

SOME RESULTS ON THE b -CHROMATIC NUMBER IN COMPLEMENTARY PRISM GRAPHS

AMEL BENDALI-BRAHAM¹, NOUREDDINE IKHLEF-ESCHOUF^{2,*} AND MOSTAFA BLIDIA³

Abstract. A b -coloring of a graph G is a proper coloring of G with k colors such that each color class has a vertex that is adjacent to at least one vertex of every other color classes. The b -chromatic number is the largest integer k for which G has a b -coloring with k colors. In this paper, we present some results on b -coloring in complementary prism graphs.

Mathematics Subject Classification. 05C15.

Received January 21, 2018. Accepted June 27, 2018.

1. INTRODUCTION

All graphs considered in this paper are undirected, finite and simple. For terminology and notation not defined here we refer to [3]. Let G be a graph with vertex-set $V(G)$ and edge-set $E(G)$. The complement \overline{G} of G is the graph having the same vertex-set as G such that two vertices are adjacent if and only if the same two vertices are non-adjacent in G . For a non-empty set $A \subseteq V(G)$, we denote by $G[A]$ the subgraph of G induced by A , and by $G - A$ be the subgraph induced by $V(G) - A$. If $A = \{v\}$ we may write $G - v$ instead of $G - \{v\}$. For a vertex v of G , the *open neighborhood* of v is $N_G(v) = \{u \in V(G) : uv \in E(G)\}$, the closed neighborhood of v is $N_G[v] = N_G(v) \cup \{v\}$ and the degree of v , denoted $d_G(v)$ is $|N_G(v)|$. By $\Delta(G)$ we denote the *maximum degree* of the graph G . Let C_n , P_n , K_n denote, respectively, the *cycle*, the *path* and the *complete graph* of order n . The *complete bipartite* graph on $p + q$ vertices is denoted by $K_{p,q}$.

The *complementary prism graph* $G\overline{G}$ of G is the graph formed from the disjoint union of G and \overline{G} by adding the edges of a perfect matching between the corresponding vertices of G and \overline{G} . The complementary prism graphs are a sub-family of complementary products of graphs, which were first introduced by Haynes *et al.* [10] in 2007, as a generalization of cartesian products of graphs. In [10–12], T.W. Haynes *et al.* studied some parameters of complementary prism graphs such as the independence number, the domination number and the total domination number. Several different parameters have been studied in complementary prism graphs, see [1, 17, 26]. It is important to note that complementary prism graphs are a generalization of several known graphs. For example, the complementary prism of C_5 is the Petersen graph, and the complementary prism graph of K_n is the corona $K_n \circ K_1$.

Keywords. b -coloring, b -chromatic number, complementary prism graph.

¹ Laboratory of Mechanics, Physics and Mathematical Modeling, Faculty of Sciences, University of Médéa, Algeria.

² Department of Mathematics and Computer Science, Faculty of Sciences, University of Médéa, Algeria.

* Corresponding author: nour_eshouf@yahoo.fr

³ LAMDA-RO Laboratory, Department of Mathematics, University of Blida 1, B.P. 270 Blida, Algeria.

A *proper coloring* of G is an assignment of colors to the vertices of G such that any two adjacent vertices have different colors. The *chromatic number* of a graph G , denoted by $\chi(G)$, is the minimum number for which there exist a proper coloring for G with $\chi(G)$ colors.

A *b-coloring* of a graph G is a proper coloring of G such that each color class contains at least one vertex that has a neighbor in each of the other color classes, such a vertex is called *b-vertex*. The *b-chromatic number* of G , denoted $b(G)$, is defined as the largest integer k for which G admits a *b-coloring* with k colors. Every proper coloring of a graph G with $\chi(G)$ colors is a *b-coloring*. Otherwise, every vertex of a color class with no *b-vertex* can be recolored by some other color. This yields a proper coloring with less than $\chi(G)$ colors, which is a contradiction. Consequently, $\chi(G) \leq b(G)$.

Computing $b(G)$ is NP-complete in general [13, 25], even when restricted to bipartite graphs [20]. In [13, 25], a linear algorithm is given for the class of trees. This parameter, defined by Irving and Manlove [13, 25], is studied extensively for various class of graphs, such as trees [13, 25], regular graphs [4], power graphs [6–8, 19], tight graphs [21, 22], Kneser graphs [2, 9, 18], cactus graphs [5], outerplanar graphs [24], cartesian product graphs [23], the strong product graphs, the lexicographic product graphs and the direct product graphs [15]. For a recent survey on the *b-chromatic number*, see [16].

The *m-degree* of a graph G , denoted $m(G)$, is the largest integer k such that G has k vertices of degree at least $k - 1$. Let $\omega(G)$ be the size of a maximum clique of G . It is known that every graph G satisfies

$$\omega(G) \leq b(G) \leq m(G). \quad (1.1)$$

A *dense vertex* is a vertex with degree at least $m(G) - 1$.

In this paper, we first determine the *b-chromatic number* of some complementary prism graphs. Next, we show that for every nontrivial graph G of order n , $b(G\bar{G}) \leq n$, and we give a characterization of triangle-free graphs that achieve equality in this bound.

In all figures, dark dots represent *b-vertices*, and the number in parentheses indicates the color of the corresponding vertex.

