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SECOND-ORDER SENSITIVITY ANALYSIS FOR PARAMETRIC EQUILIBRIUM
PROBLEMS IN SET-VALUED OPTIMIZATION
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Abstract. In the paper, we first establish relationships between second-order contingent derivatives
of a given set-valued map and that of the weak perturbation map. Then, these results are applied to
sensitivity analysis for parametric equilibrium problems in set-valued optimization.
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1. Introduction

For optimization-related problems, after having their optimal solutions/optimal value, we often face many
questions, such as: how do these solutions represent by the influence of other elements? How do you know that
the numerical results are acceptable? What are extrapolation limits of the obtained results? . . . Answers to these
questions are given by stability and sensitivity analyses. In mathematics, stability is understood as studies of
various continuity properties of solution maps/optimal-valued maps of concerned problems, while sensitivity
means studies of derivatives of the above-mentioned maps, see [12].

In the paper, we focus on sensitivity analysis in set-valued optimization. Many results have been obtained
in this topic. In [35, 36], the behavior of perturbation maps in terms of contingent derivatives was established.
The TP-derivative was introduced in [31] and employed in some conditions in [35]. In [32], Shi discussed some
properties of perturbation maps in convex vector optimization problems. In [34], Sun and Li proposed sensitivity
analysis for a general class of generalized vector quasi-equilibrium problems. Similar results for parametric weak
vector equilibrium problems were obtained in [19]. In [8], Chuong and Yao studied generalized Clarke epideriva-
tives of the efficient value map for parametric vector optimization . In [34], sensitivity analysis for parametric
vector optimization via lower Studniarski derivative was given. Inspired by these results, developments in sen-
sitivity analysis have been increasing recently, see [3, 7, 10,22,23,30].

From the above-mentioned results, the concept of derivatives is very essential to study sensitivity analysis. For
the differentiability in set-valued optimization, there have been many kinds of generalized derivatives introduced
with their applications in optimality conditions and duality. To get more information in optimality conditions,
derivatives of higher orders have been proposed. They have been employed in some results on sensitivity analysis
recently, see [3, 10,34,37].
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It is well known that the equilibrium problem plays an important role in optimization. Several types of this
problem, such as the variational inequality problem, the saddle point problem, the complementarity problem,
etc., have been investigated, see [6, 11, 14, 17, 20]. In detail, the lower semicontinuity of the solution maps of
the parametric weak equilibrium problem was studied in [6,14,17]. The existence of the generalized equilibrium
problem was obtained in [11,20]. However, to the best of our knowledge, there are very few results dealing with
higher-order sensitivity analysis for parametric equilibrium problems in set-valued optimization. This motivates
us to study second-order sensitivity analysis for parametric set-valued equilibrium problems in terms of the
weak efficiency in the paper.

The structure of the paper is as follows. In Section 2, we introduce some main notations and definitions
used in the sequel. Section 3 is devoted to study relationships between second-order contingent derivatives of
a set-valued map and that of the weak perturbation map. These results are applied to sensitivity analysis for
parametric equilibrium problems in Section 4.

2. Preliminaries

Let X,Y be normed spaces, C be a closed convex pointed cone in Y . For a nonempty subset A ⊆ Y , intA and
clA stand for the interior and closure of A, respectively. N, R, and R+ are used for sets of the natural numbers,
real numbers, and nonnegative real numbers, respectively. A nonempty convex subset B of C is called a base
of C if 0 6∈ clB and C = coneB := {rb|b ∈ B, r ≥ 0}. If intC 6= ∅, a0 ∈ A is said to be a weak efficient point of
A (a0 ∈WMinC A) if, see [21],

(A− {a0}) ∩ (−intC) = ∅.

For a given set-valued map F : X → 2Y , the domain, image and graph of F are defined by

domF := {x ∈ X|F (x) 6= ∅}, imF := {y ∈ Y |y ∈ F (x)},
grF := {(x, y) ∈ X × Y |y ∈ F (x)}, respectively.

The profile map of F is the map (F + C)(x) := F (x) + C.
Recall that F is called to be metric regular at (x0, y0) ∈ grF if there exist α, λ > 0 such that for all

x ∈ BX(x0, λ), y ∈ BY (y0, λ),
d(x, F−1(y)) ≤ αd(y, F (x)), (2.1)

where BX(x, r) stands for the open ball in X centered at x with radius r > 0.

Remark 2.1. When F is a set-valued map, the inclusion y ∈ F (x) can be considered as a constraint system
(including inequality and equality conditions on x) with respect to y as a parameter. The solution set of y ∈ F (x),
denoted by F−1(y), is nonempty iff y ∈ imF . An important question is raised: how is the behavior of F−1(y)
corresponding to perturbation in y? It means that we need to learn about: bounds of the solution map F−1(.)
(y as variable) under perturbations, and how large a perturbation in y can be to maintain good behavior of the
solution map F−1(.). The best answer for these questions is metric regularity.

Indeed, (2.1) gives us an estimate of the distance from a candidate x to the solution set with respect to y.
It is bounded above by a multiple α of the distance between y and F (x), which measures the residual when
y /∈ F (x).

If we fix y = y0 in (2.1), the metric regularity reduces to the metric subregularity. Let S be a nonempty
subset in X, F is metric subregular at (x0, y0) with respect to S if there exist α, λ > 0 such that for all
x ∈ BX(x0, λ) ∩ S,

d(x, F−1(y0) ∩ S) ≤ αd(y0, F (x)).

The metric regularity (metric subregularity) property of F is equivalent to the Aubin property (the calmness,
respectively) of the inverse map F−1 : Y → 2X , see [5]. The reader is referred to books [5,24,25,29] and papers
[9, 13,15,16] for more properties and applications of metric (sub)regularity.
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In the paper, we propose another concept of metric subregularity as follows. Let X,Y, Z be normed spaces,
F : X × Y → 2Z , ((x0, y0), z0) ∈ grF and (u1, v1) ∈ X × Y .

Definition 2.2. The map F is said to be directionally metric subregular of order 2 at ((x0, y0), z0) in direction
(u, v) ∈ X×Y with respect to a subset S ⊆ X×Y and (u1, v1) if there exist α, λ > 0 such that for all t ∈ (0, λ),
u′ ∈ BX(u, λ), v′ ∈ BY (v, λ) with (x0 + tu1 + t2u′, y0 + tv1 + t2v′) ∈ S,

d((x0 + tu1 + t2u′, y0 + tv1 + t2v′), F−1(z0) ∩ S) ≤ αd(z0, F (x0 + tu1 + t2u′, y0 + tv1 + t2v′)).

