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BOUNDS FOR SIGNED DOUBLE ROMAN k-DOMINATION IN TREES

Hong Yang1, Pu Wu2, Sakineh Nazari-Moghaddam3,
Seyed Mahmoud Sheikholeslami3,∗, Xiaosong Zhang4, Zehui Shao2

and Yuan Yan Tang1

Abstract. Let k ≥ 1 be an integer and G be a simple and finite graph with vertex set V (G). A signed
double Roman k-dominating function (SDRkDF) on a graph G is a function f : V (G) → {−1, 1, 2, 3}
such that (i) every vertex v with f(v) = −1 is adjacent to at least two vertices assigned a 2 or to at least
one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent to at least one vertex w with
f(w) ≥ 2 and (iii)

∑
u∈N [v]f(u) ≥ k holds for any vertex v. The weight of a SDRkDF f is

∑
u∈V (G)f(u),

and the minimum weight of a SDRkDF is the signed double Roman k-domination number γk
sdR(G) of

G. In this paper, we investigate the signed double Roman k-domination number of trees. In particular,
we present lower and upper bounds on γk

sdR(T ) for 2 ≤ k ≤ 6 and classify all extremal trees.
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1. Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph with vertex set V (G)
and edge set E(G). The integers n(G) = |V (G)| and m(G) = |E(G)| are the order and the size of the graph
G, respectively. For every vertex v ∈ V (G), the open neighborhood NG(v) is the set {u ∈ V (G) | uv ∈ E}
and the closed neighborhood of v is the set N [v] =N(v) ∪ {v}. The degree of a vertex v ∈ V (G) is
degG(v) = deg(v) = |N(v)|. We write Pn for the path of order n. A tree is an acyclic connected graph. A leaf of
a tree T is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex is a
vertex adjacent to at least two leaves. The set of all leaves adjacent to a support vertex v is denoted by Lv. For
a vertex v in a rooted tree T , let C(v) denote the set of children of v, D(v) denote the set of descendants of v
and D[v] =D(v) ∪ {v}. Also, the depth of v, depth(v), is the largest distance from v to a vertex in D(v). The
maximal subtree at v is the subtree of T induced by D[v], and is denoted by Tv. A tree T is a double star if
it contains exactly two vertices that are not leaves. A double star with respectively p and q leaves attached at
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each support vertex is denoted by DSp,q. The corona cor(H) of a graph H, is the graph obtained from H by
adding a pendant edge to each vertex of H. For a subset S ⊆ V (G) and a function f : V (G) → R, we define
f(S) =

∑
x∈S f(x). For a vertex v, we denoted f(N [v]) by f [v] for notional convenience.

A double Roman dominating function (DRDF) is a function f : V (G)→ {0, 1, 2, 3} having the property that
if f(v) = 0, then vertex v must have at least two neighbors assigned 2 under f or one neighbor with f(w) = 3, and
if f(v) = 1, then vertex v must have at least one neighbor with label at least 2. The weight of a double Roman
dominating function f is ω(f) =

∑
v∈V (G) f(v). The double Roman dominating number of G is the minimum

weight of a double Roman dominating function on G. The double Roman domination was introduced by Beeler
et al. [7] and has been studied in [1–3,6, 15,16,20].

A signed Roman k-dominating function (SRkDF) on a graph G is a function f : V (G)→ {−1, 1, 2} satisfying
the conditions that (i)

∑
x∈N [v] f(x) ≥ k for each vertex v ∈ V (G), and (ii) every vertex u for which f(u) = −1

is adjacent to at least one vertex v for which f(v) = 2. The weight of an SRkDF is the sum of its function values
over all vertices. The signed Roman k-domination number of G, denoted γk

sR(G), is the minimum weight of an
SRkDF in G. The signed Roman k-domination number was introduced by Henning and Volkman in [9] and
has been studied in [10–12, 17–19]. The special case k= 1 was introduced and investigated in [5] and has been
studied in [13,14].

In this paper, we continue the study of double Roman dominating functions on graphs. Inspired by the
previous research on the signed Roman k-domination number [9, 10], we define the signed double Roman
k-domination as follows.

Let k ≥ 1 be an integer. A function f : V (G)→ {−1, 1, 2, 3} is a signed double Roman k-dominating function
(SDRkDF) of G if the following conditions are fulfilled:

(i)
∑

x∈N [v] f(x) ≥ k for every vertex v ∈ V (G),
(ii) If f(v) = −1, then vertex v must have at least two neighbors with label 2 or one neighbor with label 3,
(iii) If f(v) = 1, then vertex v must have at least one neighbor with label 2 or label 3.

The weight of a SDRkDF is the sum of its function values over all vertices. The signed double Roman
k-domination number of G, denoted γk

sdR(G), is the minimum weight of a SDRkDF in G. The special case k= 1
has been studied by Ahangar et al. [4]. As the assumption δ(G) ≥ k/3−1 is necessary, we always assume that
when we discuss γk

sdR(G), all graphs involved satisfy δ(G) ≥ k/3 −1. We observe that for any graph G with
δ(G) = 1, for instance all non-trivial trees, k= 1, 2, 3, 4, 5, 6 are all the possible values for k.

A SDRkDF f can be represented by the ordered quadrant (V−1, V1, V2, V3) where Vi = {v ∈ V (G) | f(v) = i}
for i ∈ {−1, 1, 2, 3}. In this representation, its weight is ω(f) = |V1|+ 2|V2|+ 3|V3| − |V−1|.

In this paper, we investigate the signed double Roman k-domination number of trees. In particular, we present
lower and upper bounds on γk

sdR(T ) for 2 ≤ k ≤ 6 and classify all extremal trees.
The following facts are easy to prove.

Observation 1.1. Let T be a tree and let f be an SDRkDF on T where k ≥ 2. Then the following holds.

(i) If v is a leaf and u is its support vertex, then f(v) ≥ 1 or f(u)≥ 1.
(ii) If k≥ 3 and v is a leaf or a support vertex in T , then f(v) ≥ 1.

(iii) If v is a leaf and u is its support vertex, then f(v) + f(u) ≥ k.
(iv) If k= 6 and v is a leaf or a support vertex in T , then f(v) = 3.
(V) For n≥ 1, then γ3

sdR(K1,n) =n+ 2, γ4
sdR(K1,n) =n+ 3, γ5

sdR(K1,n) = 2n+ 3 and γ6
sdR(K1,n) = 3(n+ 1).

(vi) If n(T ) = 1, then γ3
sdR(T ) = 3.

2. Paths

Ahangar et al. [4] show that

γsdR(Pn) =
{
n/3 if n ≡ 0 (mod 3),
dn/3e+ 1 if n ≡ 1, 2 (mod 3).
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In this section, we determine the signed double Roman k-domination number of paths for k= 2, 3, 4, 5, 6 that
are all possible values for k.

Proposition 2.1. For n ≥ 2, γ2
sdR(Pn) =n.

Proof. Let Pn := v1v2 . . . vn. If n ≤ 4, then clearly γ2
sdR(Pn) =n. Let n ≥ 5. To show that γ2

sdR(Pn) ≤ n, define
f : V (Pn)→ {−1, 1, 2, 3} by f(v3i+1) = −1, f(v3i+2) = 3 and f(v3i+3) = 1 for 0 ≤ i ≤ n−3

3 when n ≡ 0 (mod 3),
by f(v3i+3) = f(vn) = −1, f(v3i+2) = f(v3i+4) = 2 for 0 ≤ i ≤ n−7

3 , f(vn−1) = 3 and f(v1) = f(vn−2) = 1 when
n ≡ 1 (mod 3), and by f(v3i+3) = −1, f(v3i+2) = f(v3i+4) = 2 for 0 ≤ i ≤ n−5

3 and f(v1) = f(vn) = 1 if n ≡
2 (mod 3). Clearly, f is an SDR2DF on Pn of weight n and hence γ2

sdR(Pn) ≤ n.
Now we show that γ2

sdR(Pn) ≥ n. We proceed by induction on n. It is not hard to see that γ2
sdR(Pn) =n

for n ≤ 11. Let n ≥ 12 and let the statement hold for all paths of order less than n. Let f = (V−1, V1, V2, V3)
be a γ2

sdR(Pn)-function such that |V3| is as small as possible. Since γ2
sdR(Pn) ≤ n, we have V−1 6= ∅. We first

show that each vertex in V3 is either a leaf or a support vertex. Suppose, to the contrary, that f(vi) = 3 where
3 ≤ i ≤ n−2. By the choice of f , we must have f(vi−1) = −1 or f(vi+1) = −1. Assume without loss of generality
that f(vi−1) = −1. Then we must have f(vi−2) = 1 and f(vi+1) ≥ 1. By reassigning a value 2 to vi, vi−2, we
obtain a γ2

sdR(Pn)-function contradicting the choice of f . Therefore V3 ⊆ {v1, v2, vn−1, vn}. We consider three
cases.

