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SECOND-ORDER SENSITIVITY ANALYSIS FOR PARAMETRIC EQUILIBRIUM
PROBLEMS IN SET-VALUED OPTIMIZATION

NGUYEN LE HoaANG ANHD*

Abstract. In the paper, we first establish relationships between second-order contingent derivatives
of a given set-valued map and that of the weak perturbation map. Then, these results are applied to
sensitivity analysis for parametric equilibrium problems in set-valued optimization.
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1. INTRODUCTION

For optimization-related problems, after having their optimal solutions/optimal value, we often face many
questions, such as: how do these solutions represent by the influence of other elements? How do you know that
the numerical results are acceptable? What are extrapolation limits of the obtained results? ... Answers to these
questions are given by stability and sensitivity analyses. In mathematics, stability is understood as studies of
various continuity properties of solution maps/optimal-valued maps of concerned problems, while sensitivity
means studies of derivatives of the above-mentioned maps, see [12].

In the paper, we focus on sensitivity analysis in set-valued optimization. Many results have been obtained
in this topic. In [35,36], the behavior of perturbation maps in terms of contingent derivatives was established.
The TP-derivative was introduced in [31] and employed in some conditions in [35]. In [32], Shi discussed some
properties of perturbation maps in convex vector optimization problems. In [34], Sun and Li proposed sensitivity
analysis for a general class of generalized vector quasi-equilibrium problems. Similar results for parametric weak
vector equilibrium problems were obtained in [19]. In [8], Chuong and Yao studied generalized Clarke epideriva-
tives of the efficient value map for parametric vector optimization . In [34], sensitivity analysis for parametric
vector optimization via lower Studniarski derivative was given. Inspired by these results, developments in sen-
sitivity analysis have been increasing recently, see [3,7,10,22,23,30].

From the above-mentioned results, the concept of derivatives is very essential to study sensitivity analysis. For
the differentiability in set-valued optimization, there have been many kinds of generalized derivatives introduced
with their applications in optimality conditions and duality. To get more information in optimality conditions,
derivatives of higher orders have been proposed. They have been employed in some results on sensitivity analysis
recently, see [3,10,34,37].
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It is well known that the equilibrium problem plays an important role in optimization. Several types of this
problem, such as the variational inequality problem, the saddle point problem, the complementarity problem,
etc., have been investigated, see [6,11,14,17,20]. In detail, the lower semicontinuity of the solution maps of
the parametric weak equilibrium problem was studied in [6,14,17]. The existence of the generalized equilibrium
problem was obtained in [11,20]. However, to the best of our knowledge, there are very few results dealing with
higher-order sensitivity analysis for parametric equilibrium problems in set-valued optimization. This motivates
us to study second-order sensitivity analysis for parametric set-valued equilibrium problems in terms of the
weak efficiency in the paper.

The structure of the paper is as follows. In Section 2, we introduce some main notations and definitions
used in the sequel. Section 3 is devoted to study relationships between second-order contingent derivatives of
a set-valued map and that of the weak perturbation map. These results are applied to sensitivity analysis for
parametric equilibrium problems in Section 4.

2. PRELIMINARIES

Let X,Y be normed spaces, C be a closed convex pointed cone in Y. For a nonempty subset A C Y, intA and
clA stand for the interior and closure of A, respectively. N, R, and R are used for sets of the natural numbers,
real numbers, and nonnegative real numbers, respectively. A nonempty convex subset B of C is called a base
of C'if 0 € clB and C = coneB := {rblb € B,r > 0}. If int C # ), ag € A is said to be a weak efficient point of
A (ag € WMing A) if, see [21],

(A — {CL()}) n (—mt C) = @

For a given set-valued map F : X — 2Y, the domain, image and graph of I are defined by

dom F := {z € X|F(x) # 0}, imF:={yeYlye F(x)},
grF:={(z,y) € X xY|y € F(x)}, respectively.

The profile map of F' is the map (F + C)(z) := F(z) + C.
Recall that F is called to be metric regular at (zg,y0) € grF if there exist a, A > 0 such that for all
z € Bx(20,A), ¥y € By (y0, ),
d(z, F~'(y)) < ad(y, F()), (2.1)

where Bx (x,r) stands for the open ball in X centered at « with radius r > 0.

Remark 2.1. When F is a set-valued map, the inclusion y € F(z) can be considered as a constraint system
(including inequality and equality conditions on x) with respect to y as a parameter. The solution set of y € F(z),
denoted by F~1(y), is nonempty iff y € im F. An important question is raised: how is the behavior of F~1(y)
corresponding to perturbation in y? It means that we need to learn about: bounds of the solution map F~1(.)
(y as variable) under perturbations, and how large a perturbation in y can be to maintain good behavior of the
solution map F~1(.). The best answer for these questions is metric regularity.

Indeed, (2.1) gives us an estimate of the distance from a candidate x to the solution set with respect to y.
It is bounded above by a multiple « of the distance between y and F(x), which measures the residual when

y ¢ F(x).

If we fix y = yo in (2.1), the metric regularity reduces to the metric subregularity. Let S be a nonempty
subset in X, F is metric subregular at (zo,yo) with respect to S if there exist a, A > 0 such that for all
x € Bx(l‘o,/\) n.s,

d(z, F~}(y0) N S) < ad(yo, F(x)).

The metric regularity (metric subregularity) property of F' is equivalent to the Aubin property (the calmness,
respectively) of the inverse map F~1:Y — 2% see [5]. The reader is referred to books [5,24,25,29] and papers
[9,13,15,16] for more properties and applications of metric (sub)regularity.
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In the paper, we propose another concept of metric subregularity as follows. Let X,Y, Z be normed spaces,
F:X xY — 2% ((z0,90),20) € gr F and (u3,v1) € X x Y.

