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BOUNDS FOR SIGNED DOUBLE ROMAN k-DOMINATION IN TREES

HoNG YANG!, PU WU?, SAKINEH NAZARI-MOGHADDAM?,
SEYED MAHMOUD SHEIKHOLESLAMI>*, XIAOSONG ZHANG?, ZEHUI SHAO?
AND YUAN YAN TaANnG!

Abstract. Let k£ > 1 be an integer and G be a simple and finite graph with vertex set V(G). A signed
double Roman k-dominating function (SDRkDF) on a graph G is a function f : V(G) — {-1,1,2,3}
such that (i) every vertex v with f(v) = —1 is adjacent to at least two vertices assigned a 2 or to at least
one vertex w with f(w)=3, (ii) every vertex v with f(v)=1 is adjacent to at least one vertex w with
f(w) > 2and (iii) 3°, ¢ yi,) f(w) > k holds for any vertex v. The weight of a SDREDF fis 3°, v f(w),
and the minimum weight of a SDREDF is the signed double Roman k-domination number v¥;5(G) of
G. In this paper, we investigate the signed double Roman k-domination number of trees. In particular,
we present lower and upper bounds on v%;z(T) for 2 < k < 6 and classify all extremal trees.
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1. INTRODUCTION

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph with vertex set V(G)
and edge set E(G). The integers n(G) =|V(G)| and m(G) =|E(G)| are the order and the size of the graph
G, respectively. For every vertex v € V(G), the open neighborhood Ng(v) is the set {u € V(G) | uwv € E}
and the closed neighborhood of v is the set N[v]=N(v) U {v}. The degree of a vertex v € V(G) is
degq(v) = deg(v) = |N(v)|. We write P,, for the path of order n. A tree is an acyclic connected graph. A leaf of
a tree T is a vertex of degree 1, a support verter is a vertex adjacent to a leaf and a strong support verter is a
vertex adjacent to at least two leaves. The set of all leaves adjacent to a support vertex v is denoted by L,,. For
a vertex v in a rooted tree T, let C'(v) denote the set of children of v, D(v) denote the set of descendants of v
and D[v]=D(v) U {v}. Also, the depth of v, depth(v), is the largest distance from v to a vertex in D(v). The
maximal subtree at v is the subtree of T' induced by D[v], and is denoted by T,. A tree T is a double star if
it contains exactly two vertices that are not leaves. A double star with respectively p and g leaves attached at
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each support vertex is denoted by DS, ;. The corona cor(H) of a graph H, is the graph obtained from H by
adding a pendant edge to each vertex of H. For a subset S C V(G) and a function f : V(G) — R, we define
f(S)=>_,cq f(x). For a vertex v, we denoted f(N[v]) by f[v] for notional convenience.

A double Roman dominating function (DRDF) is a function f : V(G) — {0,1, 2,3} having the property that
if f(v) =0, then vertex v must have at least two neighbors assigned 2 under f or one neighbor with f(w) =3, and
if f(v)=1, then vertex v must have at least one neighbor with label at least 2. The weight of a double Roman
dominating function f is w(f)= Zvev(g) f(v). The double Roman dominating number of G is the minimum
weight of a double Roman dominating function on G. The double Roman domination was introduced by Beeler
et al. [7] and has been studied in [1-3,6, 15,16, 20].

A signed Roman k-dominating function (SREDF) on a graph G is a function f : V(G) — {—1, 1, 2} satisfying
the conditions that (i) >°, ¢y, f(2) > k for each vertex v € V/(G), and (ii) every vertex u for which f(u) = -1
is adjacent to at least one vertex v for which f(v)=2. The weight of an SREDF is the sum of its function values
over all vertices. The signed Roman k-domination number of G, denoted v*5(G), is the minimum weight of an
SREDF in G. The signed Roman k-domination number was introduced by Henning and Volkman in [9] and
has been studied in [10-12,17-19]. The special case k =1 was introduced and investigated in [5] and has been
studied in [13,14].

In this paper, we continue the study of double Roman dominating functions on graphs. Inspired by the
previous research on the signed Roman k-domination number [9, 10], we define the signed double Roman
k-domination as follows.

Let k > 1 be an integer. A function f : V(G) — {—1,1,2,3} is a signed double Roman k-dominating function
(SDREDF) of G if the following conditions are fulfilled:

(i) Xsenp (@) = k for every vertex v € V(G),
(ii) If f(v) = —1, then vertex v must have at least two neighbors with label 2 or one neighbor with label 3,
(iii) If f(v) =1, then vertex v must have at least one neighbor with label 2 or label 3.

The weight of a SDREDF is the sum of its function values over all vertices. The signed double Roman
k-domination number of G, denoted v¥,(G), is the minimum weight of a SDREDF in G. The special case k=1
has been studied by Ahangar et al. [4]. As the assumption §(G) > k/3 —1 is necessary, we always assume that
when we discuss 7%, (G), all graphs involved satisfy §(G) > k/3 —1. We observe that for any graph G with
0(G) =1, for instance all non-trivial trees, k=1,2,3,4,5,6 are all the possible values for k.

A SDREDF f can be represented by the ordered quadrant (V_1, V4, Va, Vs) where V; ={v € V(G) | f(v) =i}
for ¢ € {—1,1,2,3}. In this representation, its weight is w(f) = |V4| + 2|Va| + 3|V3| — |[V_4].

In this paper, we investigate the signed double Roman k-domination number of trees. In particular, we present
lower and upper bounds on 7%, (T') for 2 < k < 6 and classify all extremal trees.

The following facts are easy to prove.

Observation 1.1. Let T be a tree and let f be an SDREKDF on T where k > 2. Then the following holds.

i) If v is a leaf and w is its support vertex, then f(v) > 1 or f(u)>1.

(ii) If k>3 and v is a leaf or a support vertex in 7', then f(v) > 1.

(iii) If v is a leaf and w is its support vertex, then f(v) + f(u) > k.

(iv) If k=6 and v is a leaf or a support vertex in T, then f(v)=3.

(V) For n>1, then 2,5 (K1) =n+2, v, n (K1) =n+3,75,5(K1,)=2n+3 and 78,5 (K1,,) =3(n+1).
(vi) If n(T)=1, then v3,,(T)=3.

2. PATHS

Ahangar et al. [4] show that

Ysar(Pn) = { [74/3] +1lifn= 1,2< (mod)S)'
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In this section, we determine the signed double Roman k-domination number of paths for k=2,3,4,5,6 that
are all possible values for k.

Proposition 2.1. Forn > 2, v2,.(P,) =n.

Proof. Let P, :=v1va...v,. If n <4, then clearly v2,5(P,) =n. Let n > 5. To show that v2,(P,) < n, define
f:V(Py) — {=1,1,2,3} by f(vsis1) = —1, f(vsiy2) =3 and f(vsip3) =1 for 0 < i < 253 when n =0 (mod 3),
by f(vsits)=f(vn)= —1, f(vsis2) = f(vsiza) =2 for 0 < i < 257, f(v,_1)=3 and f(v1)=f(vn—2) =1 when
n =1 (mod 3), and by f(vsits) = —1, f(vsir2) = f(vsipa) =2 for 0 < i < 225 and f(v1)=f(va)=1if n =
2 (mod 3). Clearly, f is an SDR2DF on P, of weight n and hence v2,,(P,) < n.