Case 1. f(vi) = −1 for some 3 ≤ i ≤ n− 2.
First let vi have a neighbor in V3. Assume without loss of generality that f(vi−1) = 3. Then we must have i= 3.
Since f is a γ2

sdR(Pn)-function, we must have f(v1) = f(v4) = 1. By reassigning a value 2 to v2, v4, we obtain a
γ2

sdR(Pn)-function contradicting the choice of f . Assume now that f(vi−1) = f(vi+1) = 2. Then clearly f(vi−2) ≥
1 and f(vi+2) ≥ 1. If f(vi+2) ≥ 2 (the case f(vi−2) ≥ 2 is similar), then let Pn−3 be the path obtained from Pn

by removing the vertices vi−1, vi, vi+1 and adding an edge vi+2vi−2. Obviously, the function f , restricted to Pn−3

is an SDR2DF on Pn−3 and by the induction hypothesis we have γ2
sdR(Pn) =ω(f) = 3+ω(f |Pn−3) ≥ n as desired.

Assume that f(vi−2) = f(vi+2) = 1. If f(vi+3) ≥ 1 (the case f(vi−3) ≥ 1 is similar), then let Pn−1 be the path
obtained from Pn by removing the vertex vi+2 and adding an edge vi+1vi+3. Clearly, the function f , restricted
to Pn−1 is an SDR2DF on Pn−1 and by the induction hypothesis we have γ2

sdR(Pn) =ω(f) = 1 + ω(f |Pn−1) ≥ n
as desired. Let f(vi−3) = f(vi+3) = −1. Then we must have f(vi−4) = f(vi+4) = 3. Thus vi+4 (resp. vi−4) is either
a support vertex or a leaf. This implies that n ≤ 11 which is a contradiction.

Case 2. f(v1) = −1 (the case f(vn) = −1 is similar).
Then we must have f(v2) = 3 and f(v3) ≥ 1. If f(v4) ≥ 1, then let Pn−1 be the path obtained from Pn by
removing the vertex v3 and adding an edge v2v4. Clearly, the function f , restricted to Pn−1 is an SDR2DF on
Pn−1 and by the induction hypothesis we have γ2

sdR(Pn) =ω(f) ≥ 1 + ω(f |Pn−1) ≥ n as desired. Assume that
f(v4) = −1. If f(v3) = 1, then we must have f(v5) = 3 and so v5 is either a leaf or a support vertex yielding
n ≤ 6, a contradiction. Hence f(v3) = 2. This implies that f(v5) ≥ 2. As above, we can see that f(v5) = 2. Since
f(v4) + f(v5) + f(v6) ≥ 2, we must have f(v6) ≥ 1. Let Pn−3 be the path obtained from Pn by removing the
vertices v3, v4, v5 and adding an edge v2v6. Clearly, the function f , restricted to Pn−3 is an SDR2DF on Pn−3

and by the induction hypothesis we have γ2
sdR(Pn) =ω(f) ≥ 3 + ω(f |Pn−3) ≥ n as desired.

Case 3. f(v2) = −1 (the case f(vn−1) = −1 is similar).
Since f(v1) + f(v2) ≥ 2, we must have f(v1) = 3. By exchanging the values of v1 and v2, we stay on Case 2 and
the result follows. This completes the proof. �

Now we determine the signed double Roman 3-domination number of paths. Obviously, γ3
sdR(P1) = 3,

γ3
sdR(P2) = 3, and γ3

sdR(P3) = 4.

Proposition 2.2. For n ≥ 4, γ3
sdR(Pn) =n+ 2.

Proof. If n= 4, then clearly γ3
sdR(Pn) = 6 =n + 2. Suppose n ≥ 5 and define f : V (Pn) → {−1, 1, 2, 3} by

f(vn) = 1, f(v3i) = −1 for 1 ≤ i ≤ n−3
3 and f(x) = 2 otherwise, when n ≡ 0 (mod 3), by f(vn) = f(v1) = 1,
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f(v3i+1) = −1 for 1 ≤ i ≤ n−4
3 and f(x) = 2 otherwise, when n ≡ 1 (mod 3), and by f(vn) = 3, f(vn−1) = 1,

f(v3i) = −1, f(v3i−1) = 3 and f(v3i−2) = 1 for 1 ≤ i ≤ n−2
3 when n ≡ 2 (mod 3). It is easy to verify that f is an

SDR3DF of Pn of weight n+ 2 and so γ3
sdR(Pn) ≤ n+ 2.

To prove the inverse inequality, we proceed by induction on n. Clearly, the results hold for n ≤ 7. Let n ≥ 8
and let the statement hold for all paths of order less than n. Assume Pn := v1v2v3 . . . vn be a path of order n
and f = (V−1, V1, V2, V3) is a γ3

sdR(Pn)-function such that |V3| is as small as possible. If V−1 = ∅, then there are
at least dn

3 e vertices in V2 ∪ V3 yielding γ3
sdR(Pn) ≥ n + dn

3 e and this leads to the desired bound. Hence, we
assume V−1 6= ∅. Let vi ∈ V−1. By Observation 1.1, vi is neither a leaf nor a support vertex and by definition
of SDR3DF, vi must have two neighbors in V2 or one neighbor in V3.
First let vi have a neighbor in V3. Assume without loss of generality that f(vi+1) = 3. Since f [vi+1] ≥ 3 and
f [vi] ≥ 3, we have f(vi+2) ≥ 1 and f(vi−1) ≥ 1. If n= i + 2 (resp. i − 2 = 1), then the function f , restricted
to Pn−3 =Pn − {vn, vn−1, vn−2} (resp. Pn−3 =Pn − {v1, v2, v3}), is an SDR3DF of Pn−3 and by the induction
hypothesis we have

γ3
sdR(Pn) ≥ 3 + ω(f |Pn−3) ≥ 3 + γ3

sdR(Pn−3) ≥ 3 + (n− 3 + 2) =n+ 2.

Let 3 ≤ i ≤ n − 3 and Pn−3 be the path obtained from Pn by removing the vertices vi, vi+1, vi+2 and adding
the edge vi−1vi+3. Clearly, the function g : V (Pn−3) → {−1, 1, 2, 3} by g(vi−1) = max{f(vi−1), f(vi+2)} and
g(x) = f(x) otherwise, is an SDR3DF of Pn−3 and by the induction hypothesis we obtain

γ3
sdR(Pn) ≥ 3 + ω(g) ≥ 3 + γ3

sdR(Pn−3) ≥ 3 + (n− 3 + 2) =n+ 2.

Now let vi have two neighbors in V2. That is f(vi−1) = f(vi+1) = 2. Since f [vi+1] ≥ 3 and f [vi−1] ≥ 3, we
must have f(vi+2) ≥ 2 and f(vi−2) ≥ 2. Let Pn−3 be the path obtained from Pn by removing the vertices
vi, vi−1, vi+1 and adding the edge vi−2vi+2. Clearly, the function f , restricted to Pn−3, is an SDR3DF of Pn−3

and the result follows by the induction hypothesis as above. This completes the proof. �

Obviously, γ4
sdR(P2) = 4 and γ4

sdR(P3) = 5.

Proposition 2.3. For n ≥ 4, γ4
sdR(Pn) = d 4n

3 e+ 2.

Proof. Let Pn := v1v2 . . . vn. If n= 4, then clearly γ4
sdR(Pn) = 8 = d 4n

3 e+ 2. Let n ≥ 5. To show that γ4
sdR(Pn) ≤

d 4n
3 e + 2, define f : V (Pn) → {−1, 1, 2, 3} by f(v3i) = f(v3i+1) = 1 for 1 ≤ i ≤ bn−3

3 c and f(x) = 2 otherwise
when n ≡ 0, 1 (mod 3), and by f(v3i) = f(v3i+1) = f(vn−2) = 1 for 1 ≤ i ≤ bn−3

3 c and f(x) = 2 otherwise when
n ≡ 2 (mod 3). Clearly, f is an SDR4DF on Pn yielding γ4

sdR(Pn) ≤ d 4n
3 e+ 2.

Now we show that γ4
sdR(Pn) ≥ d 4n

3 e + 2. We proceed by induction on n. It is not hard to see that
γ4

sdR(Pn) = d 4n
3 e + 2 for n ≤ 6. Let n ≥ 7 and let the statement hold for all paths of order less than n.

