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ON MULTI-LEVEL MULTI-OBJECTIVE LINEAR FRACTIONAL
PROGRAMMING PROBLEM WITH INTERVAL PARAMETERS

Suvasis Nayak1,∗ and Akshay Ojha1

Abstract. This paper develops a method to solve multi-level multi-objective linear fractional pro-
gramming problem (ML-MOLFPP) with interval parameters as the coefficients of decision variables
and the constants involved in both the objectives and constraints. The objectives at each level are
transformed into interval-valued fractional functions and approximated by intervals of linear functions
using variable transformation and Taylor series expansion. Interval analysis and weighting sum method
with analytic hierarchy process (AHP), are used to determine the non-dominated solutions at each level
from which the aspiration values of the controlled decision variables are ascertained and linear fuzzy
membership functions are constructed for all the objectives. Two multi-objective linear problems are
equivalently formulated for the ML-MOLFPP with interval parameters and fuzzy goal programming is
used to compute the optimal lower and upper bounds of all the objective values. A numerical example
is solved to demonstrate the proposed solution approach.
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1. Introduction

Multi-level programming problems (MLPP) involve multiple interactive decision making units positioned at
different levels of the system in order of their priorities in context of decision making. Optimization problems
of multi-level types with several objectives at each level, are often encountered in decision making situations
of complex hierarchical organizations. ML-MOLFPP comprises several linear fractional objectives at its each
level which basically represent the ratios of physical and/or economical quantities of the real world problems
like [28] cost/time, profit/cost, output/employee, inventory/sale, debit/equity, risk-assets/capital and so forth.
Some common characteristics of MLPP are:

(i) Decisions of DMs are sequentially processed from upper to lower level.
(ii) Each level DM controls a set of decision variables independently.
(iii) Decisions of DMs get affected by the actions and reactions of each other.

A solution of MLPP is determined by considering the decisions of all level DMs together for the overall
benefit of the system where a minimum standard of satisfaction is attained by all DMs otherwise it produces a
situation of decision deadlock. MLPP are extremely useful to the decentralized systems [27] such as agriculture,
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transportation, network design, government policy, finance, economic system and so forth. Fractional program-
ming [28] is a mathematical optimization problem comprising its objective function as the ratio of linear or
non-linear functions which is generally formulated as:

max /min
N(x)
D(x)

subject to
x ∈ Ω, the set of constraints.

It has gained intensive research interest because of its applications in numerous important fields including engi-
neering, science, economics, business, management, production, finance, information theory, water resources,
health care and so forth. This field was first studied by Isbell and Marlow [15]. Charnes and Cooper [9] devel-
oped variable transformation method to solve linear fractional programming problem (LFPP). Dinkelbach [13]
proposed an iterative parametric approach to solve non-linear FPP. Bitran and Novaes [8] developed an algo-
rithm based on the simplex routine to solve LFPP.

In decision making contexts, Bellman and Zadeh [7] developed some basic concepts regarding fuzzy set theory
for maximizing the decisions in form of membership functions and Zimmermann [33] proposed fuzzy program-
ming (max-min operator) technique to solve a multi-objective LPP. Mohamed [22] established a relation between
fuzzy programming and goal programming. Bi-level programming problems (BLPP) are special cases of MLPP
and enormously studied in literature. Mishra [21] developed a method to solve bi-level linear fractional pro-
gramming problems (BL-LFPP) using weighting sum approach and analytic hierarchy process (AHP). Toksari
[30] applied Taylor series approach to solve bi-level linear fractional programming problem. Sakawa et al. [26]
proposed an interactive fuzzy programming approach to solve BL-LFPP with fuzzy parameters. Abo-Sinna
and Baky [2] solved bi-level multi-objective LFPP using fuzzy goal programming approach. Baky [4] developed
fuzzy goal programming algorithm to solve decentralized bi-level multi-objective linear programming problems
whereas Ahlatcioglu and Tiryaki [3] proposed two different approaches to solve such problems with linear frac-
tional objectives using AHP to decide the proper weights. Toksari and Bilim [31] developed an interactive fuzzy
goal programming approach to solve decentralized bi-level MOFPP in which jacobian matrix has been used to
linearize the fuzzy membership functions in fractional form. Shih et al. [27] used fuzzy membership functions to
solve multi-level programming problems. Pramanik and Roy [25] proposed fuzzy goal programming approach
to solve multi-level LPP. Osman et al. [24] studied three-level multi-objective non-linear problems using fuzzy
programming. Baky [5] developed two algorithms to solve multi-level multi-objective LPP using fuzzy goal
programming approach and proposed TOPSIS (technique for order preference by similarity to ideal solution)
algorithm [6] to solve multi-level non-linear multi-objective decision making problem. Abo-Sinna and Baky [1]
proposed balance space approach to solve MLPP and Lachhwani [17] proposed fuzzy goal programming (FGP)
approach to solve MLPP with linear objectives. Recently, Lachhwani [18] added some modifications to [5] the
process of selection of tolerances for the controlled decision variables and developed a methodology to solve
ML-MOLFPP using FGP approach. Liu [19] discussed geometric programming problem with fuzzy parameters
and used Zadeh’s extension principle to solve it. He derived the optimal lower and upper bounds of the objec-
tive function using α-cuts in fuzzy membership functions. Similarly, Chinnaduraj and Muthukumar [10] solved
LFPP in fuzzy environment using α-cut in objectives and r-cut in constraints and derived optimal lower and
upper bounds for the objective function.

