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STALLING FOR SOLVING SLOW SERVER PROBLEM

Liudvikas Kaklauskas1,∗, Leonidas Sakalauskas2 and Vitalijus Denisovas3

Abstract. The model of stalling in queueing system (QS) with two heterogeneous severs is considered,
the probabilities of steady states by means of Tchebyshev polynomials of second order are derived.
The obtained expressions are stable numerically, their complexity does not depend on the number of
states, and they enable us to study QS characteristics analytically. Optimization of a stalling buffer is
considered as well and it was shown that stalling helps us to solve the slow server problems under an
appropriate choice of stalling buffer size, making a slow server usable under various values of system
load. Asymptotic conditions of optimal query distribution in servers are established, when the ratio
of capacities of fast and slow channels is increasing. Application of the model developed in computer
networks is discussed as well.
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1. Introduction

Queuing systems (QS) are widely used in business and technology. The known queueing strategies are devel-
oped for systems with equal capacity channels, however, in practice, systems have heterogeneous (different
capacity) channels or servers [11, 21, 24]. For instance, at the shop every tellers efficiency depends on his expe-
rience in this field, therefore his service speed can be several times higher than that of the new teller who
is working for several days. The similar situation is encountered in computers where computation is done by
CPU and GPU. Since their capacity may differ up to several ten times, therefore it is necessary to schedule
them at work optimally [5,12]. Many practical scenarios, for example, communications network supporting com-
munication channels of different transmission rates, multiprogramming computer system, etc, are modeled by
systems or networks of heterogeneous servers. Note, in a heterogeneous environment, resources are autonomous,
distributed, dense, and dynamic, hence they should be effectively scheduled so that maximum utilization of the
resources is possible [11]. If the capacities of processors or servers vary with a little difference, then the queueing
discipline in a system might be the First Come First Served (FCFS), and the query goes straight to the free
channel or waits in a queue until some channel clears up. It is noted that under a high difference of capacities,
this service discipline slows up the system work [21], moreover, in some situations it is better to discharge a slow
channel [1]. Therefore, it was proposed to install a stalling buffer, as sometimes it is more efficient to wait until
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Figure 1. Scheme of QS with stalling buffer.

the fast channel gets free even though the slow channel becomes free. Larsen introduced this problem [15] by
conjecturing optimal routing using threshold policy for particular server and stalling buffer. In 1983 Larsen and
Agrawala [16] proposed a simple approximation to find the optimal threshold value for the slower server. Lin
and Kumar showed that threshold value for fast server is zero and for slow server depends on the queue length
[17]. Optimality of a threshold policy for two heterogeneouse servers by using coupling arguments and value
iteration was proved by Warland and later by Koole [14, 17]. The systems with stalling were discussed in [24],
he proposed an algorithm to obtain the optimal threshold value for the slow server [24]. In 1988 Viniotis and
Ephremides [27] extended the validity of some results of the optimal control of two-server queuing models with
service times of unequal distribution, operating in continuous or discrete time. Xu [28] proved the optimality
of a threshold policy for each server in M/M/2 system, as well as the existence of a threshold queue length for
denying admission to the system. Rykov [22] attempted to generalize the slow server problem of a threshold
policy optimality to the case of more than two heterogeneous servers, but Zhou [6] showed that this proofs
are incomplete. Rosberg and Makowski in 1990 analyzed set of heterogeneous and exponential servers [23]. In
2016 Efrosinin and Rykov analyzed M/M/K queue and showed, that the optimal threshold levels may depend
also on the states of slower servers although this influence is very negligible [9]. The optimality of a threshold
control policy for two heterogeneous servers queueing system is analyzed [19]. Efrosinin and Rykov in 2015
analyzed queuing system with K heterogeneous servers by using a heuristic method (he used means of Howard
iterations with restrictions) to derive expressions for the optimal threshold levels in explicit form as functions
of system parameters. As separate case the steady state probabilities in heterogeneous two servers system have
been derived as well, but no analysis of system characteristics or asymptotic done [8]. The problem of stalling
in systems with two or more servers has not been solved properly yet.

