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INFLUENCE OF CONTROLLABLE LEAD TIME, PREMIUM PRICE, AND
UNEQUAL SHIPMENTS UNDER ENVIRONMENTAL EFFECTS IN A SUPPLY

CHAIN MANAGEMENT

Baishakhi Ganguly1, Biswajit Sarkar2,∗, Mitali Sarkar2,
Sarla Pareek1 and Muhammad Omair2

Abstract. Recently, carbon emission becomes a major issue during transportation of products from
one player to another player. Due to the increasing number of single-setup-multi-delivery (SSMD)
policies by several industries, fixed and variable transportation cost and carbon emission cost are
considered. The aim of the model is to reduce the total cost of supply chain for controlling the lead
time and to diminish setup cost by a discrete investment. A premium cost is introduced and Stackelberg
game policy is employed to obtain the analytical solution. Some numerical examples are given to validate
the model. Sensitivity analysis and managerial insights are given to show the applicability of the model.
Finally, the outcomes show that the model minimizes the optimum cost at the optimal values of the
decision variables. It is found that the total cost is minimized when the multi-buyer is leader and vendor
is follower.
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1. Introduction

Recently, the main issue of each supply chain is to control environmental problems. Several researchers like
Sarkar et al. [23] and Sarkar and Saren [31] developed two different models to solve these issues. But both the
models are deterministic type with negligible lead time. But due to uncontrolled lead time, those models cannot
give proper results. Thus, an improved model is needed to solve the environmental impact with controllable lead
time in supply chain management. Therefore, attainability is adopted in the study of supply chains to make an
always profitable supply chain. Sarkar [22] assumed some basic assumptions i.e., that a supply chain consists
of a single-vendor and single-buyer. In present marketing situation, this is unrealistic. Thus, this model utilizes
single-vendor with a multi-buyer by using just-in-time strategy. Dolgui et al. [5] introduced a basic inventory
model with least setup cost along transfer line design. The authors designed the sequentially operating process.
Recently, Sarkar et al. [23] incorporated the concept of unequal lot size in the SSMD policy within the supply
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chain environment as SSMUD (single-setup-multi-unequal-delivery). This unequal lot size idea is utilized in
proposed model. It is also assumed that the vendor may send finished products sequentially to all buyers in
unequal shipment sizes. There are several integrated inventory or supply chain models in which some continuous
investments were employed to reduce the setup cost of the model (for instance, Sarkar and Moon [24], Sarkar
and Majumder [27]), which is sometime unrealistic in reality. Thus, this model considers a discrete investment
to control the setup cost of the supply chain model.

Generally, the lead time was assumed as negligible or constant in all basic inventory models. There are various
existing models (Ouyang et al. [13], Sarkar and Mahapatra [25]), that considered a stochastic lead time, as in
reality it is common that lead time is not constant. Hence, this proposed model also considers a stochastic lead
time with the reorder point as a function of the lead time as well as the safety factor. A crashing cost is used
to reduce this random lead time, (see Ref. Shin et al. [33]).

Due to multiple shipments, there is a possibility of an increasing carbon emission cost. Thus, to reduce this
cost, both fixed and variable transportation costs as well as fixed and variable carbon emission costs are utilized
within the supply chain model (refer to Sarkar et al. [26]). This model develops a two-echelon single-vendor
multi-buyer supply chain management by considering SSMUD policy, a controllable lead time, a crashing cost
to reduce the lead time, and a discrete investment to reduce setup cost. This model is determined analytically
by assuming equality and inequality of power within the supply chain model using game theory. This paper
is designed as follows: a literature review is given in Section 2. Section 3 explains the problem definition,
notation, and assumptions. Section 4 describes the mathematical model, and the solution methodology is given
in Section 5. Numerical experiments and a sensitivity analysis are given in Section 6. Finally, concluding remarks
are given in Section 7.

