RATIRO-Oper. Res. 53 (2019) 487-504 RAIRO Operations Research
https://doi.org/10.1051/ro/2018082 WWW.rairo-ro.org

AN EFFICIENT SIMPLIFICATION METHOD FOR POINT CLOUD BASED ON
SALIENT REGIONS DETECTION

ABDUL RAHMAN EL SAYED!, ABDALLAH EL CHAKIK**, HASSAN ALABBOUD® AND
ADNAN YASSINE!*

Abstract. Many computer vision approaches for point clouds processing consider 3D simplification as
an important preprocessing phase. On the other hand, the big amount of point cloud data that describe
a 3D object require excessively a large storage and long processing time. In this paper, we present an
efficient simplification method for 3D point clouds using weighted graphs representation that optimizes
the point clouds and maintain the characteristics of the initial data. This method detects the features
regions that describe the geometry of the surface. These features regions are detected using the saliency
degree of vertices. Then, we define features points in each feature region and remove redundant vertices.
Finally, we will show the robustness of our method via different experimental results. Moreover, we will
study the stability of our method according to noise.

Mathematics Subject Classification. 46N10, 62H35, 65D18.

Received October 23, 2017. Accepted September 19, 2018.

1. INTRODUCTION

3D content has an important role in many domains such as computer vision, architectural and industrial
design, scientific visualization, animation films, and medical imaging. However, the performance of 3D scanning
devices [14] has been enhanced year by year and modern scanners generate complicated and dense sampled point
clouds with considerable redundancy. These point clouds are then converted into continuous surface represen-
tation such as polygonal meshes for further processing using reconstruction algorithms. Thus, the redundancy
of point clouds must be removed to minimize the complexity of reconstruction algorithms. Point clouds sim-
plification is considered as the process of eliminating duplicated and redundant points that does not affect the
characteristics of the initial form [12]. Point clouds simplification algorithms can be classified into clustering,
coarse-to-fine, and iterative methods.

The first category (clustering methods) covers algorithms that aim to subdivide the input point clouds
into several surface patches (group of points), based on a certain criterion, then replace every patch by its
representative point (the centroid for example). In this context, Pauly et al. [23] proposed two different strategies,
inspired by the methods of mesh simplification [4,27], for the construction of patches. The first is incremental

Keywords. 3D point clouds simplification, 3D point clouds segmentation, 3D object processing, points clouds, saliency.

Normandie Univ., UNIHAVRE, LMAH, FR CNRS 3335, ISCN, 76600 Le Havre, France.
Beirut Arab university, Tripoli, Lebanon.
Business and Administration Faculty, Lebanese university, Tripoli, Lebanon.

Normandie Université, UNIHAVRE, ISEL, 76600 Le Havre, France.
*Corresponding author: a.alshakik@bau.edu.lb

1
2
3
4

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAI 2019

https://doi.org/10.1051/ro/2018082
https://www.rairo-ro.org
mailto:a.alshakik@bau.edu.lb
http://www.edpsciences.org

488 A.R. EL SAYED ET AL.

and uses an algorithm of regions growth. The second is hierarchical, and bases itself on a binary partition of
the space. The number, as well as the size of patches, are controlled by means of the curvature. The authors
mention that the methods of clustering are fast and effective regarding the resource memory, but leads to point
clouds with significant quadratic error.

Coarse-to-fine approaches extract randomly a set of points from the original point cloud then define implicitly a
distance function using a 3D Voronoi diagram. This distance function is then used to refine the point cloud [20].

Iterative methods correspond to algorithms whose objective is to iteratively reduce the number of points of
the original point clouds by using a decimation operator as the one proposed in [31]. In these methods, each
point of the input cloud is assigned by a weight quantifying its importance among its direct neighbors. Then,
points with the lowest weights are removed, and the list of neighbors of the remaining points and their respective
weights are updated. This last step is repeated until the number of points set by the user is reached.

In this paper, we propose to divide point cloud into patches and compute a saliency map in order to cluster
the point cloud into set of feature regions. Then the non-features points are removed to refine the point cloud.

1.1. State-of-the-art

In this subsection, we discuss some available approaches for 3D point cloud and mesh simplification by
mention their defects.

Lee et al. [11] introduced a simplification method based on the geometry information and points normal using
3D grids. Pauly et al. [23] presented and studied different approaches for surface simplification of 3D objects
from unstructured point clouds. In [19,20], Moaning and Dodgson used the idea of progressive intrinsic farthest
point sampling of a surface in point clouds. They presented a uniform simplification coarse-to-fine algorithm
with user-controlled density.

