
RAIRO-Oper. Res. 53 (2019) 1155–1169 RAIRO Operations Research
https://doi.org/10.1051/ro/2018046 www.rairo-ro.org

A NOVEL APPROACH TO STOCHASTIC INPUT-OUTPUT MODELING

Marta Kozicka1,∗

Abstract. An approach to input-output modeling is proposed in which the inner consumption and
the final demand are random. The main aspects of its novelty are: (a) the economy is allowed to be
nonproductive with a certain probability κ ∈ [0, 1); (b) the economy can be open, which means that
import of the corresponding commodities is included in the model. In this approach, the production-
and-import plan is set to be feasible if the probability of not satisfying the final demand does not
exceed a certain value α ∈ (0, 1). Then the problem of finding optimal plans consists in minimizing the
production and import costs on the set of feasible plans. The solvability of this problem and properties
of the solutions are studied and a concrete example of the stochastic input-output model is analyzed.
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1. The Approach

Input-output analysis (combined with other mathematical and statistical tools) offers a consistent framework
for modeling inter-sectorial relationships in an economic system. It can also be employed to analyze relationships
between the economy, the energy sector, ecology or society, see [16, 17, 20], and even to elaborating new tech-
nologies [7]. Traditional input-output models [14,15,22] describe an economy – a production system consisting
of N ≥ 2 sectors, each of which produces a single homogeneous commodity. All the commodities are measured
in the same unit, and a part of them is used inside the economy for production purposes. That is, a part of
the output for one sector can be used as an input of the other ones. The related problem consists in finding a
production plan x1, . . . , xN ≥ 0 such that the following conditions be satisfied

xi − yi ≥ di, i = 1, . . . , N, (1.1)

where yi is the inner consumption of ith commodity, whereas di ≥ 0 is the final (outer) demand of this commodity
which has to be satisfied. In the simplest input-output model introduced in [14] by Wassily Leontief (awarded
with Nobel Prize in Economics in 1973), each yi is a linear function of x1, . . . , xN , that is,

yi =
N∑
j=1

cijxj , i = 1, . . . , N, (1.2)
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where cij ≥ 0 is the amount of ith commodity needed (consumed) for producing one unit of jth commodity. By
considering column vectors X, Y and D with entries xi, yi and di, respectively, (1.1) and (1.2) can be combined
into the following condition

X − Y = X − CX = (I − C)X ≥ D, (1.3)

where C = (cij)N×N is the inner consumption matrix and I is the N × N identity matrix. The inequality in
(1.3) is supposed to hold entry-by-entry. If the matrix I − C is invertible, the inequality in (1.3) can be solved
by setting X = (I − C)−1D. However, the solution makes sense only if all the entries of the matrix

B = (bij)N×N = (I − C)−1 (1.4)

are nonnegative. In this case, bij is the amount of commodity i which one ought to produce in order to satisfy
the demand of one unit of commodity j, B is called Leontiev’s matrix and the economy itself is considered as
productive. In this work, however, we use a more formal definition consistent with this interpretation.

Definition 1.1. The economy is called productive if the spectral radius of C satisfies r(C) < 1.

In this case, I − C is called a nonsingular M-matrix. For more on the theory of such matrices see Chapter 9
of [1]. Since r(C) < 1, the series in the right-hand side of the expansion

B =
∞∑
n=0

Cn = I + C + C2 + · · ·

converges, and thus the polynomials Bn := I + C + · · ·+ Cn can be used to approximate Leontiev’s matrix.
In real world applications, however, the entries of the inner consumption matrix C are subject to various

random effects. In order to take this fact into account, more realistic input-output models should consider C
as a random matrix. This was understood quite a long time ago, see a review and historical remarks in [9, 21]
and also in ([18], Sect. 2). It turns out that the most mathematically advanced works in this direction are
concentrated on deriving information on the probability distribution of the entries of the Leontief matrix given
the distribution of the entries of C is known, see [10, 23, 24]. A more modest task in this context is to estimate
the coefficients bij , see [11–13,18,19] and ([22], Chap. 14). Of course, the very existence of the Leontief matrix
is possible only if the economy is productive with probability one, which is assumed therein – more or less
explicitly. For instance, in [10] this is done by employing Beta distributions on the interval (0, 1). However, the
almost sure productivity of the economy cannot be expected in general. In view of this, an actual and important
task is to elaborate mathematical concepts and tools of the input-output modeling which covers the case of
nonproductive economies. In this article, we pursue this task on both conceptual and technical levels. Namely,
we propose an approach to stochastic input-output modeling, the novelty of which consists in the following:

(a) the economy is allowed to be nonproductive with a certain probability κ ∈ [0, 1);
(b) a (feasible) production plan is defined as such that the outer (possibly random) demand be satisfied with

probability greater than or equal to 1− α for a prescribed α ∈ (0, 1);
(c) the economy is allowed to be open, which means that the corresponding commodities can also be imported;
(d) optimal plans are chosen among feasible production-and-import plans under the condition of minimizing

objective functions given in the model.

In (a) and (b) we assume that the components of the inner consumption matrix C and the outer demands di
are random variables defined on a common standard probability space (Ω,F,P), see, e.g., [6]. According to (a):
the economy is productive with probability 1− κ > 0, and hence for some nonnegative x1, . . . , xN , the event

A(x1, . . . , xN ) : xi −
N∑
j=1

cijxj ≥ di, i = 1, . . . , N (1.5)
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can occur with a prescribed positive probability. In (b) we propose to define the collection of feasible production
plans as the set of all nonnegative x1, . . . , xN satisfying the condition

P (A(x1, . . . , xN )) ≥ 1− α, (1.6)

holding for some fixed α ∈ (0, 1). The relationship between κ and α are described in Theorem 2.5. In (c) we
propose to include import of the commodities. This may be helpful in satisfying the demand as the amount
zi of the imported commodity of ith type should be added to the left-hand side of the balance condition in
(1.5) in this case. Of course, now the feasibility relates to both production and import plans, see Definition
2.2. Then (d) means that optimal production-and-import plans are chosen to minimize the objective function
ϕ(x1, . . . , xN )+ψ(z1, . . . , zN ) on the set of feasible plans. Here ϕ and ψ are production and import cost functions,
respectively. An important advantage of the proposed approach is that here one deals with the matrix C only,
and hence avoids a complex and tiresome procedure of getting information on the distribution of the Leontief
matrix B. Moreover, our approach admits the following extensions:

(i) Along with random cij and di one can also allow the cost functions be random, which might lead to the
corresponding modification of the optimization problem arising in (d).

