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TWO-MACHINE FLOW SHOP WITH SYNCHRONIZED PERIODIC
MAINTENANCE

IssaM Krimi®!13* RACHID BENMANSOUR!, SATD HANAFI! AND NiZAR ELHACHEMI?

Abstract. In the literature, some works deal with the two-machine flow shop scheduling problem under
availability constraints. Most of them consider those constraints only for one machine at a time and
also with limited unavailability periods. In this work, we were interested by the unlimited periodic and
synchronized maintenance applied on both machines. The problem is NP-hard. We proposed a mixed
integer programming model and a variable neighborhood search for solving large instances in order to
minimize the makespan. Computational experiments show the efficiency of the proposed methods.
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1. INTRODUCTION

Flow shop scheduling problem is one of the most studied scheduling problems in the last decades [12,25].
In the flow shop scheduling problem, often we assume that the machines are always available and ready to
execute the job at anytime. However, in real industry settings, the machines are not ready to perform the job
at any time specially in the actual industry where the production is highly capital intensive due to the massive
demand. As consequence, more frequent maintenance avoids high breakdown levels that influence the machine
utilization. In this case, the more appropriate strategy is a periodic and synchronized maintenance. Wherefore,
we study a two-machine flow shop scheduling problem under synchronized and periodic maintenance activities.
The word synchronized is used to specify that the maintenance starts at the same time on both machines.

Formally, we are given N = {1,2,...,n} a set of n jobs to be performed on a set of two machines M = {1, 2}.
Let pjr be the processing time of job j € N on machine £ € M. Each machine can perform only one job at a
time and each job should be performed on the first machine then on the second one. In our work, we assume
a non-resumable model (nr) and also the machines are not always available. In this paper, the unavailability
constraints are presented by a periodic maintenance on both machines, where maintenance tasks are scheduled
independently of the production schedule. The considered problem consists on splitting the scheduling horizon
into batches. Each one of them is defined as the period between two consecutive maintenance tasks. We denote
by T the length of each batch and d the duration of a maintenance task. The aim is to find a sequence of jobs
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that minimize the makespan. We denote by L the set of batches, with |L| < n+1. Using the notation of Graham
et al. [15], we denote this problem as F2/nr — pm/Chyax, which is NP-hard, since it can be reduced to the single
machine scheduling problem with periodic maintenance, which was proved NP-hard [34], if all the processing
times on the first machine are equal to zero.

The contributions of this paper are two-fold: (i) a new mixed integer programming (MIP) formulation based
on assignment variables is proposed with a lower bound on the optimal value; (ii) a variable neighborhood
search metaheuristic is developed to generate a strong upper bound.

The organization of this paper is as follows. First, we summarize the related works in Section 2. Then, in
Section 3, we present the MIP formulation based on assignment variables and a lower bound on the optimal solu-
tion. In Section 4, we describe a variable neighborhood search metaheuristic used to solve large-sized instances.
In Section 5, we discuss the computational experimentation of the proposed methods followed by a conclusion
and our work perspectives in the last section.

2. STATE OF THE ART

In the last decade, scheduling problems considering machine availability (in single machine, parallel machines
[29, 46, 47], flow shop [1, 13], job shop [3], open shop [33], flexible flow shop [40] problems) have attracted
researchers’ attention due to its realistic characteristic. The most studied case is the single machine scheduling
problem. One can distinguish two aspects of the unavailability constraint. Either dealing with one unavailability
interval or with periodic ones. For the first case, Kacem et al. [27] studied a single machine scheduling problem
with one availability constraint to minimize the weighted sum of completion times. The authors proposed three
exact methods: a branch-and-bound (B&B) method based on new properties and several lower bounds, a MIP
model and a dynamic programming method. They found that the B&B method and the dynamic programming
are complementary. The proposed methods are able to solve problems with 3000 jobs within a reasonable period
of time. Kacem and Chu [26] improved the B&B algorithm using more tight lower bounds. The new algorithm
is able to solve instances up to 6000 jobs. For the second case, single machine scheduling problem under periodic
maintenance has been studied by several authors. Benmansour et al. [2] considered a single machine scheduling
problem against a common and restrictive due date. First, they proposed a MIP model without availability
constraints to minimize the weighted sum of maximum earliness and maximum tardiness costs and they showed
that the proposed model can be reduced to a polynomially solvable one. Then, for the problem where the machine
undergoes a periodic maintenance, a second MIP model was proposed to solve small instances to optimality.
Kacem et al. [28] studied the single machine scheduling problem under periodic unavailability intervals. They
considered the maximization of the weighted number of early jobs as the objective function. The authors
distinguished two cases: resumable and non-resumable jobs. For the first case, they showed that although the
number of the non-availability intervals can be variable and also a subset of jobs could have deadlines, a fully
polynomial time approximation scheme (FPTAS) can be proposed. For the second case, when the number of
non-availability intervals is constant and all due dates are arbitrary, they showed that the problem admits a
polynomial time approximation scheme (PTAS). Ji et al. [24] considered the same problem but for minimizing
the makespan considering only non-preemptive jobs. The worst-case ratio of the classical Longest Processing
Time (LPT) algorithm was shown to be equal to 2. The authors proved that LPT algorithm is the best possible
heuristic for the reason that there is no polynomial time approximation algorithm with a worst-case ratio less
than 2 unless P = NP.