It is obvious to see that if F is metric subregular at ((x0, y0), z0) with respect to a subset S, then F is
directionally metric subregular of order 2 at ((x0, y0), z0) in direction (u, v) with respect to S and (u1, v1), for
all (u, v), (u1, v1) ∈ X × Y . Thus, Definition 2.2 can be considered as an extension of the metric subregularity.

Definition 2.3 ([5]). Let S ⊆ X, x0 ∈ clS.

(i) The first-order contingent (adjacent) cone of S at x0 is defined by

TS(x0) := {x ∈ X|∃tn → 0+,∃xn → x, x0 + tnxn ∈ S}
(T [S(x0) := {x ∈ X|∀tn → 0+,∃xn → x, x0 + tnxn ∈ S}, respectively).

(ii) For x1 ∈ X, the second-order contingent (adjacent) set of S at x0 with respect to x1 is defined by

T 2
S(x0, x1) := {x ∈ X|∃tn → 0+,∃xn → x, x0 + tnx1 + t2nxn ∈ S}

(T 2([)
S (x0, x1) := {x ∈ X|∀tn → 0+,∃xn → x, x0 + tnx1 + t2nxn ∈ S}, respectively).

Definition 2.4 ([5]). Let F : X → 2Y , (x0, y0) ∈ grF .

(i) The first-order contingent (adjacent) derivative of F at (x0, y0) is the set-valued map DF (x0, y0) : X →
2Y (D[F (x0, y0) : X → 2Y ) defined by

gr(DF (x0, y0)) := TgrF (x0, y0)

(gr(D[F (x0, y0)) := T [grF (x0, y0), respectively).

(ii) For (u1, v1) ∈ X × Y , the second-order contingent (adjacent) derivative of F at (x0, y0) with respect to
(u1, v1) is the set-valued map D2F (x0, y0, u1, v1) : X → 2Y (D2([)F (x0, y0, u1, v1) : X → 2Y ) defined by

gr(D2F (x0, y0, u1, v1)) := T 2
grF (x0, y0, u1, v1)

(gr(D2([)F (x0, y0, u1, v1)) := T
2([)
grF (x0, y0, u1, v1), respectively).

Definition 2.4 can be expressed in terms of sequences equivalently as follows

DF (x0, y0)(u) = {v ∈ Y |∃tn → 0+, ∃(un, vn)→ (u, v), y0 + tnvn ∈ F (x0 + tnun)}.
D[F (x0, y0)(u) = {v ∈ Y |∀tn → 0+, ∃(un, vn)→ (u, v), y0 + tnvn ∈ F (x0 + tnun)}.
D2F (x0, y0, u1, v1)(u) = {v ∈ Y |∃tn → 0+, ∃(un, vn)→ (u, v), y0 + tnv1 + t2nvn ∈ F (x0 + tnu1 + t2nun)}.
D2([)F (x0, y0, u1, v1)(u) = {v ∈ Y |∀tn → 0+, ∃(un, vn)→ (u, v), y0 + tnv1 + t2nvn ∈ F (x0 + tnu1 + t2nun)}.

Definition 2.5. Let F : X → 2Y , (x0, y0) ∈ grF , and (u1, v1) ∈ X × Y , the second-order lower contingent
derivative of F at (x0, y0) with respect to (u1, v1) is the set-valued map D2

l F (x0, y0, u1, v1) : X → 2Y defined
by

D2
l F (x0, y0, u1, v1)(u) := {v ∈ Y |∀tn → 0+,∀un → u,∃vn → v, y0 + tnv1 + t2nvn ∈ F (x0 + tnu1 + t2nun)}.
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We can check that D2
l F (x0, y0, u1, v1)(u) ⊆ D2([)F (x0, y0, u1, v1)(u) ⊆ D2F (x0, y0, u1, v1)(u).

Definition 2.6. Let F : X → 2Y , (x0, y0) ∈ grF , and (u1, v1) ∈ X × Y .

(i) The map F is said to have the second-order proto-contingent derivative at (x0, y0) with respect to (u1, v1)
if for all u ∈ X,

D2F (x0, y0, u1, v1)(u) = D2([)F (x0, y0, u1, v1)(u).

(ii) The map F is said to have the second-order semi-contingent derivative at (x0, y0) with respect to (u1, v1)
if for all u ∈ X,

D2F (x0, y0, u1, v1)(u) = D2
l F (x0, y0, u1, v1)(u).

The terminology “proto-contingent derivative” is used in the paper according to the idea of [26] and [28]. If
F has the second-order semi-contingent derivative then it has the second-order proto-contingent derivative.

3. Second-order contingent derivatives of weak perturbation maps

Suppose that X,Y are normed spaces, C ⊆ Y is a closed convex pointed cone, and F : X → 2Y . We first
establish relationships between the second-order contingent derivative of F and that of F + C.

Definition 3.1. Let F : X → 2Y , (x0, y0) ∈ grF , and (u1, v1) ∈ grDF (x0, y0). The second-order radial-
contingent derivative of F is defined by, for u ∈ X,

D
′′

r F (x0, y0, u1, v1)(u) := {v ∈ Y |∃tn → 0+,∃sn > 0,∃(un, vn)→ (u, v),
y0 + tnv1 + snvn ∈ F (x0 + tnu1 + snun)}.

Proposition 3.2. Let F : X → 2Y , (x0, y0) ∈ grF , and (u1, v1) ∈ grDF (x0, y0). Then, for u ∈ X,

D2F (x0, y0, u1, v1)(u) + C ⊆ D2(F + C)(x0, y0, u1, v1)(u). (3.1)

If C has a compact base and the condition

D
′′

r F (x0, y0, u1, v1)(0) ∩ (−C) = {0} (3.2)

is fulfilled, then (3.1) becomes an equality.

Proof. Let v ∈ D2F (x0, y0, u1, v1)(u) + C, i.e., there exist w ∈ D2F (x0, y0, u1, v1)(u) and c ∈ C such that
v = w + c. For w, there are tn → 0+, (un, wn)→ (u,w) such that

y0 + tnv1 + t2nwn ∈ F (x0 + tnu1 + t2nun),

which implies that
y0 + tnv1 + t2n(wn + c) ∈ F (x0 + tnu1 + t2nun) + C.