2. THE *b*-CHROMATIC NUMBER OF SOME COMPLEMENTARY PRISM GRAPHS

In this section we give exact values for the *b-chromatic number* of complementary prism graph for some classical graphs, namely cycles, paths, complete bipartite graphs and complete graphs.

It was shown in [4] that the Petersen graph $C_5\bar{C}_5$ has *b-chromatic number* 3. Here, we determine the *b-chromatic number* of $C_n\bar{C}_n$, when $n \geq 3$ ($n \neq 5$).

Theorem 2.1. *Let C_n be a cycle of order $n \geq 3$. Then,*

$$b(C_n\bar{C}_n) = \begin{cases} n & : 3 \leq n \leq 4 \\ n - \lceil \frac{n}{4} \rceil & : 5 \leq n \end{cases}$$

Proof. Let C_n be a cycle of order $n \geq 3$ with vertex-set $V(C_n) = \{u_1, u_2, \dots, u_n\}$ and edge-set $E(C_n) = \bigcup_{i=1}^{n-1} \{u_iu_{i+1}\} \cup \{u_1u_n\}$, and let \bar{C}_n be the complement of C_n with vertex-set $V(\bar{C}_n) = \{v_1, v_2, \dots, v_n\}$ and edge-set $E(\bar{C}_n) = \{v_iv_j : 1 \leq i < j \leq n \text{ and } u_iu_j \notin E(C_n)\}$. Let $G_n = C_n\bar{C}_n$ be the complementary prism graph of C_n with vertex-set $V(G_n) = V(C_n) \cup V(\bar{C}_n)$ and edge-set $E(G_n) = E(C_n) \cup E(\bar{C}_n) \cup (\bigcup_{i=1}^n \{u_iv_i\})$.

We start by proving that the statement is true for $n \in \{3, 4, 5\}$. So, when $n \in \{3, 4\}$, it is not difficult to show that the *m-degree* of G_n is equal to n , giving that $b(G_n) \leq n$. Hence, to prove equality, we exhibit a *b-coloring* of G_n using n colors, as follows. For $n = 3$, we assign color i to u_i for $i \in \{1, 2, 3\}$ and we assign colors 2, 1, 1 to v_1, v_2, v_3 , respectively. For $n = 4$, we assign color i to u_i for $i \in \{1, 2, 3, 4\}$ and we assign colors 3, 4, 1, 2 to v_1, v_2, v_3, v_4 respectively. In each case, we obtain a *b-coloring* of G_n with n colors. Hence $b(G_n) = n$ for $n \in \{3, 4\}$. Also, the statement is true for $n = 5$, as proved in [4]. For $n = 6$, to show that $b(G_6) \geq 4$, it suffices to give a *b-coloring* of G_6 using 4 colors. We do this as follows. Assign color 1 to v_1, v_2, u_6 , color 2 to u_2, v_3, u_4 , color 3 to u_3, v_4, u_5 , color 4 to v_5, v_6, u_1 . In this case the vertices v_2, v_3, v_4 and v_6 are the *b-vertices*

of colors 1, 2, 3 and 4 respectively. Claim that $b(G_6) \leq 4$. Suppose the contrary that $b(G_6) > 5$. It is clear that $m(G_6) = 5$, so $b(G_6) = 5$. Hence, every b -vertex occurs in $\overline{C_6}$ since the degree of every vertex in C_6 is 3 and $b(G_6) = 5$. Let c be a b -coloring of G_6 with 5 colors. Without loss of generality, suppose that v_1 is b -vertex of color 1, as all colors of c appear in $N(v_1)$, so let us suppose that $c(u_1) = 2$, $c(v_3) = 3$, $c(v_4) = 4$ and $c(v_5) = 5$. The b -vertex of color 2 is either v_2 or v_6 , say v_2 , but in this case one of color 1 or 3 does not appear in $N(v_2)$ which contradict the fact that v_2 is a b -vertex. So, $b(G_6) \leq 4$.

Assume now that $n \geq 7$ and let $k = b(G_n)$. In order to show that the statement is true for $n \geq 7$, we first prove that $k \geq n - \lceil \frac{n}{4} \rceil$. To do this, let B be a subset of $V(\overline{C_n})$ defined as follows

$$B = \{v_j \in V(\overline{C_n}) : j = 1 + 4m, m \in \mathbb{N}_0\} \text{ with } \mathbb{N}_0 = \{0, 1, 2, \dots\}. \quad (2.1)$$

It is clear that $|B| = \lceil \frac{n}{4} \rceil$.