As for scheduling problems with more than one machine, fifty years ago, Johnson [25] published his seminal
paper on flow shop scheduling. He studied the two-machine flow shop scheduling problem to minimize makespan.
A polynomial time algorithm in O(nlog(n)) was proposed to solve this problem. Lee [35] proved that the two-
machine scheduling problem under availability constraint, on at least one machine, is NP-hard. He proposed a
pseudo-polynomial dynamic programming algorithm and analyzed the error bound. In his work, he developed
two heuristics with worst-case bounds of 1/2 for the availability constraint on the first machine and 1/3 for the
second machine. In 1999, Lee [36] studied the same problem but under new assumptions. If a job is not finished
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completely before the next unavailability period, it must be partially restarted. This assumption is named
semi-resumable. The author mentioned also two major cases: on the one hand, resumable case when, after the
unavailability period, the execution of a job continues without any penalty. On the other hand, non-resumable
case when a job should be restated completely after the unavailability period. A pseudo-polynomial dynamic
programming algorithm and a heuristic were proposed to solve the problem. Cheng and Wang [8] studied the
problem with unavailability constraint on the first machine and proved that the error bound analyzed by Lee
[35] was tight. For that reason, the authors developed a heuristic with worst-case bounded by 1/3. Hadda
et al. [17] assumed that availability constraint is applied on the first machine and the jobs are non-resumable.
A new procedure to improve any arbitrary solution was developed in this paper and the results of their method
were bounded by 2 times the optimal makespan. The authors presented also a heuristic with a worst-case error
of 3/2. For the same problem, but with several unavailability periods, Hadda [16] proposed a polynomial-time
approximation scheme. Ng and Kovalyov [41] studied a deterministic two-machine flow shop scheduling problem
such that one of the machines is not available during a period of time. They proposed a fully polynomial-time
approximation scheme (FPTAS) with O(n®/e?) time complexity. Breit considered the unavailability period on
the first [6] and on the second machine [5]. For the first case, he studied the resumable scenario. The author
proposed an approximation algorithm to minimize the makespan with a worst-case error bound of 5/4. For the
second case, he developed a polynomial-time approximation scheme for this problem. Hnaien et al. [23] dealt
with the availability constraint applied on the first machine. They presented two MIP models for the problem
and several lower bounds used in the developed B&B procedure. The results showed that the MIP models can
solve small instances of at most 20 jobs but the B&B was able to solve optimally until 100 jobs. The authors
noted that the starting time and the length of unavailability period can be a significant factor to deal with.
Kubzin et al. [31] studied the two-machine flow shop scheduling problem with several or one unavailability
period on the first machine. They distinguished the resumable and the semi-resumable scenario. Considering
resumable jobs and several maintenance periods, they presented a fast (3/2)-approximation algorithm. For
semi-resumable jobs with one maintenance period, a polynomial-time approximation scheme was developed.
Hadda [18] investigated a special case of the two-machine flow shop-scheduling problem considering resumable
jobs with several maintenance periods on the second machine. He developed a (4/3)-approximation algorithm.
The author showed that the proposed algorithm dominates the (3/2)-approximation algorithm presented by
