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MEAN-VARIANCE PORTFOLIO SELECTION WITH AN UNCERTAIN
EXIT-TIME IN A REGIME-SWITCHING MARKET

Reza Keykhaei∗

Abstract. In this paper, we deal with multi-period mean-variance portfolio selection problems with
an exogenous uncertain exit-time in a regime-switching market. The market is modelled by a non-
homogeneous Markov chain in which the random returns of assets depend on the states of the market
and investment time periods. Applying the Lagrange duality method, we derive explicit closed-form
expressions for the optimal investment strategies and the efficient frontier. Also, we show that some
known results in the literature can be obtained as special cases of our results. A numerical example is
provided to illustrate the results.
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Introduction

The single-period mean-variance (M-V) portfolio selection model proposed by Markowitz [18] is the foundation
of modern portfolio theory. In this model, an investor seeks to minimize the variance (as the measure of risk)
of his/her portfolio return for a given desired expected portfolio return, or, to maximize the expectation of
his/her portfolio return for a given level of risk. The analytic solution of the M-V portfolio selection problem
when the short selling is allowed is given by Merton [21]. The original single-period M-V model was extended
to the multi-period case, and for the first time, Li and Ng [12] derived the optimal investment strategy. The
continuous time M-V problem is also analytically solved by Zhou and Li [38].

The main assumption in Li and Ng [12] is that the asset returns during consecutive time periods are inde-
pendent. This assumption is not true in a realistic setting. Therefore, some sort of dependence between the
asset returns across successive time periods should be considered. Recently, regime-switching models have been
considered by authors to deal with this deficiency. In such models, there is a finite set of market states (regimes)
which reflects the stochastic market environment. For example, market states can be divided into bullish and
bearish. The asset returns and key market parameters, such as the bank interest rate, or stocks appreciation
and volatility rates depend on the market state. Zhou and Yin [39] and Yin and Zhou [34] considered dy-
namic continuous-time and discrete-time versions of Markowitz’s model, respectively, when the market state
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process follows a Markov chain. Also, Cakmak and Ozekici [4] investigated multi-period M-V portfolio selection
problems in Markovian regime-switching markets.

In the all of the above papers, and in many other related works, the market exit-time has been considered
deterministic. In the real world, however, the exit-time is uncertain. Actually, the market exit-time is affected by
many exogenous and endogenous factors. The early work on this subject was done by Yaari [26], who considered
the problem of optimal consumption for a consumer with uncertain lifetime when the market contains a riskless
asset. Hakansson [8, 9] extended this model to a discrete-time multi-period model with risky assets and an
uncertain lifetime. Merton [20] investigated a continuous-time investment-consumption problem for an investor
when the time of retirement is the first jump time of an independent Poisson process. Karatzas and Wang
[10] studied a utility maximization problem when the exit-time is a stopping time of asset price filtration. Liu
and Loewenstein [15] considered a utility maximization problem with uncertain time-horizon and transaction
costs. Blanchet-Scalliet et al. [3] investigated an optimal investment problem when the uncertain exit-time is
correlated with the returns of risky assets. Lv et al. [17] considered a continuous-time M-V portfolio selection
model in an incomplete market when market parameters and time horizon are random. The static M-V portfolio
selection model with an uncertain exit-time is studied by Martellini and Urosevic [19]. Keykhaei [11] extended
the model of Martellini and Urosevic [19] to the case where each asset has individual uncertain exit-time. The
multi-period M-V portfolio selection model when the exit-time is uncertain is studied by Guo and Hu [6]. Zhang
and Li [36] extended this model to the case with one risky asset and one riskless asset where the returns of
risky asset are serially correlated. Yi et al. [33] investigated a multi-period asset-liability management model
with an uncertain exit-time. An infinite-period M-V portfolio selection model with an uncertain exit-time is
studied by Guo and Cai [7]. Wu and Li [23] studied a multi-period M-V portfolio selection model in a Markovian
regime-switching market with an exogenous uncertain exit-time. Wu et al. [25] extended this model to the case
when the exit-time depends on the current market state. Yao et al. [28] considered a multi-period M-V portfolio
selection problem with endogenous liabilities and an uncertain exit-time in a regime-switching market.

A multi-period M-V portfolio optimization problem, with a certain exit-time T , has one of the following two
standard formulations,

P̃ (µ) :


min
π

Var
[
WT

]
s.t. E

[
WT

]
= µ,

Wn+1 = Wn +R′nπn,

P̃ (σ) :


max
π

E
[
WT

]
s.t. Var

[
WT

]
= σ2,

Wn+1 = Wn +R′nπn,

where π = {π0, π1, . . . , πT−1} is the portfolio strategy and Rn is the vector of asset rate of returns in period
n (n = 0, 1, . . . , T − 1) and Wn denotes the wealth amount available for investment at time n (n = 0, 1, . . . , T ).
In this paper, the superscript ′ denotes the transpose of a matrix or a vector. Formulation P̃ (µ) is used when
an investor seeks to minimize his/her investment risk, measured by the variance of the terminal wealth, and
his desired expected wealth is µ. Also, formulation P̃ (σ) is used when an investor seeks to maximize his/her
expected terminal wealth for a specified risk level σ2. An equivalent formulation to these standard problems is
the following trade-off formulation

P̃ (ω) :

{
max
π

E
[
WT

]
− ωVar

[
WT

]
s.t. Wn+1 = Wn +R′nπn,

defined parametrically for trade-off parameter ω > 0. Formulation P̃ (ω) is used when an investor specifies his/
her desirable trade-off between the expectation and the variance of the terminal wealth.