Now we show that v2;z(P,) > n. We proceed by induction on n. It is not hard to see that v2;z(P,)=n
for n < 11. Let n > 12 and let the statement hold for all paths of order less than n. Let f=(V_q,Vy, V5, V3)
be a v2;(P,)-function such that |V3| is as small as possible. Since v2;5(P,,) < n, we have V_; # (). We first
show that each vertex in Vj is either a leaf or a support vertex. Suppose, to the contrary, that f(v;) =3 where
3 < i < n—2. By the choice of f, we must have f(v;—1)= —1 or f(v;+1) = —1. Assume without loss of generality
that f(v;—1)= —1. Then we must have f(v;_2)=1 and f(v;y1) > 1. By reassigning a value 2 to v;, v;_2, we
obtain a 2, (P,)-function contradicting the choice of f. Therefore V3 C {v1,v2,v,_1,v,}. We consider three
cases.

Case 1. f(v;)= —1 for some 3 <i<n-—2.

First let v; have a neighbor in V3. Assume without loss of generality that f(v;_1)=3. Then we must have i = 3.
Since f is a v2;(Py)-function, we must have f(v1)= f(v4) =1. By reassigning a value 2 to vs,v4, we obtain a
72, r(Py)-function contradicting the choice of f. Assume now that f(v;—1)= f(vi+1)=2. Then clearly f(v;_2) >
1 and f(vit2) > 1. If f(vig2) > 2 (the case f(v;—2) > 2 is similar), then let P,,_5 be the path obtained from P,
by removing the vertices v;_1, v;, v;11 and adding an edge v;2v;_3. Obviously, the function f, restricted to P, _3
is an SDR2DF on P,_3 and by the induction hypothesis we have v2,,(P,) =w(f) =3+w(f|p,_,) > n as desired.
Assume that f(v;—2) = f(viy2) =1. If f(viys) > 1 (the case f(v;—3) > 1 is similar), then let P,_; be the path
obtained from P, by removing the vertex v;;2 and adding an edge v;11v;+3. Clearly, the function f, restricted
to P,_1 is an SDR2DF on P,_; and by the induction hypothesis we have v2,,(P,) =w(f)=1+w(f|p, ,) >n
as desired. Let f(vi—3) = f(vi+3) = —1. Then we must have f(v;_4) = f(vi14) =3. Thus v;;4 (resp. v;_4) is either
a support vertex or a leaf. This implies that n < 11 which is a contradiction.

Case 2. f(v1)= —1 (the case f(v,)= —1 is similar).

Then we must have f(ve)=3 and f(vs) > 1. If f(vy) > 1, then let P,_; be the path obtained from P, by
removing the vertex vz and adding an edge vovy. Clearly, the function f, restricted to P,_; is an SDR2DF on
P,_1 and by the induction hypothesis we have 2, (P,) =w(f) > 1+ w(f|p, ,) > n as desired. Assume that
flvg)= —1. If f(v3)=1, then we must have f(vs)=3 and so vs is either a leaf or a support vertex yielding
n < 6, a contradiction. Hence f(v3) =2. This implies that f(vs) > 2. As above, we can see that f(vs)=2. Since
flvg) + f(vs) + f(ve) > 2, we must have f(vg) > 1. Let P,_3 be the path obtained from P, by removing the
vertices vs3, v4,v5 and adding an edge vavg. Clearly, the function f, restricted to P,,_3 is an SDR2DF on P, _3
and by the induction hypothesis we have 72, (P,) =w(f) > 3+ w(f|p, ,) > n as desired.

Case 3. f(v2) = —1 (the case f(v,—1)= —1 is similar).

Since f(v1)+ f(v2) > 2, we must have f(v1)=3. By exchanging the values of v; and vq, we stay on Case 2 and
the result follows. This completes the proof. O

Now we determine the signed double Roman 3-domination number of paths. Obviously, VEdR(Pl):?’a
Vear(P2) =3, and 72, (Ps) = 4.

Proposition 2.2. Forn >4, v3,.(P,)=n+2.

Proof. If n=4, then clearly v3,5(P,)=6=n + 2. Suppose n > 5 and define f : V(P,) — {-1,1,2,3} by
f(vn)=1, f(vgi)= —1 for 1 < i < 222 and f(z)=2 otherwise, when n = 0 (mod 3), by f(v,)=f(v1)=1,
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f(vsig1)= —1 for 1 < i < 224 and f(x)=2 otherwise, when n = 1 (mod 3), and by f(v,)=3, f(vn_1)=1,
f(vsi)= —1, f(vsi—1) =3 and f(vsi—2) =1 for 1 <i < 222 when n = 2 (mod 3). It is easy to verify that f is an
SDR3DF of P, of weight n + 2 and so ’YSdR(Pn) <n+2.

To prove the inverse inequality, we proceed by induction on n. Clearly, the results hold for n < 7. Let n > 8

and let the statement hold for all paths of order less than n. Assume P, := v1vov3...v, be a path of order n
and f=(V_1,V1, V2, V3) is a v3,(P,)-function such that |V3] is as small as possible. If V_; =), then there are
at least [%] vertices in V5 U V3 yielding 72, (P,) > n + [%] and this leads to the desired bound. Hence, we
assume V_; # (). Let v; € V_1. By Observation 1.1, v; is neither a leaf nor a support vertex and by definition
of SDR3DF, v; must have two neighbors in V5 or one neighbor in V3.
First let v; have a neighbor in V3. Assume without loss of generality that f(v;+1)=3. Since f[vi41] > 3 and
flvi] > 3, we have f(viy2) > 1 and f(v;—1) > 1. If n=14+ 2 (resp. i — 2=1), then the function f, restricted
to Pp_3=P, — {vn,vp_1,0n—2} (vesp. Pr_3=PF, — {v1,v2,v3}), is an SDR3DF of P,,_3 and by the induction
hypothesis we have

Voar(Pn) >3+ w(flp,_s) 2 3+ 7veqr(Poos) >34+ (n—3+2)=n+2.

Let 3 < i <n—3 and P,_3 be the path obtained from P, by removing the vertices v;, v;+1,v;4+2 and adding
the edge v;_1v;y3. Clearly, the function g : V(P,_3) — {-1,1,2,3} by g(v;—1) = max{f(v;_1), f(viyr2)} and
g(x) = f(z) otherwise, is an SDR3DF of P,,_5 and by the induction hypothesis we obtain

Vear(Pn) >34 w(g) >3+ 734r(Pao3) 23+ (n—3+2)=n+2.

Now let v; have two neighbors in V5. That is f(v;—1) = f(vi11) =2. Since f[v;41] > 3 and flv;—1] > 3, we
must have f(v;y2) > 2 and f(v;_2) > 2. Let P,_3 be the path obtained from P, by removing the vertices
Vi, V;—1, V11 and adding the edge v;_sv; 5. Clearly, the function f, restricted to P,_3, is an SDR3DF of P, _3
and the result follows by the induction hypothesis as above. This completes the proof. (]

Obviously, 74, n(P2) =4 and 72, (P3) =5.
Proposition 2.3. Forn >4, v! (P,) =[] + 2.

Proof. Let P, :=v1va ... s If n=4, then clearly v,z (P,) =8=[%*] +2. Let n > 5. To show that v, (P,) <
(48] + 2, define f : V(P,) — {-1,1,2,3} by f(vs)=f(vsis1)=1for 1 <i < [252] and f(z) =2 otherwise
when n = 0,1 (mod 3), and by f(vs;) = f(vsit1) = f(vn—2)=1for 1 <i < [232] and f(z) =2 otherwise when
n =2 (mod 3). Clearly, f is an SDR4DF on P, yielding v%,,(P,) < [22] + 2.

