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FUZZY STOCHASTIC DATA ENVELOPMENT ANALYSIS WITH APPLICATION
TO NATO ENLARGEMENT PROBLEM

ALI EBRAHIMNEJADY, SEYED HADI NASSERI? AND OMID GHOLAMI?

Abstract. Data Envelopment Analysis (DEA) is a widely used technique for measuring the relative
efficiencies of Decision Making Units (DMUs) with multiple deterministic inputs and multiple outputs.
However, in real-world problems, the observed values of the input and output data are often vague
or random. Indeed, Decision Makers (DMs) may encounter a hybrid uncertain environment where
fuzziness and randomness coexist in a problem. Hence, we formulate a new DEA model to deal with
fuzzy stochastic DEA models. The contributions of the present study are fivefold: (1) We formulate a
deterministic linear model according to the probability—possibility approach for solving input-oriented
fuzzy stochastic DEA model, (2) In contrast to the existing approach, which is infeasible for some
threshold values; the proposed approach is feasible for all threshold values, (3) We apply the cross-
efficiency technique to increase the discrimination power of the proposed fuzzy stochastic DEA model
and to rank the efficient DMUs, (4) We solve two numerical examples to illustrate the proposed approach
and to describe the effects of threshold values on the efficiency results, and (5) We present a pilot study
for the NATO enlargement problem to demonstrate the applicability of the proposed model.

Mathematics Subject Classification. 90Cxx, 90C15, 90C70.

Received January 22, 2017. Accepted September 4, 2018.

1. INTRODUCTION

Data Envelopment Analysis (DEA), initially introduced by Charnes et al. [3], is a well-known non-parametric
methodology for computing the relative efficiency of a set of homogeneous units, named as Decision Making
Units (DMU). DEA generalizes the intuitive single-input single-output ratio efficiency measurement into a
multiple-input multiple-output model by using a ratio of the weighted sum of outputs to the weighted sum of
inputs. It computes scalar efficiency scores with a range of zero to one that determine efficient level or position
for each DMU under evaluation among all DMUs. A DMU is said to be efficient if its efficiency score is equal
to one, otherwise it is said to be inefficient. Moreover, in real-life applications of DEA models the observed
input and output data of the DMUs are often not known precisely. In such situations, being able to deal
with vague and imprecise data may greatly contribute to the diffusion and application of DEA models. Two
typical approaches namely probability-theoretic approach and fuzzy-theoretic approach can be used for such
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DEA models involving uncertainty. In what follows, an overview of such inexact optimization techniques were
developed to tackle uncertainties in DEA models is provided.

To deal with imprecise data, the notions of fuzziness and randomness were introduced in DEA. Fuzzy sets
can be used to represent ambiguous or imprecise information. On the other hand, the data can be obtained
by statistics in some measurement errors and data entry errors characterized by random variables. However, in
many practical situations, there is not a sufficient number of crisp statistic data. To handle such circumstances,
a twofold uncertainty is needed. One approach to treat the uncertainty event is the measure based approach.
Like the probability measure of a stochastic event, and the credibility measure of a fuzzy event based on a pair
of dual fuzzy measures, i.e., possibility and necessity. The same one in fuzzy random, the mean chance measure
or simplified chance measure is presented. Exactly, that is the mean value, in the sense of probability of all the
credibility values of the corresponding fuzzy events.

Hatami-Marbini et al. [11] classified the fuzzy DEA methods in the literature into five general groups, the
tolerance approach [36,42], the a-level based approach, the fuzzy ranking approach [10,12], the possibility
approach [20], and the fuzzy arithmetic approach [45]. Among these approaches, the a-level based approach is
probably the most popular fuzzy DEA model in the literature. This approach generally tries to transform the
FDEA model into a pair of parametric programs for each a-level. Kao and Liu [14], one of the most cited studies
in the a-level approach’s category, used Chen and Klein [4] method for ranking fuzzy numbers to convert the
FDEA model to a pair of parametric mathematical programs for the given level of . Saati et al. [34] proposed a
fuzzy CCR model as a possibilistic programming problem and changed it into an interval programming problem
by means of the a-level based approach. Parameshwaran et al. [29] proposed an integrated fuzzy analytic
hierarchy process and DEA approach for the service performance measurement. Puri and Yadav [32] applied
the suggested methodology by Saati et al. [34] to solve fuzzy DEA model with undesirable outputs. Shiraz et al.
[15] proposed fuzzy free disposal hull models under possibility and credibility measures. Momeni et al. [25] used
fuzzy DEA models to address the impreciseness and ambiguity associated with the input and output data in
supply chain performance evaluation problems. Payan [31] evaluated the performance of DMUs with fuzzy data
by using the common set of weights based on a linear program. Aghayi et al. [1] formulated a model to measure
the efficiency of DMUs with interval inputs and ouputs based on common sets wieghts.

In order to evaluate the efficiency of DMUs with the deterministic inputs and the random outputs, Land et al.
[19] extended the chance constrained DEA model. Olesen and Petersen [27] developed the chance constrained
programming model for efficiency evaluation using a piecewise linear envelopment of confidence regions for
observed stochastic multiple-input multiple-output combinations in DEA. Huang and Li [13] developed stochas-
tic models in DEA by taking into account the possibility of random variations in input-output data. Cooper
et al. [6], Li [21], and Bruni et al. [2] utilized joint chance constraints to extend the concept of stochastic effi-
ciency. Cooper et al. [5] used chance-constrained programming for extending congestion DEA models. Tsionas
and Papadakis [41] developed Bayesian inference techniques in chance-constrained DEA models. Udhayakumar
et al. [44] used a genetic algorithm to solve the chance-constrained DEA models involving the concept of satis-
ficing. Also some of the banking applications in relation to satisficing DEA can be found in Udhayakumar et al.
[44] and Tsolas and Charles [43]. Farnoosh et al. [8] proposed chance-constrained FDH model with random input
and random output. Wu et al. [47] proposed a stochastic DEA model by considering undesirable outputs with
weak disposability. This model not only deals with the existence of random errors in the collected data, but also
depicts the production rules uncovered by weak disposability of the undesirable outputs. Also, a comparison
work between stochastic DEA and fuzzy DEA approaches have been introduced to evalutate the efficiency of
Angolan banks by Wanke et al. [46]. A review of stochastic DEA models can be found in a recent work by
Olesen and Petersen [28].