All the above problems are non-separable in the sense of dynamic programming. This is due to the fact that
while the expectation term satisfies the smoothing property, that is, if s < t, then E

[
E
[
.|Ft

]
|Fs
]

= E
[
.|Fs

]
, but

the variance term does not, i.e., Var
[
Var

[
.|Ft

]
|Fs
]
6= Var

[
.|Fs

]
, where Fs and Ft are information sets available

at times s and t, respectively. Therefore, the principle of dynamic programming no longer applies. Li and Ng
[12] overcame this difficulty. In order to solve problems P̃ (µ) and P̃ (σ) they used equivalent trade-off problem
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P̃ (ω), and embedded problem P̃ (ω) into the following family of tractable auxiliary problems, parametrized in
terms of λ and ω,

P̃ (λ, ω) :

{
max
π

E
[
− ωW 2

T + λWT

]
Wn+1 = Wn +R′nπn.

Note that problem P̃ (λ, ω) is separable in the sense of dynamic programming, and, therefore, can be solved by
using dynamic programming approach. Since then, this embedding technique has been widely used to solve multi-
period M-V portfolio selection problems. Though the embedding technique helps to tackle the non-separable
multi-period M-V problems, it is complicated. The optimal solution of problem P̃ (ω) can be derived via identi-
fying parameter λ∗ under which the solution of P̃ (λ∗, ω) also solves P̃ (ω). After solving the auxiliary problem,
the expectation and the variance of the terminal wealth must be computed in terms of γ = λ

ω . To solve problem
P̃ (ω) it is necessary to find the appropriate γ∗ in terms of ω and then compute the expectation and the variance
of the terminal wealth in terms of ω. The efficient frontier can be obtained by eliminating ω in the expectation
and the variance of the terminal wealth. To solve problems P̃ (µ) and P̃ (σ) the associated ω must be calculated
in terms of µ and σ. This procedure will be more complicated when the model involves uncertain exit-time and
regime-switching.

Recently, some researchers have applied the Lagrange duality method to solve multi-period M-V portfolio
selection problems with formulation P̃ (µ). Compared to the embedding technique, the Lagrange duality method
is more visible with simpler procedure and less calculation factors. Specially, there is no need to compute the
mean and the variance of the terminal wealth in the auxiliary problem which is essential in the embedding
technique. For example, see [5, 24, 27–29, 31, 32] for discrete time models and [1, 2, 13, 14, 22, 30, 35, 37, 39] for
continuous time models.

In this paper, we assume that the asset returns over each time period depend on the market state (regime).
As mentioned before, the market exit-time is affected by many exogenous and endogenous factors, and therefore
is uncertain. Here, we assume that the investor may be forced to exit the market for some exogenous reasons,
such as death and serious illness, before his/her planned exit-time. Then, the exit-time is uncertain (for ex-
ample, the investor’s time of death, such as in Yaari [26] and Hakansson [8, 9]). So, we consider multi-period
M-V portfolio selection problems with an exogenous uncertain exit-time in a Markov regime-switching market.
Applying Lagrange duality method, the explicit closed form expressions for the optimal investment strategies
and the efficient frontier are derived. Unlike the embedding technique, we first solve the standard problems
and after that we solve the trade-off problem. Also, some especial cases are investigated. It is shown that some
known models in the literature can be considered as special cases of our model.

The rest of this paper is organized as follows. In Section 1, we present the basic notations, model assumptions
and problem formulations. In Section 2, we describe the Lagrange duality approach. An auxiliary problem is
introduced and finally the optimal investment strategy and the efficient frontier of the original problems are
derived. Some especial cases are investigated in Section 3 and finally a numerical example is given in the last
section.

1. Problem formulations

We consider a financial market consisting of N + 1 risky assets. An investor with investment time-horizon
T joins the market at time 0 with an initial wealth W0 = w0. However, the investor may be forced to exit the
market at time τ before T for some uncontrollable reasons. We assume that the uncertain exit-time τ is an
exogenous discrete random variable with the probability mass function qn = P(τ = n), n = 1, 2, . . .. Therefore,
the real exit-time is T ∧ τ := min{T, τ}. Define

pn := P(T ∧ τ = n) =


qn, n = 1, 2, . . . , T − 1,

1−
T−1∑
k=1

qk, n = T.
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Without loss of generality, we assume that pT > 0, otherwise it is not necessary to consider T as the time-horizon.
We assume that the market state process follows a Markov chain, denoted by {Xn : 0, 1, 2, . . .}, with a discrete

state space S = {1, 2, . . . , L} and transition probability matrices Qn with one-step transition probabilities

Qn(i, j) = P(Xn = j|Xn−1 = i),

for i, j ∈ S and n = 1, 2, . . .. Denote the return of asset k over period n when the market state is Xn = i by
rn,k(i), and the vector of returns by Rn(i) =

(
rn,0(i), rn,1(i), . . . , rn,N (i)

)′. The vector of excess returns is
denoted by R̃n(i) =

(
rn,1(i)− rn,0(i), . . . , rn,N (i)− rn,0(i)

)′. We assume that return vectors R0(i), . . . , RT−1(i)
have different distribution functions. Also, Rn(i) is independent of Rm(j), when n 6= m, for all i, j ∈ S. Moreover,
we assume that Rn(Xn) and Xn+1 are independent. Also, E

[
R̃n(i)

]
6= 0 and E

[
Rn(i)Rn(i)′

]
is positive definite

for all i ∈ S and n = 0, 1, . . . , T − 1. We further assume that: short selling is allowed, the investment strategies
are self-financing, i.e., no capital addition or withdrawals are allowed, and finally, there is no transaction cost.