Thus, v = w + c ∈ D2(F + C)(x0, y0, u1, v1)(u).
For the converse conclusion, let v ∈ D2(F +C)(x0, y0, u1, v1)(u), then there exist tn → 0+, (un, vn)→ (u, v),

and cn ∈ C such that
y0 + tnv1 + t2nvn − cn ∈ F (x0 + tnu1 + t2nun).

Since C has a compact base, we may assume that cn = αnbn with αn > 0 and bn → b(b ∈ C \ {0}), which
implies that

y0 + tnv1 + t2nvn − αnbn ∈ F (x0 + tnu1 + t2nun). (3.3)

We consider two cases as follows:
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Case 1: αn/t2n → +∞. From (3.3), one has

y0 + tnv1 + αn

(
t2n
αn

vn − bn
)
∈ F

(
x0 + tnu1 + αn

(
t2n
αn

un

))
,

i.e., −b ∈ D′′

r F (x0, y0, u1, v1)(0), which contradicts (3.2).
Case 2: αn/t2n is bounded and we suppose that αn/t2n → r ≥ 0. It follows from (3.3) that

y0 + tnv1 + t2n

(
vn −

αn
t2n
bn

)
∈ F (x0 + tnu1 + t2nun).

Thus, v − rb ∈ D2F (x0, y0, u1, v1)(u), i.e., v ∈ D2F (x0, y0, u1, v1)(u) + C. �

The following example illustrates that the condition (3.2) is necessary for the inverse conclusion of (3.1).

Example 3.3. Let X = R2, Y = R, and C = R+. We consider the following set-valued map

F (x1, x2) :=

{
{(x1 + x2)/2,−1}, if x1 = x2 ≥ 0,

{−1/2}, otherwise.

Let (x0, y0) = ((0, 0), 0) and (u1, v1) = ((1, 1), 1) ∈ grDF (x0, y0), by calculating, we get

(F + C)(x1, x2) =

{
{y ∈ Y |y ≥ −1}, if x1 = x2 ≥ 0,

{y ∈ Y |y ≥ −1/2}, otherwise,

and

D2F (x0, y0, u1, v1)(x1, x2) =

{
{(x1 + x2)/2}, if x1 = x2,

∅, otherwise,

D2(F + C)(x0, y0, u1, v1)(x1, x2) = R.

Thus, D2F (x0, y0, u1, v1)(x1, x2)+C  D2(F+C)(x0, y0, u1, v1)(x1, x2). The reason is that the condition (3.2)
does not hold. Indeed, by taking tn := 1/n, sn := 1, un := (−1/n, 0)→ (0, 0), and vn := −1/2− 1/n→ −1/2,
we can check that

y0 + tnv1 + snvn ∈ F (x0 + tnu1 + snun),

i.e., −1/2 ∈ D′′

r F (x0, y0, u1, v1)(0) ∩ (−C).

Lemma 3.4. Let A ⊆ Y be a nonempty subset and Ĉ ⊆ intC ∪ {0} be a closed convex pointed cone. Then,

WMinCA = WMinC(A+ Ĉ).

Proof. “⊆:” Let y0 ∈WMinCA, suppose that y0 6∈WMinC(A+ Ĉ), i.e., there exist y ∈ A and c ∈ Ĉ such that
y + c− y0 ∈ −intC. This implies that y − y0 ∈ −intC − c ⊆ −intC, which contradicts the weak efficiency of y0.

“⊇:” Let y0 ∈ WMinC(A + Ĉ), i.e., y0 ∈ A + Ĉ and (A + Ĉ − {y0}) ∩ (−intC) = ∅. It follows from the
closeness of Ĉ that 0 ∈ Ĉ, so

(A− {y0}) ∩ (−intC) = ∅. (3.4)

We just need to prove that y0 ∈ A. Suppose to the contrary, i.e., y0 6∈ A, then there exists y ∈ A (y 6= y0)
such that y0 ∈ y + Ĉ (since y0 ∈ A+ Ĉ). Consequently, one gets

y − y0 ∈ (A− {y0}) ∩ (−Ĉ) ⊆ (A− {y0}) ∩ (−intC),

which contradicts (3.4). �
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We cannot replace Ĉ by C in Lemma 3.4 as indicated by the following example

Example 3.5. Let Y = R2, C = R2
+, and A = {(0, 0)}. Then,

WMinCA(= {(0, 0)})  WMinC(A+ C)(= R2
+ \ intR2

+).

From Proposition 3.2 and Lemma 3.4, we obtain a proposition as follows.

Proposition 3.6. Let F : X → 2Y , (x0, y0) ∈ grF , (u1, v1) ∈ grDF (x0, y0), and Ĉ ⊆ intC ∪ {0} be a closed
convex pointed cone. If Ĉ has a compact base and the condition (3.2) is fulfilled with respect to Ĉ, then for
u ∈ X,

WMinCD2F (x0, y0, u1, v1)(u) = WMinCD2(F + Ĉ)(x0, y0, u1, v1)(u).

Example 3.7. Let X = R, Y = R2, C = R2
+ and F : X → 2Y be defined by F (x) := {(y1, y2) ∈ Y |y1+y2 ≥ 0}.

With Ĉ := {(y1, y2) ∈ Y |y2 ≤ 2y1} ∩ {(y1, y2) ∈ Y |y2 ≥ (1/2)y1}, Ĉ is a closed convex pointed cone having a
compact base and Ĉ ⊆ intC ∪ {0}.

Let x0 = 0, y0 = (0, 0), u1 = 2 and v1 = (1, 1), we now check that (3.2) is fulfilled with respect to Ĉ. In fact,
let w = (w1, w2) ∈ D′′

r F (x0, y0, u1, v1)(0), then there are tn → 0+, sn > 0, un → 0 and (w1
n, w

2
n) → (w1, w2)

such that
(0, 0) + tn(1, 1) + sn(w1

n, w
2
n) ∈ F (0 + 2tn + snun), (3.5)

i.e.,
2tn + sn(w1

n + w2
n) ≥ 2tn + snun.