2. Literature review

The setup cost always plays an important role in any production system, but many supply chain models
consider the setup cost as fixed or constant. Porteus [14] first considered that a setup cost can be easily
reduced by some continuous investment function. This idea is widely used among in the inventory models, but
Ouyang et al. [13] was the first researcher to introduce this concept within an inventory model. Annadurai and
Uthaykumar [1] developed the (Q,R,L) model, where the setup cost reduction was described by a continuous
investment with considering defective items. Sarkar and Majumder [27] considered a setup cost reduction by a
continuous investment, considering two models with either a normal distribution or an unknown distribution
with known mean and standard deviation for the lead time demand in a single-vendor single-buyer model.
Sarkar and Moon [24] extended the model of Ouyang et al. [13] using the same setup cost reduction technique,
but with a variable lead time dependent backorder rate. Shin et al. [33] expanded the same setup cost reduction
by transportation discounts and service level constrains.

Cárdenas-Barrón [3] wrote a note on supply chain model with transportation cost. Shahrestani et al. [30]
formulated a heuristic method to solve bi-objective shop scheduling problem. Two-stage hybrid system is con-
structed in this model but without environmental effect. Taleizadeh et al. [35] explained about three-echelon
supply chain model with lead time aggregation. Yang and Wee [45] considered an integrated inventory model in
this direction. Wahab et al. [44] developed a two-level supply chain model with coordination between players.
The model stands for perfect and imperfect production under environmental effecting. Jaber et al. [8] discussed
carbon dioxide emission reduction as a major contribution within the supply chain model. Zanoni et al. [49]
discussed price-dependent demand which is effected by atmosphere in their model. Koupaei et al. [9] explained
the multi-objective evolutionary system by an efficient algorithm for flexible manufacturing system. Kim and
Son [10] developed a modeling based on agent policy and traffic simulation, where controllable lead time or en-
vironmental effect assumption is relayed. Jauhari et al. [7] extended the supply chain model by adding unequal
shipments policy with cooperative policy and presence of defective items. Bazan et al. [2] explained carbon emis-
sion and energy effects on manufacturer-retailer integrated inventory model. Recently, Wangsa [41] developed
an incentive policy and greenhouse gas penalty system in a supply chain to ensure the environmental effect with
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reduced total cost. In this direction, Sarkar et al. [20, 28, 29] developed several models on setup cost reduction
and quality improvement of products.

Inspection is an important process for maintaining the brand image of the manufacturing industry as after
inspection, by which it can only be confirmed that the product is perfect or imperfect. If the product is imperfect
it can be reworked, and if it is perfect, it can be transported to the market for sale. Teng et al. [37] developed
a three-stage inspection process to separate scrap products for constructing an integrated vendor-buyer model
for the economic lot size by using an algebraic approach, which is extended from the model of Wee and Chung
[42]. Taleizadeh et al. [36] developed a deterministic multi-production single machine economic production
quantity model with single-stage production to ensure the quality of products. The same three-stage inspection
strategy is used in Sarkar et al. [19], where he used a fixed lifetime product in both centralized and decentralized
supply chain models. Based on this situation, to verify the quality of products, this proposed model considers
a single-stage inspection process to reduce the existing three-stage inspection cost. Zhou et al. [46] established
the model based on maintenance planning and energy consumption control. The energy consumption facility
is affected by the operation condition, which is closely connected with the associated maintenance policy. Two
types of maintenance activities are implemented for the server, i.e., the planned maintenance and the reactive
maintenance.

Petajisto [15] introduced an index premium costs for index funds. In real life conditions, there is competition
between every business in obtaining more profit than the others. Thus, a premium cost is included in this
proposed model. Li et al. [12] considered an uncertain premium with respect to the distortion function. Premium
cost is included in the model via cell technology. The newly formulated model is for single items with the
assumption of premium prices. Shao et al. [32] provided a multi-factor model with variable time, where in the
computational gas market, risk premiums are included to increase cost value. Chien and Naknoi [4] added a risk
premium and global imbalances to reduce the entire system cost. Quaia et al. [17] described the economic two-
echelon technique known as premium power. Li [11] considered a stock market in the business system as well as
a maturity premium to earn more profit at the optimum level. Wang and Huo [43] introduced a premium pricing
policy in the fruits-market to reduce the total system cost. Park [16] proposed a premium price construction
from Korea’s energy efficiency grade label (KEEGL). The Korean government began energy certification of
televisions by setting to analyze a possible price-effect of the new label.