Recently the relevance of research of systems with heterogeneous servers has been increased by creating
multiprocessor systems, combining CPU and GPU processors [12, 13] as well as considering queueing systems
with very heterogeneous processors in networks [7]. Since their capacity may vary up to several ten times, there
is an actual problem to develop systems, in which the ratio of capacity of used processors is increasing and to
derive the appropriated asymptotic expressions.

This paper studies a queueing system with two heterogeneous servers equipped by a stalling buffer and a
finite waiting line. Since analytical study of systems with heterogeneous channels is rather complicated, in the
paper the asymptotic analysis of two servers system is presented.

2. QS with a stalling buffer

The analyzed QS consists of two heterogeneous channels, waiting line and one stalling buffer (Fig. 1). Assume
that the interarrival time at a system is distributed under Poisson’s Law with a parameter λ and the length of
service is also distributed under this law with parameters µ1 and µ2 (respectively for a fast and low channel,
i.e., µ1 > µ2). Assume that the queries are served according to FCFS discipline and explore the following order
of service with stalling. If the query after being released into the system finds a free fast channel, it is served
immediately, otherwise it goes to a stalling buffer of K length, where it waits until the efficient server gets free.
One query is served only by one server without a break. If all places in the stalling buffer are occupied, the
arrived query transfers to a slow server. If the slow server is occupied as well, the query waits in a queue at
waiting buffer of length M. If all the places in the waiting and stalling buffers are occupied, the query is rejected
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and is deemed lost. Of course, this strategy is suitable only when the coefficient of QS utilization ρ = λ
µ1+µ2

is
less than 1.

3. QS state probabilities

Considering a two-server queuing system, state graph is drawn, in which the vertices represent the states,
connected by arrows representing transitions with a non-null probability from one state to another. Denote the
states as follows:

P0,0,0, a system is free;
P0,1,0, only a slow server is occupied;
P1,0,0, only a fast server is occupied;
P1,0,k, fast server is occupied, a slow server is free, k queries are stalled in the stalling buffer; P1,0,K , a fast

channel is occupied, a slow channel is free, a stalling buffer is full;
P1,1,k, all channels are occupied, k queries are stalled in the stalling buffer;
P1,1,K , all channels are occupied, stalling buffer is full;
P1,1,K+k– all channels and stalling buffer are occupied, k queries are waiting in a queue;
P1,1,K+M , all channels, stalling buffer as well as waiting line are full, next arrived query will be lost.
State graph of the considered system is provided in Figure 2.
Given that this corresponds to a finite Quasi-Birth-Death process [18]. Thus, one can derive steady state

equations according to the steady state graph:

P0,0,0 · λ = P1,0,0 · µ1 + P0,1,0 · µ2,

P1,0,0 · (λ+ µ1) = P1,0,1 · µ1 + P1,1,0 · µ2 + P0,0,0 · λ,
P1,0,k · (λ+ µ1) = P1,0,k+1 · µ1 + P1,1,k · µ2 + P1,0,k−1λ, 1 ≤ k ≤ K − 1,
P1,0,K · (λ+ µ1) = P1,1,K · µ2 + P1,0,K−1 · λ,
P0,1,0 · (λ+ µ2) = P1,1,0 · µ1,

P1,1,0 · (λ+ µ1 + µ2) = P1,1,1 · µ1 + P0,1,0 · λ,
P1,1,k · (λ+ µ1 + µ2) = P1,1,k+1 · µ1 + P1,1,k−1 · λ, 1 ≤ k ≤ K − 1,
P1,1,K · (λ+ µ1 + µ2) = P1,1,K+1 · (µ1 + µ2) + P1,0,K · λ+ P1,1,K−1 · λ,

P1,1,K+k · (λ+ µ1 + µ2) = P1,1,K+k+1 · (µ1 + µ2) + P1,1,K+k−1 · λ, 1 ≤ k < M,

P1,1,K+M · (µ1 + µ2) = P1,1,K+M−1 · λ, (3.1)

The obtained equations system is complemented by the normalization condition:

P0,0,0 + P0,1,0 +
K∑
i=0

P1,1,i + P1,0,i +
M∑
i=1

P1,1,K+i = 1. (3.2)

Figure 2. Graph of QS states.
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Assume QS with the stalling buffer to be characterized by the parameters q = λ
µ1

and r = µ1
µ2

. Then coefficient
of system utilization is as follows: ρ = λ

µ1+µ2
= q

1+ 1
r

.
Note, that it is possible to obtain closed form expressions for the steady state, which as rather simple. Let

as prove a following lemmas.