Kubzin et al. [31]. In addition, Hadda [19] extended his work by considering a two-machine job-shop scheduling
problem limited machine availability on both machines. He proposed a number of characterizations for the
optimal solution of a particular case of the two-machine job shop problem with several availability constraints.
Some existing polynomial-time approximation schemes were adapted for two particular configurations of the
problem. Finally, the author presented a polynomially solvable case. Another type of unavailability constraint
was studied by Liao and Tsai [37]. In their problem, they considered that the period of maintenance depends
on the number of finished jobs. The authors developed several heuristics. They also presented a heuristic with
complexity time of O(n?). In the same work, they presented a B&B algorithm. Blazewicz et al. [4] studied
the same problem but considering limited unavailability periods. They proposed constructive and local search
based heuristic algorithms. These methods are tested on several instances with size up to 100 jobs and 10
unavailability intervals. The results showed that the algorithms perform well. Considering the same assumptions,
Kubiak et al. [30] showed that the problem is NP-hard in the strong sense and proposed several proprieties for
the optimal schedules and tested a B&B algorithm for the problem. Yang et al. [48] considered also the same
maintenance policy and developed a heuristic algorithm. Some polynomially solvable cases were also provided.
Wang and Cheng [45] studied the two-machine flow shop scheduling problem where setup times could be
anticipated, an unavailability period is considered only one of the machines and the jobs are resumable. They
proposed two heuristics with worst-case errors less than 2/3. The same authors in [7] considered two successive
availability constraints. They presented some proprieties for semi-resumable case and proved that it is sufficient
to consider permutation schedules. The authors proposed a heuristic with a worst-case error bound of 2/3 for
the non-resumable case. Another type of flow shop scheduling problem that have been considered under periodic
maintenance is no-wait scheduling. Espinouse et al. [10] considered the maximum completion time (Cpax) as
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the objective function. The problem was proved to be NP-hard even with one unavailability period on one
single machine, and NP-hard in the strong sense for several unavailability periods. The authors proposed some
heuristic algorithms with error bounding analysis. Kubzin and Strusevich [32] studied the two-machine flow
shop scheduling problem in no-wait process such that one of the machines undergo a planned maintenance
period with a variable length. They presented a polynomial-time approximation scheme to minimize makespan.
Ben chihaoui et al. [9] considered also the no-wait process where each machine is subject to one unavailability
constraint and the jobs have different release dates. They studied the non-resumable schedule that minimize
the makespan. Several lower and upper bounds were used in the proposed B&B algorithm. These method was
shown effective using large set of instances. Gara-Ali and Espinouse [11] considered a deteriorating preventive
maintenance on the second machine. They showed that finding a better timing for starting the maintenance
becomes unavoidable especially in the just-in-time environment. The problem is NP-hard and the researchers
proposed a B&B method that can solve optimally until 100 jobs. Interested readers are referred to the works
of Saidy et al. [42], Schmidt [43] and Ma and Zuo [38] who presented surveys on scheduling problems under
availability constraints.