However, in the real-world problems decision makers may need to base decisions on information which are
both fuzzily imprecise and probabilistically uncertain. Kwakernaak [17,18] introduced the concept of fuzzy
random variable, and then this idea enhanced by a number of researchers in the literature [9, 22,24, 33]. Qin
and Liu [33] developed a fuzzy random DEA (FRDEA) model where randomness and fuzziness exist simultane-
ously. The authors characterized the fuzzy random data with known possibility and probability distributions.
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Tavana et al. [39] also introduced three different FDEA models consisting of probability—possibility, probability-
necessity and probability—credibility constraints in which input and output data entailed fuzziness and random-
ness at the same time. Also, Tavana et al. [40] provided a chance-constrained DEA model with random fuzzy
inputs and outputs with Poisson, uniform and normal distributions. After that, Tavana et al. [38] proposed
DEA models with birandom input-output. Shiraz et al. [16] proposed fuzzy rough DEA models based on the
expected value and possibility approaches. Paryab et al. [30] proposed DEA models using a bi-fuzzy data based
possibility approach. However, there has been no attempt to study randomness and roughness simultaneously
in DEA problems. Tavana et al. [37] also introduced a DEA model for problems characterized by random-rough
variables. Nasseri et al. [26] proposed a new approach to consider the impact of undesirable outputs on the
performance of DMUs in fuzzy stochastic environment. To deal with the uncertain environments, especially
hybrid environments, the DEA model may disorder its structure when the uncertain parameter of input and
output exist. For example, the method proposed by Tavana et al. [39] does not compute the efficiency scores of
DMUs in the range of zero to one for input-oriented DEA models. Another shortcoming of this approach is the
nonlinear (quadratic) form of the proposed DEA model. Hence, this study try to overcome the shortcomings
of the existing approaches. To sum up with all the above aspects, the contributions of the present study are
fivefold: (1) We formulate a deterministic linear model according to the probability- possibility approach for
solving input-oriented fuzzy stochastic DEA model, (2) In contrast to the existing approach, which is infea-
sible for some threshold values; the proposed approach is feasible for all threshold values, (3) We apply the
cross-efficiency technique to increase the discrimination power of the proposed fuzzy stochastic DEA model and
to rank the efficient DMUs, (4) We solve two numerical examples to illustrate the proposed approach and to
describe the effects of threshold values on the efficiency results, and (5) We present a pilot study for the NATO
enlargement problem to demonstrate the applicability of the proposed model.

This paper is organized as follows: In the next section, some necessary concepts related to the fuzzy set
theory and probability theory are reviewed. Section 3 presents our proposed CCR-DEA model. Section 4 gives
the possibility—probablity approach based on chance constraint programming to solve the fuzzy stochastic DEA
model. In Section 5, we solve two numerical examples to illustrate the proposed approach and to describe the
effects of threshold values on the efficiency results. In Section 6, the results of the case conducted for the NATO
enlargment problem to evaluate the efficiency of 18 countries are presented. Section 7 presents our conclusions
and future research directions.

2. PRELIMINARIES

In this section, we review some necessary concepts related to the fuzzy set theory and probability theory,
which will be used in the rest of paper [7,48,49].

Definition 2.1. A fuzzy set A, defined on universal set X, is given by a set of ordered pairs A =

{(z,n;(z))lx € X} where pj;(z) gives the membership grade of the element z in the set A and is called
membership function.

Definition 2.2. A fuzzy set A, defined on universal set of real numbers R, is said to be a fuzzy number if its
membership function has the following characteristics:

(1) A is convex, i.e., V&,y € R,V\ € 0,1], pz( Az 4+ (1 = N)y) > min{p ;3(x), pz(y)}-
(2) Aisnormal, i.e., 3z € R; p;(z) = 1.
(3) pj is piecewise continuous.

Definition 2.3. A function L : [0,00) — [0,1] (or R : [0,00) — [0,1]) is said to be reference function of fuzzy
number if and only if L(0) = 1(or R(0) = 1) and L or R is non-increasing on [0, c0).
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Definition 2.4 (Dubois and Prade [7]). A fuzzy number A = (m, o, 8)r is said to be an LR fuzzy number,
if its membership function is given by:

L(™=%), for x<m,a>0,
pilz) =<1, for z=m,
R(*5"*), for z=n,3>0.

Remark 2.5. If L(z) = R(z) = max{0,1 — z} then an LR fuzzy number A = (m,a, 8)rp is said to be a

triangular fuzzy number and is denoted by A = (m, «, ).

Definition 2.6. Let A = (m,a, 3)Lr be an LR fuzzy number and A be a real number in the interval [0, 1] then
the crisp set, Ay = {z € R: pz(z) > A} = [m —aL ' (\),m + SR~ (N)] is said to be A-cut of A.