Thus, w ∈ {(w1, w2) ∈ Y |w1 + w2 ≥ 0}, which implies that D
′′

r F (x0, y0, u1, v1)(0) ⊆ {(w1, w2) ∈ Y |w1 +
w2 ≥ 0}. For the converse inclusion, let w ∈ {(w1, w2) ∈ Y |w1 + w2 ≥ 0} and by taking tn = 1/n, sn = 1,
un = 0→ 0, (w1

n, w
2
n) = w → w, then (3.5) is satisfied, i.e., w ∈ D′′

r F (x0, y0, u1, v1)(0). Hence, we have

D
′′

r F (x0, y0, u1, v1)(0) = {(w1, w2) ∈ Y |w1 + w2 ≥ 0}.

Consequently, one gets
D

′′

r F (x0, y0, u1, v1)(0) ∩ (−Ĉ) = {0}.

Therefore, Proposition 3.6 is fulfilled. Indeed, by a direct calculation, we obtain

WMinCD2F (x0, y0, u1, v1)(u) = WMinCD2(F + Ĉ)(x0, y0, u1, v1)(u)
= {(w1, w2) ∈ Y |w1 + w2 = u}.

Using the above results, relationships between the second-order contingent derivative of F and that of the
weak perturbation map, denoted by W (x) := WMinCF (x), are implied. Recall that the map F is said to have
the weak domination property near x0 with respect to Ĉ, where Ĉ ⊆ intC ∪{0} is a closed convex pointed cone,
if there exists a neighborhood V of x0 such that for all x ∈ V ,

F (x) ⊆WMinCF (x) + Ĉ,

equivalently,
F (x) ⊆W (x) + Ĉ.

Lemma 3.8. Let (x0, y0) ∈ grW and (u1, v1) ∈ grDF (x0, y0). If F has the weak domination property near x0

with respect to Ĉ, then for u ∈ X,

D2(F + Ĉ)(x0, y0, u1, v1)(u) = D2(W + Ĉ)(x0, y0, u1, v1)(u). (3.6)
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Proof. We first prove that F (x) + Ĉ = W (x) + Ĉ for all x ∈ V , where V is a neighborhood of x0. Indeed, one
has

F (x) + Ĉ ⊆ W (x) + Ĉ (the weak domination property)

= WMinCF (x) + Ĉ

⊆ F (x) + Ĉ.

Let v ∈ D2(F + Ĉ)(x0, y0, u1, v1)(u), i.e., there exist tn → 0+, (un, vn)→ (u, v) such that

y0 + tnv1 + t2nvn ∈ (F + Ĉ)(x0 + tnu1 + t2nun) = F (x0 + tnu1 + t2nun) + Ĉ.

For n large enough, x0 + tnu1 + t2nun ∈ V then, equivalently, we get

y0 + tnv1 + t2nvn ∈W (x0 + tnu1 + t2nun) + Ĉ,

i.e., v ∈ D2(W + Ĉ)(x0, y0, u1, v1)(u). �

Theorem 3.9. Let (x0, y0) ∈ grW , (u1, v1) ∈ grDW (x0, y0), and Ĉ ⊆ intC ∪ {0} be a closed convex pointed
cone. If F has the weak domination property near x0 with respect to Ĉ, Ĉ has a compact base, and the condition
(3.2) is fulfilled with respect to Ĉ, then for u ∈ X,

WMinCD2F (x0, y0, u1, v1)(u) = WMinCD2W (x0, y0, u1, v1)(u).

Proof. Since D
′′

rW (x0, y0, u1, v1)(u) ⊆ D′′

r F (x0, y0, u1, v1)(u), it follows from the condition (3.2) that

D
′′

rW (x0, y0, u1, v1)(0) ∩ (−Ĉ) = {0}.

Hence, from Proposition 3.6 and Lemma 3.8, one obtains

WMinCD2F (x0, y0, u1, v1)(u) = WMinCD2(F + Ĉ)(x0, y0, u1, v1)(u)

= WMinCD2(W + Ĉ)(x0, y0, u1, v1)(u)

= WMinCD2W (x0, y0, u1, v1)(u).

�

The following example illustrates Theorem 3.9.

Example 3.10. Let X = R2, Y = R, C = R+, and F (x1, x2) := {y ∈ Y |y ≥ x1 + x2}. Let (x0, y0) = ((0, 0), 0)
and (u1, v1) = ((1, 1), 2) ∈ grDF (x0, y0), by calculating, we get

W (x1, x2) = WMinCF (x1, x2) = {x1 + x2},

and
D2F (x0, y0, u1, v1)(x1, x2) = {y ∈ Y |y ≥ x1 + x2},

D2W (x0, y0, u1, v1)(x1, x2) = {x1 + x2}.

It is easy to check that all conditions of Theorem 3.9 are fulfilled. Indeed, we now show that (3.2) is satisfied.
Let v ∈ D′′

r F (x0, y0, u1, v1)(0), by Definition 3.1, there exist tn → 0+, sn > 0, (u1
n, u

2
n) → (0, 0), vn → v such

that
0 + 2tn + snvn ∈ F (0 + tn + snu

1
n, 0 + tn + snu

2
n), (3.7)

i.e.,
2tn + snvn ≥ 2tn + sn(u1

n + u2
n),
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which implies that vn ≥ u1
n + u2

n. Thus, v ≥ 0, i.e., D
′′

r F (x0, y0, u1, v1)(0) ⊆ R+.
For the converse inclusion, let v ∈ R+, there exist tn = 1/n, sn = 1, u1

n = u2
n = 1/n, vn = v + u1

n + u2
n such

that (3.7) is satisfied, i.e., v ∈ D′′

r F (x0, y0, u1, v1)(0). Hence, D
′′

r F (x0, y0, u1, v1)(0) = R+(= C), which means
that (3.2) is fulfilled. Therefore, by Theorem 3.9, we have

WMinCD2F (x0, y0, u1, v1)(x1, x2) = WMinCD2W (x0, y0, u1, v1)(x1, x2) = {x1 + x2}.