In the present work, we have solved ML-MOLFPP with interval parameters which has not been previously
studied as found from the survey of the literature. In many practical problems, decision maker (DM) can
not exactly ascertain fixed values for the cost and constraint coefficients, right-hand side constants and other
numeric values involved in the mathematically modeled optimization problems. To tackle such situation, some
ranges of values in form of closed intervals can be considered instead of fixed values to suitably fit the practical
problems. Therefore, an attempt is made to solve ML-MOLFPP in interval environment. As the objectives can
be transformed into interval-valued functions, their optimal lower and upper bounds are determined by the
obtained compromise solutions due to the proposed method.
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The rest of the paper is organized as follows: Section 2 interprets the basics of intervals whereas the mathe-
matical formulation of ML-MOLFPP with interval parameters is incorporated in Section 3. Section 4 describes
the proposed method, its advantages and an algorithm for solving the problem. To illustrate the solution pro-
cedure of the proposed method and show its feasibility, a numerical example and its solution is presented in
Section 5. Finally, some conclusions are incorporated in Section 6.

2. Interval arithmetic

Assume that “I” denotes the set of all closed intervals in R. For a, b ∈ I such that a = [aL, aU ] and b = [bL, bU ],
the lower and upper bounds of a, b are considered as aL, bL and aU , bU respectively. The arithmetic operations
on “I” [23] can be interpreted as follows.

(i) a+ b = [aL + bL, aU + bU ]
(ii) a− b = [aL − bU , aU − bL]

(iii) αa =

{
[αaL, αaU ], α ≥ 0
[αaU , αaL], α < 0

(iv) ab =[min(M), max(M)], where M = {aLbL, aLbU , aUbL, aUbU}

(v)
a

b
= [min(D), max(D)] for 0 /∈ b, where D =

{
aL

bL
,
aL

bU
,
aU

bL
,
aU

bU

}
(vi) If a, b ∈ I+ ⊂ R+ then ab = [aLbL, aUbU ] and

a

b
=
[
aL

bU
,
aU

bL

]
.

Define “4” as a partial ordering on “I” such that a 4 b holds if and only if aL ≤ bL and aU ≤ bU [32] which
means a is inferior to b or b is superior to a. We say a ≺ b if and only if a 4 b and a 6= b i.e., one of the following
condition holds,
{aL < bL, aU < bU} or {aL < bL, aU ≤ bU} or {aL ≤ bL, aU < bU}.

3. Problem formulation

ML-MOLFPP arises frequently in many hierarchical organizations and it is treated as a special category
of multi-level mathematical programming in which the objectives at each level exist as fractions of affine
functions. In many practical situations while formulating the problems into optimization models, decision
makers can not always determine fixed values for the coefficients of the decision variables from the available
data. To manage such problems, instead of fixed values it is better to assume certain ranges with lower
and upper bounds in form of closed intervals. Consider a q-level mathematical programming in which each
level-i (i = 1, 2, . . . , q) contains mi number of linear fractional objectives to be simultaneously optimized. DMi

(i = 1, 2, . . . , q) denotes the decision maker at ith-level who controls a set of decision variables Xi independently.
The mathematical formulation of ML-MOLFPP [18] with interval parameters can be generally formulated as
follows.

Level-1 (DM1): max
X1

{
f11(x), f12(x), . . . , f1m1(x)

}
Level-2 (DM2): max

X2

{
f21(x), f22(x), . . . , f2m2(x)

}
...
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Level-q (DMq): max
Xq

{
fq1(x), fq2(x), . . . , fqmq

(x)
}

subject to
x ∈ Ω = {A1X1 +A2X2 + . . .+AqXq ≤ b}

=

{
q∑
i=1

AiXi ≤ b

}

where

x = (X1, X2, . . . , Xq) = (x1, x2, . . . , xn) ∈ Rn ≥ 0,

Xi = (x(i)
1 , x

(i)
2 , . . . , x(i)

ni
) ∈ Rni(i = 1, 2, . . . , q), n = n1 + n2+, . . . ,+nq,

Ai = (a(i)
tj ) ∈ Rm×ni and b = (bt) ∈ Rm for t = 1, 2, . . . ,m and j = 1, 2, . . . , ni.

The objective functions at each level are considered as:

fij(x) =
fNij (x)
fDij (x)

=

q∑
k=1

cijkXk + αij

q∑
k=1

dijkXk + βij

, i = 1, 2, . . . , q for j = 1, 2, . . . ,mi

where, fNij (x) and fDij (x) represent the numerator and denominator functions of the objective fij(x) respec-

tively. Assume that, cijk, dijk, αij , βij ∈ I+, a(i)
tj , bt ∈ I and fDij (x) > 0 ∀ x ∈ Ω. cijk = [cLijk, c

U
ijk], dijk =

[dLijk, d
U
ijk], αij = [αLij , α

U
ij ], βij = [βLij , β

U
ij ], a

(i)
tj = [a(i)L

tj , a
(i)U
tj ], bt = [bLt , b

U
t ].

4. Proposed method to solve ML-MOLFPP with interval parameters

ML-MOLFPP is studied with intervals as the constants and coefficients of the decision variables involved
in both the objective functions and constraints. The proposed method derives the compromise solutions that
determine the optimal lower and upper bounds for the objective values of the whole problem since the objectives
at each level can be expressed as interval-valued functions.

4.1. Transforming the objectives and constraints

The objectives at each level of ML-MOLFPP can be formulated as:

fij(x) =

q∑
k=1

[
cLijk, c

U
ijk

]
Xk +

[
αLij , α

U
ij

]
q∑

k=1

[
dLijk, d

U
ijk

]
Xk +

[
βLij , β

U
ij

] =

[
q∑

k=1

cLijkXk + αLij ,
q∑

k=1

cUijkXk + αUij

]
[

q∑
k=1

dLijkXk + βLij ,
q∑

k=1

dUijkXk + βUij

] ·
Since cijk, dijk, αij , βij ∈ I+, the objectives can be reformulated in form of interval valued functions using

the concept of interval analysis.

fij(x) =


q∑

k=1

cLijkXk + αLij

q∑
k=1

dUijkXk + βUij

,

q∑
k=1

cUijkXk + αUij

q∑
k=1

dLijkXk + βLij

 =
[
fLij(x), fUij (x)

]
.
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The constraints
q∑
i=1

AiXi ≤ b, forming the feasible region Ω can be analysed using the order relation “4”

defined on “I” as:
n1∑
j=1

a
(1)
tj x

(1)
j +

n2∑
j=1

a
(2)
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)
tj x

(q)
j ≤ bt, t = 1, 2, . . . ,m.