Definition 2.7. Let 4; = (m1, a1, 01)Lr and Ay = (ma, g, B2)Lr be two LR fuzzy numbers and &k be a non-
zero real number. Then the exact formula for the extended addition and the scalar multiplication are defined
as follows:

(i) (m1,a1,B1)Lr + (M2, a2, B2)Lr = (M1 + ma, 01 + a2, 1 + B2) LR
(i) k&> 0,k(my,a1,B1)Lr = (kmy, ka1, kBi)Lr
(iii) k& < 0,k(my, a1, 51)Lr = (kmy, —kB1, —kai)Lg-

Definition 2.8 (Extension Principle). This principle allows the generalization of crisp mathematical concepts
in fuzzy frameworks. For any function f, mapping points in set X to points in set Y, and any fuzzy set A € ]5(X )
where A = pq(x1) + po(x2) + . ..+ pn(x,), this principle expresses f(A) = f (p1(x1) + pa(z2) + ... 4 pn(x,)) =
S (1)) + f (p2(z2) + -+ f (pn(2n)).

Definition 2.9. Let (©, P (©),Pos) be a possibility space where © is a non-empty set involving all possible
events, and P (©) is the power set of ©. For every A € P(0), there is a non-negative number Pos (4), so-called
a possibility measure, satisfying the following axioms:

(i) P(0)=0, PO)=1,
(i) for every A,B € P (©), A C B implies Pos (A) < Pos (B),
(ili) for every subset {A,, : w € W} C P(0), Pos(Uy,Ay) = Sup,,Pos(Ay).

The elements of P (©) are also called fuzzy events.

Definition 2.10 (Liu and Liu [23]). Let £ be a fuzzy variable on a possibility space (0, P (©),Pos). The
possibility of the fuzzy event {€ > r}, where r is any real number, is defined Pos (§ > r) = Sup ¢ (t), where
t>r

e+ ® — [0, 1] is the membership function of &.

Definition 2.11 (Liu and Liu [24]). Let (2, A, Pr) be a probability space where € is a sample space, A is the
s-algebra of subsets of Q (i.e., the set of all possible potentially interesting events), and is a probability measure
on Q. A fuzzy random variable (FRV) is a function ¢ from a probability space (2, A, Pr) to the set of fuzzy
variables such that for every Borel set B of R, Pos {¢(w),w € B} is a measurable function of w.

Definition 2.12 (Liu and Liu [24]). A fuzzy random vector is a map from a sample space to a colleation of
fuzzy vectors, £ = (&1,&a,...,&,) : Q@ — FJ', such that for any closed subset F' € R", Pos{vy | {(w,7y) € F} is a
measurable fuction of w € Q, i.e., for any ¢ € [0, 1], we have {w € Q|Pos{v|{(w,v) € F'} <t} € A. In the case
of n =1, £ is called a fuzzy random variable.

Definition 2.13 (Fuzzy Random Arithmetic). Let & and & be two FRVs with the probability spaces
(1, A1,Pry) and (Qg, Az, Pry), respectively. Then £ = & + &5 is defined as & (w1, w2) = &1 (w1) + &2(w2) for
any (w1, ws) € Q1 x Qo, where (21 x Oy, A1 X A, Pry x Pry) is the corresponding probability space.
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Definition 2.14. Let £ = (£1,&2,...,&,) be a fuzzy random vector, and f : R™ — R be a continuous function.
Then f(§) will be a fuzzy random variable.

Definition 2.15. An LR fuzzy random variable will be denoted by £(w), where w € Q and described by the
following membership function:

L(me=r) o <m(w),
pe) (@) = ¢ 1, z=mw),
R(Z2Y) > m(w).

where m(w) is the normally distributed random variable.

3. ProrosSED DEA-CCR MODEL

Consider a set of n DMUs, where DMU; has a production plan (z;,y;) and consumes m inputs z; =
(15,225, ...,%m;) to produce s outputs y; = (yi;,%25,---,Ys;j). The technical efficiency of a given DMU}
under a constant return to scale (CRS) technology can be obtained by using the following problem, so-called
input-oriented CCR, primal model:

Ej, = Max ES: UrYrk

r=1
m
s.t. Zvimik =1,
i=1
s m
Zuryrj _Zvixrj <0,j=12,...,n, (31)
r=1 i=1

U, > 0,0, >20,r=1,2,...,8;9=1,2,...,m.

where u, and v; are the weights associated with the rth output and the ith input, respectively. The DMUy is
(technically) efficient if E = 1, otherwise if 0 < Ey < 1, it is (technically) inefficient.
Substituting &;, = v;z;; and Jrp = u,y,; into model (3.1), the following equivalent model is obtained:

S
¢, = max > Grp
r=1
s.t.

ijip = ]-a
Som o (@) (3.2)
> Grj— 20 245 <0, Vj
r=1 R i=1 ) -
UrYrj < Yrj < Uryer?%J (”)
Vi Tij S .’f?ij S U,‘.’L’Z‘jVi,j (ZZZ)
Uy, v; > 0V, 1
This model allows us to provide a linear model in terms of uncertain data unlike the proposed model by
Tavana et al. [39].