Now we show that ~%,(P,) > [4] + 2. We proceed by induction on n. It is not hard to see that
Yhir(Pr) = f%] + 2 for n < 6. Let n > 7 and let the statement hold for all paths of order less than n.
Assume f=(V_1, Vi, Vo, V3) is a v2, (P, )-function. Suppose first that V_; # () and let v; € V_;. Clearly, v; is
neither a support vertex nor a leaf. Since f[v;] >4, flvi11] > 4 and f[v;—1] > 4, we have f(v;—1) + f(viy1) > 5,
fit1) + f(viz2) > 5 and f(vi—1) + f(vi—2) > 5. Let P’ = P,_3 be the path obtained from P, by removing
the vertices v;—1,v;,v;+1 and adding the edge v;_2v; 12, and define g : V(P') — {—1,1,2,3} by g(z) = f(z) for
x € V(P') when f(viy1) + f(vi—1) =5, and by g(v;—2) = min{f(v;—2) + 1,3} and g(z) = f(x) otherwise, when
f(vig1) + f(vi—1) =6. Clearly, g is an SDRADF on P’ and by the induction hypothesis we have

Year(Pn) 2 w(g) +4 > F‘(”;ﬂ +6= ﬁﬂ +2,

as desired. Now, let V_; ={). Then obviously f(v1) + f(v2) > 4. Let P’ = P,_3 be the path obtained from P,
by removing the vertices v1,vq9,v3 and define g : V(P') — {-1,1,2,3} by g(vs) = min{f(v4) + f(v3),3} and
g(z) = f(z) otherwise. Clearly, g is an SDR4DF on P’ of weight at most w(f) — 4. By the induction hypothesis,
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we have

Viar(Pa) > w(g) +4> [4(”33)] L6 Rﬂ o,

and the proof is complete. O
Proposition 2.4. Forn > 3,

_ IR +2ifn=0, 2 (mod 3)
’)’?dR(Pn)—{[ 2] 4+ 3if n=1 (mod 3).

Proof. Let P, := vivy...v,. If n < 4, then the results hold. Let n > 5. Define the function f : V(P,) —
{=1,1,2,3} by f(v1) = f(vn) =2, f(vsir2) = f(vp—1) =3 for 0 < i < [25%] and f(x) =1 otherwise. Clearly, f is
an SDR5DF on P, yielding
[22] +2if n =0, 2 (mod 3)
Par(Pn) < { 1307 £ 3if n=1(mod 3).

To prove the inverse inequality, we proceed by induction on n. Clearly, the results hold for n < 6. Let n > 7
and let the statements hold for all paths of order less than n. Assume f=(V_q, Vi, V2, V3) isa 'yEdR(Pn)-function.
Suppose first that V_; # @ and let v; € V_;. By Observation 1.1, v; is neither a support vertex nor a leaf. Now,
flvig1] = 5 and flvi—1] > 5 imply that f(vi—2) = f(vi—1) = f(vit1) = f(viy2) =3. Let P’ =P, _3 be the path
obtained from P, by removing the vertices v;_1,v;,v;+1 and adding the edge v;_9v; 2. Obviously, the function
f, restricted to P’ is an SDR5DF of P’ and by the induction hypothesis we have

Vor(P) > w(flp) +5 > [5(”3% P {5371} a

where £ =2 when n = 0,2 (mod 3) and =3 when n =1 (mod 3).

Now, let V_1 =0. By Observation 1.1 we have f(v1) + f(v2) > 5. Let P'=P,_3 be the path obtained
from P, by removing the vertices vy, vs,v3 and define g : V(P') — {-1,1,2, 3} by g(v4) = f(v4) + min{3 —
F(vs), F(v3)} 9(vs) = f(v5) + min{3 — F(vg), min{3 — F(va), f(vs) + min{3 — f(va), Fva)}}} and g(z) = f()
otherwise. Clearly, g is an SDR5DF on P’ of weight at most w(f) — 5. Now the result follows as above and the
proof is complete. |

Finally, we determine the signed double Roman 6-domination number of paths. Clearly, 75, (P2) =6.

Proposition 2.5. Forn > 3,
A6 (Py) = 2n+3if n =0, 2 (mod 3)
sdR\S 2n+4if n=1 (mod 3).

Proof. Let P, := viva...v,. If n < 5, then clearly the results hold. Let n > 6 and define the function f :
V(P,) — {71 2,3} by f(vgig1) = ,f(vgl) =1for1<i< |2 and f(z)=3 otherwise when n =1 (mod 3),
by f(vsit1) =2, f(vgl)—f(:tn 9)=1for 1 <i < 2] and f( ) =3 otherwise when n = 2 (mod 3), and by
f(vsip1) =2, f(vg) =1 for 1 <i < 253 and f(z) =3 otherwise when n = 0 (mod 3). Clearly, f is an SDR6DF
on P, yielding
2n+3if n =0, 2 (mod 3
Year(Fa) < { 2n+4if n=1 (n<10d 3))
To prove the inverse inequality, we proceed by induction on n. Clearly, the results hold for n < 6. Let
n > 7 and let the statements hold for all paths of order less than n. Assume f=(V_1, Vi, Vo, V3) is a 78,5 (Py)-
function. Obviously, |V_1|=0. By Observation 1.1, f(v1) + f(v2)=6. Let P'=P,_5 be the path obtained
from P, by removing the vertices vy, vq,v3 and define g : V(P') — {—1,1,2,3} by g(v4) = f(v4) + min{3 —
fva), f(vs)}, g(vs) = f(vs) + min{3 — f(vs), min{3 — f(vs), f(vs) + min{3 — f(vs), f(v5)}}} and g(z) = f(x)
otherwise. Clearly, g is an SDR6DF on P’ of weight at most w(f) — 6. By the induction hypothesis we have

Vir(Pa) > w(g) +6 > 2(n—3) + 6 +2=2n+uz,
where =3 when n = 0,2 (mod 3) and =4 when n =1 (mod 3). This completes the proof. O
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3. TREES

In [4], Ahangar et al. prove that for any tree T of order n > 2, % < vs4r(T) < n and they characterize
all trees achieving the lower and the upper bounds. Our aim in this section is to establish lower and upper
bounds on the signed double Roman k-domination number of a tree in terms of its order for k=2,3,4,5,6.

3.1. k=2
First we determine the signed double Roman 2-domination number of stars.
Proposition 3.1. Forn > 3, fy?dR(Kl’n) =2

Proof. Let {v,v1,...,v,} be the vertex set of K7, where v is the central vertex of K ,,. By definition, we have
V2p(Kin) = > uen(y) f(w) = 2. Define g : V(K1) — {-1,1,2,3} by g(v) =3 and g(v;) = (-)for1<i<n
when n is odd, and by g(v)=3,g(vi)=2,g(v;)= —1 for i=2,3,4 and g(v;) =(—1)* for 5 < i < n when n is
even. It is easy to see that g is an SDR2DF of K7 ,, of weight 2, implying that 72,5 (K1 ,) =2. (]
Proposition 3.2. Forr > s> 1, we have

—(r+s+2)

’Y?dR(DST,S) > 9 +3.
The equality holds if and only if T =DS4 4.
Proof. Let T=DS, s and f be a v2;z(T)-function. Suppose u,v are the non-leaf vertices of T', u1,...,us are
the leaves adjacent to w and vy,...,v, are the leaves adjacent to v. If r=s=1, then DS;; =P, and from

Proposition 2.1, v2,5(DS1,1) =4 > w +3. Let r > 2. If f(u) <2 (the case f(v) < 2 is similar), then we
must have f(u;) > 1 for each 1 < ¢ < s because f is a SDR2DF of T and this implies that