Since a
(i)
tj , bt ∈ I, the constraints can be stated as:

n1∑
j=1

[
a
(1)L
tj , a

(1)U
tj

]
x

(1)
j +

n2∑
j=1

[
a
(2)L
tj , a

(2)U
tj

]
x

(2)
j +, . . . ,+

nq∑
j=1

[
a
(q)L
tj , a

(q)U
tj

]
x

(q)
j 4

[
bLt , b

U
t

]
.

These constraints can be further splitted into the following form.

n1∑
j=1

a
(1)L
tj x

(1)
j +

n2∑
j=1

a
(2)L
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)L
tj x

(q)
j ≤ b

L
t , t = 1, 2, . . . ,m

n1∑
j=1

a
(1)U
tj x

(1)
j +

n2∑
j=1

a
(2)U
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)U
tj x

(q)
j ≤ b

U
t , t = 1, 2, . . . ,m

Definition 4.1. x∗ is a non-dominated solution of the problem: max f(x) = [fL(x), fU (x)] subject to x ∈ U if
there exists no x̄ ∈ U such that f(x∗) ≺ f(x̄).

4.2. Variable transformation method (VTM)

Charnes and Cooper [9] developed VTM to derive the optimal solution of a linear fractional programming
problem. Consider the following two mathematical programming problems M1 and M2 with fractional and
linear objectives respectively.

M1 : max f(x) =
cx+ α

dx+ β

subject to
S1 = {Ax ≤ b, x ≥ 0}

where c, d ∈ Rn, α, β ∈ R, A ∈ Rm×n, b ∈ Rm and x ∈ Rn.

M2 : max g(y, z) = cy + αz

subject to
S2 = {dy + βz = 1, Ay − bz ≤ 0, y, z ≥ 0}

where, the transformations z = 1
dx+β and y = xz derive M2 from M1.

Theorem 4.2. [28] If (y∗, z∗) is an optimal solution of M2 then x∗ = y∗

z∗ is the optimal solution of M1.

Lemma 4.3. [28] For any feasible solution (y, z) ∈ S2, z is positive.

Corollary 4.4. [28] The transformation y = xz establishes an one-to-one correspondence between the feasible
sets S1 and S2.

Definition 4.5. [10, 11] Two mathematical programming problems P1 : max f(x) subject to x ∈ U and P2 :
max g(x) subject to x ∈ V are said to be equivalent iff ∃ an one-to-one map h : U → V such that f(x) =
g(h(x)) ∀ x ∈ U .
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4.3. Solution approach

The following problem is formulated using VTM to determine the individual optimal solution for the lower
bound fLij(x), of each interval-valued fractional objective function fij(x).

max
q∑

k=1

cLijkYk + αLijz
L (4.1)

subject to
q∑

k=1

dUijkYk + βUijz
L = 1

n1∑
j=1

a
(1)L
tj y

(1)
j +

n2∑
j=1

a
(2)L
tj y

(2)
j +, . . . ,+

nq∑
j=1

a
(q)L
tj y

(q)
j ≤ b

L
t z

L, t = 1, 2, . . . ,m

n1∑
j=1

a
(1)U
tj y

(1)
j +

n2∑
j=1

a
(2)U
tj y

(2)
j +, . . . ,+

nq∑
j=1

a
(q)U
tj y

(q)
j ≤ b

U
t z

L, t = 1, 2, . . . ,m

y
(1)
j , y

(2)
j , . . . , y

(q)
j ≥ 0, zL > 0

where, Yk = Xkz
L and y

(i)
j = x

(i)
j zL, i = 1, 2, . . . , q.

By Theorem 4.2, If (y(1)∗
j , y

(2)∗
j , . . . , y

(q)∗
j , zL∗) is the optimal solution of problem (4.1) then

(x(1)∗
j , x

(2)∗
j , . . . , x

(q)∗
j ) = (

y
(1)∗
j

zL∗ ,
y
(2)∗
j

zL∗ , . . . ,
y
(q)∗
j

zL∗ ) is the optimal solution of fLij(x) on Ω. Similarly, the individ-
ual optimal solution of each upper bound function fUij (x) can be evaluated using VTM.

Let xL∗ij = (xL∗ij1, x
L∗
ij2, . . . , x

L∗
ijn) and xU∗ij = (xU∗ij1, x

U∗
ij2, . . . , x

U∗
ijn) be the individual optimal solutions of fLij(x)

and fUij (x) respectively where j = 1, 2, . . . ,mi for i = 1, 2, . . . , q. Using Taylor series expansion [29] up to first
order, each fLij(x) and fUij (x) are expanded about their respective individual optimal solutions xL∗ij and xU∗ij
to approximate the fractional objectives of ML-MOLFPP by the linear functions. The approximations can be
formulated as follows.

fLij(x) ≈ f̃Lij(x) = fLij(x
L∗
ij ) +

n∑
k=1

(xk − xL∗ijk)
∂fLij(x

L∗
ij )

∂xk

fUij (x) ≈ f̃Uij (x) = fUij (xU∗ij ) +
n∑
k=1

(xk − xU∗ijk)
∂fUij (xU∗ij )