Remark 3.1. Tt is worthwhile to note that Saati et al. [34] used new variable substitutions for evaluating the
fuzzy efficiency of DMUS with fuzzy data. Saati et al. [34] have used the variable substitutions on the interval
DEA model derived from the fuzzy DEA model based on the concept of alpha cuts. That approach converts the
non-linear programs into a linear one. We have used a similar variable substitution on a primary DEA model.
In what follows, we extend the converted DEA model to a fuzzy stochastic environment. This approach not
only leads to a linear model but also remains the basic properties of DEA models.
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4. Fuzzy sTOCHASTIC DEA-CCR MODEL: A PROBABILITY—POSSIBILITY APPROACH

The aim of this section is to propose a DEA-based method for evaluating the efficiencies of DMUs with
fuzzy stochastic inputs and fuzzy stochastic outputs. To this end, consider n DMUs, each of which consumes

m fuzzy stochastic inputs, denoted by gicij = (:E;’]‘, m%,mfj) ,i=1,...,m,7=1,... n, and produces s fuzzy
LR

stochastic outputs, denoted by ¥,; = (yﬁ;,yfj,yfj) s r=1,...,8,7=1,...,n. Let 77 and y,";, denoted by
LR’
2

zfp ~ N (xw, ) and y,,- ~N (yr], Tj) be normally distributed. Therefore, ;;(y,;) and o2 (07
and the variance of x!” (ym) for DMUj;, respectively.

The chance- conbtralned programming (CCP) developed by Cooper et al. [5] is a stochastic optimization
approach suitable for solving optimization problems with uncertain parameters. Building on CCP and possibility

theory as the principal techniques, the following probability—possibility CCR model is proposed:

/) are the mean

Z Ty =1 (4) (4.1)

[POS (uryrj < grj < urym) 5] > 77 V?“ Js (“)
Pr[Pos (viz;; < 55 < vixij) > 6] Vi, 7, (#47)
U, v > 0.

where ¢ and v € [0, 1] in constraint (i) and (44) are the predetermined thresholds defined by the DM. Pos|]
and Pr[-] in model (4.1) denote the possibility and the probability of [-] event.

In addition, we presume that the fuzzy stochastic input z;; and the fuzzy stochastic output ¢,; are charac-
terized, respectively, by the following two membership functions:

ot
L( 7 ),tgx;’;,
pa, =13 ¥ (4.2
R( xfjg> =
and
Y —t
K, (1) = o (4.3)
R( 52t >y
rJ

where 7% ~ N(xi;,07;) and yJk ~ N(y,5,07;).

In order to solve the probability— pOSSlblhty constrained programming model (4.1), we convert the constraints
in this model into their respective crisp equivalents. Thereby, Theorem 4.1 and Lemma 4.2 proposed, respectively,
by Liu and Liu [24] and Sakawa [35] play a pivotal role in solving the fuzziness of proposed model (4.1).

Theorem 4.1. Let £ be a fuzzy random vector g; : R — R are real-valued continuous functions r =1,...,p.
Then the possibility Pos{g; ({(w)) < 0,5 =1,...,n} is a random variable.

Lemma 4.2. Let \; and \o be two independent fuzzy numbers with continuous membership functions. For a
given confidence level a € [0,1], Pos {A1 > A2} > a if and only if /\1 o> )\2 o> Where )\1 o /\1 o and /\2 o AF
are the left and the right side e:z:treme points of the a-level sets A\, and )\2, respectwely, and Pos{\; > /\g}
present the degree of possibility.
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In what follows we show that the probability—possibility CCR model (4.1) can be equivalently transformed
into a linear programing model.
The constraint (¢7) in model (4.1), Pr [Pos (uryrj < §rj < uryrj) > 6] > 7, can be transformed into the fol-
lowing two constraints:
Pr [Pos (u,yrj < §rj) > 6] > 7,
0

Pr [POS (grj < uryrj) > ]

These constraints can be rewritten as the following constraints based on Lemma 4.2:

Pr [Pos (yrj < ZZ"J) > 6} >y Pr <(ym) < Zj) >y Pr <y"} — L7 (0)yy; < y”) >

T r Uy
’I"] g?‘j R gTj m -1 1<)
Pr |Pos Syrj ) 20| 27 Pr| = < (yy)s | 2y Pr( =2 <yl + R0y, | >
Uy Uy Uy
In a similar way, constraint (¢ii) in model (4.1), Pr[Pos (viz;; < &;; < vizy;) > 0] > vy, can be rewritten as
the following constraints:

Pr [Pos (mij < x”) > 6} >vy< Pr ((xij)g <24
V; .

Pr {Pos ( < zz]) > 5} >y« Pr <% < (xij)(ls%
Vg

Vi

Therefore, model (4.1) can be reformulated as follows:

NIE
§>
Il
—

-
Il
_

Mm
‘@>

-2t

Pr yw <yl + R (5)yfj> >, Vr,j ()

Pr(y; —L YOy < &) > 4,975 (i)
Pr (% <af} + R (5):6@ >, Vi, g (i)

Pr(zf} — L7H(8)x;

U, Vg Z 0.

(4.4)

ﬁ
Il
—

>, Vi,j o (iv)

By the help of standardized normal distribution, (see, e.g., [5]), model (4.4) can be transformed into a deter-

ministic linear programming model. Consequently, let us consider constraint () in model (4.4) as Pr (iL > ()) >

where h = Y+ R‘l(é)yfj — Ziﬂ Due to the normal distribution of y , h also has normal distribution with
the following mean and variance:

E(h)=E [y”} +R7Y(0)y), - z;”} =y + RO)yL, - Ur

Ur

Var(h) = Var (yf} + Rfl(é)yfj - ?) = Var (y)3) = afj.