Most of works deal with availability constraint on one machine at a time and limited number of unavail-
ability periods. Hence, we study a two-machine flow shop scheduling problem with periodic and synchronized
unavailability constraints on both machines.

3. MIXED INTEGER PROGRAMMING FORMULATION

In this section, we present a mixed integer programming (MIP) formulation based on assignment variables.
This MIP formulation uses the following decision variables: the continuous variables Ciax and Cj; represent
the makespan and the completion time of job j on the machine k respectively and the binary variables:

~_ J 1if job i precedes job j on machine £,
Tiik = 1 0 otherwise.

~_ J 1if job j belongs to bach [ on machine k,
Yitk =\ 0 otherwise.

Let B be a big positive value, the proposed MIP formulation is the following:

min  Chax (3.1)
s.t. Cmax > Cja, VjeN (3.2)
Cj2 > Cj1 + pjo, VjeN (3.3)
Cik > pir. + Cjr — By, Vi,j € Nyi<jkeM (3.4)
Cjik > pjr + Cix — B(1 — z451), Vi,jeN,i<jkeM (3.5)
Zyjlk =1, Vi€ N,ke M (3.6)

leL
> iy < T WieLkeM (3.7)

JEN
Cjk—pjkz (l—l)(T—Fd)yjlk, VieNJleLkeM (3.8)
Cir < (T + (I —Dd)yjie + B(1 — yjix), VjeN,le Lke M (3.9)
Cjr = 0, VjeNkeM (3.10)
Tiji, Yjie € {0, 1}, Vi,j € N,k € M,l € L. (3.11)

The objective function (3.1) minimizes makespan Cpax = max{Cjs : j € N} i.e. the completion time of all
jobs on machine 2, which is assured by constraints (3.2). Constraints (3.3) guarantee that the completion time
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FIGURE 1. Gantt chart of an optimal schedule.

of a job on machine 2 is not earlier than its completion on machine 1 plus its processing time on machine 2.
Constraints (3.4) and (3.5) avoid the overlap between two jobs. Constraints (3.6) state that a job is assigned to
only one batch. Constraints (3.7) guarantee that the length of each batch does not exceed its duration 7". To
avoid that a job starts (or completes) during the maintenance operation, we add constraints (3.8) and (3.9).
Constraints (3.10) and (3.11) define the domain of decision variables. The proposed model contains 4n? + 4n
binary variables, 2n + 1 continuous variables and 6n2 + 4n constraints. Note that batches are not necessarily
the same on both machines as showed in Figure 1 where job 4 is assigned to batch 1 on machine 1 and to batch
2 on machine 2.

To illustrate the problem, we provide an example (Fig. 1) of an instance with n = 5, T = 10, d = 1 and
p1=1(2,4,1,6,4), po = (3,6,3,6,2). The optimal makespan is 27.

Lemma 3.1. There exists an optimal schedule for F2/nr — pm/Ciax such that no idle-time exists between two
adjacent jobs on each machine.

Proof. Suppose that a job i precedes job j on machine 2 with an idle-time between them due to the completion
of job j on machine 1. Deleting the idle-time by shifting forward job ¢ will not change the makespan. O

Lemma 3.2. In the problem F2/nr — pm/Chax, there is an optimal sequence with a permutation schedule.

Proof. Let’s consider an optimal schedule for the problem such that a job ¢ precedes immediately job j on
machine 1 (the jobs are in the same batch). One can distinguish two cases:

Case 1. Job j precedes immediately job 4 on machine 2. Hence, interchanging ¢ and j on both machines will
not increase the makespan.

Case 2. Job j precedes job ¢ on machine 2 (the jobs are not in the same batch). Hence, interchanging 7 and
j on machine 1 will not increase the makespan.

Let consider a job ¢ scheduled in a given batch and a job j scheduled on the next one on machine 1. Two
cases can be studied:

Case 1. Job j precedes immediately job ¢ on machine 2. Hence, interchanging ¢ and j on machine 2 will not
increase the makespan.

Case 2. Job j precedes job i on machine 2 ( ¢ and j are not in the same batch). Hence, interchanging all the
jobs which are within the batches containing ¢ and j on machine 1 will not increase the makespan. (I

Thus, according to Lemma 3.2, to solve the problem, it is sufficient to consider permutation schedules.

Several lower bounds can be given by Linear programming (LP) relaxation and Lagrangian relaxation (LR).
However, these methods are expensive. Thus, we propose the following trivial lower bounds on the optimal
solution value C} .. for the problem.

For any arbitrary sequence of jobs, the makespan is greater than the total completion time on the first

machine (id. on machine 2) and also the shortest processing time on the second one (id. on machine 1). The
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completion time on the first one (id. on the second one) is the sum of the processing times and maintenance
tasks durations.

Proposition 3.3. Letp, = Zjeijk, the sum of the processing times on machine k.

LBl =p, +d V;J + min{pjo : j € N}. (3.12)
LB2=p, +d V;?J +min{p;; : j € N}. (3.13)
LB = max{LB1,LB2} (3.14)

4. VARIABLE NEIGHBORHOOD SEARCH

Based on the idea of changing systematically the neighborhood structures to escape from local optimums,
variable neighborhood search (VNS) [39] was presented as a single solution metaheuristic. The use of different
neighborhood structures is explained [22] by the following observations: (i) it is not necessary to find the same
local optimum for all the neighborhood structures. (ii) a global optimum is a local one for all the neighborhood
structures. (iii) despite the diversity of the neighborhood structures, for many problems the local optimums are
relatively close. Basic VNS and its variants have been applied to many optimization problems [21] as scheduling
[44], routing, etc.

