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ANALYSIS OF A DISCRETE-TIME REPAIRABLE QUEUE WITH DISASTERS
AND WORKING BREAKDOWNS

SHAN GaAoM*, JINTING WANG? AND TIEN VAN Do?

Abstract. In this paper, we analyse a discrete-time queue with a primary server of high service
capacity and a substitute server of low service capacity. Disasters that only arrive during the busy
periods of the primary server remove all customers from the system and make the primary server
breakdown. When the primary server fails and is being repaired, the substitute server handles arriving
customers. Applying the embedded Markov chain technique and the supplementary variable method,
we determine the distribution of the system length at departure epochs and the joint distribution of the
queue length and server’s state at an arbitrary instant. Then we derive the sojourn time distribution. We
also provide the probability generating function of the time between failures. Some numerical examples
are delivered to give an insight into the impact of system parameters on performance measures and a
cost function.
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1. INTRODUCTION

Since discrete-time queues can be applied to evaluate the performance of various information and commu-
nication technology, the study of discrete-time queues has been extensively carried out (see Atencia [1], Gao
and Wang [8], Lim et al. [17], Ndreca and Scoppola [18], Nobel [19], Takagi [21], Tian et al. [22] and references
therein). Many queueing models incorporate unexpected events that cause the service interruption and the
server breakdown (see Choudhury et al. [4], Ke and Lin [14], and Ke et al. [13]). Also, it is assumed that the
occurrence of such an event removes either one customer or all customers from the system (see Gelenbe [9],
Towsley and Tripathi [23]).

The term “disaster”, when all the customers are removed, in the queueing theory was first introduced by
Gelenbe [9]. Since 1989, many studies have been carried out on queues with disasters. Towsley and Tripathi [23]
analysed an M/M/1 queue with disasters. Yang et al. [24] analysed the M/G/1 queue system with disasters.
Later, the inclusion of the multi-phase random operative environment to the repaired M/G/1 queue system
with disasters was performed by Jiang et al. [10]. Yang et al. [24] and Jiang et al. [10] considered a model where
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the server stops serving customers during the repair period. Kalidass and Kasturi [12] studied an M/M/1 queue
with working breakdowns, in which the server may fail at any time in operation period. However, when the
system fails, the service continues at a slower rate by a standby server. Kim and Lee [15] considered an M/G/1
queue with disasters and working breakdowns, in which the system is equipped with a substitute server during
the repair period. Other works on queues with disasters can be found in Economou and Fakinos [5], Economou
and Manou [6], Gani and Swift [7], Chakravarthy [3], Sudhesh [20].

The topic on disasters was recently extended to discrete-time queues. Atencia and Moreno [2] studied a
discrete-time Geo/Geo/1 queue with negative customers and various killing strategies, in which an arriving
customer may be a positive customer or a negative customer (that models a disaster). Jolai et al. [11] applied
a Geo/Geo/1/1/N queue with disasters for the performance analysis of an email contact center. Yi et al. [25]
discussed a discrete-time Geo/G/1 queue with disasters. However, in Yi et al. [25] did not specify how the
server is repaired. Lee et al. [16] investigated a Geo/G/1 queue with disasters, where the server fails due to
a disaster arrival and the repair time is generally distributed. However, all discrete-time single server queue
models with disasters in the literature are analysed under an assumption that no service is possible during a
repair period. In this paper, as an extension of Yi et al. [25] and Lee et al. [16], we consider a new discrete-time
queue of two servers, where the primary server of high service capacity fails due to disasters, the repair times
are geometrically distributed, and the substitute server of low service capacity is activated during the repair
periods of the primary server, which is called working breakdown service. On the one hand, working breakdown
service can handle emergencies occurring during the repair period and optimize utilization of the system. On
the other hand, it can decrease the congestion and the cost of the customers who wait for the primary server
to be repaired.

The queue under consideration can be used to model a manufacturing system. Consider a manufacturing
system equipped with a substitute machine in preparation for possible main machine failures and repairs. The
main machine may suddenly breakdown when it is in operation and all work in process is resulted in destruction
and lost. The substitute machine operates at a lower service rate while the main machine is repaired. After repair
completion, the main machine returns to the system and becomes available and the substitute machine stops
working. Another example of our model is the computer system which is subjected to the attacks of viruses.
The presence of a virus may sometimes clear all the work and slow down the performance of the computer
system and cause it to be repaired. However, the computer system may still be able to perform various chores
at a considerably slower rate. Such phenomenon can be modeled as disasters and working breakdowns in our
paper.

The rest of this paper is organized as follows. The model description is given in Section 2. In Section 3,
we present an embedded Markov chain. In Section 4, we determine the steady-state system size distribution
at arbitrary epoch. In Section 5, we derive the sojourn time distribution of any test customer. In Section 6,
We provide the probability generating function of time between failures. In Section 7, we give some numerical
examples and the numerical analysis of a cost function. Section 8 presents a brief conclusion.