Denote the portfolio during period n by πn = (πn,1, πn,2, . . . , πn,N )′ ∈ RN , where πn,i denotes the amount
invested in assets i. A multi-period portfolio strategy is an investment sequence π = {π0, π1, . . . , πT−1}. Denote
the wealth at time n by Wn. Then, the self-financing property implies that

Wn+1 = rn,0(Xn)Wn + R̃n(Xn)′πn,

for n = 0, 1, . . . , T − 1.
In the following Ei0

[
.
]

= E
[
.|X0 = i0

]
and Vari0

[
.
]

= Ei0
[
.
]2 − E2

i0

[
.
]

denote the conditional expectation
and variance given that initial market state is i0. In this paper, we consider the following portfolio selection
problems,

P (µ) :


min
π

Vari0
[
WT∧τ

]
s.t. Ei0

[
WT∧τ

]
= µ,

Wn+1 = rn,0(Xn)Wn + R̃n(Xn)′πn,

P (σ) :


max
π

Ei0
[
WT∧τ

]
s.t. Vari0

[
WT∧τ

]
= σ2,

Wn+1 = rn,0(Xn)Wn + R̃n(Xn)′πn,

P (ω) :

{
max
π

Ei0
[
WT∧τ

]
− ωVari0

[
WT∧τ

]
(ω > 0)

s.t. Wn+1 = rn,0(Xn)Wn + R̃n(Xn)′πn.

A strategy π∗ is said to be efficient if there exists no other strategy π such that Ei0
[
WT∧τ

]∣∣
π
≥ Ei0

[
WT∧τ

]∣∣
π∗

and Vari0
[
WT∧τ

]∣∣
π
≤ Vari0

[
WT∧τ

]∣∣
π∗

and at least one of the inequalities is strict. Each efficient strategy π∗

introduces an efficient point
(
Ei0
[
WT∧τ

]∣∣
π∗
,Vari0

[
WT∧τ

]∣∣
π∗

)
in the Mean-Variance plane. The efficient frontier

is the set of all efficient points (that are generated by various values of µ in P (µ) or σ in P (σ) or ω in P (ω)).
Applying embedding technique, Wu and Li [23] solved the trade-off problem P (ω), when the market contains

a riskless asset and the return vectors R0(i), R1(i), . . . , RT−1(i) are independent and identically distributed. As
mentioned before, different form Wu and Li [23], we assume that all assets are risky and the return vectors are
not identically distributed. Using the Lagrange duality approach, we solve problem P (µ), and finally, derive the
solution of problems P (σ) and P (ω).

2. Lagrange duality approach

2.1. Auxiliary problem

Note that Ei0
[
WT∧τ

]
= µ is equivalent to Ei0

[
WT∧τ − µ

]
= 0. Also, Ei0

[
WT∧τ

]
= µ, implies that Vari0[

WT∧τ
]

= Ei0
[
(WT∧τ − µ)2

]
. For convenience, we define p0 = 0. Since the exit-time is independent of portfolio
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behavior, we have

Ei0
[
WT∧τ − µ

]
= Ei0

[
T∑
n=0

pn(Wn − µ)

]
,

Ei0
[
(WT∧τ − µ)2

]
= Ei0

[
T∑
n=0

pn(Wn − µ)2
]
.

Therefore, problem P (µ) can be rewritten as

P (µ) :



min
π

Ei0

[
T∑
n=0

pn(Wn − µ)2
]

s.t. Ei0

[
T∑
n=0

pn(Wn − µ)

]
= 0,

Wn+1 = rn,0(Xn)Wn + R̃n(Xn)′πn.

To solve problem P (µ) we apply the Lagrange multiplier method. To this end, we dualize the equality constraint
Ei0
[∑T

n=0 pn(Wn − µ)
]

= 0 by using a Lagrange multiplier 2λ and solve the following auxiliary problem,

P (µ, λ) :


min
π

Ei0

[
T∑
n=0

pn(Wn − µ)2
]

+ 2λEi0

[
T∑
n=0

pn(Wn − µ)

]
s.t. Wn+1 = rn,0(Xn)Wn + R̃n(Xn)′πn.

Introducing the notations a = λ − µ and b = µ2 − 2λµ, problem P (µ, λ) can be rewritten in the following
formulation,

P (µ, λ) :


min
π

Ei0

[
T∑
n=0

pnW
2
n + 2apnWn + b

]
s.t. Wn+1 = rn,0(Xn)Wn + R̃n(Xn)′πn.

2.2. Solution to the auxiliary problem

In the following, for any matrix An×n and vector a ∈ Rn, A(i, j) and a(j) denote the component (i, j) and
component j in A and a, respectively. Define the matrix Aa such that Aa(i, j) = A(i, j)a(j). Also, let Ā be a
column vector whose ith component is Ā(i) =

∑n
j=1A(i, j). Obviously, Ā = A1, where 1 = (1, 1, . . . , 1)′ ∈ Rn.

For any vector an ∈ RL, define Qan
= (Qn)an

. Furthermore, denote
∑
∅Ak = 0 and

∏
∅Ak = I, where I is an

identity matrix.