To implement the VNS metaheuristic, we need to define the following parameters: an initial solution, a
perturbation scheme used to escape from the local optimum, a set of neighborhood structures, a local search
and an evaluation scheme.

4.1. Solution representation and initial solution

We presented the solution as a sequence of jobs II = (71, ma..., m,) called permutation-based representation.
We used a greedy procedure to construct the initial solution using a priority list of jobs obtained by applying
different sorting rules on the first machine (line 1 of Algorithm 1): the shortest processing time rule (SPT),
which consists in ordering the jobs by their duration beginning by the shorter, the longest processing time rule
(LPT), which consists in ordering the jobs by their duration beginning by the longer and also Johnson’s rule
(JR); In an optimal solution, job 4 precedes job j if:

min{p;1,pjo} < min{pj1,pia}

where, p;1,pj1 represent the processing times of job 7 and j on machine 1 and p;o, pj2 represent the processing
times of job ¢ and j on machine 2. If the operation is at the first machine, it will be scheduled near to the
beginning of the sequence. Otherwise, it will be scheduled near to the end of the sequence. This procedure is
repeated until all the jobs are scheduled. Our approach decomposes the overall problem to exploit each machine.
On the first one, Algorithm 1 creates the first batch for both machines and it schedules the first job in the list on
the first batch (lines 2-8 of Algorithm 1). Then, it goes through the list to schedule the next ones. The procedure
verifies the length T" of the batch, if we can add a job without overloading the batch, Algorithm 1 schedules it in
the current batch just after the previous job. Otherwise, it creates a new batch and the job begins exactly after
the maintenance period. The scheduling procedure repeats these steps (lines 9-13 of Algorithm 1) until all the
jobs are scheduled on the first machine. Then, the scheduling procedure deals with the second machine. For each
job on the priority list, its operation on machine 2 should begin after its completion on machine 1. Algorithm 1
satisfies the execution of the job exactly after its completion on machine 1 without overlapping with the next
maintenance period on machine 2. If this is the case, we create the next batch and the job is scheduled on it
and its starting time will be the completion time of the previous maintenance period. Otherwise, the job begins
on machine 2 just after its completion on machine 1. The scheduling procedure repeats these steps (lines 14-24
of Algorithm 1) until all the jobs are scheduled.
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Algorithm 1. The scheduling procedure.

1

2

3 Set C7r171 = Pry,15

4 if Cﬂ-lyl +pﬂ-172 < T then

5 ‘ Cry,2 = Cry 1 + Py 25
end

6 else

7 lo =2;

8 Cri2=T+d+ pr, 2;

end
for i =2 ton do

10 | Crin=Cry 1+ Prpts
end
11 else
12 create a new batch: [y =11 + 1;
13 Cria= (L = 1)(T+d) + pr, 1
end
/* Scheduling on the second machine
14 k=2
15 lg = l1;
16 j=1—1
17 if Cﬂ'i,l > Cﬂi7172 then
18 k=1,
19 j =1
end
20 if Cﬂ-ﬁk + Prj2 < ZQ(T + d) — d then
21 ‘ C7r,5,2 = Cﬂ'j,k +p7ri,2;
end
22 else
23 create a new batch: lo = l2 + 1;

24 Cri2 = (la = 1)(T +d) + pr, 2;

end

end
25 Return Cr, 2

Input 7 = (1, 72, ..., ™) the job list given by a priority rule.
Initialization of the first batch index I = 1 on each machine k € M.

/* Scheduling on the first machine

9 if Cwi71,1 + P 1 < ll(T + d) — d then

4.2. Neighborhood structures

The complexity and relative error of a solution depend essentially on the systems of neighborhoods used
on local search methods. For each problem, several neighborhood structures with different cardinalities can be
suggested. Consequently, a set of local optimums are obtained. For scheduling problems based on permutation
solutions, three neighborhoods of different cardinalities can be used [14]: transpose (1-Opt), insert (or-Opt)
and interchange neighborhood. For the sake of simplicity a neighborhood structure is referred by the name of
its corresponding operator. Based on the experimentations of different possible combinations, we choose these

structures: Interchange operator, Reverse operator and Insert operator.