T
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By standardizing the normal distribution, Pr (iL > 0) > ~ is converted to Pr <z > _E(?g)> > ~ where
var
h—E(R)

var(R)

z = is the standard normal random variable with zero mean and unit variance. The corresponding

cumulative distribution function is ® ( —E(h) ) <1 —~ and it is equal to ‘Zﬂ — Yrj — R_l(é)ym < a”q)*_l

v/ Var(h) L=y

where <I>17_17 is the inverse of ® at the level of 1 — . Finally, the deterministic version of constraint (¢) in model
(4.4) will be as follows:
:grj S u’f‘(yTj + R_l((s)yrj + UT] ) Vr .7

A similar procedure adopted for constraints (i7), (i) and (w) in model (4.4) results in the following con-
straints:

(”) : UT(yT’j - Lil(é)y?‘j - O—rj(I)l_fl»y) < grjavraj
(148) : Zij < vi(xiy + R_1(5)x +0,;® ) Vi, j

(Z"U) : U,‘(.T}ij — L_l((S)LL'% — Uij(b;_l,y) S .’fiij,Vi,j.
As a consequence, the deterministic equivalent for model (4.1) can be set as follows:

Ek(6,7) = max ¢

s.t.
"2 < Zl yr]
Ty =1
; T (4.5)
Z:lg” - Z i’v] S 0 Vj
up(yrj — L7 ) — 0 ®11) < g <y + R (5)2/” + Um‘I’f SR
vi(zi; — L™ (5) azj@l__l,y) < &y < v + R‘1(5) 40P ) Vi, j
U, v; > 0.

The above model is obviously a linear program. It should be noted that the deterministic model obtained by
Tavana et al. [39] is a non-linear program.

The following theorem shows that the objective function of model (4.5), F(d, ), is monotonously decreasing
related to the each of Jand v level.

Theorem 4.3. If Ey(d6,7v) is the optimum objective function wvalue of model (4.5) then Ey(61,7v) >
Ey(02,7)andEy(5,71) > Ex(6,72) where 61 < daandy; < 2.

Proof. Denote the feasible space of model (4.5) by S5 . We need to prove that Ss, , € Ss, ~,. To this, consider
the following constraint of model (4.5)

vi(xij — Lil(é)xu O'U(p_ ) S «fij < ’Ui(IZ?ij + Rfl(é) + O’ZJ(I)_ ) (46)

Let @~ '(y) = ®;'. As ®'(1 —~), L7!(6) and R™'(6) are decreasing function, the functions —®~*(1 —
v), —L7(8) and —R~1(§) will be increasing. It is concluded that

|:$ij — L_l((SQ)Q?iO; — Uijq>_1(1 — ’72), Zij + R_l(ég)xi + O’ij‘b_l(l — ’)/2)] -
[xij — L_l((gl)l‘f; - O'ij(I)_l(l - ’}/1), Ti; + R_l(él)xfj + O'ij‘l)_l(l — ’)/1):| .
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In a similar way, we can conclud that

Yrj — L7 H(02)y% — 0@ N1 = 72),yrj + R_1(62)yfj + 0, @1 - 72)} C
[yrj — L7010y — 0 @ (L — ) yeg + RTHO)YL + 00y @ (1 —m)
This completes the proof. O
We present the following defiition to define the efficiecy of each DMU.

Definition 4.4. For the given level dand -y, we define E}. (8,7) = Ex (9, 7) as efficiency score of DMUy, in fuzzy
random DEA model (4.5).
The corresponding model with E} (8,7) is as follows:

s.t.

p < 2:1 Urj

=1 (4.7)
Up (Yrj — L7HO) Y2 — 00575 ) < By < un(yry + R™ (5)ym + 0371V

vi(2ij — L—l(d)x% — aijq);lv) < &5 <wvi(xi; + R (5) Ty + 0 1_%),Vz,]

Up, V5 > 0.
Theorem 4.5. Consider E;F(é, ) as the optimum objective function value of model (4.7) for DMUy, then

(a) E (51, v) > ET(02,7) and ET(5, Y1) = ET(8,72) where 6y < 83 and v < 7.
(b) 0 < ET(6,7) <1,( =1,2,...,n). Also, theres exists at lease one k € {1,2,...,n} suhc that E(6,7) = 1.
(c) model (4.7) is feasible for any (5 and .

Proof. (a) Tt is straightforward using Theorem 4.3 and Definition 4.4.
(b) Obviously, it is followed immediately from the first, second and third constraints of model (4.6) that
ET(6 ~) < 1. In what follows, we introduce such DMU}, with E (6,7v) = 1. According to part (a), ?(5, v)

is decreasing with respect to both § and ~ threshold, and so E;F(c?, v) > E;F(l, 1).Let 6 =1 and v =1,
then L7(1) = R7'(1) = 0 and ®~'(0.5) = 0. Hence, we have &;; = v;z;j, §,, = u,y,, in model (4.7).
Therefore, the corresponding model with E}E[‘(l, 1) will be as follows:

i

E;I‘(l7 1) = max 21 UrYrp

s.t.

m

3 vy =1 s
Z:SI m .

DUy — > vt <0, j=1,...,n

r=1 i=1

U, Vg Z 0.

As seen the above model is same with the traditional CCR-DEA model given in (3.1). So, E;_I‘(l, 1) would be
positve as the objective function value of a traditional CCR-DEA model and then ET(5 v) > ET(I 1) >0.
On the other hand, for such DMUy, E (1 1) would be equal to 1. Hence, the relation 1 > ET(5 v) >
E;I‘(l, 1) = 1 completes the proof of part (b).
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TABLE 1. The data for Example 5.1.

Al AQ A3 A4
Lo (NO,L,1)  (N(5,1),1)  (N(4,1),1)  (N(10,1),1)
I, N(3,1) N(4,1) N(4,1) N(7,1)
O; N(251)  N(2,]) N(5,1) N(3.5,1)

(¢) Denote the feasible space of model (4.7) by S(;Tﬁ.