In the business market, order quantities are not always equal. They order either unequal quantities or same,
number of shifting process equal for all customers. Siajadi et al. [34] used only a multiple shipment policy
for the supply chain in the distribution system but with equal shipments. Zhou and Wang [47] discussed a
single-vendor single-buyer integrated model under an equal shipment policy. The proposed model is developed
for a single-vendor multi-buyer system with unequal lot sizes and shipment policy. Roy et al. [18] considered an
integrated model for imperfect items under the assumption of shortage. Hariga et al. [6] developed a vendor’s
inventory system by assuming unequal shipments as well as a space constraint.

Every manufacturing industry is formulated on the basis of three main purposes: collection of raw materials,
manufacturing of finished products, and distribution of products to customers. Therefore, transporting ways
play a vital role for all production systems. Vroblefski et al. [40] discussed several transportation policies for
consequently delivering to the warehouse with equal shipments. Zhao et al. [48] considered an improved algorithm
by mentioning fixed transportation cost. It was found that previous research considered either fixed or variable
transportation costs. Variable transportation may arise when the transportation system fails during service time
due to uncertain disruptions. The proposed model highlights both fixed and variable transportation costs. Based
on this concept, Sarkar [21] discussed a two-layer supply chain model with fixed and variable transportation
costs. In his model, he did not consider carbon emissions due to transportation during multi-delivery. Sarkar et al.
[23] continued the same idea of variable and fixed transportation with unequal lot sizes within a deterministic
environment. Tiwari et al. [38] investigated the application in supply chain management of the six years details.
They provided managerial beneficiates to industries from their research. The authors survived new strategies to
investigate how business managers can produce and organize data. A integrated inventory model was discussed
recently in this paper Tiwari et al. [39]. The paper considered imperfect items with deterioration cost. Further,



1430 B. GANGULY ET AL.

Figure 1. Diagram of single-vendor-multi-buyer two-echelon supply chain model.

Table 1. Contribution of different authors.

Author(s) Discrete setup Inspection Premimum Unequal delivery Transportation Carbon emission
cost cost cost lot size cost cost

Chien and
Naknoi et al. [4]

√

Li [11]
√

Li et al. [12]
√

Ouyang et al. [13]
√

Petajisto [15]
√

Roy et al. [18]
√

Sarkar et al. [29]
√ √ √ √

Quaia et al. [36]
√

Sarkar et al. [42]
√ √

Wang and
Huo [43]

√

This paper
√ √ √ √ √ √

it was introduced some environmental costs to reduce impacts of the industry and profits of two parties were
calculated with considering variables. See Table 1 for different author’s contributions.

3. Problem definition, notation, and assumptions

The following section consists of problem definition, notation, and assumptions.

3.1. Problem definition

The aim of this model is to reduce the total system cost of a two-echelon supply chain with a single-vendor
multi-buyer under the effects of environmental issues. The vendor produces products and transports the ordered
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products to the multi-buyer according to the SSMUD policy after inspection of all products. Those products,
which are considered defective after inspection, are discarded from the system. Due to multi-delivery, there is
an increasing cost for transportation and carbon emission, thus this model considers both fixed and variable
costs for these to show the effect of reality. The lead time is considered as random variable, which follows a
normal distribution and in the second model, it is considered with unknown distribution with known mean and
variance. To reduce the setup cost, discrete investment is used and the optimum investment is calculated. The
players in the supply chain are always unequal in power, thus Stackelberg game policy is utilized to solve this
model. A major contribution of this model is that it considers the premium cost, which is the best matching
strategy for attaching customers with their products.