e Interchange operator Ni: this operator selects a pair of jobs and exchanges their positions. The operator
repeats this process for all the jobs until all the neighborhoods have been searched. We assume a solution of

*/

*/
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@) and one of its neighbors II, = (7%, 75, ..., 7%). We fix two different indices

s # t. We exchange the positions: 7% = 7%, 7? = 7% and Ve, ¢ # (t,s) 7% = 72

e Reverse operator Nj3: this operator selects two positions and reverses job’s order between them. The operator
repeats this process for all the jobs until all the neighborhoods have been searched. To more explain the
structure, we assume a solution I1, = (7¢, 7, ..., %) and one of its neighbors Il = (7,75, ..., 72). We choose
two position s < t. Ve, ¢ < s Ac >t w0 = 7%, Otherwise, WI;H =7 wherel <s<nAl<t—-s<n-1

e Insert operator Njy: this operator removes a job and inserts it in another position. The operator repeats
this process for all the jobs until all the neighborhoods have been searched. We assume a solution II, =
(wf, 73, ...,m%) and one of its neighbors I, = (7}, 73, ..., 75). For i < j, n) =, 7l =af, .. 75 =75 ;. In

b

i J J
; b a b _ —a a
the case of i > j, m/ =7y, ..., m_y =7, W = 7]

the problem II, = (7§, n§,..., 72 5

For the evaluation scheme, the makespan is calculated using the scheduling procedure (Algorithm 1) described
above and the job list generated after each move.

4.3. Local search

In the literature, the difference between best and the first improvement local search [20] is the way of selecting
the next neighbors. In the first one, the entire neighborhood of the current solution is explored and the best
solution found so far is returned, whereas in first improvement, the first best neighbor is selected.

In our VNS, we choose the best improvement local search for each neighborhood structure. The local search
LS(N}) (Algorithm 2) starts with an initial permutation and tries to repeatedly improve it by moving to a
better neighbor considering the current neighborhood structure Nj.

Algorithm 2. LS(II, \V},).

1 II is the current permutation
2 Nj: the neighborhood structure
while the time limit is not reached do
3 Generate IT' € Ny (II), such that
Cmax(H/) = minzeNk(H) Cmax(x)Q
4 if Cmax(IT') < Crmax(I1) then
5 IT — IT';

end
end

The perturbation procedure is a random shake within the job list. It depends on the neighborhood structure.
For example, the shake procedure for the interchange operator consists in selecting randomly two different
positions on the job list and permute them.

4.4. VNS algorithm

We propose the VNS algorithm summarized in Algorithm 3. It starts with an initial solution generated by
the scheduling procedure (Algorithm 1). We generate a random neighbor of this solution with respect to the
correspondent neighborhood structure Ny. Then, we apply a best improvement local search (Algorithm 2). If
no improvement exists, the neighborhood structure will be changed. The algorithm stops when the number of
maximum iterations MaxIter is reached.



TWO-MACHINE FLOW SHOP WITH SYNCHRONIZED PERIODIC MAINTENANCE 359

Algorithm 3. Variable neighborhood search.

1 kmax: the number of the neighborhood structures
2 Mazxlter: the maximum number of iterations

3 CPUpmax: the execution time limit

4 II «— Initial Solution();

5 iter=1;
while iter < Maxlter V CPU < CPUpax do
6 k+—1;
7 while k < kpax do
8 IT" + Shake(IL, k);
9 0" «— Ls(I', Nx);
10 if Crax(IT") < Ciax(II) then
11 I~ I1";
k+—1;
end
12 else
| ke—k+1;
end
end
13 iter < iter +1 ;
end

14 Return II

5. COMPUTATIONAL EXPERIMENTS AND RESULTS

In this section, we resume our computational experiments of the MIP formulation, the lower bound and also
the VNS algorithm. We used CPLEX 12.5 solver for MIP model and C++ language to code the VNS algorithm.
The tests were performed on a PC i5 with 2.7 GHz and 8 GB of RAM PC.

5.1. Data generation

Since no similar work in the literature has studied the considered problem. We were inspired by Taillard’s
code found in OR-library and we adapted it to uniformly generate a large number of instances under three
assumptions:

e Case 1: pj1,pj2 € UJ[1,20]
e Case 2: p;; €U[2,20] and p;s €U[1,10]
e Case 3: pjs €U[2,20] and p;; €U[1,10].