2. MODEL FORMULATION

In this section, we consider a discrete-time queue with LAS-DA (Late Arrival System with Delayed Access),
see the reference of Takagi [21] for details. Let the time slots be numbered by n = 0,1,2,.... A potential
customer arrives at instant (n~,n) just before the beginning of slot n and a potential service completion occurs
at instant (n,n™) just after the beginning of slot n. We assume that a potential disaster occurs after the arrival
of a potential customer if two events simultaneously happen in time slot n. The system has two service units:
the primary server and the substitute server. If a disaster arrives during the busy periods of the primary server,
it removes all customers and causes the failure of the primary server. Note that the repairing process of the
primary server is immediately started. The arrival of a disaster has no any effect on the system during either
the idle or the repair periods of the primary sever. The repairing process lasts at least one slot and ends on
the boundary of a slot. Therefore, the arrival of a disaster at instant (n~,n) just before the beginning of slot
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FIGURE 1. Various time epochs in a LAS-DA system.

n has no effect on the server if the repairing process ends at the beginning of slot n. The services rendered
by the primary sever and the substitute server are termed as normal service and working breakdowns service,
respectively. A trajectory for time events is illustrated in Figure 1.

Thereinafter, we denote & = 1 —  for Vo € (0,1). The detailed description of the model is given as follows:

(1) Independent and identically distributed (i.i.d.) inter-arrival times, A, follow the geometric distribution P(A =
EY=MF1E>1,0<A<1,A=1-\

(2) Inter-arrival times, D, of disasters are independent and identically distributed P(D = k) = §6*~1, k > 1,0 <
0 <1

(3) In the normal busy periods, the service times, denoted by Sj, are i.i.d. random variables with probability
mass function (p.m.f.) P(S; = k) = sy 4,k > 1, E[S1] = p~! and probability generating function (p.g.f.)
Gs,(2) = Y, 2"s1. The server can handle only one customer at a time according to the first-come,
first-served (FCFS) discipline.

(4) The repair time of the primary server, denoted by R, follows a geometric distribution with p.m.f P(R =
k) =001 k >1,0 <60 < 1. The server is as good as a new one after a repair.

(5) The customers arrive during a repair period are handled by the substitute server. The working breakdown
service time of a customer, denoted as Sp, has the following distribution P(Sy = k) = so .,k > 1, E[Sy] =
v=10<v < pand Ggy(2) =3 0 2880k

(6) At a repair completion instant, if there are customers in the system, the primary server takes over the service
from the substitute server, and the service level is restored. Otherwise, the primary server stays idle and
waits for the next arriving customer.

Remark 2.1. (1) Since an arriving disaster can only remove the customers during the server’s busy period, if
both a customer and a disaster arrive at the same idle slot boundary, say in the same time interval (n=,n),
the customer is not expelled from the system under our assumption LAS-DA, the arriving customer begins
his service in the time interval ((n+1)",n + 1).

(2) According to our assumptions, if the primary sever is repaired at a slot boundary n and a substitute service
ends in or after (n,n™), then the primary server immediately takes over the substitute service at instant n
and begins the normal service to the customer being served by the substitute server.

3. AN EMBEDDED MARKOV CHAIN

Let ¢ (to = 0) be the kth departure epoch when either a customer finishes the service or a disaster removes
all customers, N,j' be the number of customers in the system at the time t:, J,j' be the primary sever’s state
at time t:. Note that either J,;" = 0 if the primary sever is under repair at time t;‘, or J,:' = 1 if the primary
sever is available at time t:.

Process {(N,", J;"), k > 0} is a two-dimensional Markov chain with state space {(k,7) : & > 0,j = 0,1}. The
following one-step transition probabilities are introduced:

Pliyimjy = PAN .y =m, Jf = jINS =k, JF =i}, k,m > 0,4, =0,1.
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Let (N*,J%) be the stationary limit of the Markov chain {(N,, J;"), k > 0}, and

P;=P(Nt =k, J" =j)= lim P(N} =k, JF =j),k>0,j=0,1.

n—oo

Remark 3.1. The condition 0 < § < 1 ensures that the queueing system is stable. All customers in the system
are cleared out whenever a disaster arrives, the number of customers at arbitrary epoch does not go to co. (See
the reference of Kim and Lee [15] for details.)

To obtain the stationary distribution at departure epoches, we introduce some notations:

s — n —n—k
ap = Z 51,00 (k) NN k>0,
-n (N —n—k
by = Z 50.n0 <k> NN k>0,
- —n—1[MN kfnfk >
= S 6 <k>)\ XS o k20

n=max(1,k)
Then ay, is the probability that there are k customer arriving during S; without the occurrence of disasters, by,
is the probability that Sy < R and k customers arrive during Sy, and vy is the probability that R < S, and k
customers arrive during R.
Denote A(z) = A + Az, the z-transforms of {ax,k > 0}, {bg, k > 0} and {vg, k > 0} are, respectively, given
as follows:

A(z) = Z agz” = Gg, (0A(%2)),
k=0
B(z) =Y bez" = Gg, (04(2)),
k=0
_\ _ 04
V(z) = I;vkzk = 1940 (1-B(z))

Evidently,
A(1) = G5,(0), B(1) = G, (), V(1) =1~ Gs,(6).

According to Rouche’s theorem, for |z| < 1, each of the two equations z— A(z) = 0 and z— B(z) = 0 has a unique

root, denoted by z; and zp, respectively, i.e. 21 = A(z1) = Gg, (0(A+ Az1)) and zp = B(29) = G, (0(A + Azp)).
Let ¢ = Z?:o vjak—j;,k > 0, be the probability that R < Sy, 51 < D and k customers arrive during R + 5.
Then, we obtain

C(z) = chzk =V(2)A(z).
k=0

With the above notations, we give the expressions of the one-step transition probabilities Py i)(m,;) as follows.
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The transition from (0,0) to (0,0) is caused by three cases: (i) no customers arrive during repair period
and the next departure happens due to the arrival of a disaster; (ii) a customer arrives during repair period
and his service time Sy is less than the remaining repair time, and no customers arrive during Sp; (iii) there
is a customer arrival during repair period and his service time Sy is no less than the remaining repair time,
and the customer is removed by the arrival a disaster during his normal service period. Then