(ii) One can include time (discrete or continuous) by considering production and import plans as Markov
processes.

Noteworthy, considering probabilities as in (1.6) was suggested already in [8]. However, the discussion therein
was restricted to the issue of constructing feasible production plans without any suggestion on how to select
optimal ones. In Section 2, we propose and analyze an open stochastic input-output model which realizes the
approach outlined above. In Section 3, we illustrate our approach by analyzing in detail a seemingly simple
model of this kind with N = 2, c11 = c22 = 0 and random (independent) c12 and c21. In spite of such simplifying
assumptions – which allows us to make all the computations explicitly – this model turns out to be rich enough
to reveal the main aspects of the theory.

2. The Open Stochastic Leontief Model

2.1. The model

Let (Ω,F,P) be a standard probability space. We consider an economy with N ≥ 2 sectors, as described
above, in which the entries of both matrices C and D in (1.3) are random variables relative to the mentioned
probability space. We assume that they have finite expectations and hence are almost surely bounded. We
also assume that the commodities produced by the economy are available at an external market, and thus the
economy is a part of an open economic system. Let zi ≥ 0, i = 1, . . . , N , denote the amount of the imported
commodity of type i. Then the balance condition, cf. (1.3), takes the form

X − C(ω)X + Z ≥ D(ω), X ≥ 0, Z ≥ 0, (2.1)

where Z is the corresponding column vector, and the inequalities are supposed to hold entry-by-entry. Let
K ⊂ RN ×RN denote the positive cone, i.e., the set of all pairs (X,Z) with X,Z ≥ 0. For a given ω ∈ Ω, the
set of all those (X,Z) ∈ K for which (2.1) holds is denoted byMω. Clearly,Mω is closed and convex, however,
may be empty. The convexity means that (θX+(1−θ)X ′, θZ+(1−θ)Z ′) ∈Mω holding for each (X,Z) ∈Mω,
(X ′, Z ′) ∈Mω and θ ∈ (0, 1), that can be checked directly by (2.1). For A ∈ F, we define

M(A) =
⋂
ω∈A
Mω. (2.2)

As the intersection of closed convex sets, M(A) is also closed and convex. For α ∈ (0, 1), we then put

M̃α =
⋃

A:P(A)≥1−α

M(A). (2.3)
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The set M̃α can be given the following interpretation. For (X,Z) ∈ K, define

A(X,Z) = {ω : (2.1) holds}. (2.4)

It is clearly an element of F. Then M̃α consists of all those pairs of production and import vectors (X,Z) for
each of which

P(A(X,Z)) ≥ 1− α. (2.5)

In Theorem 2.4 below, we show that due to the openness of the model the sets M̃α are nonempty for each
α ∈ (0, 1). A priori, it may happen that the economy is such that A(X, 0) = ∅ for all X ≥ 0. This merely
means that it is almost surely nonproductive, and the only possibility to satisfy the demand is to import the
corresponding amounts of the commodities. In Theorem 2.5 and Section 3, we analyze such situations in detail.
In particular, we find the relationship between α and the probability κ for the economy to be non-productive.

In contrast to M(A) defined in (2.2), the set M̃α need not be convex. This fact can be an obstacle if one
wants to employ methods of convex analysis in the study the corresponding optimization problem. If this is the
case, as the set of feasible plans we propose to use a convex subset of M̃α defined as follows. By (2.5) we have
that M̃α′ ⊂ M̃α whenever α′ < α. Indeed, if (X,Z) ∈ M̃α′

, then P(A(X,Z)) ≥ 1 − α′ > 1 − α. Let ConvM
stand for the convex hull of a given M ⊂ K. That is, ConvM is the intersection of all convex M′ ⊂ K such
that M⊂M′.

Proposition 2.1. For each α ∈ (0, 1), it follows that

Mα := ConvM̃α/2 ⊂ M̃α.

Proof. By the very definition of the convex hull we have that each (X,Z) ∈ Mα is a convex combination of
some (X ′, Z ′), (X ′′, Z ′′) ∈ M̃α/2, which means that the following holds

X = θX ′ + (1− θ)X ′′, Z = θZ ′ + (1− θ)Z ′′

for some θ ∈ [0, 1]. By (2.1) and (2.5) this means that

A(X,Z) ⊇ A(X ′, Z ′) ∩ A(X ′′, Z ′′). (2.6)

Indeed, if ω belongs to the right-hand side of (2.6), then the inequality (2.1) holds for both (X ′, Z ′) and (X ′′, Z ′′),
cf. (2.4). To employ this fact we use (2.1) twice: first multiply by θ both its sides written with (X ′, Z ′), then
multiply by 1 − θ both sides written with (X ′′, Z ′′). Thereafter, add them side-by-side. This yields that (2.1)
holds also for (X,Z) and hence ω ∈ A(X,Z). By (2.6) and standard properties of the probability we then have

P(A(X,Z)) ≥ P(A(X ′, Z ′) ∩ A(X ′′, Z ′′))

≥ P(A(X ′, Z ′)) + P(A(X ′′, Z ′′))− 1

≥
(

1− α

2

)
+
(

1− α

2

)
− 1 = 1− α.