In order to compute the weight of 3D models features, Lee et al. [13] suggested a novel simplification method
by adopting the Discrete Shape Operator. Based on features extraction, Peng et al. [24] proposed a new sim-
plification algorithm for unstructured point clouds described by its unit normal vectors.

In [30], Song et al. proposed a global clustering simplification method for point cloud. It consists of finding a
subset of the original input data set according to a specified data reduction ratio. Then, they obtained a global
optimal result by minimizing the geometric deviation between the input point sets and the simplified ones. The
drawbacks of this method is the time complexity and the approximated point-to-surface distances may give
non-accurate values.

In [18], Miao et al. proposed a curvature-aware adaptive re-sampling method to simplify point clouds based
on an adaptive mean-shift clustering pattern. The usage of adaptive mean-shift clustering is to generate a
simplification non-uniformly distributed result. However, it is difficult to incorporate the simplified geometric
error in their approach and the simplification rate is low.

Finally, in [28], Shi et al. presented a new method for simplification “cluster subdivision” based on k-means
clustering approach according to two factors: user-defined space interval and normal vector tolerance. Thus,
this method is very sensitive to user-defined parameters

1.2. Contributions

In this method, the point cloud is represented by a weighted graph, and the saliency degree of vertices is
calculated. Then, the graph is segmented into feature regions that maintain the characteristics of the surface
shape where each region is a set of similar vertices in term of saliency degree. Secondly, we define the set of
interest points located on the boundary of each region by detecting collinear points. Moreover, we define the set
of interest point located into region according to a saliency threshold value. Finally, we maintain the interest
points and remove non-featured points. Our method is illustrated in the flowchart (Fig. 1).

1.3. Paper organization

The remainder of this paper is organized as follows. Section 2 presents the 3D point clouds surface modeling,
Section 3 details the approach used in our proposed method to compute Saliency. Section 4 presents the Feature

AN EFFICIENT SIMPLIFICATION METHOD FOR POINT CLOUD BASED ON SALIENT REGIONS DETECTION 489

For each vertex
¢ Defining neighborhood function
e Estimating normal
e Computing the visual saliency

Step 1

Segmenting the graph into feature regions according to
saliency degree of vertices

!

Computing the concave hull of each feature region

v

Define the interest points located on the concave hull of each
region:
e Detect the collinear vertices from the concave hull
vertices
e In each collinear vertices set, maintain the extremities
and remove the others

v

Remove the interior vertices of convex hull of small degree of
saliency.

Step 2

Simplified
point clouds

FIGURE 1. Flowchart of our method.

regions detection and Feature points detection process. Section 5 shows some experimental results. Section 6
presents an evaluation of our method. Finally, Section 7 concludes this paper.

2. SURFACE MODELING

An undirected weighted graph G = (V, E, W) consists of a finite set of vertices V, a finite set of edges
E C V xV, and an edge weight function W : V x V' — [0, 1] that represents the similarity measure between
two adjacent vertices. Let (v;,v;) be the edge that connects two vertices v; and v;. Let us consider the general
situation where a point cloud can be viewed as a weighted graph G = (V, E,W). A vertex v; is represented by
its 3D coordinates v; = (x4, v:,2;)T, its normal vector N(v;), and the directional vectors z(v;) and y(v;) that
correspond to the 2D tangent plan estimated at vertex v; on the point clouds. Each edge E has a weight w
associated to compute saliency.

490 A.R. EL SAYED ET AL.

© Target vertex

@ Vertex belongs
to the neighbors
) Vertex not
belonging to the
neighbors

F1GURE 2. Illustration of a vertex neighboring.

2.1. Vertex neighbors

Based on the Delaunay triangulation approach of a given input point cloud P, we define the set of neighbors
D, (v;) for each vertex v; by considering the set vertices located on the borders of circumscribed spheres as
shown in Figure 2. In other word, D,,(v;) is defined as the corners (vertices) of triangles sharing v; as shown in
the following figure.

2.2. Normal estimation

To compute the normal N (v;) of a vertex v; and the 2-directional vectors following the z- and y-axes, we use
the Eigen-values of the covariance matrix C(v;) as proposed by [5]. To do so, we compute the gravity center
and the associated covariance matrix at a vertex v;.

e The gravity center is defined as:
1
5. — - - 2.1
v Card(D,(v;))) . Z b (2.1)
JEDn(U'i)

e Then, the covariance matrix is defined as:

Clo)= > (vj—)(v; — ;)" € R, (2.2)

jeDn (U'L)
Moreover, c¢g(v;) and ¢;(v;) that estimate receptively the minor and major principal direction are computed

using the covariance matrix.