P0,0)0,0) = q(bo + ap)) + 7B

The transition from (0,0) to (k,0), k > 1, occurs only if a customer arrives during repair period and his
service time Sy is less than the remaining repair time, and k customers arrive during Sy. Then

Po,0)(k,0) = bk

The transition from (0,0) to (k,1), & > 0, is caused by either (i) with probability gcg, there is a customer
arriving during repair period and he leaves the system with his normal service completion, and there are k
customers at the departure epoch; or (ii) with probability Gax, no customer arrives during a repair period,
the next customer arrives during the primary sever idle period and leaves the system with his normal service
completion, k£ customers arrive during the normal service time. Then

Po,0yk,1) = qck + qak.

For the transition from (1,0) to (0,0), two cases exist: either (i) with probability by, the event (Sy < R)
occurs and no customer arrives during Sp; or (ii) with probability a3, the event (R < Sy, D < S7) occurs.
Then

P1,0)(0,0) = bo + af.

The transition from (k,0)(k > 2) to (0,0) occurs if and only if (R < Sy, D < S7) holds.
Plr,0)0,0) = @B,k > 2.

The transition from (k,0) (k > 1) to (m, 1) (m > k — 1) occurs if and only if R < Sy and S; < D and there
are k customers arriving during R + S7. Then

P(k,o)(m,1) = Cm—k+1-

The transition from (k,1) (k > 0) to (0,0) occurs if and only if a disaster arrives during the next normal
service time. Then

Pre,0,0) = 8-
The transition from (0,1) to (k,1)(k > 0) occurs only k customers arrive during the next service time
without disaster arriving. Then
Powa) = k-
Similarly, for the transitions from (k,1) to (m,1), m > k—1 > 0, and from (k,0) to (m,0), k > 1,m >
max{k — 1,1} we have
P, 1yom,1) = @m—k+1 5 Pk,0)(m,0) = bm—k+1-

Based on the above probabilities, the transition probability matrix P of the embedded Markov chain
{(Npn, Jpn),n > 1} can be written as

By B; B, B3 ---

CoAi Ay Az ---
p_|C Ay A A,

C Ag A - ’



1202 S. GAO ET AL.

where
BO _ q(b(] + Ckﬂ) +qﬁ qgco + qag ’ Bk _ qbk qc + qay, 7]{3 > 1’
Jé] ag 0 af
_|bo+aB co _|aBo | bk ek
CO[ & ao]’c{ﬂO’Ak 0 ay k=2 0.

Our objective is to find the stationary distribution {Py ;,k > 0,7 = 0,1} of the embedded Markov chain

{(Nn, Jn),n > 1}. The Kolmogorov equations are:

Poo = (q(bo + aB) +TB)Poo + (bo + aB)Pro+aB > Pro+ B> Pra,
k=2 k=0

P = qbiPoo + Z-Pnle»l,Obkan >1,
k=0

Py = (qco +Gao)Poo + aoPo + coPro + aoPr 1,

n

Pn,l = (qcn + qan)PO,O + a'nPO,l + Z(Pn—k-‘rl,ock + Pn—k-‘rl,lak:); n Z 1.
k=0

Define Pj(z) = > 0", P, 2", j = 0,1. From (3.2) we obtain that
(2 = B(2))(Po(z) — Po,o) = 2(¢B(2)Po,0 — bo(Pro + qPo,0))-
Taking z = zp = B(zp) in (3.5) yields
bo (P10 + qFPo,0) = qzoFo,0-
Substituting (3.6) into (3.5) leads to the following result

¢2(B(z) - m)) |
(- B(2)

From (3.3) and (3.4), after carefully calculating one can get

Po(z) = Poo (1 +

(z = A(2)) P1(2) = 2(¢C(2) + GA(2)) Poo + (Po(2) — Poo)C(2) + (2 = DA(2) Po.

By (3.7) and C(z) = V(2)A(z), equation (3.8) can be written as follows:

(z = A(2))P1(2) = A(2) (z(qVZ(Z)(;(_Z;O) —&—6) Poo—(1— z)Po,l) )

Taking z = 21 = A(z1) in (3.9) leads to

qV (z1)(21 — 20)
zZ1 — B(Zl)

o A
Py = ( +CI)P0,0=0P0,0,

where o = £ (qv(zl)(zl_zo) +§). Substituting (3.10) into (3.9), we obtain

1—21 z1—B(z1)
A(z) qV(2)(z — 2p)
z— A(z) (Z( z— B(z)

Piz) = +7) ~a(1-2)) Puo

Applying the normalizing condition Py(1) + P;(1) = 1 yields the expression

B A1) q0—z) N\
Poo = <(1 —220)77 A 1B * )

Summing above results, we have the following theorem.