According to the proof of Theorem 4.3, ST | C 55}

Therefore, it is sufficient to show that the feasible space S’fl is nonempty. According to the proof of part
(b), E]:F(l, 1) is given by model (4.8) and this model is alwasy feasible as the traditional CCR-DEA model.

This complets the proof of part (c).

]

5. NUMERICAL EXAMPLES

In this section, two numerical examples are solved to illustrate the proposed approach and the obtained
results are discussed. In the first example, we compare the efficiency results of the proposed method with those
obtained from the approach proposed by Tavana et al. [39]. The second example describes the effects of threshold

values on the efficiency results.

Example 5.1. Consider four DMUs; A;, Ay, A3 and A, that consume two inputs and produce one output.
The input I; is a normally random variable fuzzified with symmetric triangular fuzzy values. The input I and
the output O; are random variables with normal distribution. The data is given in Table 1.

Regarding model (4.

7)
EkT((S, ) = max ¢
t

Y11 — 211 — 221 £ 0,912 — T12 — $22 <0

, the following linear programming problem is solved to evaluate unit A;:

13 — 213 — 23 < 0,014 — $14 — 224 <0

ur(yrj — 0.25y55 — 0. 320) < Grj < ur(yr; +0. 25yr +0. 320’TJ,V1" j
viwyj — 0.252¢, — 0.3202j < &y < vyl + 0.2525, + 0.320),, Vi, j
Uy Vs > 0.

In a similar way, according to Tavana et al.’s approach the following model is solved in order to evaluate the

efficiency of unit Aj:

max ¢

s.t.

@ — u1(2.5) +u1(0) — (—1.96)89 L, <0

1 (9= 0.5(1)) 4+ v2 (8 — 0.5(1)) + (—1.96)4] > 1

01 (9 —0.5(1)) 4+ v2 (8 — 0.5(1)) — (—1.96)0 < 1

u1 (2.5 +0.5(0)) — vy (9 — 0.5(1)) — vz (8 — 0.5(1)) — (=1.96)\; <0 (5.2)
u1 (24 0.5(0)) — vy (5 —0.5(1)) — va (4 0.5(1)) — (—1.96)X2 < 0

u1 (54 0.5(0)) — vy (4 — 0.5(1)) — va (4 — 0.5(1)) — (—1.96)A3 < 0
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up (3.5 +0.5(0)) — vy (10 — 0.5(1)) — vz (7 — 0.5(1)) — (—1.96)A4 <0

(01) =vi(1) +v3(1)
AP =ai(1) +0(1) +v3(1), V)
Uy, 0,09, 607 )\ > 0.

p’Up’

model (5.2) is simplified as follows:

max @

s.t.

@ — 2.5u; + 1.9605 <0
85v1+75v2—19691>1
85U1+75v2—|—19601<1
25u1—85v1—7502+196)\1<0
2uq — 4.5v1 — 3.5v9 + 1.9612 < 0

5ui — 3.501 — 3.5v2 + 1.96X3 < 0 (5.3)
3. 5U1 —9. 5111 — 6.5’()2 + 1.96)\4 S 0

(9") 1

(91) =v? + 03

)\2 =u? +0v? —|—v2,Vj
uT,vZ,Hp,HI ;> 0.

We use the same threshold values for both models (5.1) and (5.2) to evaluate the efficiency of DMU A;.
By considering 6 = 0.75 and v = 0.75 in model (5.1), we obtain EIT((Y, ~v) = 0.71. Here it is to be noted that
model (5.3) is infeasible for the same threshold values according to probability—credibility approach proposed by
Tavana et al.’s [39]. In fact, it is obvious that the constraints 8.5v1 +7.5v, —1.9661 > 1, 8.5v1 4 7.502+1.960] < 1

and (9;)2 = v} + v are not satisfied simultaneously.

In sum, there are two important reasons for using our proposed method compared with Tavana et al.’s
approach. First, in contrast to Tavana et al.’s approach, our proposed model is always feasible for all threshold
values. Second, we solve a linear model in order to evaluate the efficiency of DMUs with fuzzy stochastic data
as compared with model proposed by Tavana et al.’s [39] approach. Hence, from a computation point of view
the proposed method is preferable to the Tavana et al.’s approach for solving the fuzzy stochastic DEA model.

Example 5.2. Consider four DMUs; A1, A3, A3 and A4 with the information given in Table 2.

Now, we analyze the effect of different values of v and § on the efficiency results. We recall that + and ¢
are the predetermined thresholds defined by the decision maker. Now, assume that the DM considers v = 0.25

TABLE 2. The data for Example 5.2

Ay A, Az Ay
I (N(9,1),1) (N(5,1),1) (N(4,1),1) (N(10,1),1)
1> 8 4 4 7

0; N(251) N(2,]) N(5,1) N(3.5,1)
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=

Q

=

'S

&

3]

1 2 4
===y =0.75, 6 =0.75) 0.32 0.51 1 0.46
===y =0.25, § =0.75) 0.68 1 1 0.75
DMUs

0= (Y =0.75, 5 =0.75)  ==@=(y=0.25, 8 =0.75)

F1GURE 1. The efficiency results for different threshold values.

and 0 = 0.75 for evaluating DUMs of Table 1. Based on these threshold values, we obtain ElT(cS7 v) = 0.68,
E;F((S, v) =1, ET(5,7) =1, and Ef(&, ) = 0.75, respectively for DMUs A1, As, Ag and Ay. Figure 1 illustrates
the efficiency of the DMUs in two thresholds (v = 0.75, § = 0.75) and (y = 0.25, § = 0.75) to investigate the
influence of thresholds in efficiency scores. As we see only DMU Aj is provided as the efficient unit for v = 0.75
and 6 = 0.75, while two DMUs A, and Aj are recognized as the efficient units for v = 0.25 and § = 0.75.
Hence, different threshold values according the DM’s view, effect on both the efficiency scores of DMUs, and
the situation of efficient units.