Assume f = (V−1, V1, V2, V3) is a γ4
sdR(Pn)-function. Suppose first that V−1 6= ∅ and let vi ∈ V−1. Clearly, vi is

neither a support vertex nor a leaf. Since f [vi] ≥ 4, f [vi+1] ≥ 4 and f [vi−1] ≥ 4, we have f(vi−1) + f(vi+1) ≥ 5,
f(vi+1) + f(vi+2) ≥ 5 and f(vi−1) + f(vi−2) ≥ 5. Let P ′=Pn−3 be the path obtained from Pn by removing
the vertices vi−1, vi, vi+1 and adding the edge vi−2vi+2, and define g : V (P ′)→ {−1, 1, 2, 3} by g(x) = f(x) for
x ∈ V (P ′) when f(vi+1) + f(vi−1) = 5, and by g(vi−2) = min{f(vi−2) + 1, 3} and g(x) = f(x) otherwise, when
f(vi+1) + f(vi−1) = 6. Clearly, g is an SDR4DF on P ′ and by the induction hypothesis we have

γ4
sdR(Pn) ≥ ω(g) + 4 ≥

⌈
4(n− 3)

3

⌉
+ 6 =

⌈
4n
3

⌉
+ 2,

as desired. Now, let V−1 = ∅. Then obviously f(v1) + f(v2) ≥ 4. Let P ′=Pn−3 be the path obtained from Pn

by removing the vertices v1, v2, v3 and define g : V (P ′) → {−1, 1, 2, 3} by g(v4) = min{f(v4) + f(v3), 3} and
g(x) = f(x) otherwise. Clearly, g is an SDR4DF on P ′ of weight at most ω(f)− 4. By the induction hypothesis,
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we have

γ4
sdR(Pn) ≥ ω(g) + 4 ≥

⌈
4(n− 3)

3

⌉
+ 6 =

⌈
4n
3

⌉
+ 2,

and the proof is complete. �

Proposition 2.4. For n ≥ 3,

γ5
sdR(Pn) =

{
d 5n

3 e+ 2 if n ≡ 0, 2 (mod 3)
d 5n

3 e+ 3 if n ≡ 1 (mod 3).

Proof. Let Pn := v1v2 . . . vn. If n ≤ 4, then the results hold. Let n ≥ 5. Define the function f : V (Pn) →
{−1, 1, 2, 3} by f(v1) = f(vn) = 2, f(v3i+2) = f(vn−1) = 3 for 0 ≤ i ≤ bn−4

3 c and f(x) = 1 otherwise. Clearly, f is
an SDR5DF on Pn yielding

γ5
sdR(Pn) ≤

{
d 5n

3 e+ 2 if n ≡ 0, 2 (mod 3)
d 5n

3 e+ 3 if n ≡ 1 (mod 3).
To prove the inverse inequality, we proceed by induction on n. Clearly, the results hold for n ≤ 6. Let n ≥ 7

and let the statements hold for all paths of order less than n. Assume f = (V−1, V1, V2, V3) is a γ5
sdR(Pn)-function.

Suppose first that V−1 6= ∅ and let vi ∈ V−1. By Observation 1.1, vi is neither a support vertex nor a leaf. Now,
f [vi+1] ≥ 5 and f [vi−1] ≥ 5 imply that f(vi−2) = f(vi−1) = f(vi+1) = f(vi+2) = 3. Let P ′=Pn−3 be the path
obtained from Pn by removing the vertices vi−1, vi, vi+1 and adding the edge vi−2vi+2. Obviously, the function
f , restricted to P ′ is an SDR5DF of P ′ and by the induction hypothesis we have

γ5
sdR(Pn) ≥ ω(f |P ′) + 5 ≥

⌈
5(n− 3)

3

⌉
+ 5 + x=

⌈
5n
3

⌉
+ x,

where x= 2 when n ≡ 0, 2 (mod 3) and x= 3 when n ≡ 1 (mod 3).
Now, let V−1 = ∅. By Observation 1.1 we have f(v1) + f(v2) ≥ 5. Let P ′=Pn−3 be the path obtained

from Pn by removing the vertices v1, v2, v3 and define g : V (P ′) → {−1, 1, 2, 3} by g(v4) = f(v4) + min{3 −
f(v4), f(v3)}, g(v5) = f(v5) + min{3 − f(v5),min{3 − f(v4), f(v4) + min{3 − f(v4), f(v3)}}} and g(x) = f(x)
otherwise. Clearly, g is an SDR5DF on P ′ of weight at most ω(f)− 5. Now the result follows as above and the
proof is complete. �

Finally, we determine the signed double Roman 6-domination number of paths. Clearly, γ6
sdR(P2) = 6.

Proposition 2.5. For n ≥ 3,

γ6
sdR(Pn) =

{
2n+ 3 if n ≡ 0, 2 (mod 3)
2n+ 4 if n ≡ 1 (mod 3).

Proof. Let Pn := v1v2 . . . vn. If n ≤ 5, then clearly the results hold. Let n ≥ 6 and define the function f :
V (Pn)→ {−1, 1, 2, 3} by f(v3i+1) = 2, f(v3i) = 1 for 1 ≤ i ≤ bn−4

3 c and f(x) = 3 otherwise when n ≡ 1 (mod 3),
by f(v3i+1) = 2, f(v3i) = f(xn−2) = 1 for 1 ≤ i ≤ bn−4

3 c and f(x) = 3 otherwise when n ≡ 2 (mod 3), and by
f(v3i+1) = 2, f(v3i) = 1 for 1 ≤ i ≤ n−3

3 and f(x) = 3 otherwise when n ≡ 0 (mod 3). Clearly, f is an SDR6DF
on Pn yielding

γ6
sdR(Pn) ≤

{
2n+ 3 if n ≡ 0, 2 (mod 3)
2n+ 4 if n ≡ 1 (mod 3).

To prove the inverse inequality, we proceed by induction on n. Clearly, the results hold for n ≤ 6. Let
n ≥ 7 and let the statements hold for all paths of order less than n. Assume f = (V−1, V1, V2, V3) is a γ6

sdR(Pn)-
function. Obviously, |V−1|= 0. By Observation 1.1, f(v1) + f(v2) = 6. Let P ′=Pn−3 be the path obtained
from Pn by removing the vertices v1, v2, v3 and define g : V (P ′) → {−1, 1, 2, 3} by g(v4) = f(v4) + min{3 −
f(v4), f(v3)}, g(v5) = f(v5) + min{3 − f(v5),min{3 − f(v4), f(v4) + min{3 − f(v4), f(v3)}}} and g(x) = f(x)
otherwise. Clearly, g is an SDR6DF on P ′ of weight at most ω(f)− 6. By the induction hypothesis we have

γ6
sdR(Pn) ≥ ω(g) + 6 ≥ 2(n− 3) + 6 + x= 2n+ x,

where x= 3 when n ≡ 0, 2 (mod 3) and x= 4 when n ≡ 1 (mod 3). This completes the proof. �
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3. Trees

In [4], Ahangar et al. prove that for any tree T of order n ≥ 2, −5n+24
9 ≤ γsdR(T ) ≤ n and they characterize

all trees achieving the lower and the upper bounds. Our aim in this section is to establish lower and upper
bounds on the signed double Roman k-domination number of a tree in terms of its order for k= 2, 3, 4, 5, 6.

3.1. k = 2

First we determine the signed double Roman 2-domination number of stars.

Proposition 3.1. For n ≥ 3, γ2
sdR(K1,n) = 2.

Proof. Let {v, v1, . . . , vn} be the vertex set of K1,n, where v is the central vertex of K1,n. By definition, we have
γ2

sdR(K1,n) =
∑

u∈N [v] f(u) ≥ 2. Define g : V (K1,n)→ {−1, 1, 2, 3} by g(v) = 3 and g(vi) = (−1)i for 1 ≤ i ≤ n

when n is odd, and by g(v) = 3, g(v1) = 2, g(vi) = −1 for i= 2, 3, 4 and g(vi) = (−1)i for 5 ≤ i ≤ n when n is
even. It is easy to see that g is an SDR2DF of K1,n of weight 2, implying that γ2

sdR(K1,n) = 2. �

Proposition 3.2. For r ≥ s ≥ 1, we have

γ2
sdR(DSr,s) ≥ −(r + s+ 2)

2
+ 3.

The equality holds if and only if T = DS4,4.

Proof. Let T = DSr,s and f be a γ2
sdR(T )-function. Suppose u, v are the non-leaf vertices of T , u1, . . . , us are

the leaves adjacent to u and v1, . . . , vr are the leaves adjacent to v. If r= s= 1, then DS1,1 =P4 and from
Proposition 2.1, γ2

sdR(DS1,1) = 4 > −(r+s+2)
2 + 3. Let r ≥ 2. If f(u) ≤ 2 (the case f(v) ≤ 2 is similar), then we

must have f(ui) ≥ 1 for each 1 ≤ i ≤ s because f is a SDR2DF of T and this implies that

γ2
sdR(T ) =ω(f) =

∑
x∈N [v]

f(x) +
s∑

i = 1

f(ui) ≥ 2 + s ≥ 3 >
−(r + s+ 2)

2
+ 3

as desired. Assume that f(u) = f(v) = 3. Since f is an SDR2DF of T , we must have

2 ≤
∑

x∈N [u]

f(x) = f(u) + f(v) +
s∑

i = 1

f(ui) = 6 +
s∑

i = 1

f(ui) (3.1)

and

2 ≤
∑

x∈N [v]

f(x) = f(u) + f(v) +
s∑

i = 1

f(vi) = 6 +
s∑

i = 1

f(vi). (3.2)

Using inequalities (3.1) and (3.2), and the fact that f is γ2
sdR(T )-function, we obtain

∑s
i = 1 f(ui) = −4 and∑r

i = 1 f(vi) =−4 when r ≥ s ≥ 6,
∑s

i = 1 f(ui) =−3 and
∑r

i = 1 f(vi) =−4 when s= 5 and r ≥ 6,
∑s

i = 1 f(ui) =−s
and

∑r
i = 1 f(vi) = −4 when s ≤ 4 and r ≥ 6,

∑s
i = 1 f(ui) =

∑r
i = 1 f(vi) = −3 when r, s= 5,

∑s
i = 1 f(ui) = −s

and
∑r

i = 1 f(vi) = −3 when r= 5 and s ≤ 4, and
∑s

i = 1 f(ui) = −s and
∑r

i = 1 f(vi) = −r when r, s ≤ 4. Since

γ2
sdR(T ) =ω(f) = f(u) + f(v) +

s∑
i = 1

f(ui) +
r∑

i = 1

f(vi),

we have γ2
sdR(T ) = 6− s− r if r, s ≤ 4, γ2

sdR(T ) = 0 if r= s= 5, γ2
sdR(T ) = 3− s if r= 5, s ≤ 4, γ2

sdR(T ) = 2− s
if s ≤ 4 and r ≥ 6, γ2

sdR(T ) = −1 if s= 5 and r ≥ 6, and γ2
sdR(T ) = −2 when r ≥ s ≥ 6. This implies that

γ2
sdR(DSr,s) ≥ −(r+s+2)

2 + 3 with equality if and only if T = DS4,4. �
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Let G be a connected graph which is not complete, let S be a vertex cut of G, and let X be the vertex set
of a component of G− S. The subgraph H of G induced by S ∪X is called an S-component of G.