∂xk
·

Weighting sum method [20] is used to determine the non-dominated solutions of each level-i = 1, 2, . . . , q
separately. The weights assigned to the objectives of a particular level, represent the relative importance of the
objectives and are usually considered to be positive and normalized. In the present work, proper weights (wj)
are determined using analytic hierarchy process (AHP) [14, 21] from the pairwise comparison matrix obtained
by the DM of the respective level on priority basis of its objectives. Some other methods are also available in
literature to ascertain the weights from the pairwise comparison matrix such as least square method [16] and
logarithmic square method [12] etc. At any particular level-l ∈ {1, 2, . . . , q}, the multi-objective problem with
approximated objectives is transformed into single objective problem using the obtained proper weights which
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can be formulated as:

max
ml∑
j=1

wj [f̃Llj (x), f̃Ulj (x)] (4.2)

subject to
n1∑
j=1

a
(1)L
tj x

(1)
j +

n2∑
j=1

a
(2)L
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)L
tj x

(q)
j ≤ b

L
t , t = 1, 2, . . . ,m

n1∑
j=1

a
(1)U
tj x

(1)
j +

n2∑
j=1

a
(2)U
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)U
tj x

(q)
j ≤ b

U
t , t = 1, 2, . . . ,m

x = (x1, x2, . . . , xn) = (x(1)
j , x

(2)
j , . . . , x

(q)
j ) ≥ 0, wj > 0,

ml∑
j=1

wj = 1.

Consider the following two mathematical programming problems M3 and M4 where, f : Rn → I and
g : Rn → R.

M3 : max f(x) = [fL(x), fU (x)]
subject to

hi(x) ≤ 0, i = 1, 2, . . . ,m
x ≥ 0

M4 : max g(x) = fL(x) + fU (x)
subject to

hi(x) ≤ 0, i = 1, 2, . . . ,m
x ≥ 0

Theorem 4.6. If x∗ is an optimal solution of M4 then x∗ is a non-dominated solution of M3.
Proof. [32] Suppose x∗ is not a non-dominated solution of M3 i.e., there exists a feasible solution x̄ such that
f(x∗) ≺ f(x̄) which means one of the following condition holds.
{

fL(x∗) < fL(x̄), fU (x∗) < fU (x̄)
}

or
{

fL(x∗) ≤ fL(x̄), fU (x∗) < fU (x̄)
}

or
{

fL(x∗) < fL(x̄), fU (x∗) ≤ fU (x̄)
}

.

In each case, g(x∗) < g(x̄) which contradicts to the optimality of x∗ for M4. �

Using Theorem 4.6, problem (4.2) can be equivalently transformed into the following problem with real-valued
objective function which is defined as:

max
ml∑
j=1

wj(f̃Llj (x) + f̃Ulj (x)) (4.3)

subject to
n1∑
j=1

a
(1)L
tj x

(1)
j +

n2∑
j=1

a
(2)L
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)L
tj x

(q)
j ≤ b

L
t , t = 1, 2, . . . ,m

n1∑
j=1

a
(1)U
tj x

(1)
j +

n2∑
j=1

a
(2)U
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)U
tj x

(q)
j ≤ b

U
t , t = 1, 2, . . . ,m

x = (x1, x2, . . . , xn) = (x(1)
j , x

(2)
j , . . . , x

(q)
j ) ≥ 0, wj > 0,

ml∑
j=1

wj = 1.
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Evaluate the non-dominated solutions of each level by solving problem (4.3) separately for l = 1, 2, . . . , q.

Let X l1∗
1 , X

l∗2
2 , . . . , X

l∗q
q be the non-dominated solutions, obtained for levels-1, 2 . . . q respectively. Since DMi of

each level (i = 1, 2, . . . , q) controls a set of decision variables Xi independently, their aspiration values X∗
i are

ascertained as the corresponding co-ordinate values in the obtained non-dominated solution X li∗
i of the same

level.

Determine the range of variations for the objective values of each lower and upper bounds of the objective
functions using the following process.

The aspired and acceptable values of f̃Lij(x) are evaluated as:

f̃Lmax
ij = f̃Lij(X

l∗i
i )

f̃Lmin
ij = min

{
f̃Lij(X

l∗k
k )|k 6= i, k = 1, 2, . . . , q

}
.

If f̃Lmin
ij ≥ f̃Lij(X

l∗i
i ), f̃Lmin

ij is assigned an acceptable value by the DM of the corresponding level such that

f̃Lmin
ij < f̃Lij(X

l∗i
i ).

The aspired and acceptable values of f̃Uij (x) are evaluated as:

f̃U max
ij = f̃Uij (X l∗i

i )

f̃U min
ij = min

{
f̃Uij (X l∗k

k )|k 6= i, k = 1, 2, . . . , q
}
.

If f̃U min
ij ≥ f̃Uij (X l∗i

i ), f̃U min
ij is assigned an acceptable value by the DM of the corresponding level such that

f̃U min
ij < f̃Uij (X l∗i

i ).

Thus, the range of variations for the approximated objectives are obtained as:

[f̃Lmin
ij , f̃U min

ij ] 4 [f̃Lij(x), f̃Uij (x)] 4 [f̃Lmax
ij , f̃U max

ij ]

i .e., f̃Lmin
ij ≤ f̃Lij(x) ≤ f̃Lmax

ij and f̃U min
ij ≤ f̃Uij (x) ≤ f̃U max

ij .