Thus, (X,Z) ∈ M̃α, which completes the proof. �

Definition 2.2. For a given α ∈ (0, 1), M̃α (resp. Mα) is called the set (resp. convex set) of feasible plans.
The realization of a feasible plan allows one to satisfy the outer demand with probability not less than 1− α.

For the production vector X (resp. the import vector Z), we denote the cost of its realization by ϕ(X) (resp.
ψ(Z)).
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Definition 2.3. A feasible plan (X∗, Z∗) is called optimal if, for all other feasible plans (X,Z), the following
condition holds

ϕ(X∗) + ψ(Z∗) ≤ ϕ(X) + ψ(Z). (2.7)

The ultimate goal of the analysis of the model which we thus propose is to find optimal plans. Its realization
consists in constructing the set of feasible plans M̃α, and then solving the optimization problem (2.7) on this
set. If both ϕ and ψ are convex functions, one can employ the convex set of feasible plans Mα (instead of
M̃α) and then apply powerful tools of convex optimization (see, e.g., [5]). Note, however, that an optimal plan
(X∗, Z∗) ∈Mα found thereby need not be optimal on the whole set M̃α ifMα is a proper subset of the latter,
see Proposition 2.1. Clearly, this realization crucially depends on the concrete model and may be quite complex.

2.2. The properties

Here we analyze some aspects of the approach presented above and discuss possible ways to find optimal
plans.

2.2.1. Estimating the probability of productivity

Let r(C) denote the spectral radius of the inner consumption matrix C. It is clearly a random variable taking
positive values with probability one. Since the entries of C are almost surely nonnegative, r(C) is an eigenvalue
of C such that any of its other eigenvalues, λ(C), satisfies |λ(C)| ≤ r(C), see Theorem 1.1 of [1]. Thus, r(C) is a
root of the characteristic polynomial of C. The coefficients of this polynomial are random variables expressed in
terms of the entries of C. In general, finding probability distributions of r(C) as a root of a random polynomial
is a hard problem, see [4]. Instead, we propose a more realistic method of estimating r(C) based on the following
arguments. For a fixed ε ∈ (0, 1), let us consider the event

Aε = {ω : r(C(ω)) ≤ 1− ε}. (2.8)

Let {εn}n∈N ⊂ (0, 1) be a decreasing sequence such that εn → 0 as n→ +∞. Then Aεn
⊂ Aεn+1 for all n, and

the event
A :=

⋃
n≥1

Aεn
= {ω : r(C(ω)) < 1} (2.9)

is merely the productivity of the economy, see Definition 1.1. Clearly, it does not depend on the particular choice
of the sequence {εn}. The probability of A can be calculated if the probability distribution of r(C) is known.
The essence of the proposed method is that P(A) can be estimated from below as follows. Consider the random
variables:

si =
N∑
j=1

cij , s∗ = max
i
si, (2.10)

and the event
A∗ε = {ω : s∗(ω) ≤ 1− ε}. (2.11)

Then by ([1], Thm. 2.35, p. 37) one has that

P(A∗ε) ≤ P(Aε). (2.12)

Since {Aεn
}n∈N is an ascending sequence, we have that P(Aεn+1) ≥ P(Aεn

), and

P(A) = lim
n→+∞

P(Aεn
). (2.13)

Also by (2.9) and (2.12) it follows that

1− κ := P(A) ≥ sup
ε∈(0,1)

P(A∗ε). (2.14)
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The random variables defined in (2.10) are order statistics; their probability distributions, and hence the prob-
abilities of the events defined in (2.11), can be found in a standard way if the distribution of the entries cij is
known (see e.g., [2]). In Section 3, we return to discussing this issue.

2.2.2. Feasible plans and productivity

Our first result is a statement on the existence of feasible plans, see Definition 2.2.

Theorem 2.4. For each α ∈ (0, 1), the sets M̃α and Mα are nonempty.

Proof. Recall that we have assumed the almost-sure boundedness of the entries of C and D. Let Z ≥ 0 be
such that the event GZ := {ω : D(ω) ≤ Z} satisfies P(GZ) ≥ 1 − α, which is possible for each α > 0. Then
(0, Z) ∈ M̃α. Next, take any X ≥ 0 and then Z ≥ 0 such that the event HXZ := {ω : C(ω)X +D(ω) ≤ X +Z}
satisfies P(HXZ) ≥ 1−α. Then (X,Z) ∈ M̃α. This also yields that M̃α is unbounded. Since M̃α/2 is nonempty,
by M̃α/2 ⊂ ConvM̃α/2 =Mα we have that Mα 6= ∅, holding for all α ∈ (0, 1). �

From this proof one can see the role of the import of commodities for securing the existence of feasible plans.
Now let us analyze the possibility of having feasible plans with the zero import, i.e., such that Z = 0. Recall
that A is defined in (2.9).

Theorem 2.5. Let the economy be productive with probability P(A) = 1 − κ for some κ ∈ (0, 1), cf. (2.14).
Then, for each δ > 0, the set M̃κ+δ of feasible plans contains (X, 0) with some X ≥ 0.

Proof. Take any decreasing sequence {εn}n∈N ⊂ (0, 1) such that ε→ 0. Then for a given n ∈ N and an arbitrary
ω ∈ Aεn , there exists the Leontief matrix B(ω) = (I − C(ω))−1. Its entries are nonnegative and, according to
Corollary 2.9.4 of [3], there exists a norm on RN such that the operator norm of B(ω) is equal to its spectral
radius r(B(ω)) = [1− r(C(ω))]−1 ≤ ε−1

n (see (2.8)). According to our assumptions, the norm of D(ω) is almost-
surely bounded. Hence, for an arbitrary δ > 0 one can take η > 0 such that the event Cη = {ω : ‖D(ω)‖ ≤ η}
satisfies P(Cη) = 1− δ/2. By the additivity of P we then have

P(Aεn ∩ Cη) = P(Aεn) + P(Cη)− P(Aεn ∪ Cη)

≥ P(Aεn
) + (1− δ/2)− 1 = P(Aεn

)− δ/2.