Lemma 3.1. The distribution of the number of queries in a fast channel and a stalling buffer together corre-
sponds to probabilities of states in the M/M/1 system with the utilization coefficient q, namely:

P1,1,0 + P1,0,0 = q · (P0,1,0 + P0,0,0)

P1,1,k + P1,0,k = q · (P1,1,k−1 + P1,0,k−1) = qk+1 · (P0,0,0 + P0,1,0) , 0 < k ≤ K.

Proof. Summing up corresponding probabilities (3.1) of queries in the fast server and the stalling buffer one
can make sure that:

(P0,1,0 + P0,0,0) · λ = (P1,1,0 + P1,0,0) · µ1

(P1,1,k + P1,0,k) · (λ+ µ1) = (P1,1,k+1 + P1,0,k+1) · µ1 + (P1,1,k−1 + P1,0,k−1) · λ, 1 < k < K − 1.

The latter system corresponds to steady state equations of the M/M/1 system with the utilization the
coefficient q and therefore has a solution given by the lemma [10] ∇ �

In order to obtain explicit formulas of steady state the technique of Tchebyshev polynomials is developed.
Note, that Tchebyshev polynomials are used to study properties of finite queues, namely, busy period of
M/M/1/N [26], in an analysis of priority queue with a randomized push out mechanism [4].

Thus, let us introduce polynomial functions Ak(q, r) defined in a recurrent manner and applied further to
describe probabilities of the number of queries in a slow channel:

A−1(q, r) = 1, A0(q, r) = q +
1
r
,Ak+1(q, r) =

(
q + 1 +

1
r

)
·Ak(q, r)− q ·Ak−1(q, r),

k = 0, 1, 2, . . . . (3.3)

Let Uk(x) be a Tchebyshev polynomial of the second kind of kth order, here x = q+1+ 1
r

2
√
q .

Hereinafter, denote, for short Ak = Ak(q, r).

Lemma 3.2. Functions Ak are presented as:

Ak =
(z − 1) · zk+1 − (t− 1) · tk+1

z − t
, 0 ≤ k ≤ K, (3.4)

where z =
q+1+ 1

r +
√

(q−1+ 1
r )2

+ 4
r

2 ,

t =
q + 1 + 1

r −
√(

q − 1 + 1
r

)2 + 4
r

2
·

Proof. Let us prove lemma by induction. Note,

A0 = q +
1
r

= q
1
2 · 2 · x− 1 = q

1
2 · U1(x)− U0(x),

A1 =
(
q +

1
r

)2

+
1
r

= q ·
(
4 · x2 − 1

)
− q 1

2 · 2 · x = q · U2(x)− q 1
2 · U1(x).
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Next, by virtue of recurrent relation between Tchebyshev polynomials of the second kind [2]:

Ak+1 = q
K+2

2 · (2xUk+1(x)− Uk(x))− q
K+1

2 (2xUk(x)− Uk−1(x))

=
(
q + 1 +

1
r

)
·Ak − q ·Ak−1,

which implies:
Ak = q

K+1
2 · Uk+1(x)− qK

2 · Uk(x), k = 1, 2, . . .

Then lemma follows from the well-known presentation of Tchebyshev polynomials [2].

Ak(x) =

(
x+
√
x2 − 1

)k+1 −
(
x−
√
x2 − 1

)k+1

2 ·
√
x2 − 1

∇ (3.5)

�

One can easily verify that if 0 ≤ q ≤ 1, r ≥ 1, then: z > 1, 0 ≤ t < 1.