Lemma 2.1. Suppose that A and B are L × L matrices. Let, a, an ∈ RL where an = c1 for some constant c.
Then

(I) AB = AB
(II) AQan

= cA
(III) QanA = cQnA
(IV) Aa = Aa

Proof. The proof is obvious. �
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Lemma 2.2. Let bn, cn ∈ RL, for n = 0, 1, . . . , T −1. Suppose that the recursive sequence {an(i)}Tn=0 is defined
backwardly by

an(i) = bn(i) + cn(i)Qan+1(i),

for all i ∈ {1, . . . , L}. If we define bT (i) = aT (i), then

an(i) = bn(i) + cn(i)
T∑

k=n+1

k−1∏
m=n+1

Qcm
Qbk

(i),

for n = 0, 1, . . . , T − 1.

Proof. The proof proceeds by backward induction on n. Let n = T − 1. Then

aT−1(i) = bT−1(i) + cT−1(i)
∑
j∈S

QT (i, j)aT (j)

= bT−1(i) + cT−1(i)
∑
j∈S

QT (i, j)bT (j)

= bT−1(i) + cT−1(i)QbT
(i).

Suppose now the induction hypothesis holds for n = k + 1. Applying the first part of Lemma 2.1, for n = k we
have

ak(i) = bk(i)

+ ck(i)
∑
j∈S

Qk+1(i, j)

bk+1(j) + ck+1(j)[Qbk+2(j) +
T∑

l=k+3

l−1∏
m=k+2

Qcm
Qbl

(j)]


= bk(i) + ck(i)

Qbk+1(i) + (Qck+1Qbk+2)(i) +
T∑

l=k+3

(Qck+1

l−1∏
m=k+2

Qcm
Qbl

)(i)


= bk(i) + ck(i)

Qbk+1(i) +Qck+1Qbk+2(i) +
T∑

l=k+3

l−1∏
m=k+1

Qcm
Qbl

(i)

 .
This completes the proof. �

For n = 0, 1, . . . , T − 1, define εn, νn, κn ∈ RL such that,

εn(i) = E
[
R̃n(i)′

]
E−1

[
R̃n(i)R̃n(i)′

]
E
[
R̃n(i)

]
, (2.1)

νn(i) = E
[
rn,0(i)

]
− E

[
R̃n(i)′

]
E−1

[
R̃n(i)R̃n(i)′

]
E
[
rn,0(i)R̃n(i)

]
, (2.2)

κn(i) = E
[
r2n,0(i)

]
− E

[
rn,0(i)R̃n(i)′

]
E−1

[
R̃n(i)R̃n(i)′

]
E
[
rn,0(i)R̃n(i)

]
. (2.3)

Furthermore, for n = 0, 1, . . . , T + 1, define θn ∈ RL such that

θn(i) =

(∑T
k=n pk

∏k−1
m=nQνm(i)

)2

∑T
k=n pk

∏k−1
m=nQκm

(i)
εn−1(i), n = 1, . . . , T, (2.4)

θT+1(i) = −b/a2, (2.5)

θ0(i) =
T∑
k=1

(
(Πk−1

m=1Qm)θk
)
(i). (2.6)

The following lemme guaranties that θn(i) defined in (2.4) is well defined.
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Lemma 2.3. E
[
R̃n(i)R̃n(i)′

]
is positive definite and εn(i), κn(i) > 0 for all i ∈ S and n = 0, 1, . . . , T − 1.

Proof. The proof of positive definiteness of E
[
R̃n(i)R̃n(i)′

]
and κn(i) > 0 are similar to those in [12]. To prove

εn(i) > 0 note that E−1
[
R̃n(i)R̃n(i)′

]
is positive definite and E

[
R̃n(i)

]
6= 0. �

Define the value function of problem P (µ, λ) at time n by

vn(i, wn) = min
πn,...,πT−1

Ei,wn

[
T∑
k=n

pkW
2
k + 2apkWk + b

]
,

for n = 0, 1 . . . , T , where Ei,wn

[
.
]

= E
[
.|Xn = i,Wn = wn

]
. According to the principle of dynamic programming

we have

vn(i, wn) = min
πn

Ei,wn

[
pnw

2
n + 2apnwn + vn+1(Xn+1,Wn+1)

]
= pnw

2
n + 2apnwn + min

πn

∑
j∈S

Qn+1(i, j)E
[
vn+1

(
j, rn,0(i)wn + R̃n(i)′πn

)]
for n = 0, 1 . . . , T − 1, with the boundary condition

vT (i, wT ) = pTw
2
T + 2apTwT + b.