For each ω ∈ Aεn
∩ Cη, we have that

‖B(ω)D(ω)‖ ≤ ‖B(ω)‖ · ‖D(ω)‖ ≤ η

εn
. (2.15)

Now we take X ≥ 0 such that X ≥ W for all W ≥ 0 satisfying ‖W‖ ≤ η/εn. In view of (2.15), for each
ω ∈ Aεn ∩ Cη this vector X satisfies

X ≥ B(ω)D(ω),

and hence (X, 0) ∈ M̃αn with αn = 1 − P(Aεn
) + δ/2. By (2.13) we have that P(Aεn

) → 1 − κ − 0 as
n→ +∞. Thus, there exists nδ such that αn ≤ 1−κ + δ for all n > nδ. Hence, M̃αn ⊂ M̃κ+δ, that completes
the proof. �

3. The Example

3.1. The setup

For the sake of simplicity, we take N = 2 and assume that only c12 and c21 are random, whereas d1 and
d2 are deterministic. Moreover, we set c11 = c22 = 0. Next, we suppose that c12 and c21 are independent and
uniformly distributed on the intervals [0, a] and [0, b], respectively. The latter fact yields

P(c12 ≤ µ) =
µ

a
, P(c21 ≤ ν) =

ν

b
, (3.1)
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holding for µ ∈ [0, a] and ν ∈ [0, b]. Here a and b are positive parameters. Due to this choice of the model, most
of the calculations can be performed explicitly. However, as follows from the analysis below, the theory of this
seemingly simple model is not so simple, and the model itself is rich enough to be able to illustrate the main
aspects of our approach. Considering more involved cases (more random cij , more complex laws of cij , random
di, N > 2) would cause the necessity to use much more involved mathematical means, including numerical
methods. This definitely does not correspond to our intension in this work and is far beyond of its scope.

3.1.1. Productivity

Due to the assumptions made above, the spectral radius of C can be calculated explicitly as the root of the
characteristic polynomial

hC(λ) = λ2 − c12c21,
and hence

r(C) =
√
c12c21. (3.2)

We use this formula and the laws of c12 and c21 (see (3.1)) to find that

P(r(C) ≤ x) =


0, x ≤ 0;

x2

ab

[
1 + ln a+ ln b− lnx2

]
, x ∈ (0,

√
ab];

1 x >
√
ab.

(3.3)

If ab < 1, then r(C) < 1 and thus the economy is productive with probability one. Henceforth, we assume

ab > 1. (3.4)

In view of (3.4), the economy can be nonproductive with positive probability κ. To find this probability we use
(2.9), (2.14), (3.3) and obtain

1− κ = P(r(C) < x) = P(r(C) ≤ x) =
1
ab

[1 + ln (ab)] ,

which yields
κ = [ab− 1− ln (ab)] /ab > 0. (3.5)

Now we can use (3.5) to check the accuracy of the estimate in (2.14). By (2.10) we have that s∗ = max{c12; c21}.
Then, for some ε > 0,

A∗ε = {ω : r(C(ω)) ≤ 1− ε} = {ω : c12(ω) ≤ 1− ε} ∩ {ω : c21(ω) ≤ 1− ε}.

Note that, in view of (3.2), r(C) ≤ 1− ε for each ω ∈ Aε. By (2.14) we then have

1− κ ≥ P(A∗ε) = P(c12 ≤ 1− ε)P(c21 ≤ 1− ε) (3.6)

=


(1−ε)2
ab , if min{a; b} > 1− ε;

1−ε
b , if a ≤ 1− ε, b > 1− ε;

1−ε
a , if b ≤ 1− ε, a > 1− ε.

Here we have used that ab > 1 and also that c12 and c21 are independent and uniformly distributed on [0, a]
and [0, b], respectively, see (3.1). Since ε in (3.6) is arbitrary, the best estimate for κ is attained for ε = 0, cf.
(2.14). This yields

κ ≤ 1−min
{

1
ab

;
1
a

;
1
b

}
. (3.7)

For example, if a > 1 and b > 1, then by (3.7) we have that κ ≤ 1− 1/ab whereas its exact value is 1− 1/ab−
ln (ab)/ab.
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3.1.2. Feasible plans

For the considered example, the balance conditions (2.1) take the form:{
x1 − c12x2 + z1 ≥ d1

x2 − c21x1 + z2 ≥ d2.

This imposes the corresponding bounds on the values of random c12 and c21. Keeping them in mind we define

A1(x1, x2, z1, z2) = {ω : c12(ω) ∈ [0, (x1 + z1 − d1)/x2]}, (3.8)

A2(x1, x2, z1, z2) = {ω : c21(ω) ∈ [0, (x2 + z2 − d2)/x1]}.

Since both c12 and c21 are nonnegative, we have that

A1(x1, x2, z1, z2) 6= ∅, A2(x1, x2, z1, z2) 6= ∅,

holding if and only if the following conditions are satisfied:

x1 + z1 ≥ d1, x2 + z2 ≥ d2. (3.9)

At the same time, the event defined in (2.4) now is

A(X,Z) = A1(x1, x2, z1, z2) ∩ A2(x1, x2, z1, z2).

Set
πi(x1, x2, z1, z2) = P[Ai(x1, x2, z1, z2)], i = 1, 2.

Since c12 and c21 are independent, we have that

P(A(X,Z)) = π1(x1, x2, z1, z2)π2(x1, x2, z1, z2).