Vaar(T) Z [z +Zf(ui)22+523>w+3

zEN[v i=1

as desired. Assume that f(u)= f(v)=3. Since f is an SDR2DF of T, we must have

2< Y fl@)=f)+ fo)+ Y flu) =6+ flu) (3.1)
TzEN[u] i=1 i=1
and s s
2< Y f@)=fw)+ f)+ > foi) =6+ f(vi). (3:2)
zEN[v] i=1 i=1
Using inequalities (3.1) and (3.2), and the fact that f is 72,(7T)-function, we obtain Y ;_, f( ;)= —4 and
S fvi)=—4whenr>s>6,>"_, f(w)=-3and > ;_, f(v;)=4whens=5andr >6,> _, f(u;)=—s
and Y0 _ | f(vi)= —4 when s <4 andr >6,>"_, f(u;))=>._, f(v;)= —3 when r, s =5, Zz_lf(u )=

and Y. _, f(v;)= -3 when r=5and s <4, and Y ;_, f(u;)= —sand >, _, f(v;)= —r when r,s < Slnce

S T
Vaar(T) =w(f)=fu) + f(0) + > fluw)+ Y f(v)
i=1 i=1
we have v2, 5 (T)=6 —s —rifr,s <4, V2, p(T)=0if r=5s=5, 2, (T)=3—sifr=>5,5s <4, 72, x(T)=2—s
if s <4 andr > 6, 'yng(T): —1if s=5 and r > 6, and 'yng(T): —2 when r > s > 6. This implies that
fyde(DST,S) > w + 3 with equality if and only if T=DS, 4. O
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Let G be a connected graph which is not complete, let S be a vertex cut of G, and let X be the vertex set
of a component of G — S. The subgraph H of G induced by S U X is called an S-component of G.

For any tree T, assume F2 is the tree obtained from T by adding 3 degy;(v) + 1 pendant edges at v for each
v € V(T). Assume that 7o ={F2 | T is a tree}.

Theorem 3.3. Let T be a tree of order n > 2. Then

-n+6
'Y:de(T) >

2

with equality if and only if T € Ts.

Proof. The proof is by induction on n. The cases n=2 and n =23 follows from Proposition 2.1. Let n > 4 and
assume that the statement is true for all trees of order less than n. Let T be a tree of order n. If diam(7T") =2,
then T is a star and by Proposition 3.1 we have 72,,(T) =2 > %*‘6. If diam(7) =3, then T is a double star
DS, with ¢ > p > 1 and by Proposition 3.2, we have v2,,(T) > =% with equality if and only if 7 =DSy 4.
Therefore, we assume that diam(7") > 4. Suppose f = (V_1, V1, V2, V3) is a v2,(T)-function.

If there is a non-pendant edge uv such that u,v € V_q, then let 77 and 75 be the components of T — wv.
Clearly, the function f; = f|7, is an SDR2DF of T; for i=1,2, and we conclude from the induction hypothesis
and the fact w(f) =w(f1) + w(f2), that

—V(Tm)|+6  —|V(T2)|+6 _ —n+6
Far(T) =w(f) +w(fz) > — D 4 RIS “ntl,

Henceforth, we assume that there is no non-pendant edge uv for which u,v € V_;. On the other hand, for any
pendant edge uv, we must have f(u) > 1 or f(v) > 1 by Observation 1.1. Hence, we may assume that V_; is
an independent set. We consider the following cases.

Case 1. There is a non-leaf vertex v with f(v)= —L1.
By definition, f must assign a 3 to any leaf adjacent to v. Suppose T1,...,T, are the components of T — v of
order at least two. Since diam(T") > 4, we have r > 1. Also the function f; = f|r, is an SDR2DF of T; for each
i€{1,...,r}. If v is not a support vertex, then r > 2, and by the induction hypothesis we have
. " —|V(Ty)| +6 —n+6 6r—>5 —n+6
an(T)= S w(h) + f) 2 3 TN gy Znk 8 05 ks,
i=1 i=1
If v is a support vertex, then let L, ={u1,...,us}. If s=1, then we have
a " —|V(T))| +6 —(n—2) +6r —n+6
VEdR(T):f(U)‘Ff(Ul)‘FZw(fi)Z27| (2)| +2=7( 2) +2> 5

i=1 i=1
If s > 2, then let 77 be the subtree of T induced by L, U {v}. Obviously, the function f’ = f|r is an SDR2DF
of T” and by the induction hypothesis we have

Year(T) = w(f') + Z w(fi)

=1

(35— 1)+ 3 w(fi)

1=1

—(s+1)4+6 < —|V(T})|+6
> P S P I S A B
> 5 +ZZ:: 5
_ —n+6(r+1)
- 2

—-n—+6
> .

2
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By Case 1, we may assume that every vertex in V_; is a leaf.

Case 2. There is a non-leaf vertex v with f(v)=1.

By definition, f must assign at least a 2 to any leaf adjacent to v, and since diam(7T) > 4, T — v must have at
least a component of order at least two. Let 17, ...,T, be the components of T — v of order at least two and
let v; € V(T;) be the vertex adjacent to v for each i € {1,...,r}. Since v; is not a leaf, we deduce from the
assumption that v; € U3_,V; and so f(v;) > 1 for each i € {1,...,7}. Suppose f(v1)= min{f(v;) |i=1,...,7r}
and let Fy and F, are the components of T — vv; containing v and v, respectively. If f(v1) =1 or 2, then the
function fo = f|p, is an SDR2DF of F» and the function g : V(Fy) — {—1,1,2,3} defined by g(v1) = f(v1) + 1
and g(z) = f(z) for x € V(Fy) — {v1}, is an SDR2DF of F}. By the induction hypothesis, we obtain

—[V(F)|+6  —|V(F)|+6 —n+6 —n+6
Pan(T) =w(g) +w(fe) ~ 1> JLENEE JWEIHG ) 0B, o0 th

2 2 2

Assume that f(v1)=3. Then f(v;) =3 for each ¢ € {1,...,7}. Let F| be the tree obtained from F; by adding
a pendant edge v1v” and define g : V(F]) — {—1,1,2,3} by g(v') =1 and g(z) = f(x) for x € V(F]) — {v'}.
Obviously, ¢ is an SDR2DF of F| and the function f; = f|p, is an SDR2DF of F;. It follows from the induction
hypothesis that

—IV(I*;{)I +6_ —[V(R)+6 | —n+9  —n+6

Voar(T)=w(g) + w(fz) — 1> 5 5 5

Considering Cases 1 and 2, we may assume that all non-leaf vertices of T' are assigned 2 or 3 under f.

Case 3. There is a non-leaf vertex v with f(v)=2.
Then any leaf adjacent to v (if any) must be assigned at least 1 under f. If v is a support vertex and v' € L,
then the function f'= f|r_, is an SDR2DF of T' — v’, and we conclude from the induction hypothesis that

—(n—1)4+6 —n+6
an(T) 2 w(f) 11> “0ZDEE L TrD
Assume v is not a support vertex, N(v)={vy,vs,...,v,.} and T; is the {v}-components of T' containing v; for

each i € {1,...,r}. Obviously, the function f; = f|r, is an SDR2DF of T; for each i € {1,2,...,7}. Note that
n=>3._,|V(T;)|— (r—1) and w(f)= (> _, w(fi)) — 2(r — 1). By the induction hypothesis, we have

Vear(T) = <Z w(ﬁ)) —2(r=1)

=1

. <i—|v<T2i>l+6>_2(r_1)

i=1
-n+6 5(r—1)

7t (r—1)

- —-n+6
2

Considering above Cases, we may assume that all non-leaf vertices of T" are assigned a 3 under f.

Case 4. There is a non-leaf vertex v such that v is not a support vertex.