Theorem 2.4. The value function vn(i, wn) is given by

vn(i, wn) = αn(i)w2
n + 2aβn(i)wn + γn(i) (2.7)

and the corresponding optimal investment strategy is given by

π∗n(i, wn) = − E−1
[
R̃n(i)R̃n(i)′

](
wnE

[
rn,0(i)R̃n(i)

]
+a
∑T
k=n+1 pk

∏k−1
m=n+1Qνm

(i)∑T
k=n+1 pk

∏k−1
m=n+1Qκm

(i)
E
[
R̃n(i)

] ,

(2.8)

where

αn(i) = pn + κn(i)
T∑

k=n+1

pk

k−1∏
m=n+1

Qκm(i), (2.9)

βn(i) = pn + νn(i)
T∑

k=n+1

pk

k−1∏
m=n+1

Qνm
(i), (2.10)

γn(i) = −a2θn+1(i)− a2
T∑

k=n+1

(
(Πk

m=n+1Qm)θk+1

)
(i). (2.11)
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Proof. The proof proceeds by induction on n. Obviously (2.7) holds for n = T . For n = T − 1,

vT−1(i, wT−1) = min
πT−1

E
[
pT−1w

2
T−1 + 2apT−1wT−1

+
∑
j∈S

QT (i, j)vT
(
j, rT−1,0(i)wT−1 + R̃T−1(i)′πT−1

)]
= pT−1w

2
T−1 + 2apT−1wT−1

+ min
πT−1

E
{
QαT

(i)
[
rT−1,0(i)wT−1 + R̃T−1(i)′πT−1

]2
+ 2aQβT

(i)
[
rT−1,0(i)wT−1 + R̃T−1(i)′πT−1

]
+QγT

(i)
}

= pT−1w
2
T−1 + 2apT−1wT−1

+QαT
(i)E

[
r2T−1,0(i)

]
w2
T−1 + 2aQβT

(i)E
[
rT−1,0(i)

]
wT−1

+QγT
(i)

+ min
πT−1

{(
2QαT

(i)wT−1E
[
rT−1,0(i)R̃T−1(i)′

]
+ 2aQβT

(i)E
[
R̃T−1(i)′

])
πT−1

+QαT
(i)π′T−1E

[
R̃T−1(i)R̃T−1(i)′

]
πT−1

}
.

(2.12)

Here QαT
(i) =QβT

(i) = pT > 0 and QγT
(i) = b. Moreover, E

[
R̃T−1(i)R̃T−1(i)′

]
is positive definite by

Lemma 2.3. Therefore, the necessary and sufficient optimality condition is as follows:

QαT
(i)wT−1E

[
rT−1,0(i)R̃T−1(i)

]
+ aQβT

(i)E
[
R̃T−1(i)

]
+QαT

(i)E
[
R̃T−1(i)R̃T−1(i)′

]
πT−1 = 0.

Then, one can obtain

π∗T−1(i, wT−1) = −E−1
[
R̃T−1(i)R̃T−1(i)′

](
wT−1E

[
rT−1,0(i)R̃T−1(i)

]
+ a

QβT
(i)

QαT
(i)

E
[
R̃T−1(i)

])
as the optimal portfolio. Substituting π∗T−1(i, wT−1) in (2.12) yields

vT−1(i, wT−1) =
[
pT−1 + κT−1(i)QαT

(i)
]
w2
T−1 + 2a

[
pT−1 + νT−1(i)QβT

(i)
]
wT−1

− a2

(
QβT

(i)
)2

QαT
(i)

εT−1(i) +QγT
(i)

=αT−1(i)w2
T−1 + 2aβT−1(i)wT−1 + γT−1(i),

where

αT−1(i) = pT−1 + κT−1(i)QαT
(i) = pT−1 + κT−1(i)pT > 0,

βT−1(i) = pT−1 + νT−1(i)QβT
(i) = pT−1 + νT−1(i)pT ,

γT−1(i) = −a2θT (i) +QγT
(i) = −a2θT (i) + b.
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Assume that (2.7) and (2.8) hold for n = k + 1, and αk+1(j) > 0 for all j ∈ S. Then, for n = k,

vk(i, wk) = min
πk

E
[
pkw

2
k + 2apkwk

+
∑
j∈S

Qk+1(i, j)vk+1

(
j, rk,0(i)wk + R̃k(i)′πk

)]
= pkw

2
k + 2apkwk

+ min
πk

E
{
Qαk+1(i)

[
rk,0(i)wk + R̃k(i)′πk

]2
+ 2aQβk+1(i)

[
rk,0(i)wk + R̃k(i)′πk

]
+Qγk+1(i)

}
= pkw

2
k + 2apkwk

+Qαk+1(i)E
[
r2k,0(i)

]
w2
k + 2aQβk+1(i)E

[
rk,0(i)

]
wk +Qγk+1(i)

+ min
πk

{(
2Qαk+1(i)wkE

[
rk,0(i)R̃k(i)′

]
+ 2aQβk+1(i)E

[
R̃k(i)′

])
πk

+Qαk+1(i)π′kE
[
R̃k(i)R̃k(i)′

]
πk
}
.

(2.13)

Since αk+1(j) > 0 for all j ∈ S, then Qαk+1(i) > 0. Moreover, E
[
R̃k(i)R̃k(i)′

]
is positive definite. As it can be

seen, the minimization problem (2.13) has the same structure as the one in (2.12). Therefore, the same argument
can be repeated to obtain

π∗k(i, wk) = −E−1
[
R̃k(i)R̃k(i)′

](
wkE

[
rk,0(i)R̃k(i)

]
+ a

Qβk+1(i)
Qαk+1(i)

E
[
R̃k(i)

])
(2.14)

as the optimal portfolio. Substituting π∗k(i, wk) in (2.13) yields

vk(i, wk) =
[
pk + κk(i)Qαk+1(i)

]
w2
k + 2a

[
pk + νk(i)Qβk+1(i)

]
wk

− a2

(
Qβk+1(i)

)2
Qαk+1(i)

εk(i) +Qγk+1(i)

=αk(i)w2
k + 2aβk(i)wk + γk(i),

where

αk(i) = pk + κk(i)Qαk+1(i) > 0,

βk(i) = pk + νk(i)Qβk+1(i),

γk(i) = −a2θk+1(i) +Qγk+1(i).