Then (2.5) takes the form
π1(x1, x2, z1, z2)π2(x1, x2, z1, z2) ≥ 1− α. (3.10)

By (3.8) and (3.1) we get

π1(x1, x2, z1, z2) =

{
(x1 + z1 − d1)/ax2, if x1 + z1 − d1 ≤ ax2;

1, if x1 + z1 − d1 ≥ ax2.
(3.11)

π2(x1, x2, z1, z2) =

{
(x2 + z2 − d2)/bx1, if x2 + z2 − d2 ≤ bx1;

1, if x2 + z2 − d2 ≥ bx1.

Then the relevant pairs of conditions that appear in (3.11) are

x1 + z1 − d1 ≤ ax2 and x2 + z2 − d2 ≤ bx1, (a) (3.12)

x1 + z1 − d1 ≤ ax2 and x2 + z2 − d2 > bx1, (b)

x1 + z1 − d1 > ax2 and x2 + z2 − d2 ≤ bx1. (c)

We have excluded the combination of the second lines in (3.11) because the case where both inequalities turn
into equalities, i.e., where zi = di (and hence xi = 0) for both i = 1, 2 (resp. for just one of i), is already included
in case (a) (resp. (b) or (c)) of (3.12). For di > zi for both i = 1, 2, the corresponding system of inequalities is{

x1 − ax2 > d1 − z1
−bx1 + x2 > d2 − z2.

In view of (3.4), however, it has no positive solution, and hence the mentioned combination of conditions should
not be considered ass it cannot be satisfied for feasible (X,Z).
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3.1.3. Optimal plans

Now we choose the cost functions, which we take in the form

ϕ(x1, x2) = θ1x1 + θ2x2, ψ(z1, z2) = τ1z1 + τ2z2, (3.13)

with nonnegative parameters θi and τi, i = 1, 2. Here θi is the production cost of ith commodity and τi is the
corresponding price at the outer market. Then the total cost of the production-and-import plan is

f = θ1x1 + θ2x2 + τ1z1 + τ2z2. (3.14)

Clearly, the pure import plan zi = di, i = 1, 2, is feasible, and its cost is τ1d1+τ2f2. Then according to Definition
2.3 the cost f∗ of an optimal plan should satisfy

f∗ ≤ τ1d1 + τ2d2. (3.15)

In view of this, we will not consider those feasible (X,Z) for which the total cost (3.14) fails to satisfy (3.15).
In particular, such that zi > di for at least one of i = 1, 2. It turns out that these are exactly cases (b) and (c)
in (3.12). Indeed, by (b) we have that x2 > d2 − z2 + b(d1 − z1 + ax2), which yields, see also (3.4),

(z2 − d2) + b(z1 − d1) > (ab− 1)x2 ≥ 0.

Hence, zi > di for at least one of i = 1, 2. Case (c) of (3.12) can be ruled out in the same way. Thus, from now
on we take into account only case (a) of (3.12).

Instead of z1 and z2 it is convenient to introduce the following variables

u1 =

{
1, if x1 = x2 = 0, z1 = d1

x1+z1−d1
ax2

, if x2 > 0;
(3.16)

u2 =

{
1, if x1 = x2 = 0, z2 = d2

x2+z2−d2
bx1

, if x1 > 0.
(3.17)

In these new variables, the probabilities πi defined in (3.11) take the form

πi = min{ui, 1}, i = 1, 2. (3.18)

By (3.16) and (3.17) we also have

z1 = au1x2 − x1 + d1, z2 = bu2x1 − x2 + d2. (3.19)

By these formulas we express our “old” variables zi through the new ones. In view of zi ≥ 0 for both i = 1, 2,
by (3.19) we get that xi and ui satisfy {

au1x2 − x1 + d1 ≥ 0

bu2x1 − x2 + d2 ≥ 0.
(3.20)

Conditions (3.10) and case (a) of (3.12) imply, see also (3.18), that the pairs (u1, u2) ought to belong to the
following set of feasible values

Uα = {(u1, u2) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, u1u2 ≥ 1− α}. (3.21)

In the new variables, the total cost function (3.14) takes the form

f(x1, x2, u1, u2) = ϕ(x1, x2) + ψ(au1x2 − x1 + d1, bu2 − x2 + d2)

= g(x1, x2, u1, u2) + τ1d1 + τ2d2, (3.22)
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with

g(x1, x2, u1, u2) = %1x1 + %2x2, (3.23)

%1 = θ1 − τ1 + bτ2u2,

%2 = θ2 − τ2 + aτ1u1.

Then by (3.15) an optimal collection x∗1, x∗2, u∗1 and u∗2 ought to satisfy

g(x∗1, x
∗
2, u
∗
1, u
∗
2) ≤ 0. (3.24)

3.2. Finding optimal solutions

In view of (3.23), both %i are increasing functions of u1 and u2. By (3.22) and (3.24) this means that optimal
values of (u1, u2) ∈ Uα lie on the arc

Ξα = {(u1, u2) : u1 = ξ, u2 = (1− α)/ξ, ξ ∈ [1− α, 1]}, (3.25)

of the hyperbola u1u2 = 1 − α, which is one of the boundaries of (3.21). On this arc, %i can be considered as
functions of ξ ∈ [1− α, 1], which we denote by %i(ξ). Hence,

%1(ξ) = θ1 − τ1 + bτ2(1− α)/ξ, (3.26)

%2(ξ) = θ2 − τ2 + aτ1ξ.

In view of (3.24), the crucial role in minimizing g belongs to the signs of %i. With this regard let us consider
the following cases:

(a) inf
ξ∈[1−α,1]

%i(ξ) ≥ 0, for both i = 1, 2; (3.27)

(b) sup
ξ∈[1−α,1]

%i(ξ) < 0, for both i = 1, 2;

(c) %i(ξi) = 0, ξi ∈ (1− α, 1) for at least one of i = 1, 2.