Let N(v)={v1,vs,...,v}. By assumption we have N[v] C V3. Let T* be the graph obtained from T — v by
adding the edges vivs9,v203,...,v5_1Vk. Clearly, T is a tree of order n — 1 and the function f*=f
SDR2DF on T™* of weight w(f) — 3. We conclude from the induction hypothesis that

T+ 18 an

_VT* _
W) +6 0+

Vor(T)=w(f*) +3> 5 5
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Case 5. Each vertex of T is either a leaf or a support vertex.
Obviously, for any support vertex, f assigns a —1 to at least one leaf adjacent to it. Let v be a support vertex
and let L, ={u1,ug,...,us}.

If f(u;)=1 and f(u;)= —1 for some ¢, j, then let 7" =T — {u;,u;}. Clearly, the function f, restricted to 7"
is an SDR2DF of 7" and by the induction hypothesis we have

22y (T) =l flrr) > =0 —22) +6 —n2—|—6'

If f(u;)=t € {2,3} and f(u;)= —1 for some ¢,j, then let 7" =T — u;. Obviously, the function g : V(1") —
{-1,1,2,3} defined by g(u;) =t—1 and g(z) = f(z) otherwise, is an SDR2DF of T". It follows from the induction
—(n—1)+6 - -n+6

hypothesis that v2,,(T) =w(g) >

Henceforth, we assume that all leaves of T" belong to V_;. Recall that all support vertices belong to V3. For
every support vertex v, let I, =|L,|. Suppose T is the tree obtained from T' by removing all leaves of T'. Since
for every support vertex v, f[v] > 2, we must have [, < 3deg; (v) + 1. Hence

S ol< ) (3degp(v) +1)=Tn(T") - 6. (3.3)

veV(T") veV(T")

On the other hand, since n=n(T")+ 3, cy (r lv and v2,5(T) =3n(T") — 2 vev(r) v, it follows from (3.3) that

) + oy b +6_ nt s

Vear(T)=3n(T') = > 1, > 5 5 (3.4)
VeV (T")
If moreover 72, (T) = =2%t8, then all inequalities occurring in (3.3) and (3.4) become equality. In particular, we

must have I, =3 degg (v) + 1 for each v € V(T”) yielding T = F% € Ts.

Conversely, let T' € T5. Clearly, the function g : V(T') — {—1,1, 2,3} that assigns a - to each leaf and a 3 to
each support vertex, is an SDR2DF of T yielding v2,5(T) < %JFG. This implies that v2,(T) = %*6 and the
proof is complete. O

Theorem 3.4. For any tree T of order n > 2, v2,,(T) < n.

Proof. The proof is by induction on n. The result is immediate for n < 3 by Proposition 2.1. Assume n > 4
and let the statement hold for all trees of order less than n. Suppose 7' is a tree of order n. If diam(7") =2, then
the result is trivial by Proposition 3.1. If diam(7T') =3, then T is a double star DS, , with ¢ > p > 1 and by
the upper bounds presented in the proof of Proposition 3.2, we have 'y?d r(T) < n. Therefore, we assume that
diam(T") > 4.

Assume v1vs ... v (k > 5) is a diametrical path in T such that degp(vs2) is as large as possible and root T" at
vy, If degp(v2) > 3, then let /=T — T, and let f be a v2,,(T")-function. Define g : V(T') — {-1,1,2,3} by
g(v1)= -1, g(v2) =3, g(z)=1for € L,, — {v1} and g(z) = f(x) for x € V(T"). Clearly, g is an SDR2DF of T
and by the induction hypothesis we have

Vaar(T) < w(g) =72ar(T") + [V (T0,)| < [V(T)| + [V(To,)| =n.

Hence, we assume that degy(vy) =2. By the choice of diametrical path, all children of vz have degree at most
two. Let Ca(vs)={z1 =va,22,...,2:} be the set of all children of v3 with degree two and let z be the leaf
adjacent to z; for each i. Clearly, C(vs) = Ca(v3) U Ly,. Let T =T — T, and f be a v2,5(T")-function.

If L,, # 0, then let w € L,, and define g : V(T) — {—1,1,2,3} by g(w)= —1,g(v3) =g(z;) =3, g(z}) = —1
for 1 <i<t, g(z)=1for x € L,, — {w}, and g(x) = f(z) for z € V(T"). Clearly, g is an SDR2DF of T" and by
the induction hypothesis we have

YVear(T) < w(g) =72ar(T") + [V (Toy)| < n.
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If L,, =0, then define g : V(T') — {—1,1,2,3} by g(vs) =1,9(2;) =3, g(z})= —1 for 1 <i <t and g(x)= f(x)
for € V(T"). Tt is easy to see that g is an SDR2DF of T' and we deduce from the induction hypothesis that
Y2r(T) < w(g)=72,5(T") + |V(T,,)| < n. This completes the proof. O
3.2. k=3

Here, we present lower and upper bounds on the signed double Roman 3-domination number of a tree T' in
terms of its order.

Theorem 3.5. Let T be a tree of order n > 1. Then

In+7
5

V3ar(T) >

with equality if and only if T = Ps.

Proof. We proceed by induction on n. If n =1 then 72,5 (T) =3 > 4T if n =2 then 72, (T) =3 = 427 and if
n=3then v3,,(T) =4 > %7 by Observation 1.1 (part (v)). Assume that n > 4 and the statement holds for all
trees of order less than n. Suppose T is a tree of order n. If diam(T") = 2, then T'= K ,,_; and by Observation 1.1

(part (v)) we have v3,-(T)=n+1 > 42T If diam(T) =3, then T is a double star DS, , with ¢ > p > 1 and

by Observation 1.1 (part (iii)), we have v3,,(T) > p+q+4 > W}ﬂ. Hence, we assume that diam(T") > 4.
Suppose f = (V_1, V1, V2, V3) is a 73,5 (T)-function. If V_; =, then clearly v3,,(T) > n+1 > 427 Henceforth,
we assume V_1 # (). If there is a non-pendant edge uv such that u,v € V_y, then using an argument similar
to that described in Theorem 3.3 we obtain 3,5 (T) > %= . Assume that there is no non-pendant edge uv
for which u,v € V_;. As in the proof of Theorem 3.3, we may assume that V_; is independent. Also, by
Observation 1.1 (part (ii)), each vertex in V_; is neither a leaf nor a support vertex.

Let v € V1 and let Ty,...,T, (r > 2) be the components of T"— v. Clearly, the function f;= f|r, is an

SDR3DF of T; for each i. If » > 3, then we deduce from the induction hypothesis that

T

Var(T) = w(fi)+ f(v)

i=1
— 4\V(T)| +7
S SELIEE S
i=1
S 4(71—1)—1—77“_1
- 5
:4n+7+—4+7(r—1) 1
5) 5
dn +7
5

Let r=2. If |[V_1|=1, then clearly w(f|r,) > |[V(T1)| + 1 and w(f|r,) > |V(T2)| + 1. This implies that

Vir(M) =w(flr,) + w(fln) =1 > n+1 > 227 Hence we assume |[V_;| > 2. Let u € V_; be a vertex

such that d(u,v) is as large as possible and let T7,..., Ty (s > 2) be the components of 7' — u and let f; = f|r/
for each . Assume without loss of generality that v € V(T}). If s > 3, then we have 73,,(T) > 42T as above.
Suppose s =2. By the choice of u, we must have V_; N V(T3) =0. Then we have w(f}) > |[V(T2)| + 1. Now, by

the induction hypothesis we obtain

In+7

Year(T) =w(f]) +w(f3) - +IV(T)[+1-1>

!/
1> 4|V(7::))| +7

and the proof is complete. (I
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Let F={cor(T) | T is a tree}.
Theorem 3.6. Let T be a tree of order n > 2. Then

3n

V2r(T) < o5

with equality if and only if T € F.