Theorem 3.11. Let (x0, y0) ∈ grW , (u1, v1) ∈ grDW (x0, y0), and Ĉ ⊆ intC ∪ {0} be a closed convex pointed
cone. If all conditions of Theorem 3.9 are satisfied, then for u ∈ X,

WMinCD2F (x0, y0, u1, v1)(u) ⊆ D2W (x0, y0, u1, v1)(u). (3.8)

If, additionally, F has the second-order proto-contingent derivative at (x0, y0) and the map g : (X×Y )2 → R+

defined by g(β1, γ1, β2, γ2) := ||β1 − β2|| is directionally metric subregular of order 2 at ((x0, y0, x0, y0), 0) in
the direction (u, v, u, v̂) with respect to grW × grF and (u1, v1), for all (u, v) ∈ grD2W (x0, y0, u1, v1) and
(u, v̂) ∈ grD2F (x0, y0, u1, v1), then (3.8) becomes an equality.

Proof. The inclusion (3.8) can be implied directly from Theorem 3.9. For the converse inclusion, let v ∈
D2W (x0, y0, u1, v1)(u), then there exist tn → 0+, (un, vn)→ (u, v) such that

y0 + tnv1 + t2nvn ∈W (u0 + tnu1 + t2nun).

If v 6∈ WMinC D2F (x0, y0, u1, v1)(u), then there exists v̂ ∈ D2F (x0, y0, u1, v1)(u) with v̂ − v ∈ −intC.
Because F has the second-order proto-contingent derivative at (x0, y0), with tn above, there is (ûn, v̂n)→ (u, v̂)
satisfying

y0 + tnv1 + t2nv̂n ∈ F (x0 + tnu1 + t2nûn).

It follows from the directionally metric subregularity that there exist α > 0 and λ > 0 such that for every
t ∈ (0, λ) and (u

′

1, v
′

1, u
′

2, v
′

2) ∈ BX×Y ((u, v), λ)×BX×Y ((u, v̂), λ) with

(x0 + tu1 + t2u
′

1, y0 + tv1 + t2v
′

1, x0 + tu1 + t2u
′

2, y0 + tv1 + t2v
′

2) ∈ grW × grF,

and

d
(

(x0 + tu1 + t2u
′

1, y0 + tv1 + t2v
′

1, x0 + tu1 + t2u
′

2, y0 + tv1 + t2v
′

2), g−1(0) ∩ (grW × grF )
)

≤ αd
(

0, g
(
x0 + tu1 + t2u

′

1, y0 + tv1 + t2v
′

1, x0 + tu1 + t2u
′

2, y0 + tv1 + t2v
′

2

))
. (3.9)

It is easy to see that tn ∈ (0, λ) and (un, vn, ûn, v̂n) ∈ BX×Y ((u, v), λ)×BX×Y ((u, v̂), λ) for n large enough.
Thus, from (3.9), for n large enough, there exists (xn, yn, x̂n, ŷn) ∈ grW × grF with xn = x̂n such that

||
(
x0 + tnu1 + t2nun, y0 + tnv1 + t2nvn, x0 + tnu1 + t2nûn, y0 + tnv1 + t2nv̂n

)
− (xn, yn, x̂n, ŷn) ||

< αtn
2||un − ûn||+ t3n,

which implies ∥∥x0 + tnu1 + t2nun − xn
∥∥ < αt2n||un − ûn||+ t3n,∥∥y0 + tnv1 + t2nvn − yn
∥∥ < αt2n||un − ûn||+ t3n,∥∥y0 + tnv1 + t2nv̂n − ŷn
∥∥ < αt2n||un − ûn||+ t3n.

Consequently, ∥∥∥∥xn − x0 − tnu1

t2n
− un

∥∥∥∥ < α||un − ûn||+ tn,
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− vn

∥∥∥∥ < α||un − ûn||+ tn,∥∥∥∥ ŷn − y0 − tnv1t2n
− v̂n

∥∥∥∥ < α||un − ûn||+ tn.

By setting v1
n :=

yn − y0 − tnv1
t2n

, v̂1
n :=

ŷn − y0 − tnv1
t2n

and un :=
xn − x0 − tnu1

t2n
, then v1

n → v, v̂1
n → v̂,

un → u and

y0 + tnv1 + t2nv
1
n = yn ∈W (xn) = WMinCF (x0 + tnu1 + t2nun),

y0 + tnv1 + t2nv̂
1
n = ŷn ∈ F (x̂n) = F (xn) = F (x0 + tnu1 + t2nun).

Hence, for n large enough, one has

(y0 + tnv1 + t2nv̂
1
n)− (y0 + tnv1 + t2nv

1
n) = t2n(v̂1

n − v1
n) ∈ −intC,

which contradicts the fact that y0 + tnv1 + t2nv
1
n ∈WMinC F (u0 + tnu1 + t2nun). �

Remark 3.12. The converse conclusion of (3.8) was studied in some existing results using other kinds of
generalized derivatives. For example, Anh and Khanh assumed that F has the semi-variational set of order
m in Proposition 4.1 of [3]. In Proposition 5.2 of [10], the authors proposed an assumption on the mth-order
semi-contingent-type derivative to get the converse inclusion of (3.8) in terms of contingent-type derivatives. In
[3, 10], these conditions are called “proto-variational set” and “proto-contingent-type derivative”, respectively.
However, by Penot’s idea in [26], we use the terminology “semi-variational set” and “semi-contingent-type
derivative” here to compare them with our results conveniently. In [34], the authors employed lower Studniarski
derivatives in their main results.

The above-mentioned conditions require the existence of some kinds of lower derivatives, but it is quite strict.
Moreover, “semi-variational set” and “semi-contingent-type derivative” mean “semi-contingent derivative” in
the paper. By Definition 2.6, we try to use the “proto-contingent derivative” property to obtain the converse
conclusion of (3.8). With a weakened assumption, we need to have some supplementary conditions. One of them
is introduced in Theorem 3.11, and it is not difficult to check this condition (see Example 3.13).

From the above observation, we propose some open questions as follows: are there other conditions to get the
converse inclusion of (3.8)? If yes, how are relationships between them?

The following example shows a case where Theorem 3.11 can be employed, while the results mentioned in
Remark 3.12 cannot.

Example 3.13. Let X = R2, Y = R, C = R+ and F : R2 → R be defined by

F (x1, x2) :=

 ∅, if x1, x2 ∈
{

1
n3
|n ∈ N

}
,

{(x1 + x2)/2}, otherwise.