Definition 2.2. The map F is said to be directionally metric subregular of order 2 at ((xo,yo), 20) in direction
(u,v) € X xY with respect to a subset S C X xY and (uq,v;) if there exist a, A > 0 such that for all ¢ € (0, A),
v € Bx(u,\), v' € By (v, \) with (zg + tuy + t2u/,yo + tvy +t%0') € S,

d((zo + tuy + t2u',yo + tvy + t20), F~(20) N S) < ad(zo, F(xg + tuy + 20, yo + tvg + t20')).

It is obvious to see that if F' is metric subregular at ((zo,%0),20) with respect to a subset S, then F' is
directionally metric subregular of order 2 at ((xo, o), 20) in direction (u,v) with respect to S and (uy,v1), for
all (u,v), (ug,v1) € X x Y. Thus, Definition 2.2 can be considered as an extension of the metric subregularity.

Definition 2.3 ([5]). Let S C X, x € clS.
(i) The first-order contingent (adjacent) cone of S at zg is defined by
Ts(zo) == {z € X|Ft, — 01,32, — 2,20 + t,x, € S}
(Th(x0) := {x € X|Vt, — 0%, 3z, — x, 20 + tpxy € S}, respectively).
(ii) For z; € X, the second-order contingent (adjacent) set of S at xo with respect to x; is defined by
Té(zo,zl) ={r € X|3t, —»0",3x, — ,20 + t,z1 + ti:z:n e S}

(T3 (w0, 1) = {z € X|Vt, — 0%, 3w, — x, 20 + 2y + 122, € S}, respectively).

Definition 2.4 ([5]). Let F : X — 2Y (zg,y0) € gr F.

(i) The first-order contingent (adjacent) derivative of F' at (xg,yo) is the set-valued map DF(zg,yo) : X —
2Y (D°F(z0,10) : X — 2Y) defined by

gr(DF(z0,90)) == Tger (w0, Y0)
(gr(D"F(z0,10)) == TgbrF(xo,yo), respectively).

(ii) For (uy,v1) € X X Y, the second-order contingent (adjacent) derivative of F' at (zo,yo) with respect to
(u1,v1) is the set-valued map D?F(xg, yo,u1,v1) : X — 2Y (D*®) F (29,50, u1,v1) : X — 2Y) defined by

gr(D*F(z0,y0,u1,v1)) := Torp (0, Yo, 1, 01)
(gr(DQ(b)F(mo,yO,ul,vl)) = TgQr(lbp)(:zco,yo7u1,v1)7 respectively).
Definition 2.4 can be expressed in terms of sequences equivalently as follows

V), Yo + Lrn € F(IIZO + tnun)}

DF(xo,yo0)(u) ={v eY[3t, — 0%, I(upn,vn) — (u,v)

D’ F(x0,v0)(u) ={v e Y|Vt, — 0", I(un,v,) — (u,v), yo + thvn € F(xo + thun)}.
D?F(z0,y0,u1,v1)(u) = {ve Y|, — 0", I(un,vn) — (u,v), yo + tav1 + t2v, € F(xo + thus + t2u,)}.
D2C)F (g, yo,u1,v1)(u) = {v € Y|Vt, — 0, Iun,vn) — (u,v), yo + tpvr +t2v, € F(xo + tpuy + t2u,)}.

Definition 2.5. Let F' : X — 2 (2,y0) € gr F, and (u1,v;) € X x Y, the second-order lower contingent
derivative of F' at (xg,yo) with respect to (u1,v1) is the set-valued map DfF(:J:O, Yo, u1,v1) : X — 2 defined
by

D?F(:z:o, Yo, u1,v1)(u) := {v € Y|Vt,, — 0, Vu,, — u, v, — v,yo + tyvs + tivn € F(xg+ thur + tiun)}
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We can check that D?F(x, yo, u1,v1)(u) € D2C)F(zq,yo,u1,v1)(w) € D*F(x0,yo, u1,v1)(u).

Definition 2.6. Let F': X — 2V (zg,y0) € gr ', and (uy,v;) € X x Y.

(i) The map F' is said to have the second-order proto-contingent derivative at (x, yo) with respect to (ug,v1)
if for all u € X,
D?F (0, yo, u1,v1)(u) = DQ(b)F(xoa Yo, u1,v1)(u).

(ii) The map F is said to have the second-order semi-contingent derivative at (o, yo) with respect to (u1,v1)
if for all u € X,
D*F (9, Yo, u1,v1)(u) = DEF (20, yo, u1,v1)(w).

The terminology “proto-contingent derivative” is used in the paper according to the idea of [26] and [28]. If
F has the second-order semi-contingent derivative then it has the second-order proto-contingent derivative.

3. SECOND-ORDER CONTINGENT DERIVATIVES OF WEAK PERTURBATION MAPS

Suppose that X,V are normed spaces, C C Y is a closed convex pointed cone, and F : X — 2. We first
establish relationships between the second-order contingent derivative of F' and that of F' + C.

Definition 3.1. Let F : X — 2Y, (z9,%0) € grF, and (u;,v1) € grDF(z0,y0). The second-order radial-
contingent derivative of F' is defined by, for u € X,

D;/F(aso,yo,uhvl)(u) ={veY|3t, — 0", 3s, > 0,I(up,v,) — (u,v),
Yo + tnv1 + SpUn € F(2o + thur + Sntn)}
Proposition 3.2. Let F: X —2Y, (z0,v0) € grF, and (u1,v1) € grDF(z0,v0). Then, foru € X,
D?*F(x0, 50, u1,v1)(u) + C C D*(F + C)(z0, Yo, u1,v1)(u). (3.1)
If C' has a compact base and the condition
Dy F(x0, o, u1,01)(0) N (=C) = {0} (3.2)
is fulfilled, then (3.1) becomes an equality.