3. SALIENCY DETECTION

In this section, we present our proposed method to compute the saliency degree of a given 3D point cloud
vertices. Firstly, we start by introducing the local patch descriptor for each vertex, then we define vertices
deviation factors to calculate the saliency degree of these vertices.

3.1. Local patch construction

To define a patch for a given vertex v;, we construct a square grid centered at v; according to its tangent
plane as shown in Figure 3. The patch length L (v;) is then defined as [16]:

L) = max (Il ~wil), (3.1)

AN EFFICIENT SIMPLIFICATION METHOD FOR POINT CLOUD BASED ON SALIENT REGIONS DETECTION 491

Legend

@ TargetvertexV

Vertex belongs to the
neighbors

Projection of the
" neighbor’s vertices

Projection height

Square lattice cantered at
V according to its tangent
plan.

2D plan defined by the associated
vectors (x and y)

F1cure 3. Tllustration of the patch construction and vertices projection. co(v) and ¢;(v) are
the principal directions at v. L is the patch length.

where ||.||3 represents the Euclidean norm.

Then, a square lattice of n? cells is constructed with respect to the basis obtained from co(v;) and ¢ (v;).
The side length of each cell in the lattice is then L (v;) /n. Finally, all vertices v; € D,, (v;) are projected on
the tangent plane of v; producing the set of projected vertices v;-. Each cell of the patch is then filled with the
average values of deviation factor of each vertex v; according to v; where is projected in the same cell.

3.2. Deviation factor

In order to measure the deviation factor between two vertices v; and v;, we compute the angle between their
normal vectors shown in Figure 4 as following;:

[N (vi) - N (v)) |3
\/(22:1 N (i) (k) N(v3) (k) % 323,21 N (v) (m) % N (v5) (m)

where v; and v; are two vertices. Then, we define the deviation factor between two vertices using the following
equation:

(3.2)

X(v; ;)= arcos

x (v, ;)

560 > A (3.3)

DF(’UZ‘, Uj) =

The deviation factor measures the percentage of deviation between two vertices where the maximal deviation

is 360°. The constant A can be considered hundred in order to bound the value of DF to this value. Note that if

the value of the deviation factor between two vertices is almost zero, these two vertices are considered located
in the same plane.

492 A.R. EL SAYED ET AL.

| ——— normal plane

A
<
curvedlime | V‘q

on the curved surfaces \

principal direction

7

FIGURE 4. Vertices normal vectors.

3.3. Saliency computation

To compute the saliency at a vertex v;, we measure the similarity between its local patch P(v;) and the patches
associated to its neighbors. To do so, the saliency at a vertex v; is calculated according to its patch saliency.
The weight function w that represents a similarity measure between a vertex and its neighbors is defined as:
_ K (w)*1Ay) = A(vy)]

w(vi’ 'Uj) —e o (v) (vg,05) , (3.4)
where k(v;) represents the mean curvature [9] at v;, A(v;) is the average of the local patch descriptor cells
elements of v;, and o (v;) is the scale parameter and can be calculated as:

o) = max (|lvg —vill2). (3.5)

v €Dy (vy)
The saliency degree of a given vertex is calculated according to its patch. Therefore, we propose to compute

the patch saliency in term of the entropy of vertices and their neighbors. To do so, we define the probability
P.(v;) as:

P, (vi) = C/|VI, (3.6)

where C¢ represent the number of P(v;) vertices having a deviation factor with v; greater than z (x is a constant
related to applications) and |V| is the number of all P(v;) vertices as shown in Figure 5.
Then, the entropy that measures the dissimilarity of P(v;) is computed as following;:

entropy (u1) = — Py (vs) % logy Py(v;). (3.7)
The saliency of P(v;) is calculated as following:

>_jev) |(entropy(v;) — entropy(v;))| x L(v;)

Patch_Saliency(v;) = Patches|

, (3.8)

where |Paches| is the number of patches of v; neighbors, and L(v;) is the Euclidian distance between the vertex
v; and its 2D projection on the tangent plane at vertex v;.
Finally, the visual saliency SL at a vertex v; is defined as following:
>_jejv| Patch Saliency (v;) X wv;, vj)

