
RAIRO-Oper. Res. 53 (2019) 1187–1195 RAIRO Operations Research
https://doi.org/10.1051/ro/2018054 www.rairo-ro.org

SOME RESULTS ON THE b-CHROMATIC NUMBER IN COMPLEMENTARY
PRISM GRAPHS

Amel Bendali-Braham1, Noureddine Ikhlef-Eschouf2,∗ and Mostafa Blidia3

Abstract. A b-coloring of a graph G is a proper coloring of G with k colors such that each color
class has a vertex that is adjacent to at least one vertex of every other color classes. The b-chromatic
number is the largest integer k for which G has a b-coloring with k colors. In this paper, we present
some results on b-coloring in complementary prism graphs.
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1. Introduction

All graphs considered in this paper are undirected, finite and simple. For terminology and notation not defined
here we refer to [3]. Let G be a graph with vertex-set V (G) and edge-set E(G). The complement G of G is the
graph having the same vertex-set as G such that two vertices are adjacent if and only if the same two vertices
are non-adjacent in G. For a non-empty set A ⊆ V (G), we denote by G [A] the subgraph of G induced by A,
and by G−A be the subgraph induced by V (G)−A. If A = {v} we may write G− v instead of G− {v}. For
a vertex v of G, the open neighborhood of v is NG (v) = {u ∈ V (G) : uv ∈ E(G)}, the closed neighborhood of
v is NG [v] = NG (v) ∪ {v} and the degree of v, denoted dG (v) is |NG (v)|. By ∆ (G) we denote the maximum
degree of the graph G. Let Cn, Pn, Kn denote, respectively, the cycle, the path and the complete graph of order
n. The complete bipartite graph on p+ q vertices is denoted by Kp,q.

The complementary prism graph GG of G is the graph formed from the disjoint union of G and G by adding
the edges of a perfect matching between the corresponding vertices of G and G. The complementary prism
graphs are a sub-family of complementary products of graphs, which were first introduced by Haynes et al.
[10] in 2007, as a generalization of cartesian products of graphs. In [10–12], T.W. Haynes et al. studied some
parameters of complementary prism graphs such as the independence number, the domination number and the
total domination number. Several different parameters have been studied in complementary prism graphs, see
[1,17,26]. It is important to note that complementary prism graphs are a generalization of several known graphs.
For example, the complementary prism of C5 is the Petersen graph, and the complementary prism graph of Kn

is the corona Kn ◦K1.
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A proper coloring of G is an assignment of colors to the vertices of G such that any two adjacent vertices
have different colors. The chromatic number of a graph G, denoted by χ (G), is the minimum number for which
there exist a proper coloring for G with χ (G) colors.

A b-coloring of a graph G is a proper coloring of G such that each color class contains at least one vertex
that has a neighbor in each of the other color classes, such a vertex is called b-vertex. The b-chromatic number
of G, denoted b (G), is defined as the largest integer k for which G admits a b-coloring with k colors. Every
proper coloring of a graph G with χ(G) colors is a b-coloring. Otherwise, every vertex of a color class with no
b-vertex can be recolored by some other color. This yields a proper coloring with less than χ(G) colors, which
is a contradiction. Consequently, χ(G) ≤ b(G).

Computing b(G) is NP-complete in general [13,25], even when restricted to bipartite graphs [20]. In [13,25], a
linear algorithm is given for the class of trees. This parameter, defined by Irving and Manlove [13,25], is studied
extensively for various class of graphs, such as trees [13, 25], regular graphs [4], power graphs [6–8, 19], tight
graphs [21,22], Kneser graphs [2,9,18], cactus graphs [5], outerplanar graphs [24], cartesian product graphs [23],
the strong product graphs, the lexicographic product graphs and the direct product graphs [15]. For a recent
survey on the b-chromatic number, see [16].