Proof. Let v € D?*F(xg,y0,u1,v1)(u) + C, i.e., there exist w € D?F(zq,yo,u1,v1)(u) and ¢ € C such that
v =w + c. For w, there are t,, — 0", (uy,w,) — (u,w) such that

Yo + tav1 + 2w, € F(xo + thur + t2uy,),

which implies that
Yo + tnv1 + 12 (wy, + ¢) € F(xo + tyur + t2uy,) + C.

Thus, v = w + ¢ € D*(F + C)(z0, yo, u1,v1)(u).
For the converse conclusion, let v € D?(F + C)(zo, yo, u1,v1)(u), then there exist t,, — 0%, (un, vn) — (u,v),
and ¢,, € C such that
Yo + tav1 + 20, — ¢y € F(20 + tour + t2uy,).

Since C has a compact base, we may assume that ¢, = «,b, with a;, > 0 and b, — b(b € C \ {0}), which
implies that
Yo + tav1 + 20, — anby € Fxg + thuy + t2uy,). (3.3)

We consider two cases as follows:
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Case 1: o, /t2 — +o0. From (3.3), one has

t2 t2
Yo + tnvl + an (nvn - bn) eF (LU() + tnul + an <nun>) )
(0% «

n n

i.e., —=b € D, F(zo,yo,u1,v1)(0), which contradicts (3.2).
Case 2: o, /t2 is bounded and we suppose that v, /t2 — r > 0. It follows from (3.3) that

Yo + tuvy + 12 (vn — ?;bn> € F(zo + thur + t2uy,).

Thus, v — b € D*F(x0, Yo, u1,v1)(u), i.e., v € D*F(zg,yo,u1,v1)(u) + C. O
The following example illustrates that the condition (3.2) is necessary for the inverse conclusion of (3.1).

Example 3.3. Let X =R? Y =R, and C = R,. We consider the following set-valued map

{(x1 + 22)/2,—-1},if 1 = 29 > 0,
{-1/2}, otherwise.

F(xy,29) := {

Let (x0,y0) = ((0,0),0) and (u1,v1) = ((1,1),1) € grDF(x0, yo), by calculating, we get

yeYly>—-1}, ifz=222>0,

F+C)(z1,22) =
( (21, 22) {{y € Y]y > —1/2}, otherwise,

and
{(z1 4+ 2)/2}, if 1 = a9,

D?F(z0, Yo, u1, v1) (21, 22) =
(zo, Yo, ur, v1) (21, T2) {@7 otherwise,

D*(F + C) (0, Yo, u1,v1)(z1,22) = R.

Thus, D?F (o, yo, u1,v1)(x1,22)+C G D*(F+C)(z0, yo, u1, v1)(x1, ¥2). The reason is that the condition (3.2)
does not hold. Indeed, by taking t,, := 1/n, s, := 1, uy := (—1/n,0) — (0,0), and v,, :== -1/2 —1/n — —1/2,
we can check that

Yo + tpv1 + SpUn € F(IO +tpur + Snun)a

i.e., —1/2 € D, F(x0,yo,u1,v1)(0) N (=C).
Lemma 3.4. Let A CY be a nonempty subset and C CintCU {0} be a closed convex pointed cone. Then,
WMingcA = WMing (A + O).

Proof. “C:” Let yo € WMinc A, suppose that yo ¢ WMing (A + C’), i.e., there exist y € A and ¢ € C such that
y+c—1yo € —intC. This implies that y — yg € —intC' — ¢ C —intC, which contradicts the weak efficiency of yg.
“D” Let yp € WMing(A 4 C), ice., yo € A+ C and (A + C — {yo}) N (=intC) = 0. Tt follows from the

closeness of C that 0 € C‘, SO
(A —{yo}) N (—intC) = 0. (3.4)

We just need to prove that yo € A.ASuppose to the contrary, i.e., yo € A, then there exists y € A (y # yo)
such that yg € y + C' (since yo € A+ C). Consequently, one gets

y—1o € (A= {y}) N (=C) € (A~ {yo}) N (~int0),

which contradicts (3.4). O
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We cannot replace C by C in Lemma 3.4 as indicated by the following example
Example 3.5. Let Y =R? C =R2, and A = {(0,0)}. Then,
WMincA(= {(0,0)}) ¢ WMing(A4 + O)(= R? \ intR?).
From Proposition 3.2 and Lemma 3.4, we obtain a proposition as follows.

Proposition 3.6. Let F : X — 2Y, (z0,y0) € grF, (u1,v1) € grDF (x0,10), and C C intC U {0} be a closed
convex pointed cone. If C has a compact base and the condition (3.2) is fulfilled with respect to C, then for
u€ X,

WMineD2F (20, yo, u1, v1) (1) = WMine D(F + C) (0, yo, w1, v1 ) (u).

Example 3.7. Let X =R, Y =R? C =R?2 and F : X — 2" be defined by F(z) := {(y1,2) € Y|y1 +y2 > 0}.
With € := {(y1,52) € Y|y2 < 201} 0 {(y1,92) € Yy2 > (1/2)11}, C is a closed convex pointed cone having a
compact base and C' C intC U {0}.