We generated 10 instances for every combination of the following parameters:

e The number of jobs n in {10, 15,20, 25, 40, 50, 60, 70, 80, 90, 100, 500, 1000}
o The length of the availability period is equal to max{p;1,pj2:j € N}.

For the sake of simplicity, we chose a unique parameter for the length of the maintenance period (d = 1).

5.2. Computational results for the proposed MIP model and the proposed lower bound
LB

Table 1 summarizes the results provided by the proposed MIP model. It can optimally solve problems with
size up to 25 jobs (see Tab. 2) for the three cases. We use the following metrics: the number of jobs n, the
average time (Avg_time) required to find the optimal solution and the average optimal solution (Avg_opt) given
by CPLEX. We remark that the instances of case 1 are more difficult to solve in a reasonable amount of time
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TABLE 1. Results of the proposed MIP model.

Case 1 Case 2 Case 3
n Avg_opt Avg_time (s) Avg_opt Avg_time (s) Avg_opt Avg_time (s)
10 140.02 3.33 135 2.83 127.8 2.93
15 181.3 115.92 188.1 41.8 171.8 27.11
20 253.8 559.38 248.6 396.67 248.8 73.38
25 318.5 639.27 284 474.99 309 452.3

TABLE 2. Limits of the proposed MIP model.

Case 1 Case 2 Case 3
n Avg.gap (%) Avg.gap (%) Avg . gap (%)
30 27.8 18.3 25.3
35 44.2 42.3 49.2
40 58.4 47.3 45.2
50 69.3 64.5 62.1

TABLE 3. Performance of the proposed lower bound.

Case 1 Case 2 Case 3
n Avgopt AvglB Avggap(%) Avgopt AvglB Avggap(%) Avgopt Avg LB  Avg.gap(%)
10 140.02 123.6 13.3 135 120.3 12.21 127.8 117.5 8.76
15 181.3 168.7 7.46 188.1 173.9 8.16 171.8 163.2 5.26
20 253.8 230.3 10.2 248.6 232.2 7.06 248.8 232.4 7.05
25 318.5 295.8 7.67 284 264.9 7.21 309 292.6 5.6

comparing with the other cases. However, results of case 2 show that the average time varies significantly with
the number of jobs. In all cases, the average time is less than 12 min.

Table 2 shows the limit of our model by highlighting the average gap given by CPLEX. We remark, for all
cases, that instances with more than 25 jobs are too difficult to solve within a reasonable time. Note that the
execution time limit was fixed to 3600 s. The model has great difficulties finding a feasible solution for problems
up to 50 jobs. One can state that instances of case 1, where the jobs may all have significant long processing
times, are more difficult to solve with our model.

Table 3 compares the average makespan calculated by the proposed lower bound with the average optimal
value of given by CPLEX. For the three cases, the average lower bound is very close to the average optimal
makespan (Fig. 2). In addition, the linear relaxation generate, more or less, same lower bound quality comparing
with the proposed one. However, in terms of the execution time, one can prefer the proposed LB especially for
large instances.
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FIGURE 2. Performance of the proposed lower bound.

5.3. Impact of the availability period T on the proposed MIP model

In order to evaluate the impact of the availability period on the MIP model performance, we consider two
different policies to determine T":

Ty = max{p;1,pj2o: j € N} (5.1)
Ty = 2 x max{p;1,pj2: j € N}

According to Figure 3, the length of the availability period affects significantly the CPU time. The MIP model
requires more time, for each case, to optimally solve small and medium instances when the length T increases.

5.4. Computational results for the proposed VNS algorithm

In this section, we intend to evaluate the VNS algorithm. We set the stopping criteria parameters as
follows: the time limit C'PUpayx is equal to 600s and the maximum iterations Maxlter is equal to 1000.
The results of the experiments for small and medium-seized problems are reported in Table 4 and large size
instances in Table 5. Both tables summarize the average results for each n. As expected, the proposed VNS
is very efficient for instances with n < 25 and it provides solutions with small deviation for n > 40 within a
reduced computational time. Comparing with best solutions obtained by CPLEX and also the computed lower
bound, our proposed metaheuristic provides convincing results in general. The deviation is calculated as follows:

For n > 25 : dev = w x 100. Otherwise: dev = BQSt'VNS OCPtX Opt . 100.
Where Best_VNS is the best makespan obtained after 10 runs of the VNS algorithm, CPX_Opt is the optimal
makespan given by CPLEX and LB is the lower bound.