The m-degree of a graph G, denoted m (G), is the largest integer k such that G has k vertices of degree at
least k − 1. Let ω(G) be the size of a maximum clique of G. It is known that every graph G satisfies

ω(G) ≤ b(G) ≤ m(G). (1.1)

A dense vertex is a vertex with degree at least m (G)− 1.
In this paper, we first determine the b-chromatic number of some complementary prism graphs. Next, we

show that for every nontrivial graph G of order n, b(GG) ≤ n, and we give a characterization of triangle-free
graphs that achieve equality in this bound.

In all figures, dark dots represent b-vertices, and the number in parentheses indicates the color of the corre-
sponding vertex.

2. The b-chromatic number of some complementary prism graphs

In this section we give exact values for the b-chromatic number of complementary prism graph for some
classical graphs, namely cycles, paths, complete bipartite graphs and complete graphs.

It was shown in [4] that the Petersen graph C5C5 has b-chromatic number 3. Here, we determine the b-
chromatic number of CnCn, when n ≥ 3 (n 6= 5).

Theorem 2.1. Let Cn be a cycle of order n ≥ 3. Then,

b(CnCn) =
{

n : 3 ≤ n ≤ 4
n−

⌈
n
4

⌉
: 5 ≤ n

Proof. Let Cn be a cycle of order n ≥ 3 with vertex-set V (Cn) = {u1, u2, . . . , un} and edge-set E(Cn) =
∪n−1

i=1 {uiui+1} ∪ {u1un}, and let Cn be the complement of Cn with vertex-set V (Cn) = {v1, v2, . . . , vn} and
edge-set E(Cn) = {vivj : 1 ≤ i < j ≤ n and uiuj /∈ E(Cn)}. Let Gn = CnCn be the complementary prism
graph of Cn with vertex-set V (Gn) = V (Cn) ∪ V (Cn) and edge-set E(Gn) = E(Cn) ∪ E(Cn) ∪ (∪n

i=1{uivi}).
We start by proving that the statement is true for n ∈ {3, 4, 5}. So, when n ∈ {3, 4} , it is not difficult to

show that the m-degree of Gn is equal to n, giving that b(Gn) ≤ n. Hence, to prove equality, we exhibit a
b-coloring of Gn using n colors, as follows. For n = 3, we assign color i to ui for i ∈ {1, 2, 3} and we assign
colors 2, 1, 1 to v1, v2, v3, respectively. For n = 4, we assign color i to ui for i ∈ {1, 2, 3, 4} and we assign colors
3, 4, 1, 2 to v1, v2, v3, v4 respectively. In each case, we obtain a b-coloring of Gn with n colors. Hence b(Gn) = n
for n ∈ {3, 4}. Also, the statement is true for n = 5, as proved in [4]. For n = 6, to show that b(G6) ≥ 4, it
suffices to give a b-coloring of G6 using 4 colors. We do this as follows. Assign color 1 to v1, v2, u6, color 2 to
u2, v3, u4, color 3 to u3, v4, u5, color 4 to v5, v6, u1. In this case the vertices v2, v3, v4 and v6 are the b-vertices
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of colors 1, 2, 3 and 4 respectively. Claim that b(G6) ≤ 4. Suppose the contrary that b(G6) > 5. It is clear that
m(G6) = 5, so b(G6) = 5. Hence, every b-vertex occurs in C6 since the degree of every vertex in C6 is 3 and
b(G6) = 5. Let c be a b-coloring of G6 with 5 colors. Without loss of generality, suppose that v1 is b-vertex of
color 1, as all colors of c appear in N(v1), so let us suppose that c(u1) = 2, c(v3) = 3, c(v4) = 4 and c(v5) = 5.
The b-vertex of color 2 is either v2 or v6, say v2, but in this case one of color 1 or 3 does not appear in N(v2)
which contradict the fact that v2 is a b-vertex. So, b(G6) ≤ 4.

Assume now that n ≥ 7 and let k = b(Gn). In order to show that the statement is true for n ≥ 7, we first
prove that k ≥ n−

⌈
n
4

⌉
. To do this, let B be a subset of V

(
Cn

)
defined as follows

B = {vj ∈ V
(
Cn

)
: j = 1 + 4m,m ∈ N0} with N0 = {0, 1, 2, . . .}. (2.1)

It is clear that |B| =
⌈

n
4

⌉
.