For any tree T , assume F 2
T is the tree obtained from T by adding 3 degT (v) + 1 pendant edges at v for each

v ∈ V (T ). Assume that T2 = {F 2
T | T is a tree}.

Theorem 3.3. Let T be a tree of order n ≥ 2. Then

γ2
sdR(T ) ≥ −n+ 6

2
with equality if and only if T ∈ T2.
Proof. The proof is by induction on n. The cases n= 2 and n= 3 follows from Proposition 2.1. Let n ≥ 4 and
assume that the statement is true for all trees of order less than n. Let T be a tree of order n. If diam(T ) = 2,
then T is a star and by Proposition 3.1 we have γ2

sdR(T ) = 2 > −n+6
2 . If diam(T ) = 3, then T is a double star

DSp,q with q ≥ p ≥ 1 and by Proposition 3.2, we have γ2
sdR(T ) ≥ −n+6

2 with equality if and only if T = DS4,4.
Therefore, we assume that diam(T ) ≥ 4. Suppose f = (V−1, V1, V2, V3) is a γ2

sdR(T )-function.
If there is a non-pendant edge uv such that u, v ∈ V−1, then let T1 and T2 be the components of T − uv.

Clearly, the function fi = f |Ti
is an SDR2DF of Ti for i= 1, 2, and we conclude from the induction hypothesis

and the fact w(f) =w(f1) + w(f2), that

γ2
sdR(T ) =ω(f1) + ω(f2) ≥ −|V (T1)|+ 6

2
+
−|V (T2)|+ 6

2
>
−n+ 6

2
·

Henceforth, we assume that there is no non-pendant edge uv for which u, v ∈ V−1. On the other hand, for any
pendant edge uv, we must have f(u) ≥ 1 or f(v) ≥ 1 by Observation 1.1. Hence, we may assume that V−1 is
an independent set. We consider the following cases.
Case 1. There is a non-leaf vertex v with f(v) = −1.
By definition, f must assign a 3 to any leaf adjacent to v. Suppose T1, . . . , Tr are the components of T − v of
order at least two. Since diam(T ) ≥ 4, we have r ≥ 1. Also the function fi = f |Ti is an SDR2DF of Ti for each
i ∈ {1, . . . , r}. If v is not a support vertex, then r ≥ 2, and by the induction hypothesis we have

γ2
sdR(T ) =

r∑
i = 1

ω(fi) + f(v) ≥
r∑

i = 1

−|V (Ti)|+ 6
2

+ f(v) =
−n+ 6

2
+

6r − 5
2
− 1 >

−n+ 6
2
·

If v is a support vertex, then let Lv = {u1, . . . , us}. If s= 1, then we have

γ2
sdR(T ) = f(v) + f(u1) +

r∑
i = 1

ω(fi) ≥
r∑

i = 1

−|V (Ti)|+ 6
2

+ 2 =
−(n− 2) + 6r

2
+ 2 >

−n+ 6
2
·

If s ≥ 2, then let T ′ be the subtree of T induced by Lv ∪ {v}. Obviously, the function f ′= f |T ′ is an SDR2DF
of T ′ and by the induction hypothesis we have

γ2
sdR(T ) = ω(f ′) +

r∑
i = 1

ω(fi)

= (3s− 1) +
r∑

i = 1

ω(fi)

≥ −(s+ 1) + 6
2

+
r∑

i = 1

−|V (Ti)|+ 6
2

=
−n+ 6(r + 1)

2

>
−n+ 6

2
·
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By Case 1, we may assume that every vertex in V−1 is a leaf.
Case 2. There is a non-leaf vertex v with f(v) = 1.
By definition, f must assign at least a 2 to any leaf adjacent to v, and since diam(T ) ≥ 4, T − v must have at
least a component of order at least two. Let T1, . . . , Tr be the components of T − v of order at least two and
let vi ∈ V (Ti) be the vertex adjacent to v for each i ∈ {1, . . . , r}. Since vi is not a leaf, we deduce from the
assumption that vi ∈ ∪3

i = 1Vi and so f(vi) ≥ 1 for each i ∈ {1, . . . , r}. Suppose f(v1) = min{f(vi) | i= 1, . . . , r}
and let F1 and F2 are the components of T − vv1 containing v1 and v, respectively. If f(v1) = 1 or 2, then the
function f2 = f |F2 is an SDR2DF of F2 and the function g : V (F1)→ {−1, 1, 2, 3} defined by g(v1) = f(v1) + 1
and g(x) = f(x) for x ∈ V (F1)− {v1}, is an SDR2DF of F1. By the induction hypothesis, we obtain

γ2
sdR(T ) =ω(g) + ω(f2)− 1 ≥ −|V (F1)|+ 6

2
+
−|V (F2)|+ 6

2
− 1 =

−n+ 6
2

+ 2 >
−n+ 6

2
·

Assume that f(v1) = 3. Then f(vi) = 3 for each i ∈ {1, . . . , r}. Let F ′1 be the tree obtained from F1 by adding
a pendant edge v1v′ and define g : V (F ′1) → {−1, 1, 2, 3} by g(v′) = 1 and g(x) = f(x) for x ∈ V (F ′1) − {v′}.
Obviously, g is an SDR2DF of F ′1 and the function f2 = f |F2 is an SDR2DF of F2. It follows from the induction
hypothesis that

γ2
sdR(T ) =ω(g) + ω(f2)− 1 ≥ −|V (F ′1)|+ 6

2
+
−|V (F2)|+ 6

2
− 1 =

−n+ 9
2

>
−n+ 6

2
·

Considering Cases 1 and 2, we may assume that all non-leaf vertices of T are assigned 2 or 3 under f .
Case 3. There is a non-leaf vertex v with f(v) = 2.
Then any leaf adjacent to v (if any) must be assigned at least 1 under f . If v is a support vertex and v′ ∈ Lv,
then the function f ′= f |T−v′ is an SDR2DF of T − v′, and we conclude from the induction hypothesis that

γ2
sdR(T ) ≥ ω(f ′) + 1 ≥ −(n− 1) + 6

2
+ 1 >

−n+ 6
2
·

Assume v is not a support vertex, N(v) = {v1, v2, . . . , vr} and Ti is the {v}-components of T containing vi for
each i ∈ {1, . . . , r}. Obviously, the function fi = f |Ti is an SDR2DF of Ti for each i ∈ {1, 2, . . . , r}. Note that
n=

∑r
i = 1 |V (Ti)| − (r − 1) and ω(f) = (

∑r
i = 1 ω(fi))− 2(r − 1). By the induction hypothesis, we have

γ2
sdR(T ) =

(
r∑

i = 1

ω(fi)

)
− 2(r − 1)

≥

(
r∑

i = 1

−|V (Ti)|+ 6
2

)
− 2(r − 1)

=
−n+ 6

2
+

5(r − 1)
2

− 2(r − 1)

>
−n+ 6

2
·

Considering above Cases, we may assume that all non-leaf vertices of T are assigned a 3 under f .
Case 4. There is a non-leaf vertex v such that v is not a support vertex.
Let N(v) = {v1, v2, . . . , vk}. By assumption we have N [v] ⊆ V3. Let T ∗ be the graph obtained from T − v by
adding the edges v1v2, v2v3, . . . , vk−1vk. Clearly, T ∗ is a tree of order n − 1 and the function f∗= f |T∗ is an
SDR2DF on T ∗ of weight ω(f)− 3. We conclude from the induction hypothesis that

γ2
sdR(T ) =ω(f∗) + 3 ≥ −|V (T ∗)|+ 6

2
+ 3 >

−n+ 6
2
·
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Case 5. Each vertex of T is either a leaf or a support vertex.
Obviously, for any support vertex, f assigns a −1 to at least one leaf adjacent to it. Let v be a support vertex
and let Lv = {u1, u2, . . . , us}.