(3.1)

(3.11)

(3.12)



ANALYSIS OF A DISCRETE-TIME REPAIRABLE QUEUE WITH DISASTERS AND WORKING BREAKDOWNS 1203

Theorem 3.2. (1) The generating functions of the stationary joint distribution of the Markov chain
{(N,f,J.5),n > 0} are given by:

n n

Py(z) = Poo (1 + qz((ZB_(Z])B(_Z)Z)O)> )

A= A (590 10) )

-1
Poo = (00 T g + g +7)

(2) The primary sever’s state probabilities at the departure epoch are as follows:

Pt =0 =) = oo (5535 +3)
A1)

PU* =1) = A1) = Roo(l = ¢20) 7= 155

4. STEADY-STATE SYSTEM SIZE DISTRIBUTION AT ARBITRARY EPOCH

At arbitrary epoch n™, let N(n™) be the system size, and J(n*) be the primary sever’s state, where J(n*) =
0,1 according to whether the primary sever is under repair or not, respectively. Let (q(n™) be the remaining
working breakdown service time when J(n™) =0 and N(n™) > 1, (;(n") be the remaining normal service time
when J(n™) =1 and N(n™) > 1. Then our system state at arbitrary epoch can be described by the Markov
process {(N(nt), J(n1),¢o(n™),¢1(n")),n > 0} with state space S = {(0,0), (0,1)} U{(n,j, k) :j=0,1,n >
1,k >1}.

To obtain the steady-state system size distribution, we define

Qo = Jlim P(N(t) =0,J(t") =3),j = 0.1,

t—oo
Qn,j(k) = lim P(N(tH) =n, J(t7) = 5,G{tT) =k),j = 0,1,n,k > 1,
Pp=Y > Quni(k)
n=1k=1

Considering the states of the system at two consecutive time epochs, we have the following set of equilibrium
equations:

Q0,0 = OAQo,0 + OAQ1,0(1)0 P5, (4.1)
Qn.o(k) =0 (60,17Q0.050.k + AQn.o(k+ 1) + AQn—10(k + 1) + AQn11,0(1)s0.x

+AQn0(1)s0.x),nk > 1, (4.2)

Qo1 = AQo,1 + 0AQo,0 + 0AQ11(1), (4.3)

Qn,1(k) = 0,,107Q0,051,%k + 0n,1AQ0,151,5 + 6 (/\ Z Qno(i) + A Z Qn—l,o(i)> S1k
i=1

i=1

+ S (S\Qnﬁl(k’ + 1) + /\Qn—l,l(k + 1) + ;\Qn+171(1)$171¢ + AQn,O(l)Sl,k) ,n, k Z 1, (44)

where 6,1 is the Kronecker delta function, Q_1 1(k) = 1,0(k) =0,k > 1, and the normalization condition is

Qoo+ Qo1+ Y Y (Quolk) + Qua(k)) = 1.

n=1k=1
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To solve (4.1)—(4.4), we define the following generating functions:

z) = ZZnQn7j(k)7k >1,j=0,1,

Zkaz"QnJ Zw 0i(k; 2), ]

k=1n=1

Multiplying (4.2) and (4.4) by 2™ and summing over n = 1,2, ..., respectively, we have

do(k; 2) = OX2Qo 050,k + OA(2)do(k + 1;2) + do(1;2)s0.6 — OAQ1,0(1) 50k,

5A(z)

0A(z)

¢1(k; 2) = A2(0Qo,0 + Qo)s1,6 + 0A(2)d1(k+1,2) +
+ 9/1(2’)451(1, 2)517k — SS\Ql)l(l)Sl’k.

$1(152)51k

Respectively multiplying (4.5) and (4.6) by 2% and summing over k = 1,2, ---, we get

L2000, 2) = 065, () (\2Qu0 — AQ1(1) - “jz) (2= Gs, (2))0(1, 2),
%A(Z)@(x z) G51 ( (0Qo,0 + Qo) + 0A(2)Po(1,2) — SS‘Q“(U)
( )

(z = Gs, (2))d1(1; 2).

(4.7)

(4.8)

Taking x = 0A(z) and x = 6 A(2), respectively, in (4.7) and (4.8), the left hand sides of the two equations vanish

and we have

MZ(Z) (= = B(2))#0(1,2) = IB(2)(A=Qo.0 — AQu0(1),
Mz(z) (2 = A(2))én(1;2) = A(2) (A2(6Qo0 + Qo.1) + IA(2) @0 (1, 2) — AQ11(1) ).

Inserting z = zp into (4.9) yields

5\@1,0(1) = AzQo,0-
Then equation (4.9) can be changed to

AzB(2)(z — 20)

W) =G - BG)

Qo.0-

Substituting (4.11) and (4.12) into (4.7) leads to

xr—0A(2) Nz(z — z)

Do(w,2) = m(@% (z) — B(Z))Qo,o-

Then the marginal generating function of the system size when the primary sever is busy is given by

MNz(z — 29) 1 — B(2)
z—B(2) 1-0A(2)

Do(1,2) = Qo,0-

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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Similarly, inserting z = 27 into (4.10) yields

SAQ1.1(1) = A21(0Qo,0 + Qo.1) + 0A(21)Po(1, 21). (4.15)

Let 9(z) = %ﬁf) 11__5((2)), combining (4.3) and (4.15) leads to

9/1(251)

Qo1 = Y]

(1 +¢(21))Qo,0,
and

AQo,1 +0Qo,0) = (1+ A(21)¥(21)) Qo 0- (4.16)

1-— Z1
From (4.8), (4.15) and (4.16), we have that

02(Gs, (z) — A(2))
z— A(z)

1—=2

z= oAz (1 +AER() -

By (x,2) = 1+ A<z1>w<z1>>) Q. (4.17)

-
Thus the marginal generating function of the system size when the substitute server is busy is given by

0}(1 — A(2))
(1-0A(2))(z — A(2))

1—=2

(1 + A(2)Y(z) — .