Let A = V
(
Cn

)
− B and t = |A|. Then t = n−

⌈
n
4

⌉
. Hence, to show that k ≥ n−

⌈
n
4

⌉
for n ≥ 7, it suffices

to exhibit a b-coloring c of Gn with t colors. We begin by coloring the vertices of V
(
Cn

)
, as follows. We color

each vertex of A with a different color, and we color each vertex vi ∈ B−{vn} with c(vi+1). If vn ∈ B, then we
color it with c (vn−1). Hence, we get a partial coloring of Gn with t colors. Now, we color the vertices of V (Cn)
in a way that all vertices of A become b-vertices of c of distinct colors. Then for each vertex vj ∈ A− {vn}, we
color its neighbor uj in V (Cn) as follows. If j = 2 + 4m or j = 3 + 4m, (m ∈ N0), then we color uj with color
c(vj+1) and if j = 4 + 4m, (m ∈ N0), we color it with color c(vj−1). If vn ∈ A, then we proceed as follows. If
n = 2 + 4m, or n = 3 + 4m then clearly vn is a b-vertex since it has all colors in its neighborhood at the end of
the previous step of coloring. If n = 4 + 4m, (m ∈ N0) , then we color un with color c (vn−1). It is not difficult to
check that this coloring yields a partial b-coloring of Gn with t colors that can be easily extended to a b-coloring
of Gn, because the number of used colors is at least 4 and the degree of the remaining uncolored vertices is at
most 3. For example, Figure 1 shows a b-coloring of C7C7 and C8C8 using 5 and 6 colors, respectively. Hence

k ≥ n−
⌈n

4

⌉
for n ≥ 7. (2.2)

Now, consider a b-coloring c of Gn with k colors. Since the degree of every vertex in Cn is 3 and since k ≥ 4,
we get that every b-vertex occurs in Cn. Notice that, by the structure of Gn,

each vertex of V
(
Cn

)
has exactly two non-neighbors in V

(
Cn

)
. (2.3)

In addition, we have

V
(
Cn

)
= (N [vj ] ∪N [vj+1])− {uj , uj+1} for j ∈ {1, . . . , n− 1} (2.4)
= (N [v1] ∪N [vn])− {u1, un} .

In view of (2.3) and (2.4), each color of c can be repeated at most twice in V
(
Cn

)
, because otherwise c will

not be a proper coloring. Let T (respectively, S) denote the set of all vertices of V
(
Cn

)
whose colors appear

twice (respectively, once) in V
(
Cn

)
. Thus,

|T | is even and |T |+ |S| = n. (2.5)

Furthermore, it is not difficult to see that

k = |S|+ |T |
2
· (2.6)

Combining the second part of (2.5) with (2.6), we obtain

k = n− |T |
2
· (2.7)
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c on its neighbors (except its own color). Hence, according to (4), si has two
non-neighbors in S with distinct colors, say j , l . Therefore, since j and l appear
exactly once in V(Cn), one of them is missing in N(si ), which is impossible. This
contradiction finishes the proof of the claim.

Consequently |T| = 2
⌈n

4

⌉
, and thus (8) yields k = n − ⌈n

4

⌉
. This finishes the

proof of Theorem 1.
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Figure 1: b-coloring of C7C7 and C8C8 with 5 and 6 colors, respectively

Next, we determine the exact value of b
(
PnPn

)
by using the same steps as in

Theorem 1.

Theorem 2 Let Pn be a path of order n ≥ 2. Then,

b(PnPn) =
{

n : 2 ≤ n ≤ 3
n −⌊n+1

4

⌋
: 4 ≤ n

Proof. Let Pn be a path of order n ≥ 2 with vertex-set V(Pn) = {u1,u2, ...,un}
and edge-set E(Pn) = ∪n−1

i=1 {ui ui+1}, and let Pn be the complement of Pn with

vertex-set V(Pn) = {v1, v2, ..., vn} and edge-set E(Pn) = {vi v j : 1 ≤ i < j ≤ n and
ui u j ∉ E(Pn)}. Let Gn = PnPn the complementary prism graph of Pn with vertex-
set V(Gn) = V(Pn)∪V(Pn) and edge-set E(Gn) = E(Pn)∪E(Pn)∪ (∪n