Let $A = V(\overline{C_n}) - B$ and $t = |A|$. Then $t = n - \lceil \frac{n}{4} \rceil$. Hence, to show that $k \geq n - \lceil \frac{n}{4} \rceil$ for $n \geq 7$, it suffices to exhibit a b -coloring c of G_n with t colors. We begin by coloring the vertices of $V(\overline{C_n})$, as follows. We color each vertex of A with a different color, and we color each vertex $v_i \in B - \{v_n\}$ with $c(v_{i+1})$. If $v_n \in B$, then we color it with $c(v_{n-1})$. Hence, we get a partial coloring of G_n with t colors. Now, we color the vertices of $V(C_n)$ in a way that all vertices of A become b -vertices of c of distinct colors. Then for each vertex $v_j \in A - \{v_n\}$, we color its neighbor u_j in $V(C_n)$ as follows. If $j = 2 + 4m$ or $j = 3 + 4m$, ($m \in \mathbb{N}_0$), then we color u_j with color $c(v_{j+1})$ and if $j = 4 + 4m$, ($m \in \mathbb{N}_0$), we color it with color $c(v_{j-1})$. If $v_n \in A$, then we proceed as follows. If $n = 2 + 4m$, or $n = 3 + 4m$ then clearly v_n is a b -vertex since it has all colors in its neighborhood at the end of the previous step of coloring. If $n = 4 + 4m$, ($m \in \mathbb{N}_0$), then we color u_n with color $c(v_{n-1})$. It is not difficult to check that this coloring yields a partial b -coloring of G_n with t colors that can be easily extended to a b -coloring of G_n , because the number of used colors is at least 4 and the degree of the remaining uncolored vertices is at most 3. For example, Figure 1 shows a b -coloring of $C_7\overline{C_7}$ and $C_8\overline{C_8}$ using 5 and 6 colors, respectively. Hence

$$k \geq n - \lceil \frac{n}{4} \rceil \text{ for } n \geq 7. \quad (2.2)$$

Now, consider a b -coloring c of G_n with k colors. Since the degree of every vertex in C_n is 3 and since $k \geq 4$, we get that every b -vertex occurs in $\overline{C_n}$. Notice that, by the structure of G_n ,

$$\text{each vertex of } V(\overline{C_n}) \text{ has exactly two non-neighbors in } V(\overline{C_n}). \quad (2.3)$$

In addition, we have

$$\begin{aligned} V(\overline{C_n}) &= (N[v_j] \cup N[v_{j+1}]) - \{u_j, u_{j+1}\} \text{ for } j \in \{1, \dots, n-1\} \\ &= (N[v_1] \cup N[v_n]) - \{u_1, u_n\}. \end{aligned} \quad (2.4)$$

In view of (2.3) and (2.4), each color of c can be repeated at most twice in $V(\overline{C_n})$, because otherwise c will not be a proper coloring. Let T (respectively, S) denote the set of all vertices of $V(\overline{C_n})$ whose colors appear twice (respectively, once) in $V(\overline{C_n})$. Thus,

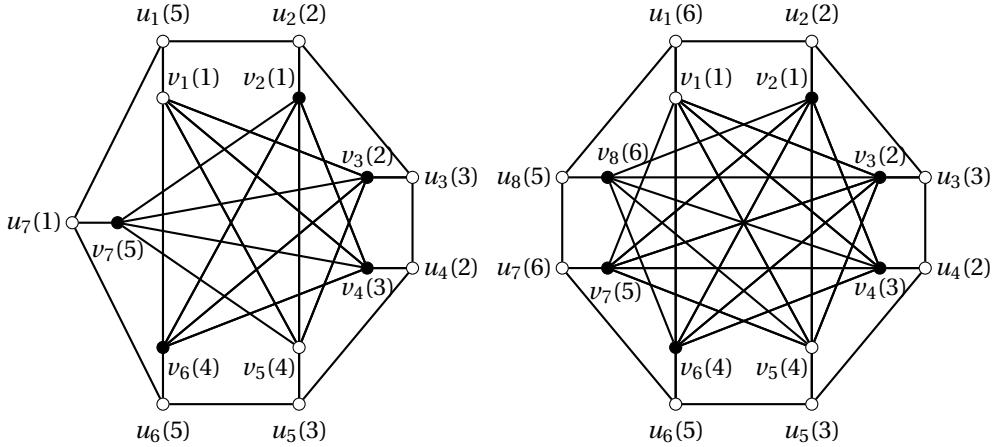
$$|T| \text{ is even and } |T| + |S| = n. \quad (2.5)$$

Furthermore, it is not difficult to see that

$$k = |S| + \frac{|T|}{2}. \quad (2.6)$$

Combining the second part of (2.5) with (2.6), we obtain

$$k = n - \frac{|T|}{2}. \quad (2.7)$$

FIGURE 1. b -coloring of $C_7\bar{C}_7$ and $C_8\bar{C}_8$ with 5 and 6 colors, respectively.

Using (2.2) and (2.7), we get $|T| \leq 2 \lceil \frac{n}{4} \rceil$.

We claim that $|T| = 2 \lceil \frac{n}{4} \rceil$. Suppose not. Then since $|T|$ is even, it follows that $|T| \leq 2 \lceil \frac{n}{4} \rceil - 2$. This together with the second part of (2.5) imply

$$|S| \geq n - 2 \left\lceil \frac{n}{4} \right\rceil + 2. \quad (2.8)$$

We assert that there is a vertex in S that is adjacent to all vertices of T . Suppose not, so every vertex of S has a non-neighbor in T . Since every vertex t of T has a non-neighbor in T , t has at most one non-neighbor in S . This means that $|T| \geq |S|$. Combining this with (2.5) and (2.8) one can obtain the following

$$n \geq 2|S| \geq 2n - 4 \left\lceil \frac{n}{4} \right\rceil + 4. \quad (2.9)$$

As $\lceil \frac{n}{4} \rceil - 1 < \frac{n}{4}$, it follows from (2.9) that $n > n$, which is impossible. This contradiction finishes the proof of the assertion.