@1(1, Z) =

— 21

1+ A<zl>w<zl>>) Qoo. (4.18)

Using the normalization condition Qo0 + Qo1 + Po(1,1) +P1(1,1) = 1, we get

3 -1
Qoo = <1 L= 95/1(zo) N M)(le— 20) | AflA(_mZ)l)(l +w(21))> . (4.19)

Based on the above analysis, we present some performance measures in the following theorem.

Theorem 4.1. (1) The probability that the primary sever is under repair and the system is empty is given by

_ —1
Qoo = (1 + Lo 9;1(20) + /\9(19_ ) + )\flA(—le)l) (1+ 77[1(21)))

B AJO(1 — 21)

T A0+ 0)(1—20)(0+ M1 — 20)) + 6682 A(21) (1 + (1))

(2) The probability that the substitute server is busy is as follows

)\9_(1 — Z())

o(1,1) ==

Q0,0'

(3) The probability that the primary sever is idle is given by

0/1(21)

m(l +1p(21))Qo,0-

Qo =

(4) The probability that the primary sever is busy is as follows

?1(1,1) :*A(’ZO)QO,O-
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(5) The mean system size, denoted by Lg, is given by

Ls = %@0(1,2) e —|— %@1(1,2) -
Qo, = (§+0)N0 /(1 — 2 )(94—)\(9)) z0 — B(1) (1 4+ A(z1)¥(21))
=5 [/\29(1 —w) g ( 5 - B(1) ) + 1- 2
_ Ao 1
O+ M1 — zo))(7 r1- 114(1))] -

Let IIy denote the probability that the primary server is being repaired. Then from Theorem 4.1, we have

6+ \0(1 — 2z
IIy = Qoo + Po(1,1) = %Q0,0- (4.20)

5. SOJOURN TIME DISTRIBUTION

In this section, we consider the FCFS sojourn time distribution of a test customer (TC), no matter whether it
leaves the system by a successful normal service completion or a successful working breakdown service completion
or a disaster arrival. Let W be the TC’s sojourn time, which is the total time that a TC is expected to spend in
the system. Throughout this section, let X*™ be the sum of n i.i.d. nonnegative random variables X1, Xo,..., X,,.
By convention, we assume X*0 = 0.

First, we give a Lemma without a proof.

Lemma 5.1. Given two discrete-time random variables X,Y, where P(X = k) = 8651k =1,2,..., and
P(Y=k)=ypk=1,2,.... The p.g.f of Y is Y (2) = > pe zFyp.

(1) Under the condition Y < X, the p.g.f. of Y is given by

EY|Y < X] = };((;))-

(2) Under the condition X <Y, the p.g.f. of X is given by

BERIX V)= fZSz 11_};((52))'

(3) The p.g.f. of min{X,Y} is given by

E[min{XYY = oz +(1- Z)Y(SZ).

1—46z

(4) The probability of the event (Y*(™~1) < X <Y*™) is given by
P(Y* "D < X <Y*) = (Y(9)" 1 - Y (9)),

and the conditional generating function of X given that the event (Y*(mfl) < X <Y*™) occurs is

*(m— *m 0z Y(Sz))m_l(l — Y(SZ))

Now, we derive the p.g.f of W, denoted by Gy (z) = E[z"]. Six cases may exist for a TC’s arrival which
occurs in (t7,¢t).

e Case 1. The TC arrives when the primary sever is idle.
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e Case 2. The TC arrives when the primary sever is busy and a disaster arrives.

e Case 3. The TC arrives when the primary sever is busy and a disaster does not arrive.

e Case 4. The TC arrives when the primary sever is under repair and the substitute server is idle and the
repair does not end at time t.

e Case 5. The TC arrives while the substitute server is busy and the repair does not end at time ¢.

e Case 6. The TC arrives at a slot when which the primary server is under a repair and the repair ends at
time ¢.

Let W; be the sojourn time of the TC in case i and Gy, (2) = P(case i)E[z"Vi|case i], i = 1,2,3,4,5,6. Then
Gw(z) = E[z"] = Z?Zl Gw;, (2). Using Lemma 5.1, we find the expressions of Gy, (z) as follows.
In case 1, the TC’s sojourn time is min{Sy, D}. Then

Gw,(z) = lim P(N(t7) =0, J(t7) = 1)E[z™{51.D}]

= Jim P(N((t—=1)") =0,J((t = 1)7) = B[]
— Qo dz+(1— zstl (52) (5.1)

In Case 2, because the TC arrives finding the primary sever is busy and a disaster arrives. Then his sojourn
time is zero and

Gw, (2) =0 lim S P(N(t7)=mn,J(t7)=1)

=48 lim > P(N((t—1)%) = n,J((t—1)") = 1)

= 6d,(1,1). (5.2)

In Case 3, by conditioning on the system size and the remaining service at the TC arrival epoch, we have

Gwy(2) =0 lim, S PIN(E) = 0, () = 1.Gu (1) = K Eemne )
o
=0 lim i iPUV((t — DY) =0, J((t-1)1) =1,G((t - 1)F) =k + 1) B[mintetsiDl)
5 g =B
_ 5gz_qlﬁf(_10 1) + (1 - 2)(32)'1(32,G's, (32)) -

1—6z
In Case 4, the TC can immediately receive his service rendered by the substitute server. There are two cases
we should consider: (Sp < R) and (Sp > R).

