160 1 1 0.3233986 1 1
OS2 ↑ 0.0467863 1 1 0.2629035 1 1
AC ↑ 0.0600281 0.2532716 2.3881194 0.1458783 0.2608864 76.460119
NDC ↑ 4 20 38 7 20 41
CL ↓ 30 6.25 3.3947 205 153.8 99.926829

“ max ”
(
z1 (x) = −x1 + x2, z2 (x) =

x1 − 4
−x2 + 3

, z3 (x) =
−x1 + 4
x2 + 1

)
s.t. −x1 + 4x2 ≤ 0

x1 − 0.5x2 ≤ 4
x1, x2 ≥ 0

(6.3)
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Figure 5. Graphical comparison of the three methods for solving the problem considered in
Example 6.3. Symbols # and + are used for representing the points generated from 129 and
4097 starting points respectively.

Table 3. Information regarding the CCES when solving problem (6.3).

Algorithm [19] CCES

No. of solved LPs 58 49
No. generated points 15 42

This problem is degenerated in sense of the number of distinct efficient marginal solutions, since the first
and third objectives reach their optimal values at the same feasible solution. Due to this particularity, CCES
does not behave well, i.e. it can determine only two starting points instead of three. In order to overcome this
situation, we randomly generated a feasible solution and used it as the third starting point, instead of the
missing marginal solution. See Table 3 to compare our results to the results reported in [19].

Figure 6 presents the resulting approximations of the non-dominated set of problem (6.3) obtained by running
our algorithm, and the algorithm presented in [19]. Our procedure had to solve only 49 linear problems, and
generated 42 non-dominated points, comparing to 58 linear problems and 15 generated non-dominated points
reported in [19]. In our opinion, visually, the spread of the generated non-dominated points over the non-
dominated set are very good for both algorithms.

Example 6.5. This example was introduced in [2] in order to analyze the connectedness of the efficient solutions
for MOLFP problems.
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Figure 6. Graphical comparison of the resulting approximations of the non-dominated set
problem (6.3) generated by the CCES and the algorithm presented in [19].

Figure 7. Two approximations of the non-dominated set of problem (6.4) containing 360 and
1000 non-dominated points respectively.

“ max ”
(
z1 (x) =

x1

x2
, z2 (x) = x3, z3 (x) =

−x1 − x3

x2

)
s.t.

0 ≤ x1, x2, x3 ≤ 4

(6.4)

Using our procedure to solving problem (6.4), we obtained the results shown in Figure 7. On the left side
360 non-dominated points (obtained in 0.13 s) are presented, and on the right side 1000 (obtained in 0.28 s).
Presenting Figure 7 we aim to give a clue about how the approximation of the non-dominated set varies with
respect to the depth of the recursion.

6.2. Experiments on random generated instances

The experiments presented in this section were performed on three groups of random generated bi-objective
instances with n = 10, n = 20, and n = 50, respectively, where n is the number of the decision variables.
For each group (i.e. for each value of n), 10 random instances were generated in the same way as in [17]: for
each instance, the feasible set was defined by the box constraints 0 ≤ xi ≤ 10, i = 1, . . . , n, and 10 additional
constraints. Each additional constraint was defined as the hyperplane that passes through n randomly chosen
points that fulfill all previously defined constraints. The coefficients ci and di, i = 1, 2 were randomly generated
from [−4, 3]n and the values αi (βi), i = 1, 2 were randomly generated from an interval of length 3 with the left
bound greater than the modulus of the minimal value of the corresponding nominator (denominator) over the
feasible set, in order to make the objective functions strictly positive over the feasible set.
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Table 4. The statistical results for 3 groups of 10 random generated instances each, with
n = 10, n = 20, and n = 50 respectively.