It is obvious that W (x1, x2) = WMinCF (x1, x2) = F (x1, x2). Let (x0, y0) = ((0, 0), 0) and (u1, v1) =
((1, 1), 1) ∈ grDW (x0, y0). We can check that F has the second-order proto-contingent derivative at ((0, 0), 0)
with respect to (u1, v1) and

D2F (x0, y0, u1, v1)(x1, x2) = {(x1 + x2)/2},

but conditions mentioned in Proposition 4.1 of [3] and Proposition 5.2 of [10] do not hold, and the second-order
lower Studniarski derivative in Theorem 4.2 of [34] does not exist. Thus, these results do not work in this case.
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However, Theorem 3.11 is useful for this example. Indeed, all conditions of Theorem 3.11 are satisfied. For
instance, we just check that the directionally metric subregularity of order 2 of the map g in Theorem 3.11 is
fulfilled. In this example, the map g : R2 × R× R2 × R→ R+ is given by

g(x1, x2, w1, y1, y2, w2) := ||(x1, x2)− (y1, y2)||.

By Definition 2.2, let (u1, u2, (u1 + u2)/2) ∈ grD2W (x0, y0, u1, v1), (u
′

1, u
′

2, (u
′

1 + u
′

2)/2) ∈
grD2F (x0, y0, u1, v1) and λ > 0, it is enough to show that there exists α > 0 such that for all t ∈ (0, λ),
(û1, û2, v̂) ∈ BR3((u1, u2, (u1 + u2)/2), λ), (u1, u2, v) ∈ BR3((u

′

1, u
′

2, (u
′

1 + u
′

2)/2), λ) with

(0 + t+ t2û1, 0 + t+ t2û2, 0 + t+ t2v̂, 0 + t+ t2u1, 0 + t+ t2u2, 0 + t+ t2v) ∈ grW × grF,

then
d((t+ t2û1, t+ t2û2, t+ t2v̂, t+ t2u1, t+ t2u2, t+ t2v), g−1(0) ∩ (grW × grF ))

≤ αd(0, g(t+ t2û1, t+ t2û2, t+ t2v̂, t+ t2u1, t+ t2u2, t+ t2v)).

Since (t + t2û1, t + t2û2, t + t2v̂, t + t2u1, t + t2u2, t + t2v) ∈ grW × grF , we get v̂ = (û1 + û2)/2 and
v = (u1 + u2)/2. Thus, we need to find α such that

inf
(x,y)∈R2,
v∈F (x,y),
w∈G(x,y)

{
||(t+ t2û1, t+ t2û2)− (x, y)||+ ||(t+ t2u1, t+ t2u2)− (x, y)||+ |t+ t2v̂ − v|+ |t+ t2v − w|

}

≤ αt2||(û1, û2)− (u1, u2)||. (3.10)

We can see that

inf
(x,y)∈R2,
v∈F (x,y),
w∈G(x,y)

{
||(t+ t2û1, t+ t2û2)− (x, y)||+ ||(t+ t2u1, t+ t2u2)− (x, y)||+ |t+ t2v̂ − v|+ |t+ t2v − w|

}
= inf

(x,y)∈R2
{||(t+ t2û1, t+ t2û2)− (x, y)||+ ||(t+ t2u1, t+ t2u2)− (x, y)||

+|t+ t2(û1 + û2)/2− (x+ y)/2|+ |t+ t2(u1 + u2)/2− (x+ y)/2|}.

By setting

x :=
t+ t2û1 + t+ t2u1

2
= t+

t2

2
(û1 + u1)

and

y :=
t+ t2û2 + t+ t2u2

2
= t+

t2

2
(û2 + u2),

then

||(t+ t2û1, t+ t2û2)− (x, y)|| = t2n
2
||(û1, û2)− (u1, u2)||,

|t+ t2(û1 + û2)/2− (x+ y)/2| = t2n
4
|(û1 − u1) + (û2 − u2)|

≤ t2n
4

√
((û1 − u1)2 + (û2 − u2)2)(12 + 12)

≤ (
√

2/4)t2||(û1, û2)− (u1, u2)||.

Similarly, we get

||(t+ t2u1, t+ t2u2)− (x, y)|| = t2n
2
||(û1, û2)− (u1, u2)||,

|t+ t2(u1 + u2)/2− (x+ y)/2| ≤ (
√

2/4)t2||(û1, û2)− (u1, u2)||,
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which implies that

inf
(x,y)∈R2,
v∈F (x,y),
w∈G(x,y)

{
||(t+ t2û1, t+ t2û2)− (x, y)||+ ||(t+ t2u1, t+ t2u2)− (x, y)||+ |t+ t2v̂ − v|+ |t+ t2v − w|

}

≤ (1 +
√

2/2)t2||(û1, û2)− (u1, u2)||.

Thus, (3.10) is true for any α ≥ 1 +
√

2/2. It means that there exist λ > 0 and α ≥ 1 +
√

2/2 for which
Definition 2.2 is satisfied with respect to the map g in this example, i.e., g is directionally metric subregular of
order 2.

Therefore, it follows from Theorem 3.11 that

D2W (x0, y0, u1, v1)(x1, x2) ⊆WMinCD2F (x0, y0, u1, v1)(x1, x2).

4. Sensitivity analysis for parametric equilibrium problems

Let X,P, Y be normed spaces and C ⊆ Y be a closed convex pointed cone. We consider the following
parametric equilibrium problem (PEP): find x ∈ K(p) such that

F (x, y, p) ∩ (−intC) = ∅, ∀y ∈ K(p),

where F : X ×X × P → 2Y and K : P → 2X . For each p ∈ P , the solution map of (PEP) is denoted by

S(p) := {x ∈ K(p)|F (x, y, p) ∩ (−intC) = ∅, ∀y ∈ K(p)}.

The map S can be rewritten by for x ∈ X and p ∈ P ,

S(p) = {x ∈ K(p)|0 ∈W (p, x)},

where W (p, x) := WMinCG(p, x) and G(p, x) :=
⋃
y∈K(p)(F (x, y, p) ∪ {0}).

Definition 4.1. ([27]) The map S is said to be Robinson metric regular around (p0, x0) ∈ grS if there exist
µ > 0, γ > 0, and neighborhoods U of p0, V of x0 such that

d(x, S(p)) ≤ µd(0,W (p, x)), whenever p ∈ U, x ∈ V, d(0,W (p, x)) < γ.