i=1{ui vi }).
We first show that the statement is true for n ∈ {2,3,4,5}. For n ∈ {2,3}, we can

easily see that Gn is a P4 or C5+e where e is an extra edge incident to exactly one
vertex of C5. In such cases, the statement is clearly satisfied. For n = 4, we have
m(G4) = 4 with dense vertex-set D = {u2,u3, v1, v4}, which means that b(G4) ≤ 4.

6

Figure 1. b-coloring of C7C7 and C8C8 with 5 and 6 colors, respectively.

Using (2.2) and (2.7), we get |T | ≤ 2
⌈

n
4

⌉
.

We claim that |T | = 2
⌈

n
4

⌉
. Suppose not. Then since |T | is even, it follows that |T | ≤ 2

⌈
n
4

⌉
−2. This together

with the second part of (2.5) imply
|S| ≥ n− 2

⌈n
4

⌉
+ 2. (2.8)

We assert that there is a vertex in S that is adjacent to all vertices of T . Suppose not, so every vertex of S has
a non-neighbor in T . Since every vertex t of T has a non-neighbor in T , t has at most one non-neighbor in S.
This means that |T | ≥ |S|. Combining this with (2.5) and (2.8) one can obtain the following

n ≥ 2 |S| ≥ 2n− 4
⌈n

4

⌉
+ 4. (2.9)

As dn
4 e − 1 < n

4 , it follows from (2.9) that n > n, which is impossible. This contradiction finishes the proof of
the assertion.

Hence, there is a vertex si ∈ S that is adjacent to all vertices of T . Recall that such vertex has exactly one
neighbor in V (Cn), and it needs to see all colors of c on its neighbors (except its own color). Hence, according to
(2.3), si has two non-neighbors in S with distinct colors, say j, l. Therefore, since j and l appear exactly once in
V (Cn), one of them is missing in N(si), which is impossible. This contradiction finishes the proof of the claim.

Consequently |T | = 2
⌈

n
4

⌉
, and thus (2.7) yields k = n−

⌈
n
4

⌉
. This finishes the proof of Theorem 2.1. �

Next, we determine the exact value of b
(
PnPn

)
by using the same steps as in Theorem 2.1.

Theorem 2.2. Let Pn be a path of order n ≥ 2. Then,

b(PnPn) =
{

n : 2 ≤ n ≤ 3
n−

⌊
n+1

4

⌋
: 4 ≤ n

Proof. Let Pn be a path of order n ≥ 2 with vertex-set V (Pn) = {u1, u2, . . . , un} and edge-set E(Pn) =
∪n−1

i=1 {uiui+1}, and let Pn be the complement of Pn with vertex-set V (Pn) = {v1, v2, . . . , vn} and edge-set
E(Pn) = {vivj : 1 ≤ i < j ≤ n and uiuj /∈ E(Pn)}. Let Gn = PnPn the complementary prism graph of Pn with
vertex-set V (Gn) = V (Pn) ∪ V (Pn) and edge-set E(Gn) = E(Pn) ∪ E(Pn) ∪ (∪n

i=1{uivi}).
We first show that the statement is true for n ∈ {2, 3, 4, 5}. For n ∈ {2, 3}, we can easily see that Gn is

a P4 or C5 + e where e is an extra edge incident to exactly one vertex of C5. In such cases, the statement is
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clearly satisfied. For n = 4, we have m(G4) = 4 with dense vertex-set D = {u2, u3, v1, v4}, which means that
b(G4) ≤ 4. We claim that b(G4) ≤ 3. Suppose to the contrary that b(G4) = 4 and let c be a b-coloring of G4