Proof. The proof is by induction on n. The cases n =2 and n =3 follows from Proposition 2.2. Let n > 4 and
let the statement hold for all trees of order less than n. Assume T is a tree of order n. If diam(T") =2, then
T =K ,—1 and by Observation 1.1 (part (v)), we have 42, (T) =n+1 < 32 If diam(7') = 3, then T is a double
star DS, , with ¢ > p > 1 and 72,5 (T)=n+2 < 37" with equality if and only if T'= Py = cor(P,). Therefore,
we assume that diam(7) > 4. Let v1v2...v; (k > 5) be a diametrical path in T such that deg;(v2) is as large
as possible and root T' at vy.

If degy(vs) > 3, then let 77 =T —wv; and let f=(V_1, Vi, Vs, V3) be a v3,(T")-function. Since vs is a support
vertex in 77, by Proposition 1.1 (part (iii)) we may assume that f(va) > 2. Then g=(V_1, V1 U {v1}, Vo, V3) is
an SDR3DF of T and by the induction hypothesis we have v3,5(T) < w(g) =v3,5(T") + 1 < 20 4 < 3,

Assume that degp(v2) =2. Then by the choice of diametrical path, all children of vg with depth 1, must have
degree 2. We consider two cases.

Case 1. degp(v3) > 3.

First let vs be a support vertex. Let 77 =T — {v1,v2} and let f=(V_y, V1, Va, V3) be a 73, ,(T")-function. Since
v3 is a support vertex, we may assume that f(vs) > 2. Then g=(V_1,V; U{v1}, Vo U {va}, V3) is an SDR3DF
of T and by the induction hypothesis we have

3(n—2) 3n

+3< 2

Vor(T) S w(g) =72p(T) +3 < 5 < 3

Note that the equality holds if and only if v3,,(T") = w, i.e., if and only if 77 € F, and this if and
only if T € F. Henceforth, we may assume that all children of vz have degree 2. Let T'=T — T, and let
[=(V_1,Vi, Vo, V3) be av3,o(T")-function. Then g = (V_1, Vi U (D[vs] — C(v3)), V2 U C(v3), V3) is an SDR3DF
of T" and by the induction hypothesis we have

3(n— (2|C(vs)| + 1)) 3n

. +3/C(vg) | +1 <

Vear(T) < w(g) =72ar(T') +3|C(vs)| +1 <

Case 2. degy(v3) =2.
If deg(v4) =2 or vy is a support vertex, then let 7" =T — {v1,vo,v3} and let f=(V_1, Vi, Vo, V3) be av3,-(T")-
function. Since vy is a leaf or a support vertex in 7", we have f(v4) > 1 by Proposition 1.1 (part (ii)). Then
=(V_1,Vi U{v1,vs}, VaU{v2}, V3) is an SDR3DF of T and by the induction hypothesis we obtain Wde(T) <
w(9) =2 %ar(T") +4 < 2052 44 < 3
Assume that deg(vy) 2 3 and that vyg is not a support vertex. Using above arguments, we may assume
that all vertices in Ty, except vy have degree at most two. If diam(7") =4, then clearly fy;d R(T ) < 32 Assume
that diam(T) > 5, T'=T — T, and f=(V_1, Vi, V5, V3) is a 73,5 (T")-function. Let vyzizda] (1 < j <r)be
the paths of length 3 in T, and my%y{ (1 < j < s) be the paths of length 2 in T,,, if any. If s > 1, then
define g : V(T) — {-1,1,2,3} by g(vs4) =1, g(xg) g(x)) =1, g(a))=2for 1 < j <r, g(1f)) =2, g(yl)—l for
1<j<s,and g(z)=f(z) for z € V(T"). Clearly, g is an SDR3DF of T and we deduce from the induction
hypothesis that

3(n—(3r+2s+1))

Vr(T) <3 R(T) +3s+4r+1< 5

+3$+4r+1<37n~
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If s=0, then define g : V(T) — {-1,1,2,3} by g(vs)=2,9(x})=g(xl)=1, g(z})=2 for 1 < j < r, and
g(x) = f(z) for x € V(T"). Clearly, g is an SDR3DF of T" and by the induction hypothesis we have

3(n—03r+1
Voar(T) S Ap(T) +4r +2 < %

3
—|—4T+2<7n'

This completes the proof. O
3.3. k=4

First we present an upper bound on 74, (T’) and characterize all extreme trees. Let F = {cor(T) | T is a tree}.

Theorem 3.7. For any tree T of order n > 2,
Ysar(T) < 2n.
The equality holds if and only T € F.

Proof. Let T be a tree of order n. Clearly, the function f : V(T) — {—1,1, 2,3} defined by f(z) =2 for z € V(T),
is an SDR4DF of T of weight 2n and hence 72, ,(T) < 2n.

If T € F, then we deduce from Observation 1.1 (part (iii)) that v%,,(T) > 2n and so v2,(T) =2n.

Conversely, let v2,-(T') = 2n. If T has a strong support vertex, say v, then the function g : V(T) — {-1,1,2, 3}
defined by g(v) =3, g(x)=1 for v € L, and g(z) =2 otherwise, is an SDRADF of T' of weight at most 2n — 1
which leads to a contradiction. If T" has a non-support vertex of degree at least two, say v, then the function
g:V(T)— {—1,1,2,3} defined by g(v) =1 and g(z) =2 otherwise, is an SDR4DF of T of weight at most 2n—1
that leads to a contradiction. Thus each vertex of T is either a leaf or a support vertex which is not strong.
This implies that T'=cor(T”) for some tree 7" and so T € F. This completes the proof. a

Next we present a lower bound on the signed double Roman 4-domination number of trees T" and characterize
all extreme trees.

Theorem 3.8. For any tree T of order n > 1, v, 2(T) > n + 2.

Proof. The proof is by induction on n. The cases n =2 and n =3 follows from Proposition 2.3. Let n > 4 and
let the statement hold for all trees of order less than n. Assume T is tree of order n. If diam(7) =2, then
T = Kj 5,—1 and by Observation 1.1 (part (v)) we have v%,(T) =n + 2 and if diam(7T") =3, then T is a double
star DS, , with ¢ > p > 1 and by Observation 1.1 (part (iii)), we have v%,5(T') > p+ q + 6 > n + 2. Therefore,
we assume that diam(7") > 4. Suppose f=(V_1,V1, V2, V3) is a v%;(T)-function. If V_; =0, then obviously
'y;LdR(T) > n + 2. Henceforth, we assume V_; # (). If there is a non-pendant edge uv such that u,v € V_1, then
applying an argument similar to that described in Theorem 3.3 we obtain 74, (T) > n + 2. Assume that there
is no non-pendant edge uv for which w,v € V_;. As in the proof of Theorem 3.3, we may assume that V_; is
independent. Also, it follows from Observation 1.1 (part (iii)) that each vertex in V_; is neither a leaf nor a
support vertex.

Let v € V_; and T1,..., T, (r > 2) be the components of T'— v. Clearly, the function f; = f|r, is an SDR4DF
of T; for each ¢ and by the induction hypothesis we obtain

Yaar(T) Z:r: qw(fi) + f(v)

Qi V() +2) + f(v)

n—14+2r—-1 (3.5)
n—1+4-1

n+ 2,

VAV

and the proof is complete. (I



BOUNDS FOR SIGNED DOUBLE ROMAN K-DOMINATION IN TREES 639

To characterize the extreme trees we introduce the following family of trees. For any tree T of order at least
2, let S(T') be the tree obtained from T by subdividing all non-pendant edges of T' once. Let 7 be the family
of trees T such that |L,| > % for any non-leaf vertex v € V(T'), and let ST ={S(T) | T € T}. Note that
ST contains all non-trivial stars.

Lemma 3.9. IfT € ST, then v};5(T) =n(T)+2. Moreover, if n(T) > 3, then T has a unique v, (T)-function.