6. CASE STUDY

NATO’s open door policy on enlargement invites European countries that are in a position to advance the
principles of the North Atlantic Treaty and contribute to security in the Euro-Atlantic area, to join the alliance.
Deciding ideal candidates for the expansion of NATO can be complicated. The integration of nonmembers
in NATO is made in four steps indicating an increasing level of cooperation: Partnership for Peace (PFP),
Individual Partnership Action Plan (IPAP), Intensified Dialogue (ID) and Membership Action Plan (MAP).
The first level, PFP, was created in 1993 to create a dialog with neutral European and former Warsaw Block
member states. The second level, IPAP, was installed in 2002 for eight countries within PFP potentially eligible
for NATO membership.

The third level of integration, ID, is currently initiated for two countries prior vital and a unanimous vote
protects the integrity of the alliance and prevents tension among the member countries to the final candidacy.
Finally, the MAP is currently in action for three countries for which membership is under negotiation. Decisions
on enlargement are ultimately made by NATO and its members; however, the North Atlantic Council is NATO’s
principal decision- making body and is responsible for inviting new members to join the alliance. Decisions to
invite new members come as a result of a unanimous vote by current member countries in the final stage.
Relationships between members of the alliance are vital and a unanimous vote protects the integrity of the
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TABLE 3. The countries selected for this study.

DMU Non-EU country
1 Armenia

2 Austria

3 Azerbaijan

4 Belarus

5 Bosnia and Herzegovina
6 Finland

7 FYR Macedonia
8 Georgia

9 Ireland

10 Kazakhstan

11 Malta

12 Moldova

13 Montenegro

14 Russia

15 Serbia

16 Sweden

17 Switzerland

18 Ukraine

TABLE 4. The fuzzy random input and output data.

DMU  Input 1 Input 2 Output 1 Output 2

1 (N(14.1,1),0.28,0.28) (N(29.13,1),1.16,1.16)  (N(17.17,1),0.68,0.68) (N(9.7,1),0.58,0.58)

2 (N(55.87,1),1.11,1.11) (N(59.1,1),2.36.,2.36)  (N(301,1),12.04,12.04) (N(45.12,1),2.70,2.70)
3 (N(15.26,1),0.30.0.30) (N(6.7,1),0.26,0.26) (N(64.66,1),2.58,2.58) (N(10.45,1),0.62,0.62)
4 (N(20.16,1),0.40,0.40) (N(3.57,1),0.14,0.14) (N(103.5,1),4.14,4.14) (N(20.05,1),1.20,1.20)
5 (IN(48.29,1),0.96,0.96) (N(34,1),1.36,1.36) (N(14.78,1),0.59,0.59) (N(48,1),2.88,2.88)

6 (N(30.87,1),0.61, 0.61) (N(35.9,1),1.43,1.43) (N(158.4,1),6.33,6.33) (N(32.92,1),1.97,1.97)
7 (N(14.33,1),0.28, 0.28) (N(30.8,1),1.23,1.23) (N(17.35,1),0.69,0.69) (N(14.46,1),0.86,0.86)
8 (N(21.95,1),0.43,0.43) (N(26.37,1),1.05,1.05)  (N(20.6,1),0.82,0.82) (N(17.86,1),1.07,1.07)
9 (IN(48.26,1),0.96,0.96) (N(30.9,1),1.23,1.23) (N(181.6,1),7.26,7.26) (N(42.65,1),2.55,2.55)
10 (N(25.06,1),0.50, 0.50) (N(15.7,1),0.62,0.62) (N(168.2,1),6.72,6.72) (N(14.02,1),0.84,0.84)
11 (N(49.81,1),0.99, 0.99) (N(39.73,1),1.58,1.58)  (N(9.4,1),0.37,0.37) (N(37.07,1),2.22,2.22)
12 (N(28.87,1),0.57, 0.57) (N(23.3,1),0.93,0.93) (N(12.76,1),0.51,0.51) (N(18.76,1),1.12,1.12)
13 (N(727.86,1),14.55, 14.55)  (N(43,1),1.72,1.72) (N(5.92,1),0.03,0.03) (N(108.28,1),6.49,6.49)
14 (N(12.49,1),0.24, 0.24) (N(5.9,1),0.23,0.231) (N(2097,1),83.88,83.88)  (N(14.26,1),0.85,0.85)
15 (N(12.68,1),0.25, 0.25) (N(37,1),1.48,1.48) (N(77.28,1),3.09,3.09) (N(12.42,1),0.74,0.74)
16 (N(68.98,1),1.37, 1.37) (N(41.7,1),1.66,1.66) (N(338.5,1),13.54,13.54)  (N(73.59,1),4.41,4.41)
17 (N(56.67,1),1.13, 1.13) (N(44.2,1),1.76,1.76) (N(263.2,1),10.52,10.52)  (N(49.67,1),2.98,2.98)
18 (N(26.87,1),0.53, 0.53) (N(11.7,1),0.46,0.46)  (N(314.8,1),12.59,12.59)  (N(13.41,1),0.80,0.80)

alliance and prevents tension among the member countries. Each decision to expand is made individually on a
case by case basis and is a result of an agreement that the invited country will add to the security and stability of
the alliance. The determination must also allow the alliance to preserve the ability to perform its main function
of defense. Countries outside of the alliance are not given a voice in these decisions nor should countries be
excluded for consideration due to membership of other groups or organizations.
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TABLE 5. The stochastic fuzzy efficiency scores.