SL(v;) = 7] : (3.9)

AN EFFICIENT SIMPLIFICATION METHOD FOR POINT CLOUD BASED ON SALIENT REGIONS DETECTION 493

Patch of Vj

Patch of Vj
Patch of Vi -
// A S
’ b ~
/ . ~ . .
. ~ Vertices belonging to
/ N

/ ' BN - ' Patch of Vi
.=
! . . Vi \“ Vertices belonging to
1
1
|

Vertices belonging to
Patches of Vi and Vj

-
-
. P AR

FIGURE 6. Panel a: the original 3D point clouds king_head. Panel b: displays its saliency using
our method. The red areas on the 3D point clouds object represent the most salient regions
and the blue areas are vertices of low saliency.

The saliency degree is bounded between [0, 1] where the degree 1 means that v; is very similar to its
neighborhood and 0 means the opposite (Fig. 6).
4. FEATURE REGIONS DETECTION
In this section, we present a method to detect feature regions followed by detecting feature points on a 3D

point cloud using the saliency degree of vertices.

4.1. Segmentation

In order to detect the feature regions we firstly segment the 3D point cloud according to saliency degree of
vertices using custom version of connected component labeling algorithm (Algorithm 1). Then, we define the

494 A.R. EL SAYED ET AL.

@ Target vertex

° @ Vertex similar to
target vertex

@ Vertex not similar
to target vertex a
and will belong to
other region

Vertices set sharing the same
label 1 and will form a feature
region

FIGURE 7. Feature regions: panel a: illustrates the step of our algorithm; panel b: the result of
segmentation process.

set of interest points I, in each segmented region that will represent finally the set of points to conserve in the
simplified data.

Before describing the process of segmentation, let us define some functions, which will be used in our algo-
rithm.

To measure the homogeneity of two vertices v; and v; according to their saliency degree, we define a saliency
similarity function as following:

oy _ J1if [SL(v) —SL(v;)| <o
F (vi,v5) = {0 otherwise ’ (4.1)

where SL (v;) is the saliency degree of vertex v; and o is a parameter defining the point clouds density.
Let C (v;) be the set of vertices belonging to D,,(v;) and similar to v; in term of saliency.

C (v;) = {vj € Dy, (v;) suchasF(v;,v;) = 1}. (4.2)

AN EFFICIENT SIMPLIFICATION METHOD FOR POINT CLOUD BASED ON SALIENT REGIONS DETECTION 495

Algorithm 1 describes the regions segmentation process of 3D point cloud. The algorithm steps and result
illustrated in Figure 7.

Algorithm 1. This algorithm assigns to similar (in term of saliency) connected vertices the same label.

Algorithm ConnectedVerticesLabeling
Procedure Propagation
Input

Vertex: start

Integer: Current Label

Output:
Connected vertices have the same Label L

Let ‘[L1]’ an empty list of vertices
Let ‘[L2]’ an empty list of vertices

If (not Selected (start)) then
Add start to ‘[L1]’
End if

while (true)
Begin
If (‘[L1]’ is @) then
Quit Procedure
End if
For each (Vertex V;in ‘[L1]’)
Begin

Set V;as Selected
Assign Current Label to V;

For each (Vertex 17 in N(D;))

Begin
If (not Selected (lq)) then
1f (F (v, Vj) = 1) then
Add V; to ‘[L2]'
Remove duplicate (‘[L2]’)
End if
End if
End for
End for
Clear (‘[L1l]")
Replace ‘[L1]’ by ‘[L2]’
Clear (‘[L2]7)
End While

End Procedure
Let ‘[L3]’ a list of vertices // Vertices represented the point cloud
For each (Vertex V;in ‘[L3]')
Begin

Propagation (v;,k)

k=k+1
End for
End algorithm

496 A.R. EL SAYED ET AL.

-
':‘ * 2%
_) Feature point on
. [[] [] 9 L
e .. ° LI boundary
|. ...) - @ Interior feature
[] ® 0) -) ® point
® o o ° L @ Pointcan be
@ ® 0 dropped
| L

Convex Hull Concave Hull

FIGure 9. Illustration of feature region boundary [8]. The concave hull (panel b) of region
vertices forms the boundary of feature region.

4.2. Interest points detection

In this subsection, we describe the process of defining the set of interest points in each feature region. Note
that an interest point can be located inside a feature region or on its boundaries as shown in Figure 8.