Let g = 0,90 = (0,0), u; = 2 and v; = (1,1), we now check that (3.2) is fulfilled with respect to C. In fact,
let w = (w1, wz) € D, F(xo, Yo, u1,v1)(0), then there are t,, — 0%, 5, > 0, u, — 0 and (w},w?) — (w,ws)
such that

(0,0) + tn(1,1) + s, (wh, w?) € F(0 + 2t,, + spup), (3.5)

i.e.,
2y + Sn(wE 4+ w2) > 2y, + Spty.
Thus, w € {(wy,ws) € Y|wy + wy > 0}, which implies that D, F(zo, o, u1,v1)(0) C {(w,ws) € Y|w;y +
wy > 0}. For the converse inclusion, let w € {(wi,ws2) € Y|w; + we > 0} and by taking ¢, = 1/n, s, = 1,
up =0 — 0, (wh,w?2) = w — w, then (3.5) is satisfied, i.e., w € D, F(xq,yo,u1,v1)(0). Hence, we have

D, F (w0, 30, ur, v1)(0) = {(wn,ws) € Y]wy + 1w > 0}.
Consequently, one gets
DTF(:EO?yOvulvvl)(O) N (_C) = {O}

Therefore, Proposition 3.6 is fulfilled. Indeed, by a direct calculation, we obtain

WMineD?F (2o, Yo, u1,v1)(w) = WMing D*(F + C) (20, Yo, w1, v1)(w)
= {(w1,ws3) € Y|wy + wa = u}.

Using the above results, relationships between the second-order contingent derivative of F' and that of the
weak perturbation map, denoted by W (z) := WMing F'(z), are implied. Recall that the map F is said to have
the weak domination property near xy with respect to C , where C CintCU {0} is a closed convex pointed cone,
if there exists a neighborhood V' of zy such that for all x € V,

F(z) € WMincF(z) + C,

equivalently,

F(z) C W(z) + C.

Lemma 3.8. Let (zo,y0) € gtW and (u1,v1) € grDF(zo,y0). If ' has the weak domination property near xo
with respect to C, then for u € X,

D*(F + C’)(zo, Yo, u1,v1)(u) = D*(W + C’)(xo,yo,ul,vl)(u). (3.6)
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Proof. We first prove that F(z) + C = W (xz) + C for all # € V, where V is a neighborhood of z¢. Indeed, one

has
F(z) 4+ C C W(x) + C (the weak domination property)

= WMin¢ F(z) 4+ C
C F(z)+C.
Let v € D2(F + C)(xo, yo, u1, v1)(u), i.e., there exist ¢, — 0%, (un,v,) — (u,v) such that
Yo + thv1 + tivn e (F+ C’)(xo +toug + tfbun) = F(xo + tpous + tiun) +C.
For n large enough, zo + t,u; + t2u, € V then, equivalently, we get
Yo + tyvr + t2v, € Wz + tyur + t2u,) + C,
i.e., v € D2(W + C)(z0,yo,u1,v1)(w). O

Theorem 3.9. Let (zo,y0) € grW, (u1,v1) € grDW (zo,y0), and C:’ C intC U {0} be a closed convex pointed
cone. If F' has the weak domz’natz;on property near xo with respect to C, C' has a compact base, and the condition
(3.2) is fulfilled with respect to C, then for u € X,

WMing D?F(z0, yo, u1,v1)(v) = WMing D*W (29, Yo, w1, v1)(u).
Proof. Since D, W (20,0, u1,v1)(u) C D, F(x0,0,u1,v1)(w), it follows from the condition (3.2) that
D, W (20,0, u1,v1)(0) N (=C) = {0}.
Hence, from Proposition 3.6 and Lemma 3.8, one obtains
WMingD2F (0, yo, u1, v1) (1) = WMing D2(F + C)(z0, yo, u1, v1) (w)

= WMing D2(W + C)(x0, yo, w1, v1)(u)
= WMincDQW(xo, Yo, u1, v1)(u).

The following example illustrates Theorem 3.9.

Example 3.10. Let X =R? Y =R, C =R, and F(21,72) := {y € Y|y > 21 +x2}. Let (z0,0) = ((0,0),0)
and (u1,v1) = ((1,1),2) € grDF(xg, y0), by calculating, we get

W(z1,22) = WMing F (1, x2) = {1 + 22},
and
D?F(z0,y0,u1,v1)(21,22) = {y € Yy > 1 + 22},
D2W(x0,y0,u1,v1)(x1,x2) = {z1 + 22}

It is easy to check that all conditions of Theorem 3.9 are fulfilled. Indeed, we now show that (3.2) is satisfied.
Let v € D, F(zo, Yo, u1,v1)(0), by Definition 3.1, there exist ¢, — 0%, s, > 0, (u},u2) — (0,0), v, — v such
that

0+ 2t, + 8pvn € F(O+t, + spul, 0+ t, + s,u), (3.7)

i.e.,
2y 4 Sp0n > 2t + 5p(ul +u?),
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which implies that v, > u) + 2. Thus, v > 0, i.e., D, F(20, yo,u1,v1)(0) € R.

For the converse inclusion, let v € Ry, there exist ¢, = 1/n, s, = 1, ul = u2 = 1/n, v, = v+ u} + u2 such
that (3.7) is satisfied, i.e., v € D, F(xq,yo,u1,v1)(0). Hence, D, F(xq,yo,u1,v1)(0) = Ry (= C), which means
that (3.2) is fulfilled. Therefore, by Theorem 3.9, we have

VVl\/[iIl(jD2F’(J?()7 Yo, U1, Ul)(xl, l‘g) = VVl\/ﬁl’lCl)QI/V(.IO7 Yo, U1, Ul)(l‘l, xg) = {1‘1 + l‘g}.