We now propose an extension of Definition 4.1 as follows

Definition 4.2. Let (p0, x0) ∈ grS and (x1, p1) ∈ X × P . The map S is said to be directionally Robinson
metric regular of order 2 along K around (p0, x0) in the direction (x, p) with respect to (x1, p1) if there exist
µ > 0, γ > 0, λ > 0 such that

d(x0 + tx1 + t2x′, S(p0 + tp1 + t2p′)) ≤ µd(0,W (p0 + tp1 + t2p′, x0 + tx1 + t2x′)),

whenever t ∈ (0, λ), p′ ∈ BP (p, λ), x′ ∈ BX(x, λ),

x0 + tx1 + t2x′ ∈ K(p0 + tp1 + t2p′)

and
d(0,W (p0 + tp1 + t2p′, x0 + tx1 + t2x′)) < γ.

It is obvious to see that if S is Robinson metric regular around (p0, x0) then S is directionally Robinson metric
regular of order 2 around (p0, x0) in the direction (x, p) with respect to (x1, p1), for all (x, p), (x1, p1) ∈ X × P .
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Proposition 4.3. Let (p0, x0) ∈ grS and (p1, x1) ∈ grDS(p0, x0). Then, for p ∈ P ,

D2S(p0, x0, p1, x1)(p) ⊆ {x ∈ D2K(p0, x0, p1, x1)(p)|0 ∈ D2W (p0, x0, 0, p1, x1, 0)(p, x)}. (4.1)

If, additionally, S is directionally Robinson metric regular of order 2 along K around (p0, x0) in the direction
(x, p) ∈M with respect to (p1, x1), where M := {(p, x)|(p, x, 0) ∈ grD2W (p0, x0, 0, p1, x1, 0)}, K has the second-
order proto contingent derivative at (p0, x0) with respect to (p1, x1), and the map g : (P ×X)× (P ×X × Y )→
R+ defined by g(β1, γ1, β2, γ2, δ) := ||β1 − β2|| + ||γ1 − γ2|| is directionally metric subregular of order 2 at
((p0, x0, p0, x0, 0), 0) in the direction (p, x, p, x̂, 0) with respect to grK × grW and (p1, x1), for all (p, x) ∈
grD2K(p0, x0, p1, x1) and (p, x̂, 0) ∈ grD2W (p0, x0, 0, p1, x1, 0), then (4.1) becomes an equality.

Proof. Let x ∈ D2S(p0, x0, p1, x1)(p), then there exist tn → 0+, (pn, xn)→ (p, x) such that

x0 + tnx1 + t2nxn ∈ S(p0 + tnp1 + t2npn).

By the definition of S, we get

x0 + tnx1 + t2nxn ∈ K(p0 + tnp1 + t2npn)

and
0 ∈W (p0 + tnp1 + t2npn, x0 + tnx1 + t2nxn),

which implies that x ∈ D2K(p0, x0, p1, x1)(p) and 0 ∈ D2W (p0, x0, 0, p1, w1, 0)(p, x).
For the converse of (4.1), let x ∈ D2K(p0, x0, p1, x1)(p) such that 0 ∈ D2W (p0, x0, 0, p1, w1, 0)(p, x). For

x ∈ D2K(p0, x0, p1, x1)(p), there are tn → 0+, (pn, xn)→ (p, x) such that

x0 + tnx1 + t2nxn ∈ K(p0 + tnp1 + t2npn).

Due to the second-order proto-contingent derivative property ofK, with tn above, there exists(p̂n, x̂n)→ (p, x)
and zn → 0 such that

t2nzn ∈W (p0 + tnp1 + t2np̂n, x0 + tnx1 + t2nx̂n).

From the directionally metric subregularity of g and the proof similar to that of Theorem 3.2, we get
(un, vn)→ (p, x) and wn → 0 satisfying

x0 + tnx1 + t2nvn ∈ K(p0 + tnp1 + t2nun)

and
t2nwn ∈W (p0 + tnp1 + t2nun, x0 + tnx1 + t2nvn).

Since S is directionally Robinson metric regular of order 2 along K around (p0, x0), there exist λ > 0, µ > 0,
γ > 0 such that for n large enough, we get xn ∈ BX(x, λ), pn ∈ BP (p, λ),

d(0,W (p0 + tnp1 + t2nun, x0 + tnx1 + t2nvn)) ≤ t2n||wn|| < γ,

and

d(x0 + tnx1 + t2nvn, S(p0 + tnp1 + t2nun)) ≤ µd(0,W (p0 + tnp1 + t2nun, x0 + tnx1 + t2nvn)) ≤ µt2n||wn||.

Thus, for n large enough, there exists yn ∈ S(p0 + tnp1 + t2nun) such that∥∥x0 + tnx1 + t2nvn − yn
∥∥ < µt2n||wn||+ t3n,

which implies that ∥∥∥∥yn − x0 − tnx1

t2n
− vn

∥∥∥∥ < µ||wn||+ tn.

Taking n→ +∞, then v̂n := (yn − x0 − tnx1)/t2n → x, i.e., we get x ∈ D2S(p0, x0, p1, x1)(p). �
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The following definition is necessary for our next result.

Definition 4.4. Let F : X → 2Y and (x0, y0) ∈ grF . The mth-order Studniarski derivative of F is defined by,
for x ∈ X,

Dm
S F (x0, y0)(u) := {v ∈ Y |∃tn → 0+,∃(un, vn)→ (u, v), y0 + tmn vn ∈ F (x0 + tnun)}.

The reader is referred to [1, 2, 4, 33, 34] for more properties and applications of this derivative. In the paper,
we employ the second-order Studniarski derivative to obtain the following proposition.

Proposition 4.5. Let X be finite dimensional, (p0, x0) ∈ grG and (p1, x1) ∈ grDG(p0, x0). Suppose that grF
is closed, grK is compact, and for each y0 ∈ Ω(0), where Ω(0) := {y ∈ K(p0)|0 ∈ F (x0, y, p0)},

D2
SK(p0, y0)(0) = {0}. (4.2)

Then, for (p, x) ∈ P ×X, one gets

D2G(p0, x0, 0, p1, x1, 0)(p, x) ⊆
⋃

y0∈Ω(0)

⋃
y∈D2K(p0,y0,p1,0)(p)

(
D2F (x0, y0, p0, 0, x1, 0, p1, 0)(x, y, p) ∪ {0}

)
. (4.3)

If, additionally, F has the second-order proto-contingent derivative at (x0, y0, p0) and the map g : (X ×
X × P × Y ) × (P × X) → R+ defined by g((β1, γ1, ρ1, υ1), (ρ2, γ2)) := ||ρ1 − ρ2|| + ||γ1 − γ2|| is directionally
metric subregular of order 2 at ((x0, y0, p0, 0, p0, y0), 0) in the direction (x, y, p, v, p̂, ŷ) with respect to grF ×grK
and (x1, 0, p1, 0, p1, 0), for all (x, y, p, v) ∈ grD2F (x0, y0, p0, 0, x1, 0, p1, 0) and (p̂, ŷ) ∈ grD2K(p0, y0, p1, 0), then
(4.3) becomes an equality.