Theorem 3.3. State probabilities of QS with stalling, defined by system (3.1), are as follows, if 0 ≤ ρ < 1,
K ≥ 0, M > 0:

P1,1,k = Ak · P0,1,0, 0 ≤ k ≤ K, (3.6)

P1,0,k = P0,1,0 ·
(
AK+1 · qk−K−1 −Ak

)
, 0 ≤ k ≤ K, (3.7)

P1,1,K+k = ρk ·AK · P0,1,0, 1 ≤ k ≤M, (3.8)

P0,0,0 =
(
AK+1

qK+2
− 1
)
· P0,1,0, (3.9)

P0,1,0 =
1

AK+1

∑K+1
i=0 qi

qK+2 +AK ·
∑M
i=0 ρ

i
, (3.10)

If M = 0, K ≥ 0, then P0,1,0 = qK+2

AK+1·
∑K+1

i=0 qi
.

Proof. Let us rewrite the equations of states of a slow channel in the following manner:

P1,1,0 · µ1 = P0,1,0 · (λ+ µ2), P1,1,k+1 · µ1

= P1,1,k · (λ+ µ1 + µ2)− P1,1,k−1 · λ, 1 ≤ k ≤ K − 1.

Thus, the latter equation and (3.3) imply (3.6). Next, whenever one inserts the last equation in (3.1) into the
previous one and does the same further, the formulas

P1,1,K+k · (µ1 + µ2) = P1,1,K+k−1 · λ, 1 ≤ k ≤M,

are obtained, that imply probabilities (3.8), describing the states of the waiting queue.
Next, inserting formula (3.8) into equation in (3.1), which describes the probability P1,1,K , and using

Lemma 3.1, the following equation is derived:

P1,1,K · (λ+ µ1 + µ2)− P1,1,K−1 · λ = P1,1,K · λ+ P1,0,K · λ.

Then, this equation, (3.6), and (3.3) imply equation (3.9). Next, (3.7) is conclusion of (3.6), Lemma 3.1 and
(3.9). Since now all the probabilities of states expressed have to be proportional to probability of only one query
in slow channel, e.g., P0,1,0, for calculating the latter probability formula (3.10) follows from (3.6)–(3.9) and
normalization equation (3.2)∇ �
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4. Queueing characteristics

Using probabilities (3.6)–(3.10) the characteristics of QS with stalling are computed as follows.
Occupancy probability of the fast channel is equal to:

PI =
K∑
k=0

(P1,0,k + P1,1,k) + P1,1,K ·
M∑
i=1

ρi = 1− P0,1,0 − P0,0,0 = 1− AK+1

qK+2
· P0,1,0 (4.1)

Also occupancy probability of the second channel is calculated:

PII =
K∑
k=0

P1,1,k + P0,1,0 + P1,1,K ·
M∑
i=1

ρi =

(
1 +

K∑
k=0

Ak +AK ·
M∑
k=1

ρk

)
· P0,1,0 (4.2)

Further, average number of serviced queries in system is calculated:

N̄S =
K∑
i=0

(P1,0,i + 2 · P1,1,i) + P0,1,0 + 2 · P1,1,K ·
M∑
i=1

ρi

=

(
1 +

K∑
k=0

Ak +
AK+1

qK+2
·
K+1∑
k=0

qk + 2 ·AK ·
M∑
k=1

ρk

)
· P0,1,0. (4.3)

Also the average number of waiting queries correspondingly in the stalling buffer and queue is obtained as
well:

N̄K =
K∑
k=1

k · (P1,0,k + P1,1,k) + P1,1,K ·K ·
M∑
i=1

i · ρi

=

(
AK+1

qK+2
·
K+1∑
k=1

k · qk +K ·AK ·
M∑
i=1

i · ρi
)
· P0,1,0 (4.4)

N̄W = P1,1,K ·
M∑
i=1

i · ρi = AK · P0,1,0 ·
M∑
i=1

i · ρi. (4.5)

The queries are lost when stalling buffer and queue are full, therefore the probability of the loss of query is
equal to

Ploss = AK · ρM · P0,1,0. (4.6)

5. Optimization of stalling buffer

Average number of queries in the system is most important, because it describes the whole system capacity
and the efficiency of the chosen queueing strategy. Thus, the total average amount of serviced, stalled, and
waiting queries in the system is as follows:

N̄ =
K∑
i=0

((i+ 1) · P1,0,i + (i+ 2) · P1,1,i) + +P0,1,0 + P1,1,K ·
M∑
i=1

ρi · (i+K + 2)

=
1 +

∑K
i=0Ai + AK+1

qK+2 ·
∑K+1
i=1 i · qi +AK ·

∑M
i=1(i+K + 2) · ρi

AK+1

∑K+1
i=0 qi

qK+2 +AK ·
∑M
i=1 ρ

i
· (5.1)
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Note, that sums in (5.1) might be expressed analytically [2]:

K+1∑
i=0

qi =
1− qK+1

1− q
, (5.2)

K+1∑
i=1

i · qi =
[1− (K + 2) · qK+1 + (K + 1) · qK+2] · q

(1− q)2
, (5.3)

S1 =
M∑
i=1

ρi =
ρ− ρM+1

1− ρ
, (5.4)

S2 =
M∑
i=1

i · ρi =
ρ− (M + 1) · ρM+1 +M · ρM+2

(1− ρ)2
· (5.5)

And by virtue of (3.5):

1 +
K∑
i=0

Ai =
zK+2 − tK+2

z − t
· (5.6)

Thus, after some simple transformations (5.1) is rewritten by means of (3.4) and (5.2)–(5.6) in an analytical
shape:

N̄ =
q

1− q
+ qK+2 V

W
=

q

1− q
+ qK+2

×
zK+2−tK+2

(z−t)·AK+1
− z·(K+2)

1−q + AK

AK+1
·
(
S1 ·

(
K + 2− q

1−q

)
+ S2

)
z

1−q + qK+2 ·
(

AK

AK+1
· S1 − z

1−q

) · (5.7)

Note, this explicit expression is stable numerically, no sums, and, thus, it helps us to study QS characteristics
analytically. For instance, using (5.7) one can differentiate N̄ with respect to parameter K:

dN̄
dK

= qK+2 ·

(
ln(q) · V

W
+

dV
dK ·W −

dW
dK · V

W 2

)
· (5.8)

One can easily make sure also that:

zK+2 − tK+2

AK+1
=

1
z − 1

(
1−

(
t

z

)K+2

· (z − t)
z − 1− (t− 1) ·

(
t
z

)K+2

)

=
1

z − 1
+O

((
t

z

)K+2
)

(5.9)

AK
AK+1

=
1
z

+
(
t

z

)K+1 (1− t) · (z − t)
(z − 1) · z2 − (t− 1) · t2 ·

(
t
z

)K+1
=

1
z

+O

((
t

z

)K+1
)

(5.10)

Theorem 5.1. Assume, 0 < q < 1, r ≥ 1, K, M ≥ 0. Then:

1)
dN̄
dK

= qK+2 · (1− q) · ln(q)
z

×
[(
S1 −

z

1− q

)
·
(
K + 2 +

1
ln(q)

)
+

z

z − 1
− S1 ·

q

1− q
+ S2

]
+O

(
q2K

)
,
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Figure 3. Comparison of optimal buffer size and approximations.

2) there exists a value K0 such, that dN̄
dKK=K0

= 0, 0 ≤ K0 <∞;

3) K0 =
z
z−1 −

S1·q
1−q + S2

z
1−q − S1

− 1
ln(q)

− 2 +O
(
qK
)

;

4) K0 = r · (1− q)2

1− q + qM+1
− qM+1

(1− q + ρM+1)

×
(
M + 1− 2 +M · (1− q)2

(1− q + ρM+1)

)
− 1

ln(q)
− 2 +O

(
1
r

)
·

Proof. It follows from (5.7) and (5.8) that
dN̄
dK = qK+2 ·

(
ln(q) · V ·1−qz − dW

dK ·
(1−q)2
z2

)
+ O(q2K+4). Thus, 1) is implied by (5.9), (5.10). It is easy to make

sure that z
1−q > S1, which implies 2), because ln(q)<0. Then 3) is obtained by equating expression 1) to zero

and solving a corresponding equation. Formula 4) is the Taylor approximation of expression (3.3)∇ �

Hence, numerical optimization of the stalling buffer size might be directly performed by means of (5.7) by
starting from K = 0 and consequently selecting K: Kopt = arg min