with 4 colors. We should emphasize here that each vertex in D is a b-vertex of c. Therefore, we can assume,
without loss of generality, that v1, v4, u2, u3 are colored 1, 2, 3 and 4, respectively. Since v1 needs to see all colors
on its neighbors (except its own color), u1 must be colored with the color 4. But in this case u2 will have a
missing color in its neighborhood, which contradicts the fact that u2 is a b-vertex of c. Hence b(G4) ≤ 3 and,
because G4 has an odd cycle, we get equality. For n = 5, we have m(G5) = 4, which means that b(G5) ≤ 4. To
show that b(G5) = 4, it suffices to give a b-coloring of G5 using 4 colors. We do this as follows. Assign color 1
to v5, u4, color 2 to v1, u2, u5, color 3 to u1, u3, v2 and color 4 to v3, v4, in this case the vertices v5, v1, v2 and v3
are b-vertices of colors 1, 2, 3 and 4 respectively. Hence b(G5) = 4. Assume now that n ≥ 6 and let k = b(Gn).
Since, for n ≥ 6, k ≥ 5 and the degree of vertices of Pn is 3, then all b-vertices of c occurs in Pn. As in
Theorem 2.1, we start by proving that k ≥ n−

⌊
n+1

4

⌋
. For this, we distinguish between two cases according to

the value of n.
Case 1 : n 6= 4m+ 3 (m ≥ 1).
In this case

⌊
n+1

4

⌋
=
⌊

n
4

⌋
. Let B be a subset of V

(
Pn

)
defined as follows

B = {vj ∈ V
(
Pn

)
: j = 4 + 4m,m ∈ N0} with N0 = {0, 1, 2, . . .}.

It is clear that |B| =
⌊

n
4

⌋
. Let A = V (Pn)−B and t = |A| , so t = n−

⌊
n+1

4

⌋
. To show that k ≥ t, we exhibit

a b-coloring c of Gn with t colors. To do this, we start, as in Theorem 2.1, by coloring each vertex of A with a
different color, and assigning color c (vi−1) to vi ∈ B. Hence, we obtain a partial coloring of Gn with t colors.
Now, we color the remaining vertices of Gn in a way that all vertices of A become b-vertices of c of distinct
colors. Then for each vertex vj ∈ A − {vn}, we color its neighbor uj in V (Pn) as follows. If j = 2 + 4m or
j = 3 + 4m, (m ∈ N0), then we color uj with color c (vj−1) and if j = 4m+ 1, (m ∈ N0) , then we color it with
color c (vj+1). If vn ∈ A, then we proceed as follows. If n = 4m+ 1, then clearly vn is a b-vertex since it has all
colors in its neighborhood at the end of the previous step of coloring. If n = 2 + 4m or n = 3 + 4m, (m ∈ N0) ,
then we color un with color c (vn−1). It is not difficult to check that this coloring yields a partial b-coloring of
Gn with t colors that can be easily extended to a b-coloring of Gn, because the number of used colors is at least
4 and the degree of the remaining uncolored vertices is at most 3. So, k ≥ n−

⌊
n+1

4

⌋
.

Case 2 : n = 4m+ 3 (m ≥ 1).
In this case

⌊
n+1

4

⌋
=
⌈

n
4

⌉
. Let CnCn be the complementary prism graph of Cn with V (Cn) = V (Pn) and

V (Cn) = V (Pn). Observe that since, in CnCn, u1un ∈ E(CnCn) and v1vn /∈ E(CnCn), it follows that Gn can
be obtained from CnCn by adding edge v1vn and deleting edge u1un. In the coloring constructed in the proof
of Theorem 2.1, v1 is in B, vn is in A and c(v1) = c(v2) 6= c(vn). This implies that the constructed coloring is
also a proper coloring of Gn and, since all the b-vertices are in Cn, they are still b-vertices in Gn. Hence any
b-coloring of CnCn is a b-coloring of Gn, implying that k ≥ b(CnCn) = n −

⌈
n
4

⌉
= n −

⌊
n+1

4

⌋
. For example,

Figure 2 shows a b-coloring of P8P 8 and P9P 9 using 6 and 7 colors, respectively.
Hence in each case, we have

k ≥ n−
⌊
n+ 1

4

⌋
· (2.10)

Now, consider a b-coloring c of Gn with k colors and let S and T be two disjoint subsets of V (Pn) defined
as in Theorem 2.1 for Cn. Proceeding in a way similar to Theorem 2.1 one can show that clauses (2.4)–(2.7)
remain true here. Hence, by (2.7) and (2.10), we get |T | ≤ 2

⌊
n+1

4

⌋
.