Proof. Let v ∈ D2G(p0, x0, p1, x1)(p, x). If v = 0, it is trivial. We assume that v 6= 0, then there exist tn → 0+,
(pn, xn, vn)→ (p, x, v) such that

0 + tn.0 + t2nvn ∈ G(p0 + tnp1 + t2npn, x0 + tnx1 + t2nxn).

By the definition of G, there exists yn ∈ K(p0 + tnp1 + t2npn) such that

t2nvn ∈ F (x0 + tnx1 + t2nxn, yn, p0 + tnp1 + t2npn),

Since grK is compact, {yn} has a subsequence converging to y0 ∈ K(p0). It follows from the closeness of grF
that 0 ∈ F (x0, y0, p0), i.e., y0 ∈ Ω(0).

We now prove that {(yn − y0)/t2n} is bounded. Suppose to the contrary, i.e., ||yn − y0||/t2n → +∞, then one
has

y0 + ||yn − y0||
yn − y0
||yn − y0||

= yn ∈ K

(
p0 +

√
||yn − y0||

tn√
||yn − y0||

p1 + ||yn − y0||
t2n

||yn − y0||
pn

)

= K

(
p0 +

√
||yn − y0||

(
tn√

||yn − y0||
p1 +

√
||yn − y0||

t2n
||yn − y0||

pn

))
.

Since X is finite dimensional, we assume that (yn − y0)/||yn − y0|| has a subsequence converging to ŷ with
||ŷ|| = 1. It is easy to see that

tn√
||yn − y0||

p1 +
√
||yn − y0||

t2n
||yn − y0||

pn → 0,

so with sn :=
√
||yn − y0|| → 0+, we obtain ŷ ∈ D2

SK(p0, y0)(0), which contradicts (4.2). Thus, {(yn − y0)/t2n}
is bounded.
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By setting yn := (yn − y0)/t2n, without loss of generality, we suppose that yn → y. Consequently, one gets

y0 + tn.0 + t2nyn ∈ K(p0 + tnp1 + t2npn)

and
t2nvn ∈ F (x0 + tnx1 + t2nxn, y0 + tn.0 + t2nyn, p0 + tnp1 + t2npn),

which implies that v ∈ D2F (x0, y0, p0, 0, x1, 0, p1, 0)(x, y, p) and y ∈ D2K(p0, y0, p1, 0)(p).
For the converse of (4.3), let v ∈

⋃
y0∈Ω(0)

⋃
y∈D2K(p0,y0,p1,0)(p)

(
D2F (x0, y0, p0, 0, x1, 0, p1, 0)(x, y, p) ∪ {0}

)
. If

v = 0, then by the definition of G, for any tn → 0+, (pn, xn)→ (p, x), we have

0 ∈ G(p0 + tnp1 + t2npn, x0 + tnx1 + t2nxn),

i.e., 0 ∈ D2G(p0, x0, 0, p1, x1, 0). If v 6= 0, there exist y0 ∈ Ω(0) and y ∈ D2K(p0, y0, p1, 0)(p) such that
v ∈ D2F (x0, y0, p0, 0, x1, 0, p1, 0)(x, y, p). Thus, there are tn → 0+, (pn, yn)→ (p, y) such that

y0 + tn.0 + t2nyn ∈ K(p0 + tnp1 + t2npn).

Since F has the second-order proto-contingent derivative, with tn above, there exist (x̂n, ŷn, p̂n, v̂n) →
(x, y, p, v) such that

t2nv̂n ∈ F (x0 + tnx1 + t2nx̂n, y0 + tn.0 + t2nŷn, p0 + tnp1 + t2np̂n).

From the directionally metric subregularity of g and the proof similar to that of Theorem 3.11, there are
yn → y, pn → p with

y0 + tn.0 + t2nyn ∈ K(p0 + tnp1 + t2npn)

and
t2nv̂n ∈ F (x0 + tnx1 + t2nx̂n, y0 + tn.0 + t2nyn, p0 + tnp1 + t2npn),

which implies that
t2nv̂ ∈ G(p0 + tnp1 + t2npn, x0 + tnx1 + t2nx̂n),

i.e., v ∈ D2G(p0, x0, 0, p1, x1, 0)(p, x). �

From Theorem 3.11, Propositions 4.3 and 4.5, we obtain sensitivity analysis for (PEP) as follows.

Theorem 4.6. Let (p0, x0) ∈ grS and (p1, x1) ∈ grDS(p0, x0). Suppose that all conditions of Theorem 3.11
and Propositions 4.3, 4.5 are fulfilled for (PEP). Then, for p ∈ P ,

D2S(p0, x0, p1, x1)(p) = {x ∈ D2K(p0, x0, p1, x1)(p)|
D2F (x0, y0, p0, 0, x1, 0, p1, 0)(x, y, p) ∩ (−intC) = ∅,∀y0 ∈ Ω(0),∀y ∈ D2K(p0, y0, p1, 0)(p)}.

Theorem 4.6 can be considered as an extension of Theorem 3.1 in [19] from smooth cases with the first order
to set-valued cases with the second order.

5. Conclusions

In the paper, we study a topic related to equilibrium problems. More precisely, we establish second-order
sensitivity analysis for set-valued parametric equilibrium problems. Several examples are given to illustrate our
results.

For possible developments of this paper, since several theoretical models in optimization can be expressed as
special cases of equilibrium problems, such as constrained set-valued optimization problems, cone saddle point
problems, variational inequalities (see [18]), we can learn about applications of the obtained results in the paper
to these particular cases. Furthermore, finding answers for open questions in Remark 3.12 may be a promising
study.
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