Hence, there is a vertex $s_i \in S$ that is adjacent to all vertices of T . Recall that such vertex has exactly one neighbor in $V(C_n)$, and it needs to see all colors of c on its neighbors (except its own color). Hence, according to (2.3), s_i has two non-neighbors in S with distinct colors, say j, l . Therefore, since j and l appear exactly once in $V(C_n)$, one of them is missing in $N(s_i)$, which is impossible. This contradiction finishes the proof of the claim.

Consequently $|T| = 2 \lceil \frac{n}{4} \rceil$, and thus (2.7) yields $k = n - \lceil \frac{n}{4} \rceil$. This finishes the proof of Theorem 2.1. \square

Next, we determine the exact value of $b(P_n\bar{P}_n)$ by using the same steps as in Theorem 2.1.

Theorem 2.2. *Let P_n be a path of order $n \geq 2$. Then,*

$$b(P_n\bar{P}_n) = \begin{cases} n & : 2 \leq n \leq 3 \\ n - \left\lfloor \frac{n+1}{4} \right\rfloor & : 4 \leq n \end{cases}$$

Proof. Let P_n be a path of order $n \geq 2$ with vertex-set $V(P_n) = \{u_1, u_2, \dots, u_n\}$ and edge-set $E(P_n) = \bigcup_{i=1}^{n-1} \{u_i u_{i+1}\}$, and let \bar{P}_n be the complement of P_n with vertex-set $V(\bar{P}_n) = \{v_1, v_2, \dots, v_n\}$ and edge-set $E(\bar{P}_n) = \{v_i v_j : 1 \leq i < j \leq n \text{ and } u_i u_j \notin E(P_n)\}$. Let $G_n = P_n\bar{P}_n$ the complementary prism graph of P_n with vertex-set $V(G_n) = V(P_n) \cup V(\bar{P}_n)$ and edge-set $E(G_n) = E(P_n) \cup E(\bar{P}_n) \cup (\bigcup_{i=1}^n \{u_i v_i\})$.

We first show that the statement is true for $n \in \{2, 3, 4, 5\}$. For $n \in \{2, 3\}$, we can easily see that G_n is a P_4 or $C_5 + e$ where e is an extra edge incident to exactly one vertex of C_5 . In such cases, the statement is

clearly satisfied. For $n = 4$, we have $m(G_4) = 4$ with dense vertex-set $D = \{u_2, u_3, v_1, v_4\}$, which means that $b(G_4) \leq 4$. We claim that $b(G_4) \leq 3$. Suppose to the contrary that $b(G_4) = 4$ and let c be a b -coloring of G_4 with 4 colors. We should emphasize here that each vertex in D is a b -vertex of c . Therefore, we can assume, without loss of generality, that v_1, v_4, u_2, u_3 are colored 1, 2, 3 and 4, respectively. Since v_1 needs to see all colors on its neighbors (except its own color), u_1 must be colored with the color 4. But in this case u_2 will have a missing color in its neighborhood, which contradicts the fact that u_2 is a b -vertex of c . Hence $b(G_4) \leq 3$ and, because G_4 has an odd cycle, we get equality. For $n = 5$, we have $m(G_5) = 4$, which means that $b(G_5) \leq 4$. To show that $b(G_5) = 4$, it suffices to give a b -coloring of G_5 using 4 colors. We do this as follows. Assign color 1 to v_5, u_4 , color 2 to v_1, u_2, u_5 , color 3 to u_1, u_3, v_2 and color 4 to v_3, v_4 , in this case the vertices v_5, v_1, v_2 and v_3 are b -vertices of colors 1, 2, 3 and 4 respectively. Hence $b(G_5) = 4$. Assume now that $n \geq 6$ and let $k = b(G_n)$. Since, for $n \geq 6$, $k \geq 5$ and the degree of vertices of P_n is 3, then all b -vertices of c occurs in $\overline{P_n}$. As in Theorem 2.1, we start by proving that $k \geq n - \lfloor \frac{n+1}{4} \rfloor$. For this, we distinguish between two cases according to the value of n .

Case 1: $n \neq 4m + 3$ ($m \geq 1$).

In this case $\lfloor \frac{n+1}{4} \rfloor = \lfloor \frac{n}{4} \rfloor$. Let B be a subset of $V(\overline{P_n})$ defined as follows

$$B = \{v_j \in V(\overline{P_n}) : j = 4 + 4m, m \in \mathbb{N}_0\} \text{ with } \mathbb{N}_0 = \{0, 1, 2, \dots\}.$$