If f(ui) = 1 and f(uj) = −1 for some i, j, then let T ′=T − {ui, uj}. Clearly, the function f , restricted to T ′

is an SDR2DF of T ′ and by the induction hypothesis we have

γ2
sdR(T ) =ω(f |T ′) ≥

−(n− 2) + 6
2

>
−n+ 6

2
·

If f(ui) = t ∈ {2, 3} and f(uj) = −1 for some i, j, then let T ′=T − uj . Obviously, the function g : V (T ′) →
{−1, 1, 2, 3} defined by g(ui) = t−1 and g(x) = f(x) otherwise, is an SDR2DF of T ′. It follows from the induction

hypothesis that γ2
sdR(T ) =ω(g) ≥ −(n− 1) + 6

2
>
−n+ 6

2
·

Henceforth, we assume that all leaves of T belong to V−1. Recall that all support vertices belong to V3. For
every support vertex v, let lv = |Lv|. Suppose T ′ is the tree obtained from T by removing all leaves of T . Since
for every support vertex v, f [v] ≥ 2, we must have lv ≤ 3 degT ′(v) + 1. Hence∑

v∈V (T ′)

lv ≤
∑

v∈V (T ′)

(3 degT ′(v) + 1) = 7n(T ′)− 6. (3.3)

On the other hand, since n=n(T ′)+
∑

v∈V (T ′) lv and γ2
sdR(T ) = 3n(T ′)−

∑
v∈V (T ′) lv, it follows from (3.3) that

γ2
sdR(T ) = 3n(T ′)−

∑
v∈V (T ′)

lv ≥
−(n(T ′) +

∑
v∈V (T ′) lv) + 6

2
=
−n+ 6

2
· (3.4)

If moreover γ2
sdR(T ) = −n+6

2 , then all inequalities occurring in (3.3) and (3.4) become equality. In particular, we
must have lv = 3 degT ′(v) + 1 for each v ∈ V (T ′) yielding T =F 2

T ′ ∈ T2.
Conversely, let T ∈ T2. Clearly, the function g : V (T )→ {−1, 1, 2, 3} that assigns a −1 to each leaf and a 3 to

each support vertex, is an SDR2DF of T yielding γ2
sdR(T ) ≤ −n+6

2 . This implies that γ2
sdR(T ) = −n+6

2 and the
proof is complete. �

Theorem 3.4. For any tree T of order n ≥ 2, γ2
sdR(T ) ≤ n.

Proof. The proof is by induction on n. The result is immediate for n ≤ 3 by Proposition 2.1. Assume n ≥ 4
and let the statement hold for all trees of order less than n. Suppose T is a tree of order n. If diam(T ) = 2, then
the result is trivial by Proposition 3.1. If diam(T ) = 3, then T is a double star DSp,q with q ≥ p ≥ 1 and by
the upper bounds presented in the proof of Proposition 3.2, we have γ2

sdR(T ) ≤ n. Therefore, we assume that
diam(T ) ≥ 4.

Assume v1v2 . . . vk (k ≥ 5) is a diametrical path in T such that degT (v2) is as large as possible and root T at
vk. If degT (v2) ≥ 3, then let T ′=T − Tv2 and let f be a γ2

sdR(T ′)-function. Define g : V (T ) → {−1, 1, 2, 3} by
g(v1) = −1, g(v2) = 3, g(x) = 1 for x ∈ Lv2 − {v1} and g(x) = f(x) for x ∈ V (T ′). Clearly, g is an SDR2DF of T
and by the induction hypothesis we have

γ2
sdR(T ) ≤ ω(g) = γ2

sdR(T ′) + |V (Tv2)| ≤ |V (T ′)|+ |V (Tv2)|=n.

Hence, we assume that degT (v2) = 2. By the choice of diametrical path, all children of v3 have degree at most
two. Let C2(v3) = {z1 = v2, z2, . . . , zt} be the set of all children of v3 with degree two and let z′i be the leaf
adjacent to zi for each i. Clearly, C(v3) =C2(v3) ∪ Lv3 . Let T ′=T − Tv3 and f be a γ2

sdR(T ′)-function.
If Lv3 6= ∅, then let w ∈ Lv3 and define g : V (T ) → {−1, 1, 2, 3} by g(w) = −1, g(v3) = g(zi) = 3, g(z′i) = −1

for 1 ≤ i ≤ t, g(x) = 1 for x ∈ Lv3 − {w}, and g(x) = f(x) for x ∈ V (T ′). Clearly, g is an SDR2DF of T and by
the induction hypothesis we have

γ2
sdR(T ) ≤ ω(g) = γ2

sdR(T ′) + |V (Tv3)| ≤ n.
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If Lv3 = ∅, then define g : V (T )→ {−1, 1, 2, 3} by g(v3) = 1, g(zi) = 3, g(z′i) = −1 for 1 ≤ i ≤ t, and g(x) = f(x)
for x ∈ V (T ′). It is easy to see that g is an SDR2DF of T and we deduce from the induction hypothesis that
γ2

sdR(T ) ≤ ω(g) = γ2
sdR(T ′) + |V (Tv3)| ≤ n. This completes the proof. �

3.2. k = 3

Here, we present lower and upper bounds on the signed double Roman 3-domination number of a tree T in
terms of its order.

Theorem 3.5. Let T be a tree of order n ≥ 1. Then

γ3
sdR(T ) ≥ 4n+ 7

5

with equality if and only if T =P2.

Proof. We proceed by induction on n. If n= 1 then γ3
sdR(T ) = 3 > 4n+7

5 , if n= 2 then γ3
sdR(T ) = 3 = 4n+7

5 , and if
n= 3 then γ3

sdR(T ) = 4 > 4n+7
5 by Observation 1.1 (part (v)). Assume that n ≥ 4 and the statement holds for all

trees of order less than n. Suppose T is a tree of order n. If diam(T ) = 2, then T =K1,n−1 and by Observation 1.1
(part (v)) we have γ3

sdR(T ) =n + 1 > 4n+7
5 . If diam(T ) = 3, then T is a double star DSp,q with q ≥ p ≥ 1 and

by Observation 1.1 (part (iii)), we have γ3
sdR(T ) ≥ p+ q+ 4 > 4(p+q+2)+7

5 . Hence, we assume that diam(T ) ≥ 4.
Suppose f = (V−1, V1, V2, V3) is a γ3

sdR(T )-function. If V−1 = ∅, then clearly γ3
sdR(T ) ≥ n+1 > 4n+7

5 . Henceforth,
we assume V−1 6= ∅. If there is a non-pendant edge uv such that u, v ∈ V−1, then using an argument similar
to that described in Theorem 3.3 we obtain γ3

sdR(T ) > 4n+7
5 . Assume that there is no non-pendant edge uv

for which u, v ∈ V−1. As in the proof of Theorem 3.3, we may assume that V−1 is independent. Also, by
Observation 1.1 (part (ii)), each vertex in V−1 is neither a leaf nor a support vertex.

Let v ∈ V−1 and let T1, . . . , Tr (r ≥ 2) be the components of T − v. Clearly, the function fi = f |Ti
is an

SDR3DF of Ti for each i. If r ≥ 3, then we deduce from the induction hypothesis that

γ3
sdR(T ) =

r∑
i = 1

ω(fi) + f(v)

≥
r∑

i = 1

4|V (Ti)|+ 7
5

+ f(v)

≥ 4(n− 1) + 7r
5

− 1

=
4n+ 7

5
+
−4 + 7(r − 1)

5
− 1

>
4n+ 7

5
·

Let r= 2. If |V−1|= 1, then clearly ω(f |T1) ≥ |V (T1)| + 1 and ω(f |T2) ≥ |V (T2)| + 1. This implies that
γ3

sdR(T ) =ω(f |T1) + ω(f |T2) − 1 ≥ n + 1 > 4n+7
5 . Hence we assume |V−1| ≥ 2. Let u ∈ V−1 be a vertex

such that d(u, v) is as large as possible and let T ′1, . . . , T
′
s (s ≥ 2) be the components of T − u and let f ′i = f |T ′i

for each i. Assume without loss of generality that v ∈ V (T ′1). If s ≥ 3, then we have γ3
sdR(T ) > 4n+7

5 as above.
Suppose s= 2. By the choice of u, we must have V−1 ∩ V (T ′2) = ∅. Then we have ω(f ′2) ≥ |V (T2)|+ 1. Now, by
the induction hypothesis we obtain

γ3
sdR(T ) =ω(f ′1) + ω(f ′2)− 1 ≥ 4|V (T ′1)|+ 7

5
+ |V (T ′2)|+ 1− 1 >

4n+ 7
5

and the proof is complete. �
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Let F = {cor(T ) | T is a tree}.

Theorem 3.6. Let T be a tree of order n ≥ 2. Then

γ3
sdR(T ) ≤ 3n

2

with equality if and only if T ∈ F .