Finally, Lemmas 2.1 and 2.2 complete the proof. For instance, to obtain (2.11), let bn(i) = − a2θn+1(i) and
cn(i) = 1. �

2.3. Solution to problems P (µ), P (σ) and P (ω)

Considering the Equation (2.7), the optimal value of problem P (µ, λ) corresponding to the initial state i0 is

v0(i0, w0) =α0(i0)w2
0 + 2aβ0(i0)w0 + γ0(i0)

=α0(i0)w2
0 + 2aβ0(i0)w0 − a2

[
θ1(i0) +

T−1∑
k=1

(
(Πk

m=1Qm)θk+1

)
(i0)
]

+ b

=α0(i0)w2
0 + 2(λ− µ)β0(i0)w0 − (λ− µ)2θ0(i0) + µ2 − 2λµ.

(2.15)
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Define
L(λ,w0, i0) := v0(i0, w0).

Denote the optimal value of problem P (µ) by Var∗i0
[
WT∧τ

]
. The Lagrange Duality Theorem (see [16]) yields

that
Var∗i0

[
WT∧τ

]
= max

λ
L(λ,w0, i0). (2.16)

Lemma 2.3 yields that θT (j) = pT εT−1(j) > 0, for all j ∈ S. Then

θ0(i0) =
T∑
k=1

(
(Πk−1

m=1Qm)θk
)

(i0) ≥
(
(ΠT−1

m=1Qm)θT
)

(i0) > 0.

Therefore, the optimal solution in formulation (2.16) exists. Differentiating from (2.15) with respect to λ and
setting to zero yields the optimal solution as

λ∗ =
β0(i0)w0 − µ

θ0(i0)
+ µ.

The optimal strategy of problem P (µ) can be computed by setting

a = λ∗ − µ =
β0(i0)w0 − µ

θ0(i0)
(2.17)

in (2.8). Substituting λ∗ in (2.15), one can get the minimum variance in problem P (µ), denoted by Var∗i0
[
WT∧τ

]
,

as follows

Var∗i0
[
WT∧τ

]
=

1− θ0(i0)
θ0(i0)

(
Ei0
[
WT∧τ

]
− β0(i0)w0

1− θ0(i0)

)2

+
(
α0(i0)− (β0(i0))2

1− θ0(i0)

)
w2

0. (2.18)

As it can be seen in Equation (2.18), Var∗i0
[
WT∧τ

]
is a parabola with respect to Ei0

[
WT∧τ

]
. Therefore, for any

optimal portfolio strategy with Ei0
[
WT∧τ

]
< β0(i0)w0

1−θ0(i0) , one can find an optimal portfolio strategy with the same
Var∗i0

[
WT∧τ

]
but a higher Ei0

[
WT∧τ

]
. This fact yields the following theorem.

Theorem 2.5. The optimal investment strategy of problem P (µ) is given by (2.8) where

a =
β0(i0)w0 − µ

θ0(i0)
·

Also, the efficient frontier is represented by (2.18) where Ei0
[
WT∧τ

]
≥ β0(i0)w0

1−θ0(i0) .

Corollary 2.6. The global minimum variance strategy, that is the strategy that achieves the lowest obtainable
variance among all feasible strategies, is given by (2.8) where

a =
β0(i0)w0

θ0(i0)− 1
(2.19)

for which the mean and the variance of the final wealth are as follows,

Êi0
[
WT∧τ

]
=

β0(i0)w0

1− θ0(i0)
, V̂ari0

[
WT∧τ

]
=
(
α0(i0)− (β0(i0))2

1− θ0(i0)

)
w2

0.
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Corollary 2.6 indicates that the global minimum variance is not zero. However, in the case of no regime-
switching, when the market contains a riskless asset and the exit-time is certain, as it is assumed in [12], the
global minimum variance is zero, which can be obtained by the total investment in the riskless asset (see Eq. (76)
in [12]). Then, the optimal standard deviation is a linear function in terms of the expected terminal wealth. So,
the efficient frontier is a straight line, which is called the capital market line, in the Standard Deviation-Mean
plane. Under the assumptions of our model, we still cannot obtain zero global minimum variance even in the
presence of a riskless asset. The reason is, although for a given market state, the return of the riskless asset
is deterministic (which depends on the market state), we don’t know the future market states from now. So,
investment in the riskless asset has a random return and, consequently, a positive variance (risk). This is true
even we assume that the return of the riskless asset is constant for all market states over all time periods. In
this case, investment in the riskless asset has a random return again, since the length of the investment time is
uncertain. This issue is investigated through a numerical example in the last section.

In the following, it is shown that how the solution of problems P (σ) and P (ω) can be found by using the
obtained results for problem P (µ).

Corollary 2.7. The optimal investment strategy of problem P (σ) is given by (2.8) where

a =
β0(i0)w0

θ0(i0)− 1
−

√
1

θ0(i0)
(
1− θ0(i0)

) [σ2 +
(

(β0(i0))2

1− θ0(i0)
− α0(i0)

)
w2

0

]
.