It is clear that $|B| = \lfloor \frac{n}{4} \rfloor$. Let $A = V(\overline{P_n}) - B$ and $t = |A|$, so $t = n - \lfloor \frac{n+1}{4} \rfloor$. To show that $k \geq t$, we exhibit a b -coloring c of G_n with t colors. To do this, we start, as in Theorem 2.1, by coloring each vertex of A with a different color, and assigning color $c(v_{i-1})$ to $v_i \in B$. Hence, we obtain a partial coloring of G_n with t colors. Now, we color the remaining vertices of G_n in a way that all vertices of A become b -vertices of c of distinct colors. Then for each vertex $v_j \in A - \{v_n\}$, we color its neighbor u_j in $V(P_n)$ as follows. If $j = 2 + 4m$ or $j = 3 + 4m$, ($m \in \mathbb{N}_0$), then we color u_j with color $c(v_{j-1})$ and if $j = 4m + 1$, ($m \in \mathbb{N}_0$), then we color it with color $c(v_{j+1})$. If $v_n \in A$, then we proceed as follows. If $n = 4m + 1$, then clearly v_n is a b -vertex since it has all colors in its neighborhood at the end of the previous step of coloring. If $n = 2 + 4m$ or $n = 3 + 4m$, ($m \in \mathbb{N}_0$), then we color u_n with color $c(v_{n-1})$. It is not difficult to check that this coloring yields a partial b -coloring of G_n with t colors that can be easily extended to a b -coloring of G_n , because the number of used colors is at least 4 and the degree of the remaining uncolored vertices is at most 3. So, $k \geq n - \lfloor \frac{n+1}{4} \rfloor$.

Case 2: $n = 4m + 3$ ($m \geq 1$).

In this case $\lfloor \frac{n+1}{4} \rfloor = \lfloor \frac{n}{4} \rfloor$. Let $C_n \overline{C_n}$ be the complementary prism graph of C_n with $V(C_n) = V(P_n)$ and $V(\overline{C_n}) = V(\overline{P_n})$. Observe that since, in $C_n \overline{C_n}$, $u_1 u_n \in E(C_n \overline{C_n})$ and $v_1 v_n \notin E(C_n \overline{C_n})$, it follows that G_n can be obtained from $C_n \overline{C_n}$ by adding edge $v_1 v_n$ and deleting edge $u_1 u_n$. In the coloring constructed in the proof of Theorem 2.1, v_1 is in B , v_n is in A and $c(v_1) = c(v_2) \neq c(v_n)$. This implies that the constructed coloring is also a proper coloring of G_n and, since all the b -vertices are in $\overline{C_n}$, they are still b -vertices in G_n . Hence any b -coloring of $C_n \overline{C_n}$ is a b -coloring of G_n , implying that $k \geq b(C_n \overline{C_n}) = n - \lfloor \frac{n}{4} \rfloor = n - \lfloor \frac{n+1}{4} \rfloor$. For example, Figure 2 shows a b -coloring of $P_8 \overline{P}_8$ and $P_9 \overline{P}_9$ using 6 and 7 colors, respectively.

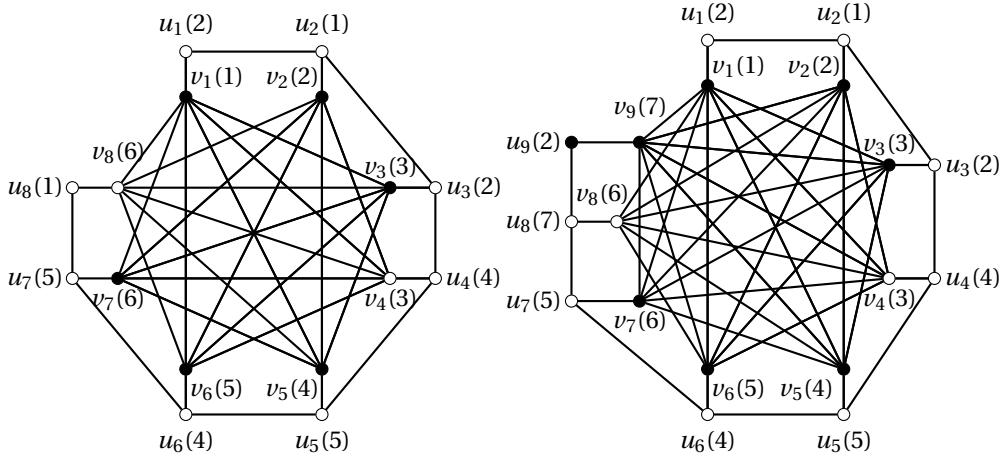
Hence in each case, we have

$$k \geq n - \left\lfloor \frac{n+1}{4} \right\rfloor. \quad (2.10)$$

Now, consider a b -coloring c of G_n with k colors and let S and T be two disjoint subsets of $V(\overline{P_n})$ defined as in Theorem 2.1 for $\overline{C_n}$. Proceeding in a way similar to Theorem 2.1 one can show that clauses (2.4)–(2.7) remain true here. Hence, by (2.7) and (2.10), we get $|T| \leq 2 \lfloor \frac{n+1}{4} \rfloor$.

We claim that $|T| = 2 \lfloor \frac{n+1}{4} \rfloor$. Suppose not. As $|T|$ is even, $|T| \leq 2 \lfloor \frac{n+1}{4} \rfloor - 2$. This with the second part of (2.5) yield

$$|S| \geq n - 2 \left\lfloor \frac{n+1}{4} \right\rfloor + 2. \quad (2.11)$$

FIGURE 2. b -coloring of $P_8\bar{P}_8$ and $P_9\bar{P}_9$ with 6 and 7 colors, respectively.