(v =0.25, § = 0.5)

(v =0.25, 5§ = 0.75)

(y=0.5,6 =0.5)

(y=0.5, § = 0.25)

(y = 0.75, § = 0.25)

1 0.8770 0.8434 0.79961 0.8318 0.7532
2 0.8874 0.8526 0.8590 0.8940 0.8480
3 0.9392 0.9006 0.8279 0.8628 0.7679
4 1.0000 1.0000 1.0000 1.0000 1.0000
5 1.0000 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000 1.0000
8 0.9577 0.9204 0.9017 0.9382 0.8711
9 0.9749 0.9367 0.9425 0.9809 0.9292
10  0.6692 0.6419 0.6240 0.6498 0.6006
11 0.8235 0.7913 0.7951 0.8275 0.7832
12 0.7526 0.7234 0.7133 0.7422 0.6926
13 0.7198 0.6856 0.6231 0.6545 0.5820
14 1.0000 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000
17 0.9601 0.9224 0.9307 0.9687 0.9197
18  0.6444 0.6184 0.5820 0.6065 0.5506
TABLE 6. Average Cross Efficiency of efficient DMUs.
DMUs (y=0256=05) (y=025056=0.75) (y=05056=05) (y=056=025) (y=0.75 6=0.25)
DMU 4 1.0612 1.004 0.9882 1.0152 0.9698
DMU 5 0.8488 0.8299 0.8341 0.8488 0.8197
DMU 6 0.8364 0.8279 0.8426 0.8505 0.8326
DMU 7 0.7030 0.7070 0.7320 0.7283 0.7310
DMU 14  1.0982 1.0660 1.0540 1.0753 1.0348
DMU 15 0.6418 0.6511 0.6789 0.6694 0.6827
DMU 16  0.9344 0.9108 0.9120 0.9299 0.8954
TABLE 7. Complete ranking of the DMUs.
é vy Complete ranking of the DMUs
0.5 0.25 14>4>16>5>6>7>15>9>8>17>3>2>1>11>12>13>10>18
0.75 0.25 14>4>16>5>6>7>15>9>17>8>3>2>1>11>12>13>10>18
0.5 0.5 14>4>16>6>5>7>15>9>17>8>2>3>1>11>12>13>10>18
0.25 0.5 14>4>16>6>5>7>15>9>17>8>2>3>1>11>12>13>10>18
0.25 0.75 14>4>16>6>5>7>15>9>17>8>2>3>1>11>12>13>10>18

The specification of the model follows the publicly announced criteria related to economic and social stability,
as well as the absence of conflicts with existing or future members or partners of the alliance. Consequently,
in this study, revenue or Gross Domestic Product (GDP) (output 1), and Budget (Revenues) (output 2) are
considered as the output variables while budget expenditures (Input 1) and public debt (Input 2) are considered

as the input variables. Table 3 shows the list of the country.
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FIGURE 2. The final result.

In Table 4, we present the two fuzzy random inputs and the three fuzzy random outputs, where all the inputs
and outputs data are triangular fuzzy random numbers. These data are denoted by (m, «, ) where m is the
center value and « and 3 are the left and right tails, respectively.

Table 5 shows the evaluating results by model (4.6) when we set the predetermined minimum probability level
0 and the predetermined acceptable level of possibility « in five different threshold levels of (y = 0.25, § = 0.5),
(y=10.25,6 =0.75), (y=0.5, § = 0.5), (y = 0.5, 6 = 0.25) and (y = 0.75, § = 0.25). With the variation in the
satisfaction levels § and v, DMUs 4, 5, 6, 7, 14, 15 and 16 are efficient at five given levels. Generally from Table
5, we can see the applicability of Theorem 4.3 when the efficiency scores of the DMUs decrease by increasing
the level § from (v = 0.25, § = 0.5) to (y = 0.25, § = 0.75) and the level v from (v = 0.25, § = 0.5) to (y = 0.25,
0 =0.75).

Table 6 presents the Average Cross Efficiency (ACE), denoted by E: (6,7), for each efficient DMU at levels
stated above. Also, these ACE scores are used to obtain a complete ranking of DMUs.

Table 7 shows the complete ranking of DMUs. As seen from Table 7, this ranking is similar except for some
relocation in surrounding DMUs. The first three ranks of the countries belong to Russia, Belarus and Sweden,
respectively, in each level. Also, the last three ranks of the countries belong to Montenegro, Kazakhstan and
Ukraine, respectively, in each level. Another point obtained from Table 6 shows that the influence of the
variations of stochastic level « is more than fuzzy level § on EF (4,7). Indeed, with the same increasing in each
of levels dand ~, the objective value decreases further by increasing the stochastic level «y, and so the number of
efficient DMUs is fall down in this case. Figure 2 illustrates the efficiency scores of the activities. In this figure
the ACE values for efficient DMUs are used.
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7. CONCLUSIONS

In this paper, we formulated a DEA model in fuzzy random environment. A methodology in chance constraint
programming adopted to solve such DEA model. Unlike the proposed model by Tavana et al. [39], our proposed
approach not only leads to a linear program, but also it gives efficiency scores with the range of zero to
one for DMUs similar to traditional input-oriented DEA models. Also, a case study for NATO enlargement
problem illustrated how a complex socio-economic problem with multiple resources and multiple fuzzy stochastic
consequences can be addressed to inform decision-making body about the decision. For future study, a new
measure in fuzzy stochastic programming can also be planned in chance constraint programming.
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