GW4 (Z)
=0 lim P(N(t7) =0,J(t) =0) (P(SO < R)E[%|Sy < R] + P(Sy > R)E[zR+min{s1.0} |5 > R])
= 0Qu0 (G (02) + 25 (1 = G (82 200, (5.4)

In Case 5, the TC’s sojourn time is decided by the following subcases:
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e Case ba. The unfinished work after the TC arrival is less than the remaining repair time. In this case, denote
the sojourn time as W5, with p.g.f. Gw,, (2). Conditioning on the system size and the remaining working
breakdown service time at the TC arrival epoch, we obtain

G, (2) = 0 lim. f: i P(N(t™) = n, J(t™) = 1,G(t7) = k)P(k + S3™ < R)E[*55" |k + S3" < R]

n=1k=0

=0 lim Y > P(N((t=1)%) =n,J((t=1)*) = 0,(1((t = 1)*) = k+1)(02)"(Cs, (02))"
n=1k=0

=633 Quolk +1)(82)(Gs, (092))"

n=1k=0
_ 52002, G, (02))
0z

e Case bb. The unfinished work U after the TC arrival is equal to or longer than the remaining repair time. In
this case, denote the sojourn time as Wy, with p.g.f. Gw,, (#). Suppose there are n customers in the system
and the remaining working breakdown service time is k at time t=, n > 1,k > 0. Then U = k + S§™. We
should consider the following cases:

(1) If R < k, then Wy, = R+ min{5;"™™ D}

@) I k+S™ " < R<k+S™m=12-,n, then Wy, = R + min{S;"*'™™ D}. Then by the
memoryless property of geometric distribution and Lemma 5.1, we obtain

R ] _ . *(n+l—m)
_,’_QZ Z Z Qn,O(k+ 1))(92)kp(58m_1 <R< SSm)E[ZRlsgm_l <R< SSm]E[zmm{Sl +1 ,D}]

Shs - 73": z — 2z 72 n+1
:éZZQn,O(k-&-l))ez(ll_%i) )0z+(1 1)£Ggil(6 n"t

oo oo n P B _ ~ _ 2 72 n+l—m
FO3030 D Quolk + 1)@ 2 (G, 02 (1 - G, (02 2T L2 2N C (02)

n=1k=0m=1 1—6z
5 > = 0z(1 — (02)%) 6z + (1 — 2)(Gs, (52))"*1 00z
_anzzlkz::an’O(k+1)) 1—0z 1—6z + (1—02)(1 —52)

S ; - . (G5, (32)" — (Gs, (B2))"
x 35" Quolk+ 1)(#2)" (52(1—(6'50(92)) )+ (1= )G, (52)(1 ~ Gy ()= == )

o (02, Ggs, (82)) )
0z

é = . _
= m (6,2(150(1, 1) — 5‘150(9,2, ].) + (]. — Z)Gsl (52’) (¢0(1,G51 (5Z)) —

(1 -2)Gs,(62)(1 = G5, (02)) 1

o T8 L (0(0x, G, (52) — 7ol Gso(éz)))>.

+% (B0(02,1) — Do (02, G5, (02))) +
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Combining Case 5a and Case 5b, we get

Gw; (2) = Gws, (2) + Gwy, (2)

- (D0(0z,Gs,(02)) 0z 0. = - = Do (0z,Gs, (62))
=0 ( 7 =01 =97) (62450(1, 1) — EQO(GZ, 1)+ (1 -2)Gg, (02) (@0(1, Gs,(0z)) — B E— )
+5 (@0l 1) =00, Gy 02)) -+ g OO L a5 G, () = 20102, Gi, (1) ) )

(5.5)

In Case 6, at time ¢* the primary sever restarts to serve all the customers on FCFS. Conditioning on the
system size at t~, we obtain

Gw,() =0 Jim S°P(N(t7) =n, J(t7) = 1) E[zmin{s1""".D})
n=0

z —z 0z 2 . _ 52))(n+1)
:9<Q0,05 P0G 02) | §3§5 g 0+ (2@ 62) +1>

1—0z —i= 1—0z
Sz + (1 —2)Gs, (6 §2®0(1,1) + (1 — 2)Gs, (02)Po(1,Gs, (0
_9<QO7OZ (= )Gs,5s) | Setull.1) + (1 = s, (B s<z>>)_ 56)

Based on equations (5.1)—(5.6), we can get the expression of Gy (2) = E[z"] = Z?Zl Gw,(2).

6. THE TIME BETWEEN FAILURES

Let © denote the time between two consecutive failures, which is called a regeneration cycle. Note that ©
consists of many normal busy periods and idle periods and a repair period. In this paper, the duration in which
the primary (or substitute) server works at the normal (or working breakdown) service rate continuously is called
a normal (or working breakdown) busy period. Let By and By with p.g.f. G, (2) and Gp,, (), respectively,
represent the lengths of normal and working breakdown busy periods beginning with only one customer, by
Tian et al. [22], we know that G, () = Gg, (2(A + AGpy(2))) and Gp,, (2) = Gs,(2(A + AGp,, (2))). It can
be proved that z; = G, (0) and zy = G, (9).

To conduct the cycle analysis, let K be the system size at the beginning epoch of a new normal busy period,
which begins immediately at the end of a repair period with a customer’s working breakdown service interrupted.
Then we having the following Lemma 6.1.

Lemma 6.1. The p.g.f. Gg(z) = > oo, 2"P(K =n) is given by

1 z(z—2p)

Gx(2) = 1—292z—B(?)

V(z). (6.1)

Proof. Define By be the event that a normal busy period begins immediately after the repair period ends with
a customer’s working breakdown service interrupted, then

P(BR) = 9@0(1, 1) = )\é(l — ZO)QO’O.