As in Theorem 2.1, we assert that there is a vertex in S having two non-neighbors in S . Suppose not. Using the same proof as for Theorem 2.1, one can show that $|T| \geq |S|$. This together with (2.5) and (2.11) imply that

$$n \geq 2|S| \geq 2n - 4 \left\lfloor \frac{n+1}{4} \right\rfloor + 4.$$

Since $\left\lfloor \frac{n+1}{4} \right\rfloor \leq \frac{n+1}{4}$, $n \geq n+3$, which is impossible. This contradiction finishes the proof of the assertion.

Following the same arguments as in Theorem 2.1 (we omit the details), one can show that S has a vertex with a missing color in its neighborhood, which leads to a contradiction. This contradiction finishes the proof of the claim.

Consequently $|T| = 2 \left\lfloor \frac{n+1}{4} \right\rfloor$, and so by the second part of (2.5), we have $k = n - \left\lfloor \frac{n+1}{4} \right\rfloor$. This finishes the proof of Theorem 2.2. \square

We now give the b -chromatic number of the complementary prism graph of a complete bipartite graph $K_{p,q}$ ($p \geq q \geq 1$).

Theorem 2.3. *Let $K_{p,q}$ be a complete bipartite graph with $p \geq q \geq 1$. Then,*

$$b(K_{p,q}\bar{K}_{p,q}) = \begin{cases} 4 & : 3 \leq p = q = 2 \\ p & : q + 2 \leq p \\ p + 1 & : p = q + 1 \end{cases}$$

Proof. It is obvious to see that the statement is true for $p = 1$. Assume that $p \geq 2$, let $G_{p,q} = K_{p,q}\bar{K}_{p,q}$ be the complementary prism graph of $K_{p,q}$ with vertex-set $V(G_{p,q})$ and edge-set $E(G_{p,q})$. Note that $G_{p,q}$ has the following structure. Then $V(G_{p,q})$ can be partitioned into four disjoint subsets $X = \{x_1, x_2, \dots, x_p\}$, $Y = \{y_1, y_2, \dots, y_q\}$, $Z = \{z_1, z_2, \dots, z_p\}$ and $T = \{t_1, t_2, \dots, t_q\}$ such that X and Y are stable sets, Z and T are cliques, $X \cup Y$ induces a complete bipartite graph with bipartition (X, Y) and $E(G_{p,q}) = E(G[X \cup Y]) \cup E(G[Z]) \cup E(G[T]) \cup (\bigcup_{i=1}^p \{x_i z_i\}) \cup (\bigcup_{i=1}^q \{y_i t_i\})$.

Let $k = b(G_{p,q})$ and D be the set of dense vertices in $G_{p,q}$. We distinguish between three cases.

Case 1: $p = q$.

If $p = 2$, then $G_{2,2} = C_4\bar{C}_4$ and therefore $b(G_{2,2}) = 4$ by Theorem 2.1. Assume $p \geq 3$, so clearly $D = X \cup Y$ and $m(G_{p,p}) = p+2$. We shall show that $b(G_{p,p}) \leq p+1$. Suppose not. Then by (1.1), we have $b(G_{p,p}) = p+2$.

Let c be a b -coloring of $G_{p,p}$ using $p+2$ colors. Up to symmetry and without loss of generality, we can suppose that x_1 is a b -vertex of c of color 1. Hence clearly all vertices of $Y \cup \{z_1\}$ are colored differently. Assume that $c(z_1) = p+2$. Observe that, in every coloring of $G[X \cup Y]$, no color can appear in both X and Y . Therefore, each vertex in $X - \{x_1\}$ is colored with the color 1 or $p+2$. This leads to a contradiction because there is no b -vertex of c of color $i \in \{2, 3, \dots, p+1\}$. Now, we shall show that $k = p+1$. For this, it suffices to exhibit a b -coloring of $G_{p,p}$ with $p+1$ colors. To do this, we first color all vertices of X with color 1 and all vertices of Y with color $p+1$. Next, for $i \in \{1, \dots, p\}$, color z_i with the color $i+1$, and color t_i with the color i . It is easy to check that this yields a b -coloring of $G_{p,p}$ with $p+1$ colors, where $Z \cup \{t_1\}$ are b -vertices of this coloring. Hence $b(G_{p,p}) = p+1$. This finishes Case 1.

Observe that if $p > q$, then $\omega(G_{p,q}) = p$ and $m(G_{p,q}) = p+1$. Hence, according to (1.1), we have

$$p \leq k \leq p+1. \quad (2.12)$$

Case 2: $p = q+1$.

We shall show that $k = p+1$. For this, it suffices, in view of (2.12), to exhibit a b -coloring of $G_{p,q}$ with k colors. We do this as follows. We first color all vertices of X with the color $p+1$, and for $i \in \{1, \dots, p\}$, color z_i with the color i . Next, for $i \in \{1, \dots, q\}$, color y_i with the color $i+1$, and color t_i with the color i . It is easy to check that this yields a b -coloring of $G_{p,q}$ with k colors, where $Z \cup \{x_1\}$ are b -vertices of this coloring. Hence $k = p+1$.

Case 3: $p \geq q+2$.