The boundary point set of a feature region is defined as its Concave Hull presented in Figure 9.

The set of interest points are defined amongst the set of boundary points as the extremities of collinear points
sets. Figure 10 illustrates the detection of boundary feature points.

The set of collinear points is defined in the form of triplet points. Therefore P;(z1,y1, 21), Pa(22, y2, 22), and
Ps(x3,ys, 23) are collinear if, the area A of the triangle composed by P;, P> and Ps equals to zero. Let a, b and
¢ be the sides of this triangle and defined as:

a=/(22— 1)+ (y2 — y1)% + (22 — 21)?
b= /(w3 —x1)2+ (ys — y1)% + (23 — 21)?
c= /(x5 —22)2 + (y3 — y2)2 + (23 — 22)%. (4.3)

The area of the triangle s is calculated using Heron’s formula:

A=/s(s—a)(s—b)(s—c), (4.4)

where s represents the half of triangle perimeter.
The set of interior points in each feature region are weighted by their saliency degree. Thus, we can classify
these points as High salient or Low salient points. This classification is made according to a local mean saliency

AN EFFICIENT SIMPLIFICATION METHOD FOR POINT CLOUD BASED ON SALIENT REGIONS DETECTION 497

Collinear points — 3D

L]

P(x3.y3.23)

\',-..-..--.-.-.

""" *»y Point 1 and Point 3 are
feature points

Point 1: (x1,¥1,7;)
Point 2: (x,,¥,,2,)
Point 3: (x3,¥3,23)

@ Boundary point

Feature region
Interior point

Boundary collinear
point

@ Point to be dropped

F1GURE 10. Boundary feature points. The extremities of each set of boundary collinear points
(Green vertices) are the interest points.

measure (LMS) and a global mean saliency measure (GMS) as following:

Zvi er SL(U’L)

LMS (r) =] , (4.5)
SL (O
GMS = M, (4.6)
G|
where r represents the set of points in each feature region,and |G| the number of graph vertices.

To check whether a point is an interest point, we define the function ITP(v;,r) as:

. B < _ B '
TP (v;, 7) = 1if (GMS —) < SL (v;) or (LMS(r) —) < SL(v;) . (4.7)

0 otherwise

where is a threshold parameter.

Finally, the resulting simplified 3D point cloud is composed by all feature points classified as high saliency
point. In some cases where the set of interior points is classified as low saliency points, the fact that produce
gaps in the simplified 3D point cloud. To handle this case, we propose to simplify this set according to the
following rules and illustrated in Figure 11.

e Compute the gravity center GCS of region high salient points,
e Compute the midpoint of segment connecting each boundary interest point with the gravity center GCS ,
e Maintain the nearest low salient point of each midpoint.

498 A.R. EL SAYED ET AL.

‘ C ' . . Feature point on boundary

. v . . P - ‘ . High salient points

® . () . ° 9 . p O ® ‘ = v ® Low salient points
. . ' . . v ' LY] C o Gravity center of high salient

v ' ¢ ' ¢ 5 e | points
‘. . . . ‘ \ 0 e ° . @ Midpoint of gravity center of
. . . . \ ° ‘ - high salient points and
) . ‘ \ boundary interest point

FiGurE 11. Region gaps treatment.

5. EXPERIMENTAL RESULTS

In this section, we show the efficiency and robustness of our proposed method on many colored 3D point
clouds models and 3D meshes. In these experimental results, we present and discuss the influence of different
parameters on our approach such as graph Delaunay-level k, the variable x in equation (3.6) that defines the
deviation factor threshold in patches entropy calculation o threshold parameter o< and the number of patch
cells n.

Figure 12 presents the results of our simplification method applied on different point clouds. Images (a1, as,
as, ag and ajz) show the original 3D point clouds, images (b1, ba, b3, by and bs) show the simplified point clouds
with the following parameters values (n = 8, x = 9 and o< = 0). Images (c1, ¢a, 3, ¢4 and ¢5) show the simplified
point clouds with (n = 8, = 9 and « = 30). Images (d1, da, d3, dy and ds) show the simplified point clouds
with (n =8, x =9 and & = 50). One can notice that the increase of the simplification threshold decreases the
number of points in a point cloud without affecting the shape. These results demonstrate that the features of
models are well maintained by our method, even when the number of points is reduced.

In order to evaluate the quality of the simplified model generated by our method, we propose to measure the
geometric error as the maximum error between the initial M and the simplified M’ model, i.e. the hausdorff
distance.