K≥0
N(K). The other way for buffer optimization

is to solve the equation, following from (5.8): dN̄
dK = 0 with respect to K, and round the obtained solution. As

follows from Theorem 5.1, these approaches provide us finite exact values of optimal stalling buffer size.
Hence, Theorem 5.1 enables us to apply simple analytical approximations 3) and 4). Optimal buffer size

(computed according to equation dN̄
dK = 0), approximations 3) and 4) (Thm. 5.1), and approximation of Agrawala

et al. [3,23] in a system with infinite waiting line are depicted on Figure 3. One can see the accuracy of considered
approximations. Note, approximation, proposed in Agrawala et al., is K = r−1, that is quietly far from optimal.

The Figure 4 presents the average number of queries in system in stalling with optimal buffer size and infinite
waiting line under various ratio r. This figure also illustrates approximation 4) in Theorem 5.1.

The Figure 5 presents the ratio of probabilities of processors occupancy PII

PI
in optimal stalling regime. One

can see that if system load is low or moderate the slow server is mostly stalled and is involved to work if the
load is increased much.
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Figure 4. Ratio of Optimal Stalling Buffer size.

Figure 5. Ratio of probabilities of processors occupancy in stalling regime and without stalling.

Thus, optimal stalling enables us to solve slow server problem. Note that, QS with the optimal stalling buffer
size, which is finite according to Theorem 5.1, outperforms the system without stalling as well as QS with
discharged slow server (K =∞), if the length of waiting line M is sufficient.

One can see on Figure 6 that in a case of high traffic without stalling it is better to discharge the slow server
and its capacity remains unused. However, under various system loads optimal stalling provides better service
than service without stalling or discharged slow server.

Example. Compatibility problems of heterogeneous networks are solved by offering specialized data mainte-
nance solutions, evaluating their combining cases, analyzing errors, links, etc. Optimization of the network node
stalling buffer is important for combining networks of different capacity [25]. Web hosting company’s forced
to change old slow server to new fast server in oreder to serve increasing flow of service. The optimal solution
for this problem is to use both fast and slow servers connected to one heterogeneous servers cluster equipped
by stalling buffer (Fig. 7). We calculate stalling buffer length changing old server with Intel Xeon E5-2679 v4
@ 2.50 GHz (CPU Benchmarks 4862) into server Intel Xeon X3450 @ 2.67 GHz processor (CPU Benchmarks
25236) [20]. Servers use 32GB working memory. Coefficient of QS utilization ρ = 0.34, r = 5.19, calculated
stalling buffer size for this heterogeneous servers cluster solving the equation dN̄

dK = 0 is 2.129. By rounding
optimal stalling buffer size is obtained: K = 2.
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Figure 6. Comparison of QS with optimal stalling buffer, without stalling, M/M/1, K = r−1
[3] when r = 15.

Figure 7. Heterogeneous servers cluster with stalling buffer.

Characteristics of the cluster with stalling are as follows: occupancy probability of new server – PI = 0.393,
that of old – PII = 0.064, number of queries in service – N̄S = 0.457, number of stalled – N̄K = 0.194, number
of waiting in line – N̄W = 0.01, probability of loss – Ploss = 0, average number of queries in system – N = 0.661.

6. Conclusions

The model of stalling in QS with two heterogeneous severs is presented deriving the explicit probabilities
of steady states by Tchebyshev polynomials of second order. The obtained expressions are numerically stable,
their complexity does not depend on the number of states and provides us a way to study QS characteristics
analytically. The existence of a finite optimal size of the stalling buffer is proved and numerical approach for
buffer size optimization is developed.

The results shown that the appropriate choice of stalling buffer size helps us to solve the slow server problem.
The asymptotic approximations of optimal stalling buffer size, when the ratio of capacities of fast and slow
servers is increasing, are established, too. Application of model developed in computer networks is discussed as
well.
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Investigation of developed model enables us to conclude that stalling is universal solution, which can be
implemented into any heterogeneous system. The findings done in this article for two severs QS might be useful
for investigation of systems with any number of heterogeneous channels or servers.
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