Construct the fuzzy linear membership functions of maximization type for f̃Lij(x) and f̃Uij (x) as:

µf̃L
ij

(x) =


1, f̃Lij(x) ≥ f̃Lmax

ij
f̃L

ij(x)−f̃
L min
ij

f̃L max
ij −f̃L min

ij

, f̃Lmin
ij < f̃Lij(x) < f̃Lmax

ij

0, f̃Lij(x) ≤ f̃Lmin
ij

µf̃U
ij

(x) =


1, f̃Uij (x) ≥ f̃U max

ij
f̃U

ij (x)−f̃U min
ij

f̃U max
ij −f̃U min

ij

, f̃U min
ij < f̃Uij (x) < f̃U max

ij

0, f̃Uij (x) ≤ f̃U min
ij

.

Since the interval-valued fractional objectives are approximated by linear functions, the solutions of ML-
MOLFPP that determine the optimal lower and upper bounds of the objective values, can be obtained by
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solving the following two problems.

max{µf̃L
ij

(x), i = 1, 2, . . . , q, j = 1, 2, . . . ,mi} (4.4)

subject to
Xi ≈ X∗

i , i = 1, 2, . . . , q − 1
n1∑
j=1

[
a
(1)L
tj , a

(1)U
tj

]
x

(1)
j +

n2∑
j=1

[
a
(2)L
tj , a

(2)U
tj

]
x

(2)
j +, . . . ,+

nq∑
j=1

[
a
(q)L
tj , a

(q)U
tj

]
x

(q)
j 4

[
bLt , b

U
t

]
x ≥ 0, t = 1, 2, . . . ,m

max{µf̃U
ij

(x), i = 1, 2, . . . , q, j = 1, 2, . . . ,mi} (4.5)

subject to
Xi ≈ X∗

i , i = 1, 2, . . . , q − 1
n1∑
j=1

[
a
(1)L
tj , a

(1)U
tj

]
x

(1)
j +

n2∑
j=1

[
a
(2)L
tj , a

(2)U
tj

]
x

(2)
j +, . . . ,+

nq∑
j=1

[
a
(q)L
tj , a

(q)U
tj

]
x

(q)
j 4

[
bLt , b

U
t

]
x ≥ 0, t = 1, 2, . . . ,m.

The aspiration values for the membership functions µf̃L
ij

(x), µf̃U
ij

(x) and the decision variables Xi, i =
1, 2, . . . , q−1 controlled by upper level DMs are unity and X∗

i respectively. Thus, using fuzzy goal programming
method [22] the problems (4.4) and (4.5) can be respectively reformulated as follows:

(Lower bound) : min
q∑
i=1

mi∑
j=1

dij +
q−1∑
i=1

(dli + dri ) (4.6)

µf̃L
ij

(x) + dij ≥ 1, i = 1, 2, . . . , q, j = 1, 2, . . . ,mi

Xi + dli − dri = X∗
i , i = 1, 2, . . . , q − 1

n1∑
j=1

a
(1)L
tj x

(1)
j +

n2∑
j=1

a
(2)L
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)L
tj x

(q)
j ≤ b

L
t , t = 1, 2, . . . ,m

n1∑
j=1

a
(1)U
tj x

(1)
j +

n2∑
j=1

a
(2)U
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)U
tj x

(q)
j ≤ b

U
t , t = 1, 2, . . . ,m

x, dij , d
l
i, d

r
i ≥ 0, dli.d

r
i = 0

(Upper bound) : min
q∑
i=1

mi∑
j=1

eij +
q−1∑
i=1

(eli + eri ) (4.7)

µf̃U
ij

(x) + eij ≥ 1, i = 1, 2, . . . , q, j = 1, 2, . . . ,mi

Xi + eli − eri = X∗
i , i = 1, 2, . . . , q − 1

n1∑
j=1

a
(1)L
tj x

(1)
j +

n2∑
j=1

a
(2)L
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)L
tj x

(q)
j ≤ b

L
t , t = 1, 2, . . . ,m

n1∑
j=1

a
(1)U
tj x

(1)
j +

n2∑
j=1

a
(2)U
tj x

(2)
j +, . . . ,+

nq∑
j=1

a
(q)U
tj x

(q)
j ≤ b

U
t , t = 1, 2, . . . ,m

x, eij , e
l
i, e

r
i ≥ 0, eli.e

r
i = 0.
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Since over deviation from the aspiration value represents complete achievement of the membership function,
the over deviational variables are omitted and only the under deviational variables dij , eij are considered to be
minimized while forming the goals for µf̃L

ij
(x) and µf̃U

ij
(x) in problems (4.6) and (4.7) respectively. The values

of the controlled decision variables Xi, i = 1, 2, . . . , q− 1 are expected around X∗
i by the respective DMs. Thus,

both the under and over deviational variables dli, d
r
i in (4.6) and eli, e

r
i in (4.7) are taken into account while

forming the goals for Xi. If xL∗ and xU∗ are the solutions obtained by solving the problems (4.6) and (4.7)
respectively then fLij(x

L∗) and fUij (xU∗) represent the optimal lower and upper bounds for the objective values
of fij(x) belonging to the ML-MOLFPP.

If DMs intend to generate the pareto set (set of pareto optimal solutions) [20] instead of generating single
compromise solution for the optimal lower and upper bounds of the objective functions then the following two
cases can be considered.

(i) If DM at any level i ∈ {1, 2, . . . , q} remains unsatisfied as a comparison among its objective values then
different weights are assigned to its objectives by reconstructing its pairwise comparison matrix.

(ii) If DMs remain unsatisfied as a comparison among the objective values of different levels then the unsatisfied
DM can reduce the acceptable values for its objectives while constructing the membership functions.

Each of the above two cases will reconstruct the optimization models (4.6) and (4.7) and generate different
pareto optimal solutions with different optimal lower and upper bounds for the objective functions.