Respectively, we have the following options in choosing optimal plans.

3.2.1. Import is preferable

Import is preferable if the solution x1 = x2 = 0 is optimal. By (3.9) we then get that zi = di, i = 1, 2, in
this case. By (3.22) and (3.24) the optimality of this solution is equivalent to case (a) in (3.27), which can be
rewritten in the form

τ1 − θ1 ≤ (1− α)bτ2, (3.28)

τ2 − θ2 ≤ (1− α)aτ1.

Conclusion 3.1. The solution x1 = x2 = 0 and z1 = d1, z2 = d2 is optimal if and only if the model parameters
satisfy both conditions in (3.28). In this case the total cost is f = τ1d1 + τ2d2.

The economical meaning of the conditions in (3.28) can be seen from the following. By (3.1) the value which
c21 does not exceed with probability 1−α is (1−α)b. Let us compare the costs of the following two options: (a)
to import one unite of the first commodity, and hence to spend τ1; (b) to produce the mentioned unit. Option
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(b) is related to buying c21 units of the second commodity needed for the production. With probability 1 − α
the related cost is (1 − α)bτ2, and thus the total cost of option (b) is θ1 + (1 − α)bτ2. According to the first
inequality in (3.28), option (a) is preferable. In a similar way, one can interpret the second inequality.

Clearly, both conditions in (3.28) are satisfied if the import prices are lower then the corresponding production
costs. However, import is preferable even if the import prices are somewhat higher. The reason is that the
production is related to inner production costs, that appear in the right-hand sides of the mentioned conditions.
Since the case of τi ≤ θi for both i = 1, 2 is completely described in Conclusion 3.1, from now on we assume
that τi > θi for at least one i = 1, 2.

3.2.2. Production in preferable

By (3.26) condition (b) in (3.27) takes the form

τ1 − θ1 > bτ2, τ2 − θ2 > aτ1. (3.29)

Similarly as in the case of pure import, these conditions can be interpreted as follows. By (3.1) c21 does not
exceed b almost surely. Then the cost of producing one unit of the first commodity – related to buying c21 units
of the second one – is θ1 + bτ2 in the worst case where c21 takes its maximum value. According to the first
condition in (3.29), this is smaller than the corresponding import cost. If (3.29) is satisfied, then

g = %1(ξ)x1 + %2(ξ)x2 < 0, (3.30)

for all xi > 0. The optimal values of xi and ξ are those which minimize g on the set, cf. (3.20),{
x1 − aξx2 ≤ d1,

− b(1−α)
ξ x1 + x2 ≤ d2.

(3.31)

with positive x1, x2 and ξ ∈ [1−α, 1]. This nonlinear optimization problem will be solved in the following steps.
First, we fix ξ and consider the problem of minimizing g given in (3.30) on the set defined by the constraints in
(3.31), that is a standard task of linear programming. Then the minimum value of g is attained at the corner
point

x1 = x∗1(ξ) :=
1
γ

[d1 + aξd2], (3.32)

x2 = x∗2(ξ) :=
1
γ

[d2 + b(1− α)d1/ξ],

that corresponds to the equalities in (3.31) and hence to the choice z1 = z2 = 0. By this the first step of solving
the mentioned nonlinear problem has been completed. Here

γ := 1− (1− α)ab > 0, (3.33)

and its positivity is necessary for x∗1(ξ) ≥ 0 and x∗2(ξ) ≥ 0 to hold. Next, to find the optimal value of ξ we plug
(3.32) in (3.30) and consider the function

w(ξ) := %1(ξ)x∗1(ξ) + %2(ξ)x∗2(ξ) (3.34)

=
1
γ

(θ1d1 + θ2d2) +
aθ1d2

γ
ξ +

(1− α)bd1θ2
γξ

− τ1d1 − τ2d2,
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with ξ taking values in [1− α, 1]. Thus, the problem now is reduced to minimizing w on the latter interval. To
this end we calculate

w′(ξ) =
bd1θ2
γ

(
θ1
θ2
· ad2

bd1
− 1− α

ξ2

)
·

Depending on the value of the parameters in (· · · ) in the latter formula, for this derivative as a function defined
on [1−α, 1] one has the following options: (a) it has a simple root in (1−α, 1); (b) w′(ξ) ≤ 0 for all ξ ∈ [1−α, 1];
(c) w′(ξ) > 0 for all ξ ∈ [1− α, 1]. Let us analyze these cases. If the following holds

(1− α)bd1

ad2
<
θ1
θ2

<
bd1

(1− α)ad2
, (3.35)

then w′(1−α) < 0 and w′(1) > 0. This means that option (a) takes place and hence w attains its minimum at

ξ∗ =

√
(1− α)θ2bd1

θ1ad2
∈ (1− α, 1), (3.36)

which readily follows by (3.35). For
θ1
θ2
≤ (1− α)bd1

ad2
, (3.37)

w′(ξ) ≤ 0 for all ξ ∈ [1− α, 1]; hence, the minimum of w is attained at ξ∗ = 1. Finally, for

θ1
θ2
≥ bd1

(1− α)ad2
, (3.38)

w′(ξ) ≥ 0 for all ξ ∈ [1− α, 1], and the minimum of w is attained at ξ∗ = 1− α. In all these cases, the optimal
solution is obtained from (3.32) in the form

x∗1 =
d1

γ
+
ad2ξ∗
γ

, x∗2 =
d2

γ
+

(1− α)bd1

γξ∗
, (3.39)

with the corresponding value of ξ∗. Note that the first summands in these expressions correspond to the amounts
of the produced commodities used directly to satisfying the external demand, whereas the second summands
correspond to the amounts used for the inner consumption. These formulas may have the following economical
interpretation. The condition in (3.37) can also be written in the form

ad2θ1
γ
≤ (1− α)bd1θ2

γ
.