Theorem 3.11. Let (zo,y0) € grtW, (u1,v1) € grDW (20, 40), and C C intC' U {0} be a closed convex pointed
cone. If all conditions of Theorem 3.9 are satisfied, then for u € X,

WMin(;DQF(xO,yO, ug,v1)(u) C DQW(aso,ymuhvl)(u). (3.8)

If, additionally, F has the second-order proto-contingent derivative at (xo,yo) and the map g : (X xY)? — R,
defined by g(b1,71, B2, 72) := ||B1 — B=|| is directionally metric subregular of order 2 at ((xo, Yo, To,Y0),0) in
the direction (u,v,u, ) with respect to gt W x gr F and (uy,v1), for all (u,v) € grD?*W (zo,yo,u1,v1) and
(u, ) € grD?F (0, Y0, u1,v1), then (3.8) becomes an equality.

Proof. The inclusion (3.8) can be implied directly from Theorem 3.9. For the converse inclusion, let 7 €
D?*W (0,90, u1,v1)(u), then there exist t,, — 0, (U, v,) — (u,v) such that

Yo + tovr + 127, € W(ug + touy + t27,).

If v ¢ WMing D?F(z0, 90, u1,v1)(u), then there exists © € D?F(xq,yo,u1,v1)(u) with ¢ — v € —intC.
Because F has the second-order proto-contingent derivative at (zg,yo), with t,, above, there is (iy, 0,) — (u,?)
satisfying

Yo + tpv1 + ti{)n € F(ZL’O +thu + ti’&n)

It follows from the directionally metric subregularity that there exist a > 0 and A > 0 such that for every
t € (0,\) and (uq,vy,Uq, V) € Bxxy((u,7), \) X Bxxy((u,d), A) with
(o + tug 4 20y, yo + tog + t20], To + tus + t2uy, yo + tvg + t20y) € gr W x gr F,

and

d ((xo + tuy + t2uy, yo 4 tor + 120y, zo + tug + 2y, Yo + tog + t2v,), g H(0) N (gr W x gr F))

< ad (0,g (aco + tuy + t2u/1, Yo + tvy + t21}/1, o + tug + t2u,2, Yo + tvy + t2vl2>) . (3.9)
It is easy to see that ¢, € (0, A) and (Gp, Up, tn, 0n) € Bxxy (4, 7),\) x Bxxy ((u,?), A) for n large enough.
Thus, from (3.9), for n large enough, there exists (T, 7,,, &n,0n) € gr W x gr F with T, = &,, such that
| (zo + tnur + t5Tn, Yo + tav1 + toln, To + tntiy + todin, Yo + tavs + tadn) — (T Ups Ens ) ||

< aty [Ty — Gn|| + 82,

which implies
|0 + taur + 20 — T || < tZ|[Un — din| + £3,
|y + tnvr + 200 — Uy || < i |[Un — || + 3,
HyO +tpvr + tiﬁn - gn” < atiHﬂn - ﬁn” + t?z'

Consequently,

fn — Xy — tnul
t2

n

— Uy || < ||ty — Unl| + tn,
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Y, — Yo — tpv .
‘ MZM — T < al[@n — dnl| + ta,
tn
Un — Yo —tnv1 _
‘ "t—Q" — Un|| < a||Tp — Gn]| + tn.
n
Y, — Yo — thv — tnv Ty —T thtl
By setting v} := W, oL = Yn y§2 "1 and u, = =2 ;2 = 1,thenﬁ;—>ﬁ7 o — D,
n n n
U, — u and
Yo + tavy + 205 =7, € W(T,) = WMing F(zg + tous + t2uy,),
Yo +tpvr + tiﬁrlb = gn S F(in) = F(fn) = F($0 + thur + tiun)
Hence, for n large enough, one has
(Yo + tnvr +1205) — (Yo + tovy + t205) = t2 (0} — L) € —int C,
which contradicts the fact that yo + t,v; + 20, € WMing F(ug + taur + t2uy,). O

Remark 3.12. The converse conclusion of (3.8) was studied in some existing results using other kinds of
generalized derivatives. For example, Anh and Khanh assumed that F' has the semi-variational set of order
m in Proposition 4.1 of [3]. In Proposition 5.2 of [10], the authors proposed an assumption on the mth-order
semi-contingent-type derivative to get the converse inclusion of (3.8) in terms of contingent-type derivatives. In
[3,10], these conditions are called “proto-variational set” and “proto-contingent-type derivative”, respectively.
However, by Penot’s idea in [26], we use the terminology “semi-variational set” and “semi-contingent-type
derivative” here to compare them with our results conveniently. In [34], the authors employed lower Studniarski
derivatives in their main results.

The above-mentioned conditions require the existence of some kinds of lower derivatives, but it is quite strict.
Moreover, “semi-variational set” and “semi-contingent-type derivative” mean “semi-contingent derivative” in
the paper. By Definition 2.6, we try to use the “proto-contingent derivative” property to obtain the converse
conclusion of (3.8). With a weakened assumption, we need to have some supplementary conditions. One of them
is introduced in Theorem 3.11, and it is not difficult to check this condition (see Example 3.13).

From the above observation, we propose some open questions as follows: are there other conditions to get the
converse inclusion of (3.8)7 If yes, how are relationships between them?

The following example shows a case where Theorem 3.11 can be employed, while the results mentioned in
Remark 3.12 cannot.