Amax (M, M/) = maquMd(Q7 M/)’ (51)
and the geometric average error:
1 d
Davg (M, M) = ——= > (¢, M’). (5.2)
] &,

Figure 13 presents the influence of the deviation factor threshold x on the result. Image a shows the original
3D point cloud. Images b—e present the simplified point clouds with (n =8, x =0 and x =0), (n =8, 2 =5
and x =0), (n =8,z =9 and x = 0) and (n = 8, x = 13 and x = 0). One can see that the sharp curves and
boundaries of regions that define the characteristics of shape surface are preserved although a minimum value
of deviation factor threshold is used (b, z = 0) (Tab. 1).

Figure 14 presents the influence of the deviation factor threshold x and threshold parameter oc on the
simplification rate. One can notice that the increase of the simplification threshold o increase the simplification
rate but the increase of the deviation factor threshold x decrease the simplification rate and in all cases the
shape is not affected (Tab. 2).

AN EFFICIENT SIMPLIFICATION METHOD FOR POINT CLOUD BASED ON SALIENT REGIONS DETECTION 499

a5 b5 c5 d5

FIGURE 12. Results of simplification with different thresholds (x = 0,30 and 50).

500 A.R. EL SAYED ET AL.

TABLE 1. This table summarizes the simplification rates and the evaluation of results showed
in Figure 12.

Model Number of Number of simplified 3D points Geometric error
original points o« =0 Rate o«=30 Rate =50 Rate Apax Aavg
Bunny 35947 30134 16% 27316 24% 16476 54% 0.005151 0.000265
Laurana 27861 18819 32% 17492 37% 16241 41% 0.003313 0.000014
Chicken_high 135142 120415 10% 118812 12% 100616 25% 0.050000 0.012888
Dragon 437645 387412 11% 185620 57% 33960 92% 0.044323 0.021243
Lucy 262909 242308 ™% 212032 19% 106007 59% 0.064213 0.014888

FIGURE 13. Contribution of the deviation factor thresholds (x = 0, 2, 5 and 9).

TABLE 2. This table summarizes the simplification rates of results showed in Figure 13.

Model Number of Number of 3D simplified points
original points =0 Rate a2=5 Rate x=9 Rate x=13 Rate
Laurana 27861 9764 64% 19636 29% 22894 17T% 22929 17%
Contribution of deviation factor Contribution of a

e DF =g simplification rate w1 === simplification rate

FIGURE 14. influence of the deviation factor thresholds (x) and thresholds () on simplification
rate.

AN EFFICIENT SIMPLIFICATION METHOD FOR POINT CLOUD BASED ON SALIENT REGIONS DETECTION 501

FIGURE 15. Results of simplification (original lion: (a), noisy lion: (b)) with threshold (x = 0).

Figure 15 presents the stability of our method according to noise. The first row (a) shows the simplification
result of our method applied on an object of 18 3408 vertices with threshold parameter (o< = 0). The simplified
object has 152594 vertices. In contrast, by applying our method on a noisy object contains the same number of
vertices approximatively (b), we can notice that the result is similar to the original object where the simplified
object has 150584 vertices. In addition, the boundaries and the shape are not affected.

6. EVALUATION

In addition to the geometric average error measurement proposed in the previous section to evaluate the
simplification quality, we compare our method with some related works in order to show its performance. First,
note that our method has many advantages compared to some related work where the user can control the
simplification rate. Furthermore, there are some cases where the simplification rate is very high [37] and some
of sharp region points that conserve the characteristics of the surface shape will be removed resulting holes in
the simplified 3D point clouds. In contrast, our method preserve the characteristics of the surface shape with
a minimal configuration (z = 0,x = 0) due to the technique we use where we maintain internal and boundary
feature points. Figure 16 shows the simplification results proposed by Liao et al. [15] where the authors mention
that their proposed method works only with models whose shape is symmetrical or spherical and may produces
holes in others. In contrast, Figures 12 and 13 shows that our method produce better results with models of
different shapes (symmetric and no symmetric).

Table 3 shows a comparison of some results from [18,37] and our method. One can see that our method gives
simplified models with lesser points than other methods and maintain the boundaries and ridges of 3D models.

Finally, by comparing the geometric error on simplification results (Bunny model) between [18] and our
method (Tab. 1, first row), we can notice that our method is better.

TABLE 3. Comparison between our method and other works ([18,37]).