Proof. Let T € ST. It is easy to see that the function g : V(T) — {—1,1,2,3} assigning a 1 to all leaves, a
3 to all support vertices and a —1 to the remaining vertices, is an SDR4DF of T of weight n(T) + 2 and so
¥4 R(T) < n(T) + 2. Thus v4,5(T) =n(T) + 2 by Theorem 3.8.

Assume that T' € ST is a tree of order n > 3. To show that 7" has a unique 7%, (T)-function, we proceed by
induction on n. If n=3, then clearly T has a unique 'y;ld r(T)-function. Assume that n > 4 and the statement
is true for all trees in ST of order less than n. Suppose T' € ST is a tree of order n. If diam(7") =2, then T
is a star and clearly T has a unique 72, (T)-function. Let diam(7") > 3. Since T € ST, there exists a tree
T’ € T such that T=S(T"). It follows that diam(7T) > 4. Assume f=(V_1,V;, Vs, V3) is a v, ,(T)-function
and let v1vy ... v; (k > 5) be a diametrical path of T. Root T at vy. Clearly, v2,vs € V(T") and so |L,,| > 2 for
1=2,4 and deg(vs) =2. It follows from Proposition 1.1 (part (iii)) that f(ve)= f(v4) =3 and f(z)=1 for each
z € Ly, U Ly,. Since f is a v%,(T)-function, we must have f(vs)= —1. Let Ty =T — T,,,. Obviously T} € ST
and the function f, restricted to 7T is an SDRADF of T7. By Theorem 3.8, we have

n+2=745(T) =w(fln) + [V (To)| > [V(T1)[ + 2+ [V(Toy) =1 + 2.

This implies that v%,z(T1)=|V(T1)| + 2 and so f|r, is a vi;p(T1)-function. We deduce from the induction
hypothesis that f|p, is the unique ’y;ldR—function of T7 and hence f is the unique fyédR—function of T'. This
completes the proof. O

Theorem 3.10. Let T be a tree of order n. Then v, 5(T)=n+2 if and only T € ST.

Proof. According to Lemma 3.9, we only need to prove necessity. Let v%,»(T) =n+2. The proof is by induction
onn. If n=2, then T=P, € ST. Let n > 3 and let the statement hold for all trees of order less than n.
Assume T is tree of order n. As in the proof of Theorem 3.8, we can see that either T is a star or diam(7T") > 4
and all inequalities occurring in (3.5) are equalities. If T is a star, then clearly T' € ST. Let diam(T) > 4
and all inequalities occurring in (3.5) are equalities. This implies that r =2, v3,,(T;) =|V(T;)| + 2 and f; is
a va,r(Ti)-function for ¢=1,2. By the induction hypothesis we have T1,7> € S7 and Lemma 3.9 implies
that f; is the unique %, p-function of T; for i=1,2. Suppose Ty = S(T}) and Tp =S(T}) where T{,T5 € T.
Let v; € T; be the neighbor of v for i=1,2. Clearly, v; € V(T}) for i=1,2. Assume T" is the tree obtained

. . . degyy (vi)+1
from trees 77, T4 by adding the edge v1vs. Since v; is a non-leaf vertex of T}, we have |L,,| > ——— for

degrps (vi)+1

i=1,2. If |L,,| = ——5—— for some 4, then we have f(N[v;]) < 3 which is a contradiction. Thus [L,,| >
de 7(vi)+2 e s (v; . . . 3

gT?‘; T2 _ degy é D for j=1,2, yielding 77 € 7. Hence T =5(T") € ST and the proof is complete. O
3.4. k=5

Here, we establish upper and lower bounds on the signed double Roman 5-domination in trees. Let
F=A{cor(T) | T is a tree}.

Theorem 3.11. For any T of order n > 2,
on
Yoar(T) < 5

The equality holds if and only if T € F.
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Proof. The proofis by induction onn.If n=2, then clearly 45, ,(T) =5= 22, and if n = 3 then by Proposition 2.4
we have 72, (T) =7 < 2. Let n > 4 and let the statement hold for all trees of order less than n. Assume T i 1s a
tree of order n. If d1am(T) 2, then T'= K1 ,,_1 and by Observation 1.1 (part (v)) we have 4%, (T) =2n+1 < 22
If diam(T") = 3, then T is a double star DS,, , for some ¢ > p > 1 and we deduce from Observation 1.1 (part (iii))
that vsqr(T)=2n+ 2 < 57” with equality if and only if T'= P, € F. Therefore, we assume that diam(7T) > 4.
Let vivg ... v (k> 5) be a diametrical path in T such that degp(v2) is as large as possible and root T' at vy.

If degy(ve) > 3, then let T"=T — vy and let f=(V_1, V1, Va2, V3) be a 75, (T")-function such that f(ve) is
as large as possible. Then f(vy) =3 and the function g=(V_1, V1, Vo U{v1}, V3) is an SDRSDF of T" and by the
induction hypothesis we have 75, (T) < w(g) =7vsar(T") +2 < @ +2< 2

Assume that degp(ve) =2. By the choice of diametrical path, we may assume that all children of vs with
depth 1, have degree 2. We consider two cases.

Case 1. degp(v3) > 3.
Suppose first that vz is a support vertex and v’ € L,,. Let T"=T — {v1,v2} and let f=(V_1,V1, V5, V3) be a
75, r(T")-function. Since f(v3) + f(v') > 5, we may assume that f(vs)=3. Now the function g=(V_1,V;, Vo U
{v1}, V3 U{v2}) is an SDR5DF of T and by the induction hypothesis we have 72, (T) < w(g) =72,z(T") +5 <
5n=2) 4 5 < 51 The equality holds if and only if 77,,(T") = 2°=2 i, if and only if T’ € F, and this if and
only if T € .7:

Henceforth, we assume that all children of vs are of depth 1 and degree 2. Let T'=T — T,, and let
[=(V_1,V1,Va,V3) be a v5,5(T")-function. Then g= (V_1,V; U {vs}, Vo U (D(v3) — C(v3)), V3 U C(v3)) is an
SDRADF of T and by the induction hypothesis we have

5(n — (2|C(v3)| + 1))
2

5
+5/C(vs)| +1 < 22

V2ar(T) < w(g) =724r(T") + 5|C(vs)| + 1 < 5

Case 2. degp(v3) =2.

If vy is a support vertex or deg(vy) =2, then assume T =T — {vy,vo,v3} and let f=(V_1,V1, V2, V3) be a
75, r(T")-function. Since vy is a leaf or a support vertex in 7", we have f(v4) > 2. Now the function g = (V_1, V1 U
{vs}, VoU{v1}, VsU{v2}) is an SDRSDF of T of weight 75, (T") +6 and it follows from the induction hypothesis
that 5,5(T) < V2up(T) +6 < 2052 46 < 32,

Now assume deg(vs) > 3 and that vy 18 not a support vertex. Using above arguments, we may assume that
all vertices in T),, except v4 have degree at most two. Assume that 7" =T — T, and f=(V_1,V1,V3,V3) is a
72, p(T")-function. Let vazjadad (1 < j < r) be the paths of length 3 in T, and vayly] (1 <j < s) be the paths
of length 2 in T,,, if any. If s > 1, then define g : V(T') — {—1,1,2,3} by g(v4) =2 Lg(xh) =g(x)) =2, g(x}) =3
for 1 <j<r g(y})=3,9(y])=2for 1 < j < s and g(z)= f(x) for x € V(T"). Clearly, g is an SDR5DF of T
and we deduce from the induction hypothesis that