Then we can get the distribution of K as follows:

P(K = n) = P(;R)G ()\I;Qn,o(k) + )\’;in)o(kﬁ)> ,n Z 1.
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From (4.14), we obtain the p.g.f. of K as follows

Gk(z) = le”P(K =n)= P(ZR) Zz” (A;Qn,o(k) + )\’;in,o(kz)>

=1

0A(2) 1 2(z2—20) 06A(2)

= ®o(1.2) = — 1-B
P(Bg) o(1,7) 1—202—B(2)1- HA(z)( ()
1 z(z—2)
1—22—B(2) V().
This ends the proof of Lemma 6.1. ]

Now, we derive the expression of the p.g.f. Go(2) = E[2°].
Depending on the first customer arrival time after the primary sever enters into the repair period, the time
© may be divided into three types:

e Type-1, denoted by O; (= ©|A > R): the first customer arrives after the end of repair period with probability
p=P(A>R) =%

e Type-2, denoted by @2 (= O|A = R): the first customer arrives at the end of repair period with probability
p2=PA=R)= 1i§§-

e Type-3, denoted by O3 (= O|A < R): the first customer arrives during repair period with probability

ps=P(A<R)= 13%@

Define Gg,(z) = E[29],i = 1,2,3, then Gg(z) = Z?:lpiG@i (2). So we dedicate to derive the expressions of
O:(z) = E[2%],i=1,2,3.

(1) First, we derive the p.g.f. Go,(z). For ©1, the primary sever immediately enters into idle period after
the end of repair period. Let L be the length of the duration from the epoch at which the the primary sever
idle period begins to the epoch at which a new repair period begins. Then @1 = R|(R < A) + L and Ge, (2) =
E[zR|R < A|E[21].

When the first customer arrives in the system, a normal busy period begins. If (D < By), then L = 4; + D.
Otherwise, if (By < D) occurs, after the end of normal busy period, the primary sever enters into idle period
again, then L = A; + By + L, where L is a new random random and distributed with L. Thus the p.gf. Gr(2)
of L is given by:

GL(2) = P(D < By)E[zP|D < By] + P(By < D)E[z+B~+L By < D]

— B[] (P(D < By)E[z°|D < By] + P(By < D)E[:5~|By < D]GL(z))

Az 0z - <
25 (TR0 602 + 6y (3161
which leads to

Az 0z
1—Xz1-96z

Az
1— Xz

61t = ( (1 Gy 521 (1- (hAMOI, (62)

and
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Remark 6.2. Let Lq, with p.g.f G, (2), be the time duration from the epoch at which the normal busy period
begins with only one customer to the epoch at which the next repair period begins, then L = A + L; and
Gr(z) = 1i\ﬁGLl(z). It follows from equation (6.2) that

Gp,(2) = (1 fzgz(l - GBN(az))> (1 - &GBN(&O B (6.4)

From (6.2), the p.g.f. Go, (2) is given by

Ge, (2) = E[:%|R < AE[Y]
_ —1
= pill e (1 = iZSz(l ~Cby (5Z))> (1 - G (52)) : (6:5)
and the mean value of O is
E[61] = E[R|R < A + E|L]

S SR S 66)

T 10 5 AN1-Gpe(d)

(2) For O3, a new normal busy period begins with only one customer at the end of the repair period. Then
O = R|(R=A)+ L;. Using (6.4) yields

Go,(z) = E[z%|R = A]L(2)

1 Aoz 0z _ Az N
e (T G (1 P26 G9) )

and
Blog =141, Gn(d .

1-X0 6 A1-Gp,(0)

(3) For O3, the working breakdown busy period immediately begins at the arrival epoch of the first customer.
Let F' denotes the time interval from the epoch at which the working breakdown busy period begins to the
epoch at which a new repair period begins. Then @3 = A|(A < R) + F. We have the following two cases.

e Case 3a: If (Bw < R) occurs, at the end of the working breakdown busy period during the repair period, a
new unconditional cycle restarts because of the memoryless property of the geometric distribution. In this
case, F' = By |(Bw < R) + 6.

e Case 3b: If (R < By) occurs, at the end of the repair period, a normal busy period with K customers
immediately begins, the p.g.f. Gx(z) is given by (6.1).

Let By be length of the normal busy period begin with K customers, then the p.g.f. Gp, (2) = Gx (G, (2)),
and the equality G, (§) = Gx(Gpy (8)) = Gx(21) holds.

If (D < Bg) happens, then F = R|(R < Bw) + D|(D < Bg). If (Bg < D) occurs, then F' = R|(R <
Bw) + Bk|(D < Bk) + L. Based on the above two cases, the p.g.f. Gp(z) is derived by

Gr(z) = P(Bw < R)E[2P%|(Bw < R)|Ge(z) + P(R < Bw)E|[2"|R < By] (P(D < Bg)E[2”|D < Bg]

+ P(Bg < D)E[:P%|By < D}GL(Z))

= Gy (82)Go(2) + 12551~ Gy (82)

0z
1—46z

(1—Gpe(02) + GBK(SZ)GL(Z)> , (6.9)
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and
_ /11 _ _
EIF] = G ()EI6] + (1~ Gy (9) (5 + 31~ GO + G O)BIL]) (6.10)

By equations (6.9) and (6.10), we obtain

Go,(2) = E[z*|A < R|Gr(2)

1 Mz ~ 0z . 0z - -
- 5 <GBW(02)G@(Z) + (1= Gy (2) (1 (1= G, (62) + G (&)GL(,Z)(G)li)
and
B[05) = — 55 + O (O)E6] + (1 - Gy, (3) (; T &%) . (6.12)