4.4. Advantages of the proposed method

Lachhwani [18] proposed a methodology to solve ML-MOLFPP with fixed coefficients and constants. But the
fixed values rarely fit the practical problems with accuracy due to their fluctuations during a certain period of
time. Sometimes DM has to infer these values within certain ranges. Thus instead of considering fixed values,
the proposed method assumes intervals in ML-MOLFPP to fit the real data and it is believed, this problem has
not been studied earlier.

Moreover, the fuzzy numbers [34] can be expressed as closed intervals using α-cuts as follows:

(i) ãα = [aL, aU ] = [a(1) + α(a(2) − a(1)), a(3) − α(a(3) − a(2))] ∀α ∈ [0, 1]
(ii) b̃α = [bL, bU ] = [b(1) + α(b(2) − b(1)), b(4) − α(b(4) − b(3))] ∀α ∈ [0, 1]

where, ã = (a(1), a(2), a(3)) and b̃ = (b(1), b(2), b(3), b(4)) are triangular and trapezoidal fuzzy numbers respectively.
So, for a specific value of “α” the proposed method can also be implemented to solve ML-MOLFPP with fuzzy
numbers as coefficients and constants. Membership functions for fuzzy objective values can be constructed using
the optimal lower and upper bounds as discussed in [10,19].

4.5. Algorithm to solve ML-MOLFPP with interval parameters

The proposed algorithm comprises the following steps sequentially to solve a ML-MOLFPP with interval
parameters.
Step 1. Transform the objectives fij(x) of ML-MOLFPP into the interval-valued form [fLij(x), fUij (x)] using
interval arithmetic.
Step 2. Transform the system constraints with interval parameters into linear constraints with real coefficients
as discussed in Section 4.1.
Step 3. Maximize each fractional objectives fLij(x) and fUij (x) using VTM to obtain their individual optimal
solutions xL∗ij and xU∗ij respectively for i = 1, 2, . . . , q and j = 1, 2, . . . ,mi.
Step 4. Transform ML-MOLFPP into ML-MOLPP on approximating the fractional objectives fLij(x) and fUij (x)
by the linear functions f̃Lij(x) and f̃Uij (x) respectively using Taylor series expansion.

Step 5. Determine the non-dominated solutions X l1∗
1 , X

l∗2
2 , . . . , X

l∗q
q for level-1,2,. . . ,q respectively using AHP

and weighting sum method.
Step 6. Ascertain the values of X∗

i from X
l∗i
i in order to form the goals for Xi, i = 1, 2, . . . , q − 1
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Step 7. Evaluate f̃Lmax
ij , f̃Lmin

ij , f̃U max
ij and f̃U min

ij using the proposed criteria.
Step 8. Construct the linear membership functions µf̃L

ij
(x) and µf̃U

ij
(x) for i = 1, 2, . . . , q and j = 1, 2, . . . ,mi.

Step 9. Solve the problems (4.6) and (4.7) to obtain the solutions xL∗ and xU∗ respectively and evaluate
fLij(x

L∗) and fUij (xU∗) for i = 1, 2, . . . , q and j = 1, 2, . . . ,mi.
Step 10. If any DM gets unsatisfied with the obtained range of its objective values, can change the weights
assigned by him/her and repeat from step-5 onwards.

5. Numerical example

To illustrate the proposed solution approach, the following ML-MOLFPP with interval coefficients and con-
stants, is solved.
Level-1:

max
x1

{
[2, 3]x1 + [5, 7]x2 + [1, 2]x3 + [1, 2]
[3, 5]x1 + [2, 6]x2 + [2, 3]x3 + [2, 4]

,
[4, 7]x1 + [3, 5]x2 + [3, 8]x3 + [1, 3]
[2, 4]x1 + [3, 7]x2 + [1, 2]x3 + [1, 2]

}
Level-2:

max
x2

{
[1, 7]x1 + [3, 8]x2 + [2, 7]x3 + [2, 4]
[2, 4]x1 + [2, 5]x2 + [3, 5]x3 + [1, 3]

,
[2, 5]x1 + [4, 7]x2 + [3, 5]x3 + [3, 4]
[1, 2]x1 + [3, 5]x2 + [5, 7]x3 + [4, 5]

}
Level-3:

max
x3

{
[5, 9]x1 + [6, 8]x2 + [8, 11]x3 + [3, 5]
[2, 4]x1 + [3, 5]x2 + [5, 7]x3 + [1, 4]

,
[6, 9]x1 + [3, 7]x2 + [5, 8]x3 + [4, 6]
[3, 5]x1 + [5, 8]x2 + [4, 9]x3 + [2, 5]

}
subject to

[−1, 1]x1 + [1, 1]x2 + [−1, 1]x3 4 [−1, 5]
[−2, 3]x1 + [−1,−1]x2 + [1, 2]x3 4 [−1, 7]

x1, x2, x3 ≥ 0

Using interval arithmetic, the problem can be simplified as:
Level-1:

max
x1

{[ 2x1 + 5x2 + x3 + 1
5x1 + 6x2 + 3x3 + 4

,
3x1 + 7x2 + 2x3 + 2
3x1 + 2x2 + 2x3 + 2

]
,
[4x1 + 3x2 + 3x3 + 1

4x1 + 7x2 + 2x3 + 2
,

7x1 + 5x2 + 8x3 + 3
2x1 + 3x2 + x3 + 1

]}
Level-2:

max
x2

{[ x1 + 3x2 + 2x3 + 2
4x1 + 5x2 + 5x3 + 3

,
7x1 + 8x2 + 7x3 + 4
2x1 + 2x2 + 3x3 + 1

]
,
[2x1 + 4x2 + 3x3 + 3

2x1 + 5x2 + 7x3 + 5
,

5x1 + 7x2 + 5x3 + 4
x1 + 3x2 + 5x3 + 4

]}
Level-3:

max
x3

{[5x1 + 6x2 + 8x3 + 3
4x1 + 5x2 + 7x3 + 4

,
9x1 + 8x2 + 11x3 + 5
2x1 + 3x2 + 5x3 + 1

]
,
[6x1 + 3x2 + 5x3 + 4

5x1 + 8x2 + 9x3 + 5
,

9x1 + 7x2 + 8x3 + 6
3x1 + 5x2 + 4x3 + 2

]}
subject to

Ω =



x1 + x2 + x3 ≤ 5
x1 − x2 + x3 ≥ 1
3x1 − x2 + 2x3 ≤ 7
2x1 + x2 − x3 ≥ 1
x1, x2, x3 ≥ 0