Example 3.13. Let X =R? Y =R, C =R, and F : R? — R be defined by
0 if Linen
F(xy,22) =" 1o, %2 € ﬁ'ne ’
{(z1 + z2)/2}, otherwise.

It is obvious that W(xy,z2) = WMincF(z1,22) = F(x1,22). Let (z0,%) = ((0,0),0) and (u1,v1) =
((1,1),1) € grDW (z0,yo). We can check that F' has the second-order proto-contingent derivative at ((0,0),0)
with respect to (u1,v1) and

D2F($07yoaul,v1)($17$2) = {(z1 +2)/2},

but conditions mentioned in Proposition 4.1 of [3] and Proposition 5.2 of [10] do not hold, and the second-order
lower Studniarski derivative in Theorem 4.2 of [34] does not exist. Thus, these results do not work in this case.
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However, Theorem 3.11 is useful for this example. Indeed, all conditions of Theorem 3.11 are satisfied. For
instance, we just check that the directionally metric subregularity of order 2 of the map g in Theorem 3.11 is
fulfilled. In this example, the map g : R? x R x R? x R — R, is given by

9($1,$27w17y1,y2,w2) = ||(l“173?2) - (ylvy2)||'
By Definition 2.2, let (uj,us2,(u; + u2)/2) €  gr D*W(xo,yo,u1,v1), (ui,ué,(ul1 + u;)/2) €
gr D?F(x9,y0,u1,v1) and A > 0, it is enough to show that there exists a > 0 such that for all ¢ € (0, ),
(ulau% ) € BRS((Ula uz, (ul + UQ)/Q) )7 (ﬂlaﬂ%ﬁ) € BR3((U17U’27 (ul + u2)/2)7 >‘) with

(04t 4+ t201,0 + t + 20,0 +t + 20,0 +t + 271, 0 + t + t*U,0 +t + t°7) € gr W x gr F,
then
d((t + 20y, t + 209, t + 120, + 270y, t + 12Uy, t +1°7), g~ (0) N (gr W x gr F))
< ad(0, g(t + t2ay, t + t2hg, t + 120, + t270, t + 27Uy, t + t°0)).
Since (t + t2ay,t + t2dg,t + t20,t + t2U1,t + t2Us,t + 120) € gt W x gr F, we get © = (41 + 42)/2 and
v = (w1 + Uz2)/2. Thus, we need to find « such that

( i)nfz {1t + P, t + 2a0) — (z,y)|| + ||t + 200, t + P02) — (z,y)|| + [t + 70 — v| + [t + 7D — w]}
z,y)€ER”,
vEF (z,y),
weG(z,y)

< OétQH('[Ll,'ELQ) — (Hl,ﬂg)H. (310)
We can see that

inf | {11t + 2an, t + t22) — (z,y)|| + [|(t + 201, t + 2U2) — (2, y)|| + [t + 120 — o] + [t + 70 — w|}

(w,y)€R®,
vEF (,y),
weG(z,y)
e n)lf {1t + Par, t + t2a2) — (z, )| + ||t + P01, t + £772) — (2, 9)|
z,y)ER?
Ht 42 (1 + ) /2 — (x +y) /2| + |t + (T +T2)/2 — (= +y)/2|}.
By setting
t4 2 +t+t°u t2
- o b (i + )
2 2
and 2 2 2
t+ t20y + t + t2u 2
_ 2 u2:t+—(u2+ﬂ2),
2 2
then
2 2 t
1(t+ 8701, ¢+ t702) — (2, y)l| = S, @2) - (@, @),
S 2o o
[t +t2(01 +12)/2 — (x +y)/2| = Z|(u1 — ) + (g — u2)|
t2 . S
< V(@ —w)? + (a2 = 42)%)(1% + 12)
< (V2/4)||(n, i2) — (ur,5p)] |-
Similarly, we get
2 2 t
1(t + 87T, ¢+ t70) — (2, y)|| = F{[(@1, 82) = (@, @),

|+ (@ +2)/2 — (2 +9)/2] < (V2/)P|| (i, 82) — (W, Te)]],
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which implies that

( i)nf2 {1t + 2t t + 2a2) — (z,9)|| + ||t + 280, t + 2T2) — (z,y)|| + |t + 20 — v| + [t + 20 — w]|}
x,y)ER”,
veEF (z,y),
weG(z,y)

< (14 V2/2)%||(t1, ti2) — (W, T2)]|.

Thus, (3.10) is true for any o > 1+ v/2/2. It means that there exist A > 0 and a > 1 + 1/2/2 for which
Definition 2.2 is satisfied with respect to the map ¢ in this example, i.e., g is directionally metric subregular of
order 2.

Therefore, it follows from Theorem 3.11 that

D2W (0, yo, u1,v1) (1, 29) € WMing D*F (20, yo, u1, v1) (w1, T2).

4. SENSITIVITY ANALYSIS FOR PARAMETRIC EQUILIBRIUM PROBLEMS

Let X, P,Y be normed spaces and C C Y be a closed convex pointed cone. We consider the following
parametric equilibrium problem (PEP): find x € K(p) such that

F(z,y,p) N (—intC) =0, Vy € K(p),
where FF: X x X x P — 2Y and K : P — 2%X. For each p € P, the solution map of (PEP) is denoted by
S(p) == {z € K(p)|F(z,y,p) N (—=intC) =0, ¥y € K(p)}.
The map S can be rewritten by for z € X and p € P,
S(p) = {z € K(p)|0 € W(p, )},
where W (p,z) := WMincG(p, ) and G(p,z) := U, e () (F(z,y,p) U {0}).