3.2. Notation

3.2.1. Index

i component for lead time with minimum duration (i = 1, 2, . . . , n)
j component for lead time with normal duration (j = 1, 2, . . . , n)
ξ number of buyers (ξ = 1, 2, . . . ,m)
ζ number of investment (ζ = 1, 2, . . . , y)

3.2.2. Decision variables

Kζ investment of the vendor per setup ($/setup)
nξ unequal number lots for multi-buyer in one cycle (positive integer)
qξ quantity ordered per delivery (units)
α increasing rate of shipment lot size (positive integer)
Lξ length of the lead time for a buyer-ξ (weeks)
kξ safety factor

3.2.3. Parameters

Qξ total quantity ordered by multi-buyer (units)
S0 initial setup cost of the vendor per setup ($/setup)
T cycle length (year)
Cv unit production cost paid by the vendor ($/unit)
rv holding cost of the vendor per unit per unit time ($/unit/unit time)
P replenishment rate per unit time (units/year)
Pr premium cost of vendor (units/year)
Sb fixed carbon emission cost ($/shipment)
Vbξ variable carbon emission cost ($/unit)
Is inspection cost of the vendor ($/units)
F fixed transportation cost ($/shipment)
Vξ variable transportation cost ($/unit)
Rξ reorder point of the buyer ξ (units)
Dξ average demand per unit time of the buyer ξ (units/year)
Aξ ordering cost of the buyer ξ per order ($/order)
Cbξ unit purchasing cost paid by ξ-buyers ($/unit)
rbξ holding cost of the buyer ξ per unit per unit time ($/unit/unit time)

Πjai unit backorder cost for the buyer ξ ($/unit shortage)
σξ standard deviation of the lead time demand per time
X lead time demand

E(.) mathematical expectation
x(+) maximum value of x and 0
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3.3. Assumptions

The following assumptions are considered for this model.

1. A two-echelon single-vendor multi-buyer supply chain model is considered for single-type of item.
2. The vendor sequentially sends to the ordered products to buyer ξ; (ξ = 1, 2, . . . ,m).
3. During production, the vendor starts with an initial setup cost of S0. This cost can be reduced by using a

capital investment. It is natural that the investment needed to reduce the setup cost is discrete in nature.
The discrete setup cost with the investment function is expressed as S = S0e

−rKζ , where Kζ (ζ = 1, 2, . . . , y)
is a strictly decreasing function with K0 = 0 and r is a known parameter.

4. The vendor inspects the total manufacturing lot before delivering items in a single cycle. At the end of
the inspection process, the vendor delivers only perfect products to m-buyers, and defective products are
discarded from the system with some negligible cost.

5. There is a tendency for buyers to expect item’s quality as with to the brand image of the vendor. To maintain
the quality of each product, a premium cost is utilized by the vendor for each product.

6. For carrying finished goods, some transportation costs are necessary. Therefore, fixed transportation cost is
assumed due to fixed transportation. If the amount of transportation is increased due to sudden disruption
during loading-unloading time or transporting time, a variable transportation cost is included. In a similar
way, a fixed carbon emission cost is considered to calculate the carbon emission with respect to a fixed
transportation time. During a variable transportation time, the variable carbon emission is considered.
Therefore, both fixed and variable transportation and carbon emission costs are included.

7. The vendor produces a total of Qξ items with respect to the number of buyers ξ at a finite production rate
P (P > Dξ) at a single setup. Then, these quantities Qξ are delivered with unequal shipments to the ξ
buyers according to the (SSMUD) policy.

8. A transportation process of lot size Qξ is considered at nξ distinct times with unequal lots within each
shipment qξ to the ξ buyers. An increasing delivery rate in the SSMUD policy is considered, denoted by α.

9. The reorder point for the ξth buyer is given by Rξ = DξLξ +kξσξ
√
Lξ. Here, DξLξ is the expected demand

during the lead time, kξ is a safety factor, and kξσ
√
Lξ is a safety stock.