Combining (6.5), (6.7) and (6.11), we get the p.g.f. Gg(2) of O(z): Ge(z) = Zle piGo,(z), and from (6.6),
(6.8) and (6.12), we obtain that

> piE[O)]

E[6)]

1 N (1 1 N (1 Gy (9)
1—M+1—M<6+My%hﬂﬁ)+1—ﬁ<6 ML%%A%)
oYY _ /1 1 Gy (6)

+ 12 (G @B+ (1= 6o @) (G+ 5+ 5rm s )).

which leads to

i O(A 4+ AGpy (3)) + MG g, (8)(1 — Gy, (0))
A1 =GBy (0)) (0 +20(1 - G, (9)))

A1 =21)(04+X(1 - 2))

+ o

5
1
=5+3 (6.13)

By the alternating renewal theorem, we have the following results

. _ EIE] _ SA(L = 21) (0 + A0(1 — 2))
T EB] T A0 +0)(1—21) (04 A(1 — 20)) + 662 A(21)(1 + 9(21))
- 0 0,0

which agrees with equation (4.20).

7. NUMERICAL EXAMPLES

In this section we investigate the impact of system parameter 6, § on some performance measures Py, Ls, E[O)].

e The performance measures of the Geo/(NB, Geo)/1 queue are plotted in Figure 2 for a case where the cus-
tomer arrival rate is A = 0.35, the normal service time S; follows negative binomial distribution NB(2,0.25),
working breakdown service time Sy follows geometric distribution Geo(0.05).
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FIGURE 2. Py, Ls and E[O)] vs. 6 for different § in Geo/(NB, Geo)/1 queue.

e The performance measures of the Geo/(PH, NB)/1 queue are depicted in Figure 3 for a case where A\ = 0.35,

1
the normal service time Sy has a discrete Phase-type distribution PHy(e, T), a = (2, 2),T = ( K g ), working
4

breakdown service time Sy has a negative binomial distribution NB(2,0.25).

Figures 2(a) and 3(a) show that given other parameter fixed, the probability that the primary sever is under
repair, Py, decreases monotonously as the repair rate increases, and when § — 0, the value of Py tends to 1,
which agrees with our expectations. On the other hand, from Figures 2(a) and 3(a), we can see that as the arrival
rate of a disaster increases, the chance that the primary sever enters into a repair period increases, because
the arrival of a disaster not only removes all the customers, but also causes the primary sever breakdown. As
expected, Figures 2(b), (¢) and 3(b), (c) demonstrate that Ls and E[6] are monotonically decreasing as functions
of 6 and 9, respectively. The reason is that when the value of 8 or § increases, a repair period is shortened, the
probability that the customers are served by the primary sever or removed by a disaster is increased, which
leads to the decrement of the mean system length and the mean length of the time between two failures.

In practice, operating cost control has strong practical significance and application value for economic activ-
ities. In the following, our objective is to study the cost minimization problem based on a given cost structure.

Cost elements are defined as follows:

Cy, = holding cost for each customer in the system per unit time;
Cs = setup cost per cycle;
Cy = cost for keeping the substitute server available per unit time;

C1 = cost for keeping the primary sever available per unit time.
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FIGURE 3. Py, Ls and E[O] vs. 0 for different ¢ in Geo/(PH, NB)/1 queue.
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FIGURE 4. TC(0) vs. 8 in Geo/(PH, Geo)/1 and Geo/(PH, NB)/1 queue.

Taking the repair rate 6 as a decision variable, the per unit time total expected cost function is given by

1
TC(0) = CpLs + Colly + C1(1 — I, Coerrs
(9) wWLs + Colly + Cy ( o)+ E(C)
The cost minimization problem can be mathematically illustrated by ming TC(f) subject to 0 < # < 1. Due to
highly non-linear and complex of the cost function TC(6), it’s not easy to get the derivatives of it. With various
numerical examples, see Figure 4(a) and (b), we find the optimum value of 6§, say 8* by Matlab.
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In Figure 4(a) and (b), we take Cs = 75, C}, = 40, Cy = 100, Cy = 200 and A = 0.35,d = 0.25, S; ~ PHy(«, T')
as in Figure 3. Sy ~ Geo(0.25) in Figure 4(a) and Sy ~ NB(2,0.25) in Figure 4(b). Figure 4(a) and (b),
respectively, depict the effect of 6 on the cost function TC(#) in the Geo/(PH, Geo)/1 queue and in the
Geo/(PH, NB)/1 queue.

Figure 4 shows that there is an optimal repair rate # which minimizing the operating cost. Implementing
the parabolic method in the computer software MATLAB and taking the error ¢ = 1076 , we find the solution
6* = 0.153093 with TC(6*) = 206.9618 in Figure 4(a), 6* = 0.253981 with TC(6*) = 217.0406 in Figure 4(b).

8. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have analyzed a repairable discrete-time Geo/G/1 queueing system with disasters and a
substitute server, in which disaster only arrives in the primary sever busy period, a disaster arrival not only
removes all customers, but also causes the primary sever breakdown. During the repair period of the primary
sever, customers are served by the substitute server at a lower service rate. The working breakdown service
during repair period contributes to a more realistic service schedule to the study of the discrete-time queue
with disasters and breakdowns. We have derived the principal characteristics of our model, for example, the
embedded Markov, the steady-state system size, the sojourn time of a test customer in the system and the time
cycle.

This topic in this paper can be extended to the discrete-time retrial queues with negative customers or
disaster, which will be our future research direction.
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