We claim that |T | = 2
⌊

n+1
4

⌋
. Suppose not. As |T | is even, |T | ≤ 2

⌊
n+1

4

⌋
− 2. This with the second part of

(2.5) yield

|S| ≥ n− 2
⌊
n+ 1

4

⌋
+ 2. (2.11)
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Figure 2: b-coloring of P8P8 and P9P9 with 6 and 7 colors, respectively

We now give the b-chromatic number of the complementary prism graph of
a complete bipartite graph Kp,q (p ≥ q ≥ 1).

Theorem 3 Let Kp,q be a complete bipartite graph with p ≥ q ≥ 1. Then,

b(Kp,q Kp,q ) =


4 : 3 ≤ p = q = 2
p : q +2 ≤ p

p +1 : p = q +1

Proof. It is obvious to see that the statement is true for p = 1. Assume that
p ≥ 2, let Gp,q = Kp,q Kp,q be the complementary prism graph of Kp,q with vertex-
set V(Gp,q ) and edge-set E(Gp,q ). Note that Gp,q has the following structure.
Then V(Gp,q ) can be partitioned into four disjoint subsets X = {x1, x2, ..., xp },
Y = {y1, y2, ..., yq }, Z = {z1, z2, ..., zp } and T = {t1, t2, ..., tq } such that X and Y are
stable sets, Z and T are cliques, X ∪Y induces a complete bipartite graph with
bipartition (X,Y) and E(Gp,q ) = E(G[X ∪Y])∪E(G[Z])∪E(G[T])∪ (∪p

i=1{xi zi })∪
(∪q

i=1{yi ti }).
Let k = b(Gp,q ) and D be the set of dense vertices in Gp,q . We distinguish

between three cases.
Case 1: p = q.
If p = 2, then G2,2 = C4C4 and therefore b(G2,2) = 4 by Theorem 1. Assume

p ≥ 3, so clearly D = X ∪Y and m(Gp,p ) = p + 2. We shall show that b(Gp,p ) ≤
p +1. Suppose not. Then by (1), we have b(Gp,p ) = p +2. Let c be a b-coloring of
Gp,p using p +2 colors. Up to symmetry and without loss of generality, we can

9

Figure 2. b-coloring of P8P 8 and P9P 9 with 6 and 7 colors, respectively.

As in Theorem 2.1, we assert that there is a vertex in S having two non-neighbors in S. Suppose not. Using the
same proof as for Theorem 2.1, one can show that |T | ≥ |S|. This together with (2.5) and (2.11) imply that

n ≥ 2 |S| ≥ 2n− 4
⌊
n+ 1

4

⌋
+ 4.

Since
⌊

n+1
4

⌋
≤ n+1

4 , n ≥ n+ 3, which is impossible. This contradiction finishes the proof of the assertion.
Following the same arguments as in Theorem 2.1 (we omit the details), one can show that S has a vertex

with a missing color in its neighborhood, which leads to a contradiction. This contradiction finishes the proof
of the claim.

Consequently |T | = 2
⌊

n+1
4

⌋
, and so by the second part of (2.5), we have k = n −

⌊
n+1

4

⌋
. This finishes the

proof of Theorem 2.2. �

We now give the b-chromatic number of the complementary prism graph of a complete bipartite graph Kp,q

(p ≥ q ≥ 1).