Definition 4.1. ([27]) The map S is said to be Robinson metric regular around (po,zo) € grS if there exist
u >0, v >0, and neighborhoods U of pgy, V of zg such that

d(x,S(p)) < pd(0,W(p,z)), whenever p € U, x €V, d(0,W(p,z)) < 7.
We now propose an extension of Definition 4.1 as follows

Definition 4.2. Let (pg,zo) € grS and (z1,p1) € X x P. The map S is said to be directionally Robinson
metric regular of order 2 along K around (po, o) in the direction (z,p) with respect to (z1,p1) if there exist
w>0,v >0, A >0 such that

d(xo + toy + t%27, S(po + tp1 + t2p')) < pd(0, W (po + tpy + 29, w0 + ta + t°2')),
whenever ¢t € (0,\), p’ € Bp(p,A), ' € Bx(z, ),
xo + try + t22’ € K(po + tp1 + t2p))

and
d(0, W (po + tp1 + t2p/, w0 + tay + t22')) < 7.

It is obvious to see that if S is Robinson metric regular around (pg, o) then S is directionally Robinson metric
regular of order 2 around (pg, zg) in the direction (x, p) with respect to (z1,p1), for all (z,p), (z1,p1) € X x P.
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Proposition 4.3. Let (pg,xo) € grS and (p1,21) € grDS(po,xo). Then, forp € P,

DQS(p()?anpluml)(p) g {.’L’ S D2K(p07x07p17x1)(p)|0 € DZW(pO7$OaO7P1,$1a0)(p7 LC)} (41)

If, additionally, S is directionally Robinson metric reqular of order 2 along K around (po, o) in the direction
(x,p) € M with respect to (p1, 1), where M = {(p, z)|(p, x,0) € grD*W (pg, z0,0,p1,71,0)}, K has the second-
order proto contingent derivative at (po,xo) with respect to (p1,21), and the map g: (P x X)x (Px X xY) —
R defined by g(B1,71,B2,72,0) = ||B1 — B2l| + ||71 — ¥2|| is directionally metric subregular of order 2 at
((po, zo, po, 0, 0),0) in the direction (p,T,p,z,0) with respect to gr K x grW and (p1,21), for all (p,T) €
erD?K (po, %0, p1,71) and (p,2,0) € grD?>W (po, 20,0, p1,71,0), then (4.1) becomes an equality.

Proof. Let x € D?S(po, o, p1,21)(p), then there exist ¢, — 0, (p,,z,) — (p, ) such that
To + tpwy + 12w, € S(po + tap1 + tapn).
By the definition of S, we get
To + thxr + 23, € K(po + tapr + t2p,)

and
0 € W(po + tupr + t2pn, o + tpxy + 1213,,),

which implies that x € D?K (po, xo,p1,1)(p) and 0 € D*W (po, x9, 0, p1, w1, 0)(p, 7).
For the converse of (4.1), let € D?K (po, o, p1,21)(p) such that 0 € D?>W (po, 0,0, p1, w1, 0)(p,x). For
x € D?*K(po, zo, p1,71)(p), there are t,, — 0%, (p,,z,) — (p,x) such that

To + tax1 + oy € K(po + tap1 +topy,).

Due to the second-order proto-contingent derivative property of K, with t,, above, there exists(p,, ,) — (p, )
and z, — 0 such that
t?zzn € W(po + tnp1 + tiﬁna To + tpr1 + tijn)

From the directionally metric subregularity of g and the proof similar to that of Theorem 3.2, we get
(tn,vn) — (p,x) and w, — 0 satisfying

Zo + thxy + tivn € K(PO + tnpl + tiun)

and
tiwn € Wi(pg + tnp1 + tiun, T + tpx1 + tivn).

Since S is directionally Robinson metric regular of order 2 along K around (pg, zg), there exist A > 0, u > 0,
~ > 0 such that for n large enough, we get x,, € Bx(x,\), p, € Bp(p, \),

(0, W (po + tapr + thtn, 2o + tnx1 + thvy)) < £ |[wa || <7,
and
d(xo + tnx1 + 150n, S(po + tap1 + th1n)) < pd(0, W (po + tupr + thtin, 0 + taws + thon)) < puty ||w |,
Thus, for n large enough, there exists y, € S(po + tap1 + t2u,) such that

HxO +thr1 + tivn - ynH < :utin’ﬂH + ti,

Taking n — +o0, then 9, := (y, — xo — tox1)/t2 — w, i.e., we get x € D2S(po, xo, p1,71)(p)- O

which implies that
Yn — To — tnxl
t2

n

— || < pllwpl] + tn-
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The following definition is necessary for our next result.

Definition 4.4. Let F': X — 2Y and (z¢,y0) € grF. The mth-order Studniarski derivative of F' is defined by,
for r € X,

Dg F(wo,y0)(u) == {v € Y|t — 07, I(un, vn) = (u,0), 40 + ;00 € Fl@o + tnun)}.

The reader is referred to [1,2,4,33,34] for more properties and applications of this derivative. In the paper,
we employ the second-order Studniarski derivative to obtain the following proposition.