We claim that $k = p$. Suppose not. Then by (2.12), we have $k = p+1$. Let c be a b -coloring of $G_{p,q}$ with k colors. It is easy to show that $D = Y \cup Z$. Since Z is a clique, all its vertices are colored differently. So, assume without loss of generality that for $i \in \{1, \dots, p\}$, z_i is colored with i . Since $|Y| = q \leq p-2 < k$, Z must contain at least one b -vertex of c , say without loss of generality that z_1 is such vertex. As z_1 needs to see all colors on its neighbors, x_1 must be colored $p+1$ and therefore no vertex in $Y \cup Z$ is colored with this color, a contradiction. Hence $k = p$. This finishes the proof of Theorem 2.3. \square

In the special case when G or \bar{G} is a complete graph, the b -chromatic number of $G\bar{G}$ is equal to n . This follows by (1.1) since $\omega(G\bar{G}) = m(G\bar{G}) = n$.

Proposition 2.4. *If G or \bar{G} is a complete graph, then $b(G\bar{G}) = n$.*

3. TRIANGLE-FREE GRAPHS WITH $b(G\bar{G}) = |V(G)|$

In this section, we show that for every graph G of order $n \geq 2$, $b(G\bar{G}) \leq n$, and we give a characterization of triangle-free graphs that achieve equality in this bound.

Let $H = G\bar{G}$ be the complementary prism graph of G and let $V(G) = \{x_1, \dots, x_n\}$ and $V(\bar{G}) = \{y_1, \dots, y_n\}$. As $d_H(x_i) + d_H(y_i) = n+1$, it follows that H has at least n vertices of degree at least $n-1$ and does not have $n+1$ vertices that can be of degree at least n . This means that

$$m(G\bar{G}) \leq n, \quad (3.1)$$

so the following result is immediate.

Observation 3.1. *For every graph G of order $n \geq 2$, $b(G\bar{G}) \leq n$.*

When G is a trivial graph, clearly $b(G\bar{G}) = 2$. Recall that every graph G satisfies $b(G) \leq \Delta(G)+1$ as observed in [13, 25]. Therefore, as $\Delta(G\bar{G}) = \max\{\Delta(G), \Delta(\bar{G})\} + 1$, it follows that $b(G\bar{G}) \leq \max\{\Delta(G), \Delta(\bar{G})\} + 2$.

Theorem 3.2. *Let G be a triangle-free graph of order $n \geq 2$ and $G\bar{G}$ be the complementary prism graph of G . Then $b(G\bar{G}) = n$ if and only if G or \bar{G} is isomorphic to P_2 , P_3 or C_4 .*

Proof. The sufficiency follows from Theorems 2.1 and 2.2, so let us prove the necessity. Then $n = b(G\bar{G}) \leq \max\{\Delta(G), \Delta(\bar{G})\} + 2 \leq n + 1$ since $\max\{\Delta(G), \Delta(\bar{G})\} \leq n - 1$. We distinguish between two cases.

Case 1: $\max\{\Delta(G), \Delta(\bar{G})\} = n - 1$. Assume without loss of generality that $\Delta(\bar{G}) \leq \Delta(G) = n - 1$. Let x be a vertex of G such that $d_G(x) = \Delta(G)$. As G is triangle-free, $G - x$ is without edge, meaning that $G = K_{1,n-1}$. According to Theorem 2.3, $b(G\bar{G}) = n$ if and only if $n = 2$ or 3 . Hence G or \bar{G} is isomorphic to P_2 or P_3 .

Case 2: $\max\{\Delta(G), \Delta(\bar{G})\} = n - 2$. Assume without loss of generality that $\Delta(\bar{G}) \leq \Delta(G) = n - 2$. Therefore, clearly, neither G nor \bar{G} contains an isolated vertex. Let $V(G) = \{x_1, \dots, x_n\}$ and $V(\bar{G}) = \{y_1, \dots, y_n\}$. Then $V(G\bar{G}) = V(G) \cup V(\bar{G})$ and $E(G\bar{G}) = E(G) \cup E(\bar{G}) \cup (\bigcup_{i=1}^n \{x_i y_i\})$. Assume that $d_G(x_n) = n - 2$ and x_{n-1} is the unique non-neighbor of x_n in G . Let $X_1 = \{x_n, x_{n-1}\}$, $X_2 = V(G) - X_1$, $Y_1 = \{y_n, y_{n-1}\}$ and $Y_2 = V(\bar{G}) - Y_1$. If $n = 3$, then either x_2 is isolated or x_1 has degree $n - 1$ in G , a contradiction since $\Delta(G) \leq n - 2$, so this case cannot occur. If $n = 4$, then $X_1 = \{x_3, x_4\}$ and $X_2 = \{x_1, x_2\}$, and so G is either a cycle C_4 $x_1-x_3-x_2-x_4-x_1$ or a path P_4 $x_i-x_3-x_j-x_4$, $\{i, j\} = \{1, 2\}$. Recall that by Theorems 2.1 and 2.2, we have $b(C_4\bar{C}_4) = 4$ and $b(P_4\bar{P}_4) = 3 \neq n$. Hence, G or \bar{G} is isomorphic to a cycle C_4 . Assume now that $n \geq 5$, and let p be the number of neighbors of x_{n-1} in X . Then, clearly, $1 \leq p \leq n - 2$. If $p = n - 2$, then $G = K_{2,n-2}$. According to Theorem 2.3, $b(G\bar{G}) = n$ if and only if $n = 4$, which contradicts $n \geq 5$. Suppose now that $p \leq n - 3$ and assume without loss of generality that x_1, \dots, x_p are the neighbors of x_{n-1} in X . Since $b(G\bar{G}) = n$, (1.1) and (3.1) imply $m(G\bar{G}) = n$. On the other hand, it is a routine matter to check that if $p = 1$, then $d_{G\bar{G}}(z) = n - 1$ for each $z \in \{x_n, y_2, y_3, \dots, y_{n-1}\}$ and all the remaining vertices in $G\bar{G}$ have degree less than $n - 1$. And if $p > 1$, then $d_{G\bar{G}}(z) = n - 1$ for each $z \in \{x_n, y_{p+1}, \dots, y_{n-2}\}$ and all the remaining vertices in $G\bar{G}$ have degree less than $n - 1$. Therefore, in each case, $G\bar{G}$ has less than $n - 1$ vertices of degree $n - 1$, which is a contradiction with the fact that $m(G\bar{G}) = n$. Hence this case cannot occur. \square