10. Shortages due to partial backordering are considered.
11. The lead times Lm are mutually independent components from each other and cm is the crashing cost

corresponding to the ξth buyer. For m components, am = minimum duration, bm = normal duration, and
cm = crashing cost per unit time with the condition c1 ≤ c2 ≤ . . . ≤ cm are considered.

12. L0 ≡
∑m
j=1 bj . If Li is the length of the lead time with components lowered to their minimum duration,

then Li can be expressed as Li = L0 −
∑i
j=1(bj − aj). The lead time crashing cost per cycle Cξ(Lξ) is

expressed as Cξ(Lξ) = ci(Li−1 − Lξ) +
∑i−1
j=1 cj(bj − aj).

4. Mathematical model

The mathematical model is formulated for two players (vendor and multi-buyer) which is given bellow.

4.1. Mathematical model of vendor

The production house of vendor has received raw materials from suppliers and produced finish products
and the vendor sends those finished products for the multi-buyer. Therefore, the vendor produces Qξ lots
corresponding to the multi-buyer in one cycle. A single-setup-multi-unequal-delivery (SSMUD) policy is used to
transfer those products. A product’s order-delivery is considered with nξ unequal shipments and an increasing
rate α. Further, quantities are also in different shipment lots qξ.

For the buyer ξ, the nξth delivery is (nξ − 1)αqξ, nξ > 1, i.e., the second shipment lot size is αqξ. After that,
the delivery lot sizes are 2αqξ, 3αqξ, and so on.
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Therefore, per production cycle, the total quantities are transported from the vendor to the buyer ξ, summing
the shipment lots as follows:

qξ + αqξ + 2αqξ + . . .+ (nξ − 1)αqξ = qξ +
αqξnξ(nξ − 1)

2
· (4.1)

Now, the cycle length of the vendor is obtained as
m∑
ξ=1

qξ
P

+
m∑
ξ=1

αqξnξ(nξ − 1)
2(P −Dξ)

=
m∑
ξ=1

[
qξ
P

+
αqξnξ(nξ − 1)

2(P −Dξ)

]
· (4.2)

The following costs are calculated to obtain the total cost for the vendor.

4.1.1. Setup cost

The vendor considers an initial setup cost Kζ during production. Therefore, the total setup cost of the vendor
is

y∑
ζ=1

m∑
ξ=1

Kζ[
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

] · (4.3)

Again, it can be calculated after the effect of capital investment on the initial setup cost. Therefore, to reduce
the setup cost per setup, the discrete investment is S0e

−rKζ , where Kζ is a strictly decreasing function, K0 = 0,
and r is a known parameter.

Therefore, the discrete setup cost is
∑y
ζ=1

∑m
ξ=1

S0e
−rKζ

[
qξ
P +

αqξnξ(nξ−1)
2(P−Dξ)

] ·

Thus, the total initial setup cost of the vendor along with investment is

y∑
ζ=1

m∑
ξ=1

 Kζ[
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

] +
S0e
−rKζ[

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

]
 · (4.4)

4.1.2. Holding cost

The vendor generally makes Qξ items corresponding to ξ buyers and these products are kept in stock. The
products are not divided equally for distribution to the m buyers. Both the number of shipments and the lot
size are distinct, where each buyer receives a quantity Qξ = 2qξ+qξαnξ(nξ−1)

2 from the vendor.
Therefore, the inventory level average of the vender is obtained by subtract the ξ-buyers’ total inventory from

the vendor’s total inventory.
From the Figure 2, the dotted area is calculated by dividing it into three parts. The vendor has

∑m
ξ=1Qξ

finished products, during a unit of time Qξ
P and the remaining (nξ − 1) number of cycles.

The above part in Figure 2 shows a rectangular area and therefore, the area is m∑
ξ=1

Qξ

 m∑
ξ=1

qξ
P

+
m∑
ξ=1

αqξnξ(nξ − 1)
2Dξ

 · (4.5)

In following triangular section is calculated as

=
1
2

 m∑
ξ=1

Qξ

 m∑
ξ=1

Qξ
P


=

1
2P

 m∑
ξ=1

Qξ

2

. (4.6)
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Figure 2. Supply chain system of SSMUD policy.