Theorem 2.3. Let Kp,q be a complete bipartite graph with p ≥ q ≥ 1. Then,

b(Kp,qKp,q) =

 4 : 3 ≤ p = q = 2
p : q + 2 ≤ p

p+ 1 : p = q + 1

Proof. It is obvious to see that the statement is true for p = 1. Assume that p ≥ 2, let Gp,q = Kp,qKp,q

be the complementary prism graph of Kp,q with vertex-set V (Gp,q) and edge-set E(Gp,q). Note that Gp,q

has the following structure. Then V (Gp,q) can be partitioned into four disjoint subsets X = {x1, x2, . . . , xp},
Y = {y1, y2, . . . , yq}, Z = {z1, z2, . . . , zp} and T = {t1, t2, . . . , tq} such that X and Y are stable sets, Z and T
are cliques, X ∪ Y induces a complete bipartite graph with bipartition (X,Y ) and E(Gp,q) = E(G[X ∪ Y ]) ∪
E(G[Z]) ∪ E(G[T ]) ∪ (∪p

i=1{xizi}) ∪ (∪q
i=1{yiti}).

Let k = b(Gp,q) and D be the set of dense vertices in Gp,q. We distinguish between three cases.
Case 1 : p = q.

If p = 2, then G2,2 = C4C4 and therefore b(G2,2) = 4 by Theorem 2.1. Assume p ≥ 3, so clearly D = X ∪ Y
and m(Gp,p) = p+ 2. We shall show that b(Gp,p) ≤ p+ 1. Suppose not. Then by (1.1), we have b(Gp,p) = p+ 2.
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Let c be a b-coloring of Gp,p using p+ 2 colors. Up to symmetry and without loss of generality, we can suppose
that x1 is a b-vertex of c of color 1. Hence clearly all vertices of Y ∪ {z1} are colored differently. Assume that
c(z1) = p + 2. Observe that, in every coloring of G[X ∪ Y ], no color can appear in both X and Y . Therefore,
each vertex in X − {x1} is colored with the color 1 or p + 2. This leads to a contradiction because there is no
b-vertex of c of color i ∈ {2, 3, . . . , p + 1}. Now, we shall show that k = p + 1. For this, it suffices to exhibit a
b-coloring of Gp,p with p+ 1 colors. To do this, we first color all vertices of X with color 1 and all vertices of Y
with color p+ 1. Next, for i ∈ {1, . . . , p}, color zi with the color i+ 1, and color ti with the color i. It is easy to
check that this yields a b-coloring of Gp,p with p+ 1 colors, where Z ∪{t1} are b-vertices of this coloring. Hence
b(Gp,p) = p+ 1. This finishes Case 1.

Observe that if p > q, then ω(Gp,q) = p and m(Gp,q) = p+ 1. Hence, according to (1.1), we have

p ≤ k ≤ p+ 1. (2.12)

Case 2 : p = q + 1.
We shall show that k = p + 1. For this, it suffices, in view of (2.12), to exhibit a b-coloring of Gp,q with k

colors. We do this as follows. We first color all vertices of X with the color p + 1, and for i ∈ {1, . . . , p}, color
zi with the color i. Next, for i ∈ {1, . . . , q}, color yi with the color i+ 1, and color ti with the color i. It is easy
to check that this yields a b-coloring of Gp,q with k colors, where Z ∪ {x1} are b-vertices of this coloring. Hence
k = p+ 1.

Case 3 : p ≥ q + 2.
We claim that k = p. Suppose not. Then by (2.12), we have k = p + 1. Let c be a b-coloring of Gp,q with k

colors. It is easy to show that D = Y ∪Z. Since Z is a clique, all its vertices are colored differently. So, assume
without loss of generality that for i ∈ {1, . . . , p}, zi is colored with i. Since |Y | = q ≤ p− 2 < k, Z must contain
at least one b-vertex of c, say without loss of generality that z1 is such vertex. As z1 needs to see all colors on its
neighbors, x1 must be colored p+ 1 and therefore no vertex in Y ∪Z is colored with this color, a contradiction.
Hence k = p. This finishes the proof of Theorem 2.3. �

In the special case when G or G is a complete graph, the b-chromatic number of GG is equal to n. This
follows by (1.1) since ω(GG) = m(GG) = n.

Proposition 2.4. If G or G is a complete graph, then b
(
GG
)

= n.