Proof. The proof is by induction on n. The cases n= 2 and n= 3 follows from Proposition 2.2. Let n ≥ 4 and
let the statement hold for all trees of order less than n. Assume T is a tree of order n. If diam(T ) = 2, then
T =K1,n−1 and by Observation 1.1 (part (v)), we have γ3

sdR(T ) =n+1 < 3n
2 . If diam(T ) = 3, then T is a double

star DSp,q with q ≥ p ≥ 1 and γ3
sdR(T ) =n + 2 ≤ 3n

2 with equality if and only if T =P4 = cor(P2). Therefore,
we assume that diam(T ) ≥ 4. Let v1v2 . . . vk (k ≥ 5) be a diametrical path in T such that degT (v2) is as large
as possible and root T at vk.

If degT (v2) ≥ 3, then let T ′=T −v1 and let f = (V−1, V1, V2, V3) be a γ3
sdR(T ′)-function. Since v2 is a support

vertex in T ′, by Proposition 1.1 (part (iii)) we may assume that f(v2) ≥ 2. Then g= (V−1, V1 ∪ {v1}, V2, V3) is
an SDR3DF of T and by the induction hypothesis we have γ3

sdR(T ) ≤ ω(g) = γ3
sdR(T ′) + 1 ≤ 3(n−1)

2 + 1 < 3n
2 .

Assume that degT (v2) = 2. Then by the choice of diametrical path, all children of v3 with depth 1, must have
degree 2. We consider two cases.

Case 1. degT (v3) ≥ 3.
First let v3 be a support vertex. Let T ′=T −{v1, v2} and let f = (V−1, V1, V2, V3) be a γ3

sdR(T ′)-function. Since
v3 is a support vertex, we may assume that f(v3) ≥ 2. Then g= (V−1, V1 ∪ {v1}, V2 ∪ {v2}, V3) is an SDR3DF
of T and by the induction hypothesis we have

γ3
sdR(T ) ≤ ω(g) = γ3

sdR(T ′) + 3 ≤ 3(n− 2)
2

+ 3 ≤ 3n
2
·

Note that the equality holds if and only if γ3
sdR(T ′) = 3(n−2)

2 , i.e., if and only if T ′ ∈ F , and this if and
only if T ∈ F . Henceforth, we may assume that all children of v3 have degree 2. Let T ′=T − Tv3 and let
f = (V−1, V1, V2, V3) be a γ3

sdR(T ′)-function. Then g= (V−1, V1 ∪ (D[v3]−C(v3)), V2 ∪C(v3), V3) is an SDR3DF
of T and by the induction hypothesis we have

γ3
sdR(T ) ≤ ω(g) = γ3

sdR(T ′) + 3|C(v3)|+ 1 ≤ 3(n− (2|C(v3)|+ 1))
2

+ 3|C(v3)|+ 1 <
3n
2
·

Case 2. degT (v3) = 2.
If deg(v4) = 2 or v4 is a support vertex, then let T ′=T −{v1, v2, v3} and let f = (V−1, V1, V2, V3) be a γ3

sdR(T ′)-
function. Since v4 is a leaf or a support vertex in T ′, we have f(v4) ≥ 1 by Proposition 1.1 (part (ii)). Then
g= (V−1, V1 ∪ {v1, v3}, V2 ∪ {v2}, V3) is an SDR3DF of T and by the induction hypothesis we obtain γ3

sdR(T ) ≤
ω(g) = γ3

sdR(T ′) + 4 ≤ 3(n−3)
2 + 4 < 3n

2 .
Assume that deg(v4) ≥ 3 and that v4 is not a support vertex. Using above arguments, we may assume

that all vertices in Tv4 except v4 have degree at most two. If diam(T ) = 4, then clearly γ3
sdR(T ) < 3n

2 . Assume
that diam(T ) ≥ 5, T ′=T − Tv4 and f = (V−1, V1, V2, V3) is a γ3

sdR(T ′)-function. Let v4x
j
3x

j
2x

j
1 (1 ≤ j ≤ r) be

the paths of length 3 in Tv4 and v4y
j
2y

j
1 (1 ≤ j ≤ s) be the paths of length 2 in Tv4 , if any. If s ≥ 1, then

define g : V (T ) → {−1, 1, 2, 3} by g(v4) = 1, g(xj
3) = g(xj

1) = 1, g(xj
2) = 2 for 1 ≤ j ≤ r, g(yj

2) = 2, g(yj
1) = 1 for

1 ≤ j ≤ s, and g(x) = f(x) for x ∈ V (T ′). Clearly, g is an SDR3DF of T and we deduce from the induction
hypothesis that

γ3
sdR(T ) ≤ γ3

sdR(T ′) + 3s+ 4r + 1 ≤ 3(n− (3r + 2s+ 1))
2

+ 3s+ 4r + 1 <
3n
2
·
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If s= 0, then define g : V (T ) → {−1, 1, 2, 3} by g(v4) = 2, g(xj
3) = g(xj

1) = 1, g(xj
2) = 2 for 1 ≤ j ≤ r, and

g(x) = f(x) for x ∈ V (T ′). Clearly, g is an SDR3DF of T and by the induction hypothesis we have

γ3
sdR(T ) ≤ γ3

sdR(T ′) + 4r + 2 ≤ 3(n− (3r + 1))
2

+ 4r + 2 <
3n
2
·

This completes the proof. �

3.3. k = 4

First we present an upper bound on γ4
sdR(T ) and characterize all extreme trees. Let F = {cor(T ) | T is a tree}.

Theorem 3.7. For any tree T of order n ≥ 2,

γ4
sdR(T ) ≤ 2n.

The equality holds if and only T ∈ F .

Proof. Let T be a tree of order n. Clearly, the function f : V (T )→ {−1, 1, 2, 3} defined by f(x) = 2 for x ∈ V (T ),
is an SDR4DF of T of weight 2n and hence γ4

sdR(T ) ≤ 2n.
If T ∈ F , then we deduce from Observation 1.1 (part (iii)) that γ4

sdR(T ) ≥ 2n and so γ4
sdR(T ) = 2n.

Conversely, let γ4
sdR(T ) = 2n. If T has a strong support vertex, say v, then the function g : V (T )→ {−1, 1, 2, 3}

defined by g(v) = 3, g(x) = 1 for x ∈ Lv and g(x) = 2 otherwise, is an SDR4DF of T of weight at most 2n − 1
which leads to a contradiction. If T has a non-support vertex of degree at least two, say v, then the function
g : V (T )→ {−1, 1, 2, 3} defined by g(v) = 1 and g(x) = 2 otherwise, is an SDR4DF of T of weight at most 2n−1
that leads to a contradiction. Thus each vertex of T is either a leaf or a support vertex which is not strong.
This implies that T = cor(T ′) for some tree T ′ and so T ∈ F . This completes the proof. �

Next we present a lower bound on the signed double Roman 4-domination number of trees T and characterize
all extreme trees.

Theorem 3.8. For any tree T of order n ≥ 1, γ4
sdR(T ) ≥ n+ 2.

Proof. The proof is by induction on n. The cases n= 2 and n= 3 follows from Proposition 2.3. Let n ≥ 4 and
let the statement hold for all trees of order less than n. Assume T is tree of order n. If diam(T ) = 2, then
T =K1,n−1 and by Observation 1.1 (part (v)) we have γ4

sdR(T ) =n+ 2 and if diam(T ) = 3, then T is a double
star DSp,q with q ≥ p ≥ 1 and by Observation 1.1 (part (iii)), we have γ4

sdR(T ) ≥ p+ q + 6 > n+ 2. Therefore,
we assume that diam(T ) ≥ 4. Suppose f = (V−1, V1, V2, V3) is a γ4

sdR(T )-function. If V−1 = ∅, then obviously
γ4

sdR(T ) > n+ 2. Henceforth, we assume V−1 6= ∅. If there is a non-pendant edge uv such that u, v ∈ V−1, then
applying an argument similar to that described in Theorem 3.3 we obtain γ4

sdR(T ) > n+ 2. Assume that there
is no non-pendant edge uv for which u, v ∈ V−1. As in the proof of Theorem 3.3, we may assume that V−1 is
independent. Also, it follows from Observation 1.1 (part (iii)) that each vertex in V−1 is neither a leaf nor a
support vertex.

Let v ∈ V−1 and T1, . . . , Tr (r ≥ 2) be the components of T − v. Clearly, the function fi = f |Ti is an SDR4DF
of Ti for each i and by the induction hypothesis we obtain

γ4
sdR(T ) =

∑r
i = 1 ω(fi) + f(v)

≥ (
∑r

i = 1 |V (Ti)|+ 2) + f(v)
= n− 1 + 2r − 1
≥ n− 1 + 4− 1
= n+ 2,

(3.5)

and the proof is complete. �
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To characterize the extreme trees we introduce the following family of trees. For any tree T of order at least
2, let S(T ) be the tree obtained from T by subdividing all non-pendant edges of T once. Let T be the family
of trees T such that |Lv| ≥ deg(v)+1

2 for any non-leaf vertex v ∈ V (T ), and let ST = {S(T ) | T ∈ T }. Note that
ST contains all non-trivial stars.

Lemma 3.9. If T ∈ ST , then γ4
sdR(T ) =n(T )+2. Moreover, if n(T ) ≥ 3, then T has a unique γ4

sdR(T )-function.