.
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Let, fij(x) = [fLij(x), fUij (x)] with i = 1, 2, 3 and j = 1, 2 denote the objectives of level-i = 1, 2, 3. Using the
proposed criteria, the interval-valued fractional objectives fij(x) at each level are approximated by the interval-
valued linear functions f̃ij(x) = [f̃Lij(x), f̃Uij (x)] where f̃Lij(x) and f̃Uij (x) are computed by first order Taylor series
expansion of fLij(x) and fUij (x) about their respective individual optimal solutions.

At level-1:

f̃L11(x) = −0.0298x1 + 0.0630x2 − 0.0255x3 + 0.5104

f̃U11(x) = −0.1870x1 + 0.2701x2 − 0.1246x3 + 1.6647

f̃L12(x) = −0.0216x1 − 0.4267x2 + 0.0864x3 + 0.9476

f̃U12(x) = −0.4969x1 − 1.8148x2 + 0.6266x3 + 4.432

DM1 decides the pairwise comparison matrix as:

AL1 =
[

1 2
1/2 1

]
and using AHP, the weights are evaluated as w11 = 0.6667 and w12 = 0.3333 which are to be assigned the
objectives f̃1j(x) = [f̃L1j(x), f̃U1j(x)], j = 1, 2 respectively. The non-dominated solution is obtained as xl

∗
1
1 =

(0.6667, 0, 0.3333) for level-1. Thus, the aspiration value for x1 is determined as x∗1 = 0.6667.
At level-2:

f̃L21(x) = −0.0348x1 + 0.0205x2 − 0.0161x3 + 0.5076

f̃U21(x) = −0.0413x1 + 0.0496x2 − 0.3802x3 + 3.752

f̃L22(x) = 0.0181x1 − 0.0023x2 − 0.127x3 + 0.7598

f̃U22(x) = 0.1893x1 − 0.0473x2 − 0.5917x3 + 2.0652

DM2 decides the pairwise comparison matrix as:

AL2 =
[

1 3
1/3 1

]
and using AHP, the weights are evaluated as w21 = 0.75 and w22 = 0.25 which are to be assigned the objectives
f̃2j(x) = [f̃L2j(x), f̃U2j(x)], j = 1, 2 respectively. The non-dominated solution is obtained as xl

∗
2
2 = (3, 2, 0) for

level-2. Thus, the aspiration value for x2 is determined as x∗2 = 2.
At level-3:

f̃L31(x) = 0.0148x1 + 0.0089x2 − 0.003x3 + 1.0916

f̃U31(x) = −0.1111x1 − 2x2 − 4.1111x3 + 4.7778

f̃L32(x) = 0.036x1 − 0.3384x2 − 0.2832x3 + 0.9960

f̃U32(x) = −1.6x2 − 0.8x3 + 3

DM3 decides the pairwise comparison matrix AL3 same as AL1 and using AHP, the weights are evaluated
as w31 = 0.6667 and w32 = 0.3333 which are to be assigned the objectives f̃3j(x) = [f̃L3j(x), f̃U3j(x)], j = 1, 2

respectively. The non-dominated solution is obtained as xl
∗
3
3 = (1, 0, 0) for level-3.

The aspiration and acceptable values i.e., the ranges of variations for the approximated lower and
upper bounds of the objectives are ascertained from their objective values evaluated at the obtained
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non-dominated solutions as:

0.4806 ≤ f̃L11(x) ≤ 0.4820, 0.0294 ≤ f̃L12(x) ≤ 0.9620

0.4 ≤ f̃L21(x) ≤ 0.4442, 0.7295 ≤ f̃L22(x) ≤ 0.8095

1.1005 ≤ f̃L31(x) ≤ 1.1064, 0.4272 ≤ f̃L32(x) ≤ 1.0320

1.4777 ≤ f̃U11(x) ≤ 1.4985, −0.6883 ≤ f̃U12(x) ≤ 4.3096

3.5977 ≤ f̃U21(x) ≤ 3.7273, 1.9942 ≤ f̃U22(x) ≤ 2.5385

0.4445 ≤ f̃U31(x) ≤ 4.6667, −0.2 ≤ f̃U32(x) ≤ 3.

Constructing the fuzzy membership functions µf̃L
ij

(x) and µf̃U
ij

(x) for f̃Lij(x) and f̃Uij (x) respectively with
i = 1, 2, 3 and j = 1, 2 (as defined in Sect. 4.3), the given problem can be transformed into the following two
problems using fuzzy goal programming method.