REFERENCES

- [1] A. Alhashim, W.J. Desormeaux and T.W. Haynes, Roman domination in complementary prisms. *Australas. J. Combin.* **68** (2017) 218–228.
- [2] R. Balakrishnan and T. Kavaskar, b -coloring of Kneser graphs. *Discrete Appl. Math.* **160** (2012) 9–14.
- [3] C. Berge, Graphs, North Holland, Amsterdam/New York (1985).
- [4] M. Blidia, F. Maffray and Z. Zemir, On b -colorings in regular graphs. *Discrete Appl. Math.* **157** (2009) 1787–1793.
- [5] V. Campos, C. Linhares-Sales, F. Maffray and A. Silva, b -chromatic number of cacti. *Electron. Notes Discrete Math.* **35** (2009) 281–286.
- [6] B. Effantin, The b -chromatic number of power graphs of complete caterpillars. *J. Discrete Math. Sci. Cryptogr.* **8** (2005) 483–502.
- [7] B. Effantin and H. Kheddouci, The b -chromatic number of some power graphs. *Discrete Math. Theor. Comput. Sci.* **6** (2003) 45–54.
- [8] B. Effantin and H. Kheddouci, Exact values for the b -chromatic number of a power complete k -ary tree. *J. Discrete Math. Sci. Cryptogr.* **8** (2005) 117–129.
- [9] H. Hajiabolhassan, On the b -chromatic number of Kneser graphs. *Discrete Appl. Math.* **158** (2010) 232–234.
- [10] T.W. Haynes, M.A. Henning, P.J. Slater and L.C. van der Merwe, The complementary product of two graphs. *Bull. Inst. Comb. Appl.* **51** (2007) 21–30.
- [11] T.W. Haynes, M.A. Henning, P.J. Slater and L.C. van der Merwe, Domination and total domination in complementary prisms. *J. Comb. Optim.* **18** (2009) 23–37.
- [12] T.W. Haynes, K.R.S. Holmes, D.R. Koessler and L. Sewell, Locating-domination in complementary prisms of paths and cycles. *Congr. Numerantium* **199** (2009) 45–55.
- [13] R.W. Irving and D.F. Manlove, The b -chromatic number of a graph. *Discrete Appl. Math.* **91** (1999) 127–141.
- [14] M. Jakovac and S. Klavžar, The b -chromatic number of cubic graphs. *Graphs Comb.* **26** (2010) 107–118.
- [15] M. Jakovac and I. Peterin, On the b -chromatic number of some products. *Studia Sci. Math. Hungar.* **49** (2012) 156–169.
- [16] M. Jakovac and I. Peterin, The b -chromatic number and related topics-a survey. *Discrete Appl. Math.* **235** (2018) 184–201.
- [17] P. Janseana, S. Rueangthampisan and N. Ananchuen, Extendability of the complementary prism of 2-regular graphs. *Thai J. Math.* **14** (2016) 31–41.
- [18] R. Javadi and B. Omoomi, On b -coloring of the Kneser graphs. *Discrete Math.* **309** (2009) 4399–4408.
- [19] A. Kohl, The b -chromatic number of powers of cycles. *Discrete Math. Theor. Comput. Sci.* **15** (2013) 147–156.

- [20] J. Kratochvíl, Z. Tuza and M. Voigt, On the b -chromatic number of graphs. *Lect. Notes Comput. Sci.* **2573** (2002) 310–320.
- [21] W.-H. Lin and G.J. Chang, b -coloring of tight bipartite graphs and the Erdős–Faber–Lovász conjecture. *Discrete Appl. Math.* **161** (2013) 1060–1066.
- [22] C. Linhares-Sales and L. Sampaio, b -coloring of m-tight graphs. *Electron. Notes Discrete Math.* **35** (2009) 209–214.
- [23] F. Maffray and A. Silva, b -colouring the Cartesian product of trees and some other graphs. *Discrete Appl. Math.* **161** (2013) 650–669.
- [24] F. Maffray and A. Silva, b -colouring outerplanar graphs with large girth. *Discrete Math.* **312** (2012) 1796–1803.
- [25] D.F. Manlove, *Minimaximal and maximinimal optimization problems: a partial order-based approach*. Ph.D. thesis, technical report tr-1998-27 of the Computing Science Department of Glasgow University (1998).
- [26] H.D. Russell, *Italian domination in complementary prisms*. Electronic thesis and dissertations. Paper 3429 (2018).