If it holds, then the cost of the production of the first commodity for the inner consumption is smaller than that
of the second commodity. Then the optimality of the solution is in favor of producing the first commodity. In a
similar way, one may interpret the condition in (3.38) that favorites the production of the second commodity.
Obviously, the conditions in (3.35) correspond to the intermediate case.

Conclusion 3.2. Let the conditions in (3.29) be satisfied. Then the solution x1 = x∗1, x2 = x∗2, z1 = z2 = 0 is
optimal. Here x∗i , i = 1, 2, are given in (3.39) with ξ∗ = RHS (3.36), ξ∗ = 1, ξ∗ = 1−α for the model parameters
satisfying (3.35), (3.37) and (3.38), respectively.

3.2.3. The intermediate cases

Here we consider case (c) in (3.27). Assume that %1(ξ1) = 0 for some ξ1 ∈ (1− α, 1). Then

ξ1 =
(1− α)bτ2
τ1 − θ1

, (3.40)
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and the condition ξ1 ∈ (1− α, 1) implies

(1− α)bτ2 < τ1 − θ1 < bτ2. (3.41)

That is, the import price τ1 is intermediate as compared to the cases described in (3.29) and (3.28). With regard
to %2 we have the following possibilities:

(i) %2(ξ) ≥ 0, for all ξ ∈ [1− α, 1]; (3.42)

(ii) %2(ξ) < 0, for all ξ ∈ [1− α, 1];

(iii) %2(ξ2) = 0, for some ξ2 ∈ (1− α, α).

In case (i), we have that %1(ξ)x1 +%2(ξ)x2 ≥ %1(ξ)x1, holding for all feasible xi and ξ. Thus, we set x∗2 = 0, that
by (3.20) yields x1 ≤ d1. By the latter, for ξ ≥ ξ1 and hence for %1(ξ) ≤ 0, we have %1(ξ)x1 ≥ %1(1)d1, which
means that the optimal solution is x∗1 = d1 and ξ∗ = 1. By (3.19) this yields z1 = 0 and z2 = b(1− α)d1 + d2.
Here we have taken into account that u2 = (1− α)/ξ, see (3.25).

In case (ii) in (3.42), we have to minimize %1(ξ)x1 + %2(ξ)x2 on the set of (x1, x2) satisfying (3.20) and
ξ ∈ (ξ1, 1]. The only difference between this problem and that in case (b) of (3.27) solved above (see Conclusion
3.2) is that in the latter one we dealt with ξ ∈ [1− α, 1]. Therefore, we first obtain x∗1(ξ) and x∗2(ξ), see (3.32),
which we plug in (3.30) and thus arrive at (3.34) with the only difference that w given therein has to be
minimized on (ξ1, 1]. In this task, we have the following cases: ξ1 defined in (3.40) and ξ∗ as in Conclusion 3.2
satisfy (a) ξ∗ < ξ1; (b) ξ∗ ≥ ξ1. Case (a) (resp. (b)) naturally includes ξ∗ = 1−α (resp. ξ∗ = 1). Then by (3.36),
(3.38) and (3.40) we conclude that case (a) takes place if the model parameters satisfy the following condition:

τ1 − θ1 < τ2

√
(1− α)abθ1d2

θ2b1
. (3.43)

Clearly, case (b) corresponds to the opposite inequality in (3.43). In case (a) w′(ξ) > 0 for all (feasible) ξ ∈ [ξ1, 1].
Hence the optimal solution is ξ∗ = ξ1. In case (b) the interval [ξ1, 1] contains ξ∗ mentioned in Conclusion 3.2,
which means that this ξ∗ is the solution of the problem in question.

In case (iii) of (3.42), by (3.26) we find

ξ2 =
τ2 − θ2
aτ1

, (3.44)

which also implies, cf. (3.41)
(1− α)aτ1 < τ2 − θ2 < aτ1. (3.45)

For this ξ2 and ξ1 given in (3.40) we have the following possibilities: (a) ξ2 < ξ1; (b) ξ2 ≥ ξ1. By (3.40) and
(3.44) we get that case (a) corresponds to the following condition(

1− θ1
τ1

)(
1− θ2

τ2

)
< (1− α)ab = 1− γ, (3.46)

see (3.33). Case (b) corresponds to the opposite sign in (3.46), which immediately yields that both τi > θi (the
case of both τi ≤ θi is described in Conclusion 3.1). In case (a) we have the following situation with the signs
of %i(ξ):

(i) %2(ξ) ≤ 0, %1(ξ) > 0, for ξ ∈ [1− α, ξ2], (3.47)

(ii) %2(ξ) > 0, %1(ξ) > 0, for ξ ∈ (ξ2, ξ1)

(iii) %2(ξ) > 0, %1(ξ) ≤ 0, for ξ ∈ [ξ1, 1].
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In view of the fact that g = %1x1 + %2x2, g > 0 for ξ ∈ (ξ2, ξ1). For ξ ∈ [1− α, ξ2], we take x∗1 = 0 and obtain,
cf. (3.45),

g = %2(ξ)x2 ≥ %2(1− α)d2 = −(τ2 − θ2 − aτ1(1− α))d2. (3.48)

For ξ ∈ [ξ1, 1], we take x∗2 = 0 and obtain, cf. (3.41),

g = %1(ξ)x1 ≥ %1(1)d1 = −(τ1 − θ1 − bτ2(1− α))d1. (3.49)

Then the optimal solution is found by comparing (3.49) and (3.48). For instance, if

(τ1 − θ1 − bτ2(1− α))d1 > (τ2 − θ2 − aτ1(1− α))d2, (3.50)

then the optimal solution is x∗1 = d1, x∗2 = 0, z∗1 = 0, z∗2 = d2. In case of the opposite strict inequality in (3.50),
one takes x∗1 = 0, x∗2 = d2, z∗1 = d1, z∗2 = 0. In case of equality in (3.50), both these solutions get optimal.