(Lower bound):

min = (d11 + d12 + d21 + d22 + d31 + d32) + (dl1 + dr1) + (dl2 + dr2)
subject to

µf̃L
11

(x) =
f̃L11(x)− 0.4806
0.4820− 0.4806

+ d11 ≥ 1

µf̃L
12

(x) =
f̃L12(x)− 0.0294
0.9620− 0.0294

+ d12 ≥ 1

µf̃L
21

(x) =
f̃L21(x)− 0.4
0.4442− 0.4

+ d21 ≥ 1

µf̃L
22

(x) =
f̃L22(x)− 0.7295
0.8095− 0.7295

+ d22 ≥ 1

µf̃L
31

(x) =
f̃L31(x)− 1.1005
1.1064− 1.1005

+ d31 ≥ 1

µf̃L
32

(x) =
f̃L32(x)− 0.4272
1.0320− 0.4272

+ d32 ≥ 1

x1 + dl1 − dr1 = 0.6667

x2 + dl2 − dr2 = 2
x1 + x2 + x3 ≤ 5, x1 − x2 + x3 ≥ 1

3x1 − x2 + 2x3 ≤ 7, 2x1 + x2 − x3 ≥ 1

x1, x2, x3, d11, d12, d21, d22, d31, d32, d
l
1, d

r
1, d

l
2, d

r
2 ≥ 0, dl1d

r
1 = 0, dl2d

r
2 = 0



1614 S. NAYAK AND A. OJHA

(Upper bound):

min = (e11 + e12 + e21 + e22 + e31 + e32) + (el1 + er1) + (el2 + er2)
subject to

µf̃U
11

(x) =
f̃U11(x)− 1.4777
1.4985− 1.4777

+ e11 ≥ 1

µf̃U
12

(x) =
f̃U12(x) + 0.6883
4.3096 + 0.6883

+ e12 ≥ 1

µf̃U
21

(x) =
f̃U21(x)− 3.5977
3.7273− 3.5977

+ e21 ≥ 1

µf̃U
22

(x) =
f̃U22(x)− 1.9942
2.5385− 1.9942

+ e22 ≥ 1

µf̃U
31

(x) =
f̃U31(x)− 0.4445
4.6667− 0.4445

+ e31 ≥ 1

µf̃U
32

(x) =
f̃U32(x) + 0.2

3 + 0.2
+ e32 ≥ 1

x1 + el1 − er1 = 0.6667

x2 + el2 − er2 = 2
x1 + x2 + x3 ≤ 5, x1 − x2 + x3 ≥ 1

3x1 − x2 + 2x3 ≤ 7, 2x1 + x2 − x3 ≥ 1

x1, x2, x3, e11, e12, e21, e22,e31, e32, e
l
1, e

r
1, e

l
2, e

r
2 ≥ 0, el1e

r
1 = 0, el2e

r
2 = 0

Substituting the values of f̃Lij(x), f̃Uij (x) (i = 1, 2, 3, j = 1, 2) and solving the above formulated problems, the
solutions of lower and upper bounds are obtained as xL∗ = (1.0422, 0.0422, 0) and xU∗ = (1.2503, 0.2503, 0)
respectively. The values of fLij(x

L∗), fUij (xU∗) and f̃Lij(x
L∗), f̃Uij (xU∗) are the lower and upper bounds of the

objectives fij(x) and f̃ij(x) respectively which are evaluated for the ML-MOLFPP in Table 1 as:
where, xL∗ij and xU∗ij (i = 1, 2, 3, j = 1, 2) are the individual optimal(maximal) solutions of fLij(x) and fUij (x)

respectively over the constraints “Ω” obtained using VTM.

Observation 5.1. It is observed in the above table that the optimal lower and upper bounds of the objective
values are respectively closer to the individual optimal values of the lower and upper bounds of the objective
functions.

The optimal lower and upper bounds of the objective values i.e., the objective points (fLij(x
L∗), fUij (xU∗)),

(f̃Lij(x
L∗), f̃Uij (xU∗)) and (fLij(x

L∗
ij ), fUij (xU∗ij )) are drawn together in Figure 1 as:

Observation 5.2. It is observed in the above figure that the red, green and blue colored lines represent the
objective value at the points (fLij(x

L∗), fUij (xU∗)), (f̃Lij(x
L∗), f̃Uij (xU∗)) and (fLij(x

L∗
ij ), fUij (xU∗ij )) respectively. The

red and green lines are reasonably closer to each other since f̃ij(x) approximates fij(x) as per our consideration.
Apart this, these two lines have also similar shapes as compared to the shape of the blue line which represents
the objective points evaluated at their individual optimal solutions i.e., (fLij(x

L∗
ij ), fUij (xU∗ij )).

Remark 5.3. From the Observations 5.1 and 5.2, it is clear that the obtained solutions are worth considering
for the ML-MOLFPP. If a DM still remains unsatisfied with the optimal lower and upper bounds of its any
objective, can change the weight assigned to it by redefining the corresponding pairwise comparison matrix.
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Table 1. Objective values at the solutions of lower and upper bounds.

(i, j) fL
ij(xL∗) f̃L

ij(xL∗) fL
ij(xL∗

ij ) fU
ij (xU∗) f̃U

ij (xU∗) fU
ij (xU∗

ij )

(1, 1) 0.3482 0.4820 0.5570 1.2002 1.4985 1.7895
(1, 2) 0.8192 0.9071 1.0556 3.0586 3.3565 4.7778
(2, 1) 0.4294 0.4722 0.4878 3.6875 3.7128 3.7273
(2, 2) 0.7201 0.7786 0.8095 2.0002 2.2900 2.5385
(3, 1) 1.0101 1.1074 1.1538 4.2938 4.1383 4.6667
(3, 2) 0.9840 1.0192 1.0800 2.7140 2.5995 3.0000

Figure 1. Objective values at lower and upper bound solutions.

6. Conclusion

This paper derives the optimal lower and upper bounds for the objective values of ML-MOLFPP with interval
parameters. In hierarchical organizations, If DM doesn’t have fixed values of the data while converting the real
world problems into such mathematical models then intervals are suitable for consideration. This method can
also solve ML-MOLFPP with fuzzy parameters by transforming them into intervals using α-cuts. Numerical
example illustrates the solution procedure and feasibility of the proposed method.
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