Model #Original Article #Points of sim- #Points of sim- Screen shot in

points plified model plified model (our corresponding
(related work) method) article
Bunny 280 792 [18] 16 729 16 476 Not available

Dragon 437,645 [37] 34 861 33 960 Figure 17

502 A.R. EL SAYED ET AL.

Original model

FIGURE 16. Simplification results proposed by [15].

FIGURE 17. Dragon model: panel a: our method, panel b: method in [37].

7. CONCLUSION

In this paper, we have presented a novel approach for 3D point clouds simplification. The idea of our approach
is to detect the feature regions that characterize the shape surface using the saliency degree measure followed
by detecting and maintaining feature points in each feature region. To do so, we created a local patch descriptor
for each vertex where the patch cell is filled with the average of the deviation factor of each vertex according to

AN EFFICIENT SIMPLIFICATION METHOD FOR POINT CLOUD BASED ON SALIENT REGIONS DETECTION 503

the vertex neighbors that projected onto the same location associated to the cell. Next, the patch is used as a
local descriptor for vertices and the saliency degree for each vertex is calculated.

In order to detect the feature regions, we presented an efficient algorithm based on the connected component
labeling according to vertices saliency degree. Then, we detected feature points in these regions. Note that the
user can control the degree of simplification by a resolution parameter where the simplification rate increases
with the value of this parameter.

Finally, the robustness and the efficiency of our approach is demonstrated through some experimental results
where our method can reduce the number of point clouds and maintain the shape characteristics without
producing holes in the surface. Additionally, we compared our method with various state-of-the-art methods. In
this context, we propose as perspective the use of feature points identified by our approach in many applications
such as 3D objects matching.

REFERENCES

[1] E. Altantsetseg, Y. Muraki, F. Chiba and K. Konno, 3D surface reconstruction of stone tools by using four-directional mea-
surement machine. Int. J. Virtual Reality (IJVR) 10 (2011) 37-43.

[2] E. Altantsetseg, Y. Muraki, K. Matsuyama and K. Konno, Feature line extraction from unorganized noisy point clouds using
truncated fourier series. Visual Comput. 29 (2013) 617-626.

[3] J.L. Bentley, Multidimensional binary search trees used for associative searching. Commun. ACM 18 (1975) 509-517.

[4] D. Brodsky and B. Watson, Model simplification through refinement. Proc. Int. Conf. Graphics Interface, Quebec, Canada
(2000) 221-228.

[5] A. Chida, K. Matsuyama, F. Chiba and K. Konno, A rapid searching method of adjacent flake surfaces in stone implements
by using sets of measured points for generating a joining material. J. Soc. Art Sci. 18 (2014) 107-115.

[6] P. Cignoni, C. Montani and R. Scopigno, A comparison of mesh simplification algorithms. Comput. Graphics 22 (1998) 37—54.

[7] P. Cignoni, C. Rocchini and R. Scopigno, Metro: measuring error on simplified surfaces. Comput. Graphics Forum 17 (1998)
167-174.

[8] Concave Hull, available at: http://ubicomp.algoritmi.uminho.pt/local/concavehull.html

[9] A. El Chakik, A. Elmoataz and X. Desquesnes, Mean curvature flow on graphs for image and manifold restoration and
enhancement. Signal Process. 105 (2014) 449-463.

[10] R. Gal and D. Cohen-Or, Salient geometric features for partial shape matching and similarity. ACM Trans. Graphics 25 (2006)
130-150.

[11] K.H. Lee, H. Woo and T. Suk, Point data reduction using 3D grids. Int. J. Adv. Manuf. Technol. 18 (2001) 201-210.

[12] K.H. Lee, H. Woo and T. Suk, Data reduction methods for reverse engineering. Int. J. Adv. Manuf. Technol. 17 (2001) 735-743.

[13] P.F. Lee and B.S. Jong, Point-based simplification algorithm. J. WSEAS Trans. Comput. Res. 3 (2008) 61-66.

[14] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J.
Shade, The digital Michelangelo project: 3D scanning of large statues. In: Proceedings of ACM SIGGRAPH, 1 July 2000
(2000) 131-144.

[15] C. Liao, X. Niu and M. Wang, Simplification of 3D point cloud data based on ray theory. Comput. Model. New Technol. 18
(2014) 273-278.

[16] F. Lozes, A. Elmoataz and O. Lézoray, Nonlocal processing of 3D colored point clouds. In: 21st International Conference on
Pattern Recognition (2012) 1968-1971.