Let us now study the case where ξ2 ≥ ξ1. If ξ2 = ξ1, which corresponds to the equality in (3.46), the optimal
solution is ξ = ξ1 = ξ2, and hence %1 = %2 = 0. As in the case described in Conclusion 3.1, this corresponds to
the pure import solution x∗1 = x∗2 = 0, z∗1 = d1, z∗2 = d2. For ξ2 > ξ1, similarly as in (3.47) we obtain that both
%i(ξ) are non-positive only if ξ ∈ (ξ1, ξ2).

3.3. Concluding remarks

The intervals characterizing the probability distributions of c12 and c21 were chosen for simplicity of cal-
culations to be [0, a] and [0, b], respectively. A more realistic version would be [a−, a+] and [b−, b+] for some
0 < a− < a+ and 0 < b− < b+. In that case, one allows the coefficients to randomly oscillate in the mentioned
intervals. In principle, this version could also be treated by the method applied in this article with possible
complications caused by the appearance of additional two parameters. Other choices of the probability laws
of the entries of C were discussed in papers [8, 10], but only in the context of finding the laws of the entries
of the Leontief matrix B given in (1.4), assuming that this matrix exists and thus the economy is productive
with probability one. Nowhere the possibility for the economy be nonproductive was considered and, therefore,
nowhere finding production plans for such an economy was formulated as an optimization problem. The choice
of the objective functions in (3.13) was also dictated by our wish to make the calculations simple and transpar-
ent. Note that we have dealt with the whole set M̃α defined in (2.3) as we managed to apply direct means of
finding optimal solutions rather than relied on general methods of convex optimization.

The parameter γ introduced in (3.33) reflects the very essence of our approach. Namely, typically ab exceeds
1, cf. (3.4), but not too much. Then the “numerical effect” of passing to the condition in (1.6) is just multiplying
ab by 1− α, and making thereby the economy productive with probability 1− α since γ > 0. If γ is small, the
economy is “nearly nonproductive”, and hence the optimal plans given in (3.39) are much bigger than those
corresponding to γ = 1. For γ ≤ 0, the economy is almost surely nonproductive, and the solution x1 = x2 = 0
is the only feasible one in this case.

Acknowledgements. The author is grateful to the referee whose valuable remarks were helpful in bringing the paper to
its final form.
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[4] A. Bharucha-Reid and M. Sambandham, Random Polynomials. Academic Press (1986).

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press (2004).



A NOVEL APPROACH TO STOCHASTIC INPUT-OUTPUT MODELING 1169

[6] R. Durrett, Probability: Theory and Examples. Wadsworth & Brooks/Cole (1991).

[7] A. Ebiefung and M. Kostreva, The generalized Leontief input-output model and its application to the choice of new technology.
Ann. Oper. Res. 44 (1993) 161–172.

[8] A. Goicoechea and D.R. Hansen, An input-output model with stochastic parameters for economic analysis. A IIE Trans. 10
(1978) 285–291.

[9] H. Gurgul, Stochastic input-output modeling. Ekon. Mened. 2 (2007) 57–70.

[10] H. Kogelschatz, On the solution of stochastic input-output models. University of Heidelberg. Discussion Paper Series No. 447
(2007).

[11] S. Lahiri, A note on the underestimation and overestimation in stochastic input-output models. Econom. Lett. 13 (1983)
361–366.

[12] S. Lahiri and S. Satchel, Underestimation and overestimation of the Leontief inverse revisited. Econom. Lett. 18 (1985) 181–186.

[13] S. Lahiri and S. Satchel, Properties of the expected value of the Leontief inverse: some further results. Math. Soc. Sci. 11
(1986) 69–82.

[14] W. Leontief, Quantitative Input-Output Relations in the Economic System of the United States. Rev. Econ. Stat. 18 (1936)
105–125.

[15] W. Leontief, Input-Output Economics. 2nd edition. Oxford University Press (1986).

[16] X. Ming, Development of the physical input monetary output model for understanding material flows within ecological-economic
systems. JoRE 1 (2010) 123–134.

[17] C. Oliveira, D. Coelho, and C.H. Antunes, Coupling input-output analysis with multiobjective linear programming models for
the study of economy-energy-environment-social (E3S) trade-offs: a review. Ann. Oper. Res. 247 (2016) 471–502.

[18] J.M. Rueda-Cantuche, E. Dietzenbacher, E. Fernández, E and A.F. Amores, The bias of the multiplier matrix when supply
and use tables are stochastic. Econ. Syst. Res. 25 (2013) 435–448.

[19] A. Simonovits, A note on the underestimations and overestimation of the Leontief matrix. Econometrica 43 (1975), 493–498.

[20] S. Suh and Sh. Kagawa, Industrial ecology and input-output economics: an introduction. Econ. Syst. Res. 17 (2005) 349–364.

[21] U. Temurshoev, Uncertainty treatment in input-output analysis. Universidad Loyola Andaluca. Documentos de Trabajo No. 4
(2015).

[22] T. ten Raa, Linear analysis of competitive economies. LSE Handbooks in Economics. Harvester Wheatsheaf (1995).

[23] T. ten Raa and M.F.J. Steel, Revised stochastic analysis of an input-output model. Reg. Sci. Urban Econ. 24 (1994) 361–371.

[24] G.R. West, A stochastic analysis of an input-output model. Econometrica 54 (1986) 363–374.


	The Approach
	The Open Stochastic Leontief Model
	The model
	The properties
	Estimating the probability of productivity
	Feasible plans and productivity


	The Example
	The setup
	Productivity
	Feasible plans
	Optimal plans

	Finding optimal solutions
	Import is preferable
	Production in preferable
	The intermediate cases

	Concluding remarks

	References