We summarize, in Figures 4 and 5, the performance of the VNS algorithm. These figures show the deviation
between the average optimal makespan, or the average lower bound, and VNS solution. Instances of case 1
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TABLE 4. Results of the proposed VNS for small and medium size instances.

Case 1 Case 2 Case 3
n  Avgdev Avgtime (s) Avgdev Avgtime (s) Avgdev Avg time(s)
10 0.021 0.15 0 0.11 0.01 0.13
15 0.012 0.32 0.011 0.31 0.012 0.34
20 0.033 0.59 0.025 0.69 0.022 0.62
25  0.042 1.23 0.062 1.31 0.021 0.65
TABLE 5. Results of the proposed VNS for large size instances.
Case 1 Case 2 Case 3
n Avg_dev Avg_time (s) Avg_dev Avg_time (s) Avg_dev Avg_time(s)
40 0.119 3.42 0.079 3.77 0.063 3.68
50 0.117 9.16 0.095 6.56 0.062 7.06
60 0.118 11.23 0.104 11.06 0.05 11.49
70 0.104 17.85 0.085 17.35 0.052 18.18
80 0.098 25.6 0.08 24.7 0.047 27.65
90 0.092 30.88 0.075 36.3 0.043 39.32
100 0.094 50.82 0.073 51.52 0.048 52.36
500 0.112 172.47 0.111 74.98 0.141 245.56
1000 0.101 600 0.093 600 0.203 600




TWO-MACHINE FLOW SHOP WITH SYNCHRONIZED PERIODIC MAINTENANCE 363

Deviation for large size instances
0.14

& Casel © Case2 < Case3

0.105
o\o
c
2
3
S 0.07
]
[a] N
0.035
0
40 50 60 80 90 100

n

FI1GURE 4. Performance of the proposed VNS for large instances.

Deviation for small and medium size instances
0.06

M Case 1 M Case2 [ Case 3

0.045

0.03

Deviation %

0.015

n

F1GURE 5. Performance of the proposed VNS for small and medium instances.

are the most difficult to solve compared with the other cases except some particular instances. However, the
deviation is still very small for instances less than 25 jobs and accepted for ones with more than 30 jobs.

The proposed MIP was shown very efficient for small and medium size instances. In all cases, the model
can solve, optimally, problems with less than 30 jobs within reasonable time up to 650s. For large instances,
the gap obtained by CPLEX is satisfactory (less than 13%) and that was noticed in the three cases. The
linear relaxation of the model generates acceptable lower bounds when compared with MIP results of instances
up to three. However, it turned out that the lower bound is much more efficient in term of deviation and
execution time. The use of such lower bound is necessary to validate our metaheuristic. In real situations, the
problem can be more complicated considering a significant number of jobs to execute. Thus, we proposed a VNS
metaheuristic to get a trade-off between the solution quality and time consumption. Computational results show
that the proposed metaheuristic is efficient and effective. In one hand, for small and medium-size instances, the
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deviation between the solution obtained by the VNS algorithm and the optimal makespan is less than 0.07%
and that within an execution time up to 2s. In the other hand, these solutions are satisfactory especially if we
note that the comparison was based on the proposed lower bound. The time execution was fixed to 600s for
large instances but most of runs did not reach 300s except instances with 1000 jobs.

6. CONCLUSION AND PERSPECTIVES

In this paper, we presented a MIP model for the two-machine flow shop scheduling problem with synchronized
and periodic maintenance in order to minimize the makespan. A lower bound was proposed. To deal with large-
scale instances, we developed a VNS algorithm. Our computational studies have shown that the models can
not solve optimally instances up to 25 jobs. Alternatively, the use of the VNS algorithm was very effective in
solving medium and large size instances. The length of the availability periods has an impact on the difficulty to
solve the problem. As future work, we will extend the problem by considering the flexible policy for preventive
maintenance. In addition, it is very important to study the problem from a theoretical perspective. Thus, we
will investigate a number of theoretical results, that will ameliorate the general contribution.
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