Proof. Note that if π∗ solves P (σ), then π∗ solves P (µ) where µ = Ei0
[
WT∧τ

]∣∣
π∗

. On the other hand, if π̃ solves
P (µ), then π̃ solves P (σ) where σ2 = Vari0

[
WT∧τ

]∣∣
π̃
. The value of µ can be computed in terms of σ2, by using

Equation (2.18), as follows,

µ =

√
θ0(i0)

1− θ0(i0)

[
σ2 +

(
(β0(i0))2

1− θ0(i0)
− α0(i0)

)
w2

0

]
+

β0(i0)w0

1− θ0(i0)
·

Now the result follows from substituting this µ into (2.17). �

Corollary 2.8. The optimal investment strategy of problem P (ω) is given by (2.8) where

a =
1 + 2ωβ0(i0)w0

2ω
(
θ0(i0)− 1

) · (2.20)

Proof. Note that if π̃ solves P (ω), then π̃ solves P (µ) where µ = Ei0
[
WT∧τ

]∣∣
π̃

and π̃ solves P (σ) where
σ2 = Vari0

[
WT∧τ

]∣∣
π̃
. Therefore, the pair

(
Ei0
[
WT∧τ

]∣∣
π̃
,Vari0

[
WT∧τ

]∣∣
π̃

)
is on the efficient frontier of problem

P (µ) and satisfies Equation (2.18). Denote the objective function of problem P (ω) by

U
(
Ei0
[
WT∧τ

]
,Vari0

[
WT∧τ

])
= Ei0

[
WT∧τ

]
− ωVari0

[
WT∧τ

]
.

So, U takes its optimal value on the efficient frontier (2.18). Then, at the optimal solution π̃, we have

1
ω

=
∂Vari0

[
WT∧τ

]
∂Ei0

[
WT∧τ

] =
2
(
1− θ0(i0)

)
θ0(i0)

(
Ei0
[
WT∧τ

]
− β0(i0)w0

1− θ0(i0)

)
.

Now the result follows after computing Ei0
[
WT∧τ

]
in terms of ω and substituting µ= Ei0

[
WT∧τ

]
in (2.17). �

The parameter ω in the formulation of problem P (ω) denotes the amount of the risk aversion of the investor.
In fact, the more risk averse the investor, the bigger his/her risk aversion parameter ω > 0. It can be seen from
Equation (2.20) that the value of a in (2.20) converges to the value of a in (2.19) as ω goes to infinity. In other
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words, when the risk aversion parameter is extremely high, the investor chooses the portfolio with the lowest
obtainable risk, i.e., the global minimum variance portfolio. This fact is more observable when the objective
function in problem P (ω) is replaced equivalently by

min
π

Vari0
[
WT∧τ

]
− 1
ω

Ei0
[
WT∧τ

]
.

As it is seen, by applying the Lagrange duality approach, the optimal solution of problem P (µ) and, conse-
quently, the optimal solutions of problems P (σ) and P (ω), can be obtained with simpler procedure, compared
to the embedding technique.

3. Special cases

In this section we investigate some special cases and show that some known models can be obtained as special
cases of our model.

3.1. Portfolio selection in the presence of one riskless asset

Let the market contains one riskless asset. Also, let rn,0(i) be the return of the riskless asset in the time
period n and the market state i. Then, Equations (2.1)–(2.3) can be rewritten as follows,

εn(i) = E
[
R̃n(i)′

]
E−1

[
R̃n(i)R̃n(i)′

]
E
[
R̃n(i)

]
,

νn(i) = rn,0(i)
(
1− εn(i)

)
,

κn(i) =
(
rn,0(i)

)2(1− εn(i)
)
,

for n = 0, 1, . . . , T − 1. Assume that the Markov chain is time-homogeneous and Qn = Q for all n = 1, 2, . . ..
If for any i ∈ S, the random returns R0(i), R1(i), . . . , RT−1(i) are identically distributed and the riskless asset
has the same return r0(i) in each period (as it is assumed in [23]), then εn(i), νn(i) and κn(i) will be constant
for all periods. For any i ∈ S, denote

ε(i) = εn(i),
ν(i) = r0(i)

(
1− ε(i)

)
,

κ(i) =
(
r0(i)

)2(1− ε(i)).
Then, θ0(i0) can be computed by substituting

θn(i) =

(∑T
k=n pkQ

k−n
ν (i)

)2∑T
k=n pkQ

k−n
κ (i)

ε(i),

obtained from (2.4), in (2.6). Also, from Equations (2.9) and (2.10), we have

α0(i0) = κ(i0)
T∑
k=1

pkQ
k−1
κ (i0),

β0(i0) = ν(i0)
T∑
k=1

pkQ
k−1
ν (i0).

Applying the above values for θ0(i0), α0(i0) and β0(i0) in Theorem 2.5 and Corollaries 2.7 and 2.8, the efficient
frontier and the optimal strategies of problems P (µ), P (σ) and P (ω) can be computed.
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Besides the above conditions, let the exit-time is certain (as it is assumed in [4]), i.e., p1 = p2 =, . . . ,=
pT−1 = 0 and pT = 1. Then, one can get the values of α0(i0) and β0(i0) as follows,

α0(i0) = κ(i0)QT−1
κ (i0),

β0(i0) = ν(i0)QT−1
ν (i0).

Also, θ0(i0) can be computed by substituting

θn(i) =

(
QT−nν (i)

)2
QT−nκ (i)

ε(i)

in (2.6). Using the obtained values for θ0(i0), α0(i0) and β0(i0), the efficient frontier and optimal strategies of
problems P (µ), P (σ) and P (ω) can be computed.