Proposition 4.5. Let X be finite dimensional, (po,xo) € grG and (p1,x1) € grDG(pg, xg). Suppose that grF
is closed, grK is compact, and for each yo € £2(0), where £2(0) := {y € K(po)|0 € F(x0,y,p0)},
DK (po, y0)(0) = {0} (4.2)

Then, for (p,x) € P x X, one gets

DQG(p()?anprlaxlao)(p,m) Cc U U (D2F(5E0,y(),p(),0,1’1,0,p1,0)(1’,y,p)U{O})~ (43)
y0€£2(0) y€ D2 K (po,yo,p1,0)(p)

If, additionally, F has the second-order proto-contingent derivative at (xo,yo,po) and the map g : (X X
XX PxY)x (PxX) = Ry defined by g((B1,7.p1,01). (p2.12)) = |1p1 — pall + |11 — || is directionally
metric subregular of order 2 at ((xo, Yo, Po,0, Po,Yo),0) in the direction (x,y,p,v,p,§) with respect to gr F x gr K
and (xla Oapla Ovpl’o)! fO?” all (xayvpvv) € grD2F(x07yOapOa 075513 O,pho) and (pa ) € gI‘D K(pOa y07p1a0)7 then
(4.3) becomes an equality.

Proof. Let v € D2G(pg, w0, p1,71)(p, ). If v =0, it is trivial. We assume that v # 0, then there exist t,, — 0T,
(pn7 Tn, Un) - (p, x, U) such that

0+t¢,.0+ tivn € G(po + tnp1 + tipn, xo + tpr1 + t%xn)
By the definition of G, there exists y, € K(po + t,p1 + t2p,) such that
tivn S F(JUO + tnxl + tiJf”’ Yn, PO + tnpl + tipn)a

Since grK is compact, {y, } has a subsequence converging to yo € K (pg). It follows from the closeness of grF’
that 0 € F(zo,Yo,P0), €., Yo € £2(0).

We now prove that {(y, — yo)/t2} is bounded. Suppose to the contrary, i.e., ||y, — yo||/t2 — +00, then one
has

Yn — Yo
yo + lyn — Yol = yn € K | po + V/||¥n — wol| p1+||yn Yo|| —"——Pn
l[Yn — yol| \/ — yol| |[Yn y I
K<po+\/||yn Yol ( p1+\/||yn yol| :
Vyn — ol Hyn woll "

Since X is finite dimensional, we assume that (y, — ¥0)/[|yn — yo|| has a subsequence converging to g with
[|9]| = 1. Tt is easy to see that

pl + V|Yn — vol

— 0,

tn
V Hyn

so with s, := \/||yn — yo|| — 0T, we obtain § € DZK (po, y0)(0), which contradicts (4.2). Thus, {(yn — yo)/t2}
is bounded.



1258 N. L. H. ANH

By setting 7,, := (yn — %0)/t2, without loss of generality, we suppose that 7,, — 7. Consequently, one gets
Yo + -0+ 27, € K(po + tup1 + 5pn)

and
20, € F(20 + taty + 220, Yo + 2.0 + 127, D0 + tap1 + t20s),

which implies that v € D2F(x0, Yo, po, 0, z1, 0, p1,0)(z,7,p) and § € D*>K (po, yo, p1,0)(p)-
For the converse of (4.3), let v € |J U (D2F (20,0, p0,0,21,0,p1,0)(z,y,p) U{0}). If
Yo €£2(0) y€ D2 K (po,y0,p1,0)(p)
v = 0, then by the definition of G, for any ¢, — 0%, (pn,zn) — (p,x), we have

0 € G(po + tapr + t2pn, 20 + tax1 + t22,),

i.e., 0 € D?G(po,x0,0,p1,21,0). If v # 0, there exist yo € 2(0) and y € D?K(po,yo,p1,0)(p) such that
v € D?>F(z0, Y0, po,0,21,0,p1,0)(x,y,p). Thus, there are t,, — 07, (pn,yn) — (p,y) such that

Yo + .0 + toyn € K(po + tnpr + topn).

Since F' has the sccond-order proto-contingent derivative, with ¢, above, there exist (2, G pns0n) —
(x?y7p7 U) such that

20, € F(z0 + tam1 + todn, Yo + tn-0 + 295, po + tap1 + topn).

From the directionally metric subregularity of g and the proof similar to that of Theorem 3.11, there are
Y, — Y, D, — p With
Yo + tn.0 + 127, € K(po + tap1 + t2D,)
and
th0n € F(x0 + tyxy + 0 %0, Yo + tn-0 + 3 7,, 00 + tap1 + £,5,,),
which implies that
tn0 € G(po + tap1 + 1Dy, o + ta1 + 1 00),

Z"e'v UEDQG(pOax(%Oaplaxho)(pa'r)' U
From Theorem 3.11, Propositions 4.3 and 4.5, we obtain sensitivity analysis for (PEP) as follows.

Theorem 4.6. Let (po, o) € grS and (p1,x1) € grDS(po,xo). Suppose that all conditions of Theorem 3.11
and Propositions 4.3, 4.5 are fulfilled for (PEP). Then, for p € P,

D?S(po, z0,p1,21)(p) = {x € D*K (po, z0, p1, 1) (p)|
D2F(x07y07p0707x1707p170)(xﬂy7p) N (—ll'ltc) = (Z),Vy() S Q(O),Vy € D2K(p07y07p170)(p)}'

Theorem 4.6 can be considered as an extension of Theorem 3.1 in [19] from smooth cases with the first order
to set-valued cases with the second order.

5. CONCLUSIONS

In the paper, we study a topic related to equilibrium problems. More precisely, we establish second-order
sensitivity analysis for set-valued parametric equilibrium problems. Several examples are given to illustrate our
results.

For possible developments of this paper, since several theoretical models in optimization can be expressed as
special cases of equilibrium problems, such as constrained set-valued optimization problems, cone saddle point
problems, variational inequalities (see [18]), we can learn about applications of the obtained results in the paper
to these particular cases. Furthermore, finding answers for open questions in Remark 3.12 may be a promising
study.
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