Proof. Let T ∈ ST . It is easy to see that the function g : V (T ) → {−1, 1, 2, 3} assigning a 1 to all leaves, a
3 to all support vertices and a −1 to the remaining vertices, is an SDR4DF of T of weight n(T ) + 2 and so
γ4

sdR(T ) ≤ n(T ) + 2. Thus γ4
sdR(T ) =n(T ) + 2 by Theorem 3.8.

Assume that T ∈ ST is a tree of order n ≥ 3. To show that T has a unique γ4
sdR(T )-function, we proceed by

induction on n. If n= 3, then clearly T has a unique γ4
sdR(T )-function. Assume that n ≥ 4 and the statement

is true for all trees in ST of order less than n. Suppose T ∈ ST is a tree of order n. If diam(T ) = 2, then T
is a star and clearly T has a unique γ4

sdR(T )-function. Let diam(T ) ≥ 3. Since T ∈ ST , there exists a tree
T ′ ∈ T such that T =S(T ′). It follows that diam(T ) ≥ 4. Assume f = (V−1, V1, V2, V3) is a γ4

sdR(T )-function
and let v1v2 . . . vk; (k ≥ 5) be a diametrical path of T . Root T at vk. Clearly, v2, v4 ∈ V (T ′) and so |Lvi | ≥ 2 for
i= 2, 4 and deg(v3) = 2. It follows from Proposition 1.1 (part (iii)) that f(v2) = f(v4) = 3 and f(x) = 1 for each
x ∈ Lv2 ∪ Lv4 . Since f is a γ4

sdR(T )-function, we must have f(v3) = −1. Let T1 =T − Tv3 . Obviously T1 ∈ ST
and the function f , restricted to T1 is an SDR4DF of T1. By Theorem 3.8, we have

n+ 2 = γ4
sdR(T ) =ω(f |T1) + |V (Tv3)| ≥ |V (T1)|+ 2 + |V (Tv3)|=n+ 2.

This implies that γ4
sdR(T1) = |V (T1)| + 2 and so f |T1 is a γ4

sdR(T1)-function. We deduce from the induction
hypothesis that f |T1 is the unique γ4

sdR-function of T1 and hence f is the unique γ4
sdR-function of T . This

completes the proof. �

Theorem 3.10. Let T be a tree of order n. Then γ4
sdR(T ) =n+ 2 if and only T ∈ ST .

Proof. According to Lemma 3.9, we only need to prove necessity. Let γ4
sdR(T ) =n+2. The proof is by induction

on n. If n= 2, then T =P2 ∈ ST . Let n ≥ 3 and let the statement hold for all trees of order less than n.
Assume T is tree of order n. As in the proof of Theorem 3.8, we can see that either T is a star or diam(T ) ≥ 4
and all inequalities occurring in (3.5) are equalities. If T is a star, then clearly T ∈ ST . Let diam(T ) ≥ 4
and all inequalities occurring in (3.5) are equalities. This implies that r= 2, γ4

sdR(Ti) = |V (Ti)| + 2 and fi is
a γ4

sdR(Ti)-function for i= 1, 2. By the induction hypothesis we have T1, T2 ∈ ST and Lemma 3.9 implies
that fi is the unique γ4

sdR-function of Ti for i= 1, 2. Suppose T1 =S(T ′1) and T2 =S(T ′2) where T ′1, T
′
2 ∈ T .

Let vi ∈ Ti be the neighbor of v for i= 1, 2. Clearly, vi ∈ V (T ′i ) for i= 1, 2. Assume T ′ is the tree obtained

from trees T ′1, T
′
2 by adding the edge v1v2. Since vi is a non-leaf vertex of Ti, we have |Lvi

| ≥
degT ′

i
(vi)+1

2 for

i= 1, 2. If |Lvi
|=

degT ′
i
(vi)+1

2 for some i, then we have f(N [vi]) ≤ 3 which is a contradiction. Thus |Lvi
| ≥

degT ′
i
(vi)+2

2 = degT ′ (vi)+1
2 for i= 1, 2, yielding T ′ ∈ T . Hence T =S(T ′) ∈ ST and the proof is complete. �

3.4. k = 5

Here, we establish upper and lower bounds on the signed double Roman 5-domination in trees. Let
F = {cor(T ) | T is a tree}.

Theorem 3.11. For any T of order n ≥ 2,

γ5
sdR(T ) ≤ 5n

2
·

The equality holds if and only if T ∈ F .
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Proof. The proof is by induction on n. If n= 2, then clearly γ5
sdR(T ) = 5 = 5n

2 , and if n= 3 then by Proposition 2.4
we have γ5

sdR(T ) = 7 < 5n
2 . Let n ≥ 4 and let the statement hold for all trees of order less than n. Assume T is a

tree of order n. If diam(T ) = 2, then T =K1,n−1 and by Observation 1.1 (part (v)) we have γ5
sdR(T ) = 2n+1 < 5n

2 .
If diam(T ) = 3, then T is a double star DSp,q for some q ≥ p ≥ 1 and we deduce from Observation 1.1 (part (iii))
that γsdR(T ) = 2n + 2 ≤ 5n

2 with equality if and only if T =P4 ∈ F . Therefore, we assume that diam(T ) ≥ 4.
Let v1v2 . . . vk (k ≥ 5) be a diametrical path in T such that degT (v2) is as large as possible and root T at vk.

If degT (v2) ≥ 3, then let T ′=T − v1 and let f = (V−1, V1, V2, V3) be a γ5
sdR(T ′)-function such that f(v2) is

as large as possible. Then f(v2) = 3 and the function g= (V−1, V1, V2 ∪{v1}, V3) is an SDR5DF of T and by the
induction hypothesis we have γ5

sdR(T ) ≤ ω(g) = γsdR(T ′) + 2 ≤ 5(n−1)
2 + 2 < 5n

2 .
Assume that degT (v2) = 2. By the choice of diametrical path, we may assume that all children of v3 with

depth 1, have degree 2. We consider two cases.
Case 1. degT (v3) ≥ 3.
Suppose first that v3 is a support vertex and v′ ∈ Lv3 . Let T ′=T − {v1, v2} and let f = (V−1, V1, V2, V3) be a
γ5

sdR(T ′)-function. Since f(v3) + f(v′) ≥ 5, we may assume that f(v3) = 3. Now the function g= (V−1, V1, V2 ∪
{v1}, V3 ∪ {v2}) is an SDR5DF of T and by the induction hypothesis we have γ5

sdR(T ) ≤ ω(g) = γ5
sdR(T ′) + 5 ≤

5(n−2)
2 + 5 ≤ 5n

2 . The equality holds if and only if γ5
sdR(T ′) = 5(n−2)

2 , i.e, if and only if T ′ ∈ F , and this if and
only if T ∈ F .

Henceforth, we assume that all children of v3 are of depth 1 and degree 2. Let T ′=T − Tv3 and let
f = (V−1, V1, V2, V3) be a γ5

sdR(T ′)-function. Then g= (V−1, V1 ∪ {v3}, V2 ∪ (D(v3) − C(v3)), V3 ∪ C(v3)) is an
SDR5DF of T and by the induction hypothesis we have

γ5
sdR(T ) ≤ ω(g) = γ5

sdR(T ′) + 5|C(v3)|+ 1 ≤ 5(n− (2|C(v3)|+ 1))
2

+ 5|C(v3)|+ 1 <
5n
2
.

Case 2. degT (v3) = 2.
If v4 is a support vertex or deg(v4) = 2, then assume T ′=T − {v1, v2, v3} and let f = (V−1, V1, V2, V3) be a
γ5

sdR(T ′)-function. Since v4 is a leaf or a support vertex in T ′, we have f(v4) ≥ 2. Now the function g= (V−1, V1∪
{v3}, V2∪{v1}, V3∪{v2}) is an SDR5DF of T of weight γ5

sdR(T ′)+6 and it follows from the induction hypothesis
that γ5

sdR(T ) ≤ γ5
sdR(T ′) + 6 ≤ 5(n−3)

2 + 6 < 5n
2 .