3.2. No regime-switching

Assume that there is no Markov regime-switching (as it is assumed in [6, 32]). Then, the parameters in
(2.1)–(2.4) reduce to the following forms,

εn = E
[
R̃′n
]
E−1

[
R̃nR̃

′
n

]
E
[
R̃n
]
, (3.1)

νn = E
[
rn,0

]
− E

[
R̃′n
]
E−1

[
R̃nR̃

′
n

]
E
[
rn,0R̃n

]
, (3.2)

κn = E
[
r2n,0

]
− E

[
rn,0R̃

′
n

]
E−1

[
R̃nR̃

′
n

]
E
[
rn,0R̃n

]
, (3.3)

θn =

(∑T
k=n pk

∏k−1
m=n νm

)2∑T
k=n pk

∏k−1
m=n κm

εn−1. (3.4)

Also, we have

θ0 =
T∑
k=1

θk,

α0 =
T∑
k=1

pk

k−1∏
m=0

κm,

β0 =
T∑
k=1

pk

k−1∏
m=0

νm.

Moreover, the optimal strategy in (2.8) reduces to

π∗n(wn) = −E−1
[
R̃nR̃

′
n

](
wnE

[
rn,0R̃n

]
+ a

∑T
k=n+1 pk

∏k−1
m=n+1 νm∑T

k=n+1 pk
∏k−1
m=n+1 κm

E
[
R̃n
])

,

for n = 0, 1, . . . , T − 1.

3.3. No regime-switching with certain exit-time

Problems P̃ (µ), P̃ (σ) and P̃ (ω) can be considered, respectively, as special cases of problems P (µ), P (σ) and
P (ω) when there is no Markov regime-switching and the exit-time is certain (see [12]). In this case, we have
Equations (3.1)–(3.3) and

θn =

(∏T−1
m=n νm

)2∏T−1
m=n κm

εn−1.
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Also,

θ0 =
T∑
k=1

θk, α0 =
T−1∏
m=0

κm, β0 =
T−1∏
m=0

νm.

Moreover, the optimal strategy in (2.8) reduces to

π∗n(wn) = −E−1
[
R̃nR̃

′
n

](
wnE

[
rn,0R̃n

]
+ a

∏T−1
m=n+1 νm∏T−1
m=n+1 κm

E
[
R̃n
])

,

for n = 0, 1, . . . , T − 1.

4. Numerical example

Consider a market consisting of one risky asset and one riskless asset. It is assumed that the Markov chain is
time-homogeneous. Let T = 3 and there are two market states, state 1 and state 2, with transition probability

matrix Q =
(

0.7 0.3
0.4 0.6

)
. For the given time period n (n = 0, 1, 2) and the market state i (i = 1, 2), the return of

the riskless asset is rn,0(i) = 1 + 0.01(n + 1)i, and the return of the risky asset is log-normal distributed such
that log rn,1(i) ∼ N( 2.5+i

10 , 2+n
10 ). Using these assumptions, we have

A =

 0.5583 0.7133
0.6287 0.7821
0.7033 0.8555

 , B =

0.8563 1.1739
1.3463 1.7733
1.9721 2.5366

 ,

where A(n+ 1, i) = E[R̃n(i)] and B(n+ 1, i) = E[(R̃n(i))2], for n = 0, 1, 2 and i = 1, 2.
Assume that the probability mass function of the real exit-time T ∧τ is (p1, p2, p3) = (0.2, 0.3, 0.5). We further

have

C =

 0.6837 0.6751
0.6832 0.6806
0.5000 0.5000

 , D =

 0.7077 0.7023
0.6981 0.6988
0.5000 0.5000

 ,

where

C(n, i) =
3∑

k=n

pk

k−1∏
m=n

Qνm
(i), D(n, i) =

3∑
k=n

pk

k−1∏
m=n

Qκm
(i).

Also, α0 = (0.4591, 0.4140)′, β0 = (0.4391, 0.3902)′ and θ0 = (0.5792, 0.6314)′.
Assume that an investor has an initial wealth w0 = 1. Optimal strategies of problems P (µ), P (σ) and P (ω)

can be computed after substituting appropriate values for a in the following,

π∗n(i, wn) = −
[
wnrn,0(i) + a

C(n+ 1, i)
D(n+ 1, i)

]
B(n+ 1, i)−1A(n+ 1, i), n = 0, 1, 2.

Also, the efficient frontier for the given initial state i0 becomes

σ2(µ) =
1− θ0(i0)
θ0(i0)

(
µ− β0(i0)

1− θ0(i0)

)2

+ α0(i0)−
(
β0(i0)

)2
1− θ0(i0)

,

where σ2(µ) is the optimal terminal variance corresponding to the expected terminal wealth µ. The efficient
frontiers for initial states i0 = 1, 2, corresponding to the certain and uncertain exit-time are demonstrated in
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Figure 1. Efficient frontiers for i0 = 1, 2, corresponding to the
certain and uncertain exit-time.
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Figure 1. Efficient frontiers for i0 = 1, 2, corresponding to the certain and uncertain exit-time.

Figure 1. Figure 1 implies that the uncertain exit-time increases the risk of the investment. It is obvious from
Figure 1 that the investor with the certain exit-time will suffer less risk than the one with the uncertain exit-
time to achieve the same expected terminal wealth. Moreover, it can be seen that the global minimum variance
portfolios have non-zero risk over T= 3 periods, in spite of the existence of the riskless asset. This is due to
the fact that investing in the riskless asset over three periods has a random return since the market states are
stochastic.
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