n = 10 n = 20 n = 50

RG CCMS CCES RG CCMS CCES RG CCMS CCES

|Pgen| ↑ 114 125.4 129 124.3 128.9 129 127.8 128.4 129
#it ↓ 396.2 317.1 168.2 433.5 332.5 193.1 502.7 387.5 235.3
Time (s) 0.299 0.199 0.188 0.478 0.245 0.193 2.018 1.482 0.7923
HD ↓ 354.7 346.1 343.9 6029.8 6217.1 6209.4 50417.4 49449.4 49441.1
OS ↑ 0.109 1 1 0.016 1 1 0.0001467 1 1
OS1 ↑ 0.246 1 1 0.169 1 1 0.0090807 1 1
OS2 ↑ 0.325 1 1 0.132 1 1 0.0159513 1 1
AC ↑ 0.051 0.281 1.427 0.005 0.124 0.413 0.0012530 0.046 0.132
NDC ↑ 6.449 25.2 35.9 4.069 23 34.1 1.2374603 24.9 30.6
CL ↓ 30.674 5.405 3.642 40.946 5.796 3.852 112.44508 5.322 4.261

Table 4 reports the averages of the values of the metrics that describe the approximations obtained by running
RG, CCMS, and CCES on random generated instances, for each group separately. As seen in this table, CCES
outperforms both RG and CCMS regarding all metrics, except the hyper-area difference for n = 20 (where RG
is better than both CCMS and CCES). The overall Pareto spread and the Pareto spread with respect to both
objectives are the same for CCES and CCMS due to the inclusion of the efficient marginal solutions in both
generated non-dominated sets. For the rest of the metrics, all values are significantly better for CCES comparing
to CCMS.

7. Final remarks

In this paper we introduced a new approach – CCES – for constructing a 0th order approximation of the non-
dominated set for the MOLFP problems. We combined a special way of generating relevant feasible solutions
with a procedure for mapping them into non-dominated points. We showed that the obtained non-dominated
points form a good approximation for the Pareto front of the problem, much better than other approximations
obtained by applying the approaches suggested in the literature. We used classic metrics for evaluating the
quality of the approximations.

In the recent literature we found two different procedures for deriving efficient solutions from given feasible
solutions, DVA and PA. In order to decide which of them to use in CCES for mapping a feasible solution to a
non-dominated point, we compared them theoretically in the third section of the paper, and found them much
the same. We picked the older one, DVA, and used it in our experiments.

In the paper we reported the computational results obtained by solving both simple instances (with two-
three decision variables and two-three objective functions) from the literature – to compare our results to known
results, – and random generated instances – to give statistical significance to our conjectural conclusions. We
analyzed generated random instances with 10, 20 and 50 decision variables and two objective functions. The new
proposed procedure CCES outperformed CCMS and RG when these big size instances were solved. For small
size instances, CCES and CCMS were much the same regarding some metrics, but CCES was better regarding
the other over viewed metrics.

We also compared our results to the results presented in the most recent reference found in the literature
[19]. Our algorithm outperformed the algorithm introduced in [19] on a 3-objective optimization problem in
terms of number of generated points, running time, and number of linear problems solved.

The well-known approaches found in the literature – that aimed to compute Pareto front approximations
of 0th order for multi-objective optimization problems – analyzed the criterion space, and then introduced
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some bounding constraints to the original feasible set according to the values of one objective function (see
[3, 4, 7, 12, 19]). On the other side, the method proposed in this paper inspected the feasible set and then
efficiently approached the Pareto front.

Acknowledgements. This research was partially supported by the Ministry of Education and Science, Republic of Serbia,
Project numbers TR36006 and TR32013.
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[17] B. Stanojević and M. Stanojević, On the efficiency test in multi-objective linear fractional programming problems by Lotfi et
al. 2010. Appl. Math. Model. 37 (2013) 7086–7093.

[18] E. Valipour, M.A. Yaghoobi and M. Mashinchi, An iterative approach to solve multiobjective linear fractional programming
problems. Appl. Math. Model. 38 (2014) 38–49.

[19] E. Valipour, M.A. Yaghoobi and M. Mashinchi, An approximation to the nondominated set of a multiobjective linear fractional
programming problem. Optimization 65 (2016) 1539–1552.

[20] J. Wu and S. Azarm, Metrics for quality assessment of a multiobjective design optimization solution set. J. Mech. Des. 123
(2001) 18–25.


	Introduction
	Problem's formulation
	Measures of approximation 
	The hyper-area difference
	The Pareto spread
	The accuracy
	The number of distinct choices

	The comparison of DVA and PA
	The DVA procedure
	The PA procedure
	The comparison

	The CCES method
	Numerical results
	Examples
	Experiments on random generated instances

	Final remarks
	References