3. Triangle-free graphs with b(GG) = |V (G)|
In this section, we show that for every graph G of order n ≥ 2, b(GG) ≤ n, and we give a characterization of

triangle-free graphs that achieve equality in this bound.
Let H = GG be the complementary prism graph of G and let V (G) = {x1, . . . , xn} and v(G) = {y1, . . . , yn}.

As dH(xi) + dH(yi) = n+ 1, it follows that H has at least n vertices of degree at least n− 1 and does not have
n+ 1 vertices that can be of degree at least n. This means that

m(GG) ≤ n, (3.1)

so the following result is immediate.

Observation 3.1. For every graph G of order n ≥ 2, b(GG) ≤ n.

When G is a trivial graph, clearly b(GG) = 2. Recall that every graph G satisfies b(G) ≤ ∆(G)+1 as observed
in [13,25]. Therefore, as ∆(GG) = max{∆(G), ∆(G)}+ 1, it follows that b(GG) ≤ max{∆(G), ∆(G)}+ 2.

Theorem 3.2. Let G be a triangle-free graph of order n ≥ 2 and GG be the complementary prism graph of G.
Then b(GG) = n if and only if G or G is isomorphic to P2, P3 or C4.
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Proof. The sufficiency follows from Theorems 2.1 and 2.2, so let us prove the necessity. Then
n = b(GG) ≤ max{∆(G), ∆(G)} + 2 ≤ n + 1 since max{∆(G), ∆(G)} ≤ n − 1. We distinguish between
two cases.

Case 1 : max{∆(G), ∆(G)} = n− 1. Assume without loss of generality that ∆(G) ≤ ∆(G) = n− 1. Let x be a
vertex of G such that dG(x) = ∆(G). As G is triangle-free, G − x is without edge, meaning that G = K1,n−1.
According to Theorem 2.3, b(GG) = n if and only if n = 2 or 3. Hence G or G is isomorphic to P2 or P3.

Case 2 : max{∆(G), ∆(G)} = n− 2. Assume without loss of generality that ∆(G) ≤ ∆(G) = n− 2. Therefore,
clearly, neither G nor G contains an isolated vertex. Let V (G) = {x1, . . . , xn} and V (G) = {y1, . . . , yn}. Then
V (GG) = V (G)∪V (G) and E(GG) = E(G)∪E(G)∪(∪n

i=1{xiyi}). Assume that dG(xn) = n−2 and xn−1 is the
unique non-neighbor of xn in G. Let X1 = {xn, xn−1}, X2 = V (G)−X1, Y1 = {yn, yn−1} and Y2 = V (G)− Y1.
If n = 3, then either x2 is isolated or x1 has degree n − 1 in G, a contradiction since ∆(G) ≤ n − 2, so this
case cannot occur. If n = 4, then X1 = {x3, x4} and X2 = {x1, x2}, and so G is either a cycle C4 x1-x3-x2-
x4-x1 or a path P4 xi-x3-xj-x4, {i, j} = {1, 2}. Recall that by Theorems 2.1 and 2.2, we have b(C4C4) = 4
and b(P4P4) = 3 6= n. Hence, G or G is isomorphic to a cycle C4. Assume now that n ≥ 5, and let p be the
number of neighbors of xn−1 in X. Then, clearly, 1 ≤ p ≤ n− 2. If p = n− 2, then G = K2,n−2. According to
Theorem 2.3, b(GG) = n if and only if n = 4, which contradicts n ≥ 5. Suppose now that p ≤ n− 3 and assume
without loss of generality that x1, . . . , xp are the neighbors of xn−1 in X. Since b(GG) = n, (1.1) and (3.1)
imply m(GG) = n. On the other hand, it is a routine matter to check that if p = 1, then dGG(z) = n − 1 for
each z ∈ {xn, y2, y3, . . . , yn−1} and all the remaining vertices in GG have degree less than n− 1. And if p > 1,
then dGG(z) = n − 1 for each z ∈ {xn, yp+1, . . . , yn−2} and all the remaining vertices in GG have degree less
than n − 1. Therefore, in each case, GG has less than n − 1 vertices of degree n − 1, which is a contradiction
with the fact that m(GG) = n. Hence this case cannot occur. �
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