Now assume deg(v4) ≥ 3 and that v4 is not a support vertex. Using above arguments, we may assume that
all vertices in Tv4 except v4 have degree at most two. Assume that T ′=T − Tv4 and f = (V−1, V1, V2, V3) is a
γ5

sdR(T ′)-function. Let v4x
j
3x

j
2x

j
1 (1 ≤ j ≤ r) be the paths of length 3 in Tv4 and v4y

j
2y

j
1 (1 ≤ j ≤ s) be the paths

of length 2 in Tv4 , if any. If s ≥ 1, then define g : V (T )→ {−1, 1, 2, 3} by g(v4) = 2, g(xj
3) = g(xj

1) = 2, g(xj
2) = 3

for 1 ≤ j ≤ r, g(yj
2) = 3, g(yj

1) = 2 for 1 ≤ j ≤ s and g(x) = f(x) for x ∈ V (T ′). Clearly, g is an SDR5DF of T
and we deduce from the induction hypothesis that

γ5
sdR(T ) ≤ γ5

sdR(T ′) + 5s+ 7r + 2 ≤ 5(n− (3r + 2s+ 1))
2

+ 5s+ 7r + 2 <
5n
2
·

If s= 0, then define g : V (T ) → {−1, 1, 2, 3} by g(v4) = 2, g(xj
3) = g(xj

1) = 2, g(xj
2) = 3 for 1 ≤ j ≤ r, and

g(x) = f(x) for x ∈ V (T ′). Clearly, g is an SDR5DF of T and by the induction hypothesis we have

γ5
sdR(T ) ≤ ω(g) = γ5

sdR(T ′) + 7r + 2 ≤ 5(n− (3r + 1))
2

+ 7r + 3 <
5n
2
·

This completes the proof. �

Theorem 3.12. Let T be a tree of order n ≥ 2. Then

γ5
sdR(T ) ≥ 5n+ 4

3
·
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Proof. We proceed by induction on n. The cases n= 2 and n= 3 follows from Proposition 2.4. Let n ≥ 4 and
let the statement hold for all trees of order less than n. Assume T is a tree of order n. If diam(T ) = 2, then T is
a star and by Observation 1.1 (part (v)) we have γ5

sdR(T ) = 2n+ 1 > 5n+4
3 . If diam(T ) = 3, then T is a double

star DSp,q for some q ≥ p ≥ 1 and we conclude from Observation 1.1 (part (iii)) that γsdR(T ) ≥ 2n+ 2 > 5n+4
3 .

Assume that diam(T ) ≥ 4. Let v1v2 . . . vk (k ≥ 5) be a diametrical path in T such that degT (v2) is as large as
possible and root T at vk. Let f = (V−1, V1, V2, V3) be a γ5

sdR(T )-function.
If T has a non-support vertex v of degree at least two with f(v) = −1, then let T1, . . . , Tr be the components

of T − v. Clearly, the function fi = f |Ti
is an SDR5DF of Ti for i= 1, . . . , r, and we deduce from the induction

hypothesis that

γsdR(T ) = − 1 +
r∑

i = 1

ω(fi) ≥ −1 +
r∑

i = 1

5ni + 4
3

=
5(n− 1) + 4r

3
− 1 ≥ 5n+ 4

3
·

Henceforth, we suppose any non-support vertex of degree at least two, has positive weight. We conclude from
Observation 1.1 that V−1 = ∅. If degT (v2) ≥ 3 or f(v3) ≥ 2, then let T ′=T − v1. It is not hard to see that the
function f restricted to T ′ is an SDR5DF of T ′ of weight ω(f)− 2 and by the induction hypothesis we have

γ5
sdR(T ) ≥ γ5

sdR(T ′) + 2 ≥ 5(n− 1) + 4
3

+ 2 >
5n+ 4

3
·

Assume that degT (v2) = 2 and f(v3) = 1. It follows from degT (v2) = 2 and the choice of diametrical path that
any child of v3 with depth 1, is of degree 2. Also, it follows from f(v3) = 1 that v3 is not a support vertex and
so all children of v3 have degree 2. First let degT (v3) ≥ 3. Then the function f restricted to T − {v1, v2} is an
SDR5DF of T ′ and by the induction hypothesis we have

γ5
sdR(T ) ≥ γ5

sdR(T − {v1, v2}) + 5 ≥ 5(n− 2) + 4
3

+ 5 >
5n+ 4

3
·

Now, let degT (v3) = 2. Suppose that T ′=T−{v1, v2, v3}. If f(w) = 3 for each w ∈ N [v4]−{v3}, then obviously
the function f restricted to T ′ is an SDR5DF of T ′ and by the induction hypothesis we have γ5

sdR(T ) ≥ γ5
sdR(T ′)+

6 ≥ 5(n−3)+4
3 + 6 > 5n+4

3 . Assume f(w) ≤ 2 for some w ∈ N [v4]− {v3} and define g : V (T ′)→ {−1, 1, 2, 3} by
g(w) = f(w) + 1 and g(x) = f(x) otherwise. Clearly, g is an SDR5DF of T ′ and by the induction hypothesis we
have γ5

sdR(T ) ≥ γ5
sdR(T ′) + 5 ≥ 5(n−3)+4

3 + 5 = 5n+4
3 . This completes the proof. �

3.5. k = 6

First, we establish an upper bound on the signed double Roman 6-domination number of trees and characterize
all extreme trees.

Theorem 3.13. Let T be a tree of order n ≥ 2. Then

γ6
sdR(T ) ≤ 3n

with equality if and only if every vertex of T is either a leaf or a support vertex.

Proof. Clearly, the function f : V (T ) → {−1, 1, 2, 3} defined by f(x) = 3 for each x ∈ V (T ), is an SDR6DF of
T of weight 3n and hence γ6

sdR(T ) ≤ 3n.
If T is a non-trivial tree such that every vertex of T is a leaf or a support vertex, then we deduce from

Observation 1.1 (part (vi)) that γ6
sdR(T ) ≥ 3n and so γ6

sdR(T ) = 3n.
Conversely, let γ6

sdR(T ) = 3n. If T has a non-support vertex of degree at least two, say v, then the function
g : V (T ) → {−1, 1, 2, 3} defined by g(v) = 1 and g(x) = 3 otherwise, is an SDR6DF of T of weight at most
3n− 1 that leads to a contradiction. Thus each vertex of T is either a leaf or a support vertex and the proof is
complete. �
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Next we present a lower bound on γ6
sdR(T ).

Theorem 3.14. For any tree T of order n ≥ 2, γ6
sdR(T ) ≥ 2n+ 2.

Proof. The proof is by induction on n. If n= 2, then clearly γ6
sdR(T ) = 6 = 2n+2, and if n= 3 then by Proposition

2.5 we have γ6
sdR(T ) = 9 > 2n+2. Let n ≥ 4 and let the statement hold for all trees of order less than n. Assume

T is a tree of order n. If diam(T ) ≤ 3, then T is a star or a double star and we conclude from Observation 1.1
(part (iv)) that γ6

sdR(T ) = 3n > 2n + 2. Therefore, we suppose that diam(T ) ≥ 4. Let v1v2 . . . vk (k ≥ 5) be a
diametrical path in T such that degT (v2) is as large as possible and root T at vk. Assume f = (V−1, V1, V2, V3)
is a γ6

sdR(T )-function. If T has a non-support vertex v of degree at least two with f(v) = −1, then as in the
proof of Theorem 3.12 we can see that γ6

sdR(T ) ≥ 2n+ 2. Henceforth, we assume that any non-support vertex
of degree at least two, has positive weight. Now it follows from Observation 1.1 (part (iv)) that V−1 = ∅.

If degT (v2) ≥ 3 or f(v3) = 3, then let T ′=T − v1. Clearly, the function f , restricted to T ′ is an SDR6DF of
T ′ of weight ω(f)− 3 and by the induction hypothesis we obtain

γ6
sdR(T ) ≥ γsdR(T ′) + 3 ≥ 2(n− 1) + 5 = 2n+ 3 > 2n+ 2.

Assume that degT (v2) = 2 and f(v3) ≤ 2. As in the proof of Theorem 3.12, we can see that all children of v3
are of depth 1 and degree 2. If degT (v3) ≥ 3, then let T ′=T − {v1, v2} and define g : V (T ′) → {−1, 1, 2, 3}
by g(v3) = f(v3) + 1 and g(x) = f(x) otherwise. Clearly, g is an SDR6DF of T ′ of weight ω(f) − 5 and by the
induction hypothesis we have

γ6
sdR(T ) ≥ γsdR(T ′) + 5 ≥ 2(n− 2) + 2 + 5 > 2n+ 2.

Now, let degT (v3) = 2. If f(v3) = 2, then let T ′=T − {v1} and define g : V (T ′)→ {−1, 1, 2, 3} by g(v3) = 3 and
g(x) = f(x) otherwise. Obviously, g is an SDR6DF of T ′ of weight ω(f)− 2 and by the induction hypothesis we
have

γ6
sdR(T ) ≥ γsdR(T ′) + 2 ≥ 2(n− 1) + 2 + 2 = 2n+ 2.

Let f(v3) = 1 and T ′=T − {v1, v2, v3}. If f(w) = 3 for each w ∈ N [v4] − {v3}, then obviously the function
f , restricted to T ′ is an SDR6DF of T ′ and by the induction hypothesis we have γ6

sdR(T ) ≥ γ6
sdR(T ′) + 7 ≥

2(n− 3) + 2 + 7 > 2n+ 2. Suppose f(w) ≤ 2 for some w ∈ N [v4]− {v3} and define g : V (T ′)→ {−1, 1, 2, 3} by
g(w) = f(w) + 1 and g(x) = f(x) otherwise. Clearly, g is an SDR6DF of T ′ and by the induction hypothesis we
have γ6

sdR(T ) ≥ γ6
sdR(T ′) + 6 ≥ 2(n− 3) + 2 + 6 = 2n+ 2. This completes the proof. �

We conclude this paper with some open problems.
Problem 1. Characterize the trees attaining the upper bound of Theorem 3.4.
Problem 2. Characterize all trees achieving the lower bound of Theorem 3.12.
Problem 3. Characterize all trees attaining the lower bound of Theorem 3.14.
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