[17] D.P. Luebke, A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graphics Appl. 21 (2001) 24-35.

[18] Y. Miao, R. Pajarolac and J. Feng, Curvature-aware adaptive re-sampling for point-sampled geometry. Comput. Aided Des.
41 (2009) 395-403.

[19] C. Moenning and N.A. Dodgson, A new point cloud Simplification algorithm. In: Proceedings of 3rd IASTED Conference on
Visualization, Imaging and Image Processing (2003) 1027-1033.

[20] C. Moenning and N.A. Dodgson, Intrinsic point cloud Simplification. In: Proceedings of the 14th International Conference on
Computer Graphic and Vision (GraphiCon), Moscow, Russia (2004).

[21] G. Mullineux and S.T. Robinson, Fairing point sets using curvature. Comput. Aided Des. 39 (2007) 27-34.

[22] A. Nouri, C. Charrier and O. Lézoray, Multi-scale mesh saliency with local adaptive patches for viewpoint selection. Signal
Process. Image Commun. 38 (2015) 151-166.

[23] M. Pauly, M. Gross and L.P. Kobbelt, Efficient simplification of point-sampled surfaces. In: Proceedings of the Conference on
Visualization’02, IEEE Computer Society (2002) 163-170.

[24] X. Peng, W. Huang, P. Wen and X. Wu, Simplification of scattered point cloud based on feature extraction. In: WGEC’09
Proceedings of the 2009 third International Conference Genetic and Evolutionary Computing, October 14-17 (2009) 335-338.

[25] H. P_Ster, M. Zwicker, J. Van Baar and M. Gross, Surfels: surface elements as rendering primitives. In: SIGGRAPH’00
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000) 335-342.

[26] Y. Qiu, X. Zhou, P. Yang and X. Qian, Curvature estimation of point set data based on the moving-least square surface. J.
Shanghai Jiaotong Univ. (Science) 16 (2011) 402-411.

http://ubicomp.algoritmi.uminho.pt/local/concavehull.html

504 A.R. EL SAYED ET AL.

[27] E. Shaffer and M. Garland, Efficient adaptive simplification of massive meshes. In: VIS’01: IEEE Transactions on Visualiza-
tion’01, 21-26 October (2001) 127-134.

[28] B.Q. Shi, J. Liang and Q. Liu, Adaptive simplification of point cloud using k-means clustering. Comput. Aided Des. 43 (2011)
910-922.

[29] P. Shilane and T. Funkhouser, Distinctive regions of 3D surfaces. ACM Trans. Graphics 26 (2007) 7.

[30] H. Song and H.Y. Feng, A global clustering approach to point cloud simplification with a specified data reduction ratio.
Comput. Aided Des. 40 (2007) 281-292.

[31] H. Song and H.-Y. Feng, A progressive point cloud simplification algorithm with preserved sharp edge data. Int. J. Adv.
Manuf. Technol. 45 (2009) 583-592.

[32] R.D. Toledo, B. Levy and J. Paul, Reverse engineering for industrial-environment cad models. In: Proceedings of TMCE 2008,
April 21-25, Kusadasi, Turkey (2008).

[33] T. Varady, R. Martin and J. Cox, Reverse engineering of geometric models — an introduction. Comput. Aided Des. 29 (1997)
255-268.

[34] J. Wu, X. Shen, W. Zhu and L. Liu, Mesh saliency with global rarity. Graphical Models 75 (2013) 255-264.

[35] K. Yamahara, K. Konno, F. Chiba and M. Sato, A method of detecting adjacent flakes in stone tool restoration by extracting
peeling surfaces. Jpn. Soc. Archaeological Inf. 17 (2011) 23-32.

[36] X. Yang, K. Matsuyama, K. Konno and Y. Tokuyama, Feature-preserving simplification of point cloud by using clustering
approach based on mean curvature. J. Soc. Art Sci. 14 (2014) 117-128.

[37] Y. Yoshida, K. Konno and Y. Tokuyama, A distributed simplification method with PC cluster. J. Soc. Art Sci. 7 (2008)
113-123.

	Introduction
	State-of-the-art
	Contributions
	Paper organization

	Surface modeling
	Vertex neighbors
	Normal estimation

	Saliency detection
	Local patch construction
	Deviation factor
	Saliency computation

	Feature regions detection
	Segmentation
	Interest points detection

	Experimental results
	Evaluation
	Conclusion
	References