5(n—(3r+2s+1))
2

5
Year(T) < A2r(T) +5s+Tr+2 < +55+Tr+2< 7”

If s=0, then define g : V(T) — {~1,1,2,3} by g(vs) =2,9(z}) =g(2?) =2, g(a}) =3 for 1 < j < r, and
g(z) = f(z) for x € V(T"). Clearly, g is an SDR5DF of T" and by the induction hypothesis we have

5(n—(3r+1 on
’Y?dR(T) <w(g) :W’EdR(T/) tTr+2< % s < 2
This completes the proof. (I
Theorem 3.12. Let T be a tree of order n > 2. Then
on +4

5
T) >
Vst( >_ 3
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Proof. We proceed by induction on n. The cases n =2 and n =3 follows from Proposition 2.4. Let n > 4 and
let the statement hold for all trees of order less than n. Assume T is a tree of order n. If diam(7") =2, then T is
a star and by Observation 1.1 (part (v)) we have 72, (T)=2n+ 1 > 2% _If diam(T) =3, then T is a double
star DS, for some ¢ > p > 1 and we conclude from Observation 1.1 (part (iii)) that vsqr(T) > 2n+2 > 32,
Assume that diam(T") > 4. Let v1vs ... v, (K > 5) be a diametrical path in T such that deg,(vs) is as large as
possible and root T at vg. Let f=(V_1,V1, Va2, V3) be a v5,,(T)-function.

If T has a non-support vertex v of degree at least two with f(v) = —1, then let T3, ..., T, be the components
of T'— v. Clearly, the function f; = f|r, is an SDR5DF of T; for i=1,...,r, and we deduce from the induction
hypothesis that

d " 5n;+4  5(n—1)+4r 5n +4
%dR(T):—1+;w(fi)z—1+i; = . —1z

Henceforth, we suppose any non-support vertex of degree at least two, has positive weight. We conclude from
Observation 1.1 that V_; =0. If degp(v2) > 3 or f(vs) > 2, then let T/ =T — v;. It is not hard to see that the
function f restricted to 7" is an SDR5DF of T” of weight w(f) — 2 and by the induction hypothesis we have

-1)+4 4
5(n—1)+ Jr2>5n—|— .

Voar(T) = A2ar(T') +2 > 3 3

Assume that degp(ve) =2 and f(vs)=1. It follows from degy(v2) =2 and the choice of diametrical path that
any child of v with depth 1, is of degree 2. Also, it follows from f(v3)=1 that v3 is not a support vertex and
so all children of vz have degree 2. First let degp(vs) > 3. Then the function f restricted to T' — {v1,v2} is an
SDRS5DF of 77 and by the induction hypothesis we have

5(n—2 4 5 4
(n 3)—1— 5> n;— .

Now, let degy(vs) =2. Suppose that T =T —{vy,v2,v3}. If f(w) =3 for each w € N[vy]—{vs}, then obviously
the function f restricted to 7" is an SDR5DF of 7" and by the induction hypothesis we have 2, (T) > 75, (T")+
6 > w +6 > 5%t Assume f(w) < 2 for some w € N[vg] — {vs} and define g : V(T") — {-1,1,2,3} by
g(w)= f(w) + 1 and g(x) = f(x) otherwise. Clearly, g is an SDR5DF of 7" and by the induction hypothesis we
have 2, o (T) > 75, 5(T") +5 > 5("_33)+4 + 5= 3%t This completes the proof. O

Year(T) = V2ar(T — {v1,v2}) +5 >

3.5. k=6

First, we establish an upper bound on the signed double Roman 6-domination number of trees and characterize
all extreme trees.

Theorem 3.13. Let T be a tree of order n > 2. Then
’V?dR(T) <3n

with equality if and only if every vertex of T is either a leaf or a support vertex.

Proof. Clearly, the function f : V(T) — {—1,1,2,3} defined by f(x)=3 for each x € V(T), is an SDREDF of
T of weight 3n and hence 78,5(T) < 3n.

If T is a non-trivial tree such that every vertex of T is a leaf or a support vertex, then we deduce from
Observation 1.1 (part (vi)) that v5,5(7) > 3n and so 78, (T") = 3n.

Conversely, let v5,(T) =3n. If T has a non-support vertex of degree at least two, say v, then the function
g : V(T) — {-1,1,2,3} defined by g(v)=1 and g(z) =3 otherwise, is an SDR6DF of T' of weight at most
3n — 1 that leads to a contradiction. Thus each vertex of T is either a leaf or a support vertex and the proof is
complete. O
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Next we present a lower bound on 78, (7).
Theorem 3.14. For any tree T of order n > 2, 75,,(T) > 2n + 2.

Proof. The proof is by induction on n. If n =2, then clearly 4, (T) = 6 = 2n+2, and if n = 3 then by Proposition
2.5 we have 48, (T) =9 > 2n+2. Let n > 4 and let the statement hold for all trees of order less than n. Assume
T is a tree of order n. If diam(7") < 3, then T is a star or a double star and we conclude from Observation 1.1
(part (iv)) that v5,,(T)=3n > 2n + 2. Therefore, we suppose that diam(T) > 4. Let v1v2...v; (k > 5) be a
diametrical path in T such that degy(vs) is as large as possible and root T at vy. Assume f=(V_q, Vi, V5, V3)
is a 75,5 (T)-function. If T has a non-support vertex v of degree at least two with f(v)= —1, then as in the
proof of Theorem 3.12 we can see that ’ng r(T) > 2n + 2. Henceforth, we assume that any non-support vertex
of degree at least two, has positive weight. Now it follows from Observation 1.1 (part (iv)) that V_; =0.

If degy(va) > 3 or f(vs) =3, then let T =T — v;. Clearly, the function f, restricted to 7" is an SDREDF of
T’ of weight w(f) — 3 and by the induction hypothesis we obtain

V5r(T) > Year(T') +3>2(n—1) +5=2n+3 > 2n + 2.

Assume that degy(v2) =2 and f(v3) < 2. As in the proof of Theorem 3.12, we can see that all children of v3
are of depth 1 and degree 2. If degp(vs) > 3, then let T/ =T — {v1,v2} and define g : V(T") — {-1,1,2,3}
by g(vs) = f(vs) + 1 and g(x) = f(x) otherwise. Clearly, ¢ is an SDR6DF of T” of weight w(f) — 5 and by the
induction hypothesis we have

Vr(T) > Ysar(T) +5>2(n—2) +2+5>2n + 2.

Now, let degy(vs) =2. If f(vs) =2, then let 7" =T — {v1} and define g : V(T") — {-1,1,2,3} by g(v3) =3 and
g(x) = f(z) otherwise. Obviously, g is an SDR6DF of T” of weight w(f) — 2 and by the induction hypothesis we
have

V5 R(T) > Year(T') +2>2(n — 1) + 2 +2=2n+ 2.

Let f(v3)=1 and T"=T — {v1,v2,v3}. If f(w)=3 for each w € N[vs] — {vs}, then obviously the function
[, restricted to 7" is an SDR6DF of T” and by the induction hypothesis we have 78, (T) > ~5,.(T") + 7 >
2(n—3)4+2+ 7> 2n+2. Suppose f(w) < 2 for some w € Nvyg] — {v3} and define g : V(T') — {—1,1,2,3} by
g(w) = f(w) + 1 and g(x) = f(z) otherwise. Clearly, g is an SDR6DF of 7" and by the induction hypothesis we
have v8,5(T) > v8,2(T") +6 > 2(n — 3) + 2 4+ 6 =2n + 2. This completes the proof. O

We conclude this paper with some open problems.
Problem 1. Characterize the trees attaining the upper bound of Theorem 3.4.
Problem 2. Characterize all trees achieving the lower bound of Theorem 3.12.
Problem 3. Characterize all trees attaining the lower bound of Theorem 3.14.
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