Accumulated inventory by shaded area is

=
1

2Dξ

 m∑
ξ=1

qξ

2

+
α2

2Dξ

 m∑
ξ=1

qξ

2

+
(2α)2

2Dξ

 m∑
ξ=1

qξ

2

. . . .
((nξ − 1)α)2

2Dξ

( m∑
ξ=1

qξ

)2

=
1

2Dξ

 m∑
ξ=1

qξ

2

+
α2

2Dξ

[
1 + 22 + 32 + . . . (nξ − 1)2

]

=
1

2Dξ

 m∑
ξ=1

qξ

2

+
α2

12Dξ

 m∑
ξ=1

qξ

2

nξ(nξ − 1)(2nξ − 1)

=
1

2Dξ

 m∑
ξ=1

qξ

2 [
1 +

α2nξ(nξ − 1)(2nξ − 1)
6

]
· (4.7)

The vendor’s total holding cost per unit time is obtained

=
rvCv(∑m

ξ=1
qξ
P +

∑m
ξ=1

αqξnξ(nξ−1)
2(P−Dξ)

)(
 m∑
ξ=1

Qξ

 m∑
ξ=1

qξ
P

+
m∑
ξ=1

αqξnξ(nξ − 1)
2Dξ


− 1

2P

 m∑
ξ=1

Qξ

2

− 1
2Dξ

 m∑
ξ=1

qξ

2 [
1 +

α2nξ(nξ − 1)(2nξ − 1)
6

])
· (4.8)
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4.1.3. Inspection cost

After the production of items is finished, the vendor investigates every finished product before distributing
them to m buyers. This is because, there may be a chance of not fulfilling buyers’ orders without inspection.
We consider an inspection cost Is and the total inspection cost is obtained by multiplying the quantity by Is
and the inspection cost per unit cycle is

m∑
ξ=1

Is Qξ(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)
 · (4.9)

4.1.4. Premium cost

Finally, preparing products after inspection, the vendor introduces a minimum cost to highlight these products
to m buyers as well as to obtain more profit. It is a business technique to understand a buyers’ mind. The vendor
marks a premium cost Pr and the total premium cost is simplified by multiplying the quantity by Pr. Therefore,
the premium price per unit cycle is

m∑
ξ=1

Pr Qξ(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)
 · (4.10)

4.1.5. Transportation cost

To transport the ordered products, fixed transportation costs nξF within nξ shipments during a fixed trans-
porting time are considered. Then, the fixed transportation cost per unit cycle is

m∑
ξ=1

 nξF(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)
 .

When there is any obstruction during transportation or delivery, there is a variable transportation cost Vξ.
Thus, the cost for variable transportation is obtained per cycle as

∑m
ξ=1 VξQξ.

Now, both fixed and variable transportation costs are given as

m∑
ξ=1

 nξF(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
VξQξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)
 · (4.11)

4.1.6. Carbon emission cost

In a fixed transportation time, for nξ shipments, a fixed carbon emission cost nξSb is allowed for the entire
production cycle and the corresponding variable carbon emission cost is Vbξ. The variable carbon emission cost
per shipment is

∑m
ξ=1 VbξQξ.

Then, the fixed and variable carbon emission costs are expressed as

m∑
ξ=1

 nξSb(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
VbξQξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)
 · (4.12)
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Therefore, the vendor’s total cost function TVC(nξ, qξ, α,Kζ) is given by

TVC(nξ, qξ, α,Kζ) =
y∑
ζ=1

m∑
ξ=1

[ Kζ(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
S0e
−rKζ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)


+
rvCv(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)(
 m∑
ξ=1

Qξ

( m∑
ξ=1

qξ
P

+
m∑
ξ=1

αqξnξ(nξ − 1)
2Dξ

)
− 1

2P

 m∑
ξ=1

Qξ

2

− 1
2Dξ

( m∑
ξ=1

qξ

)2[
1 +

α2nξ(nξ − 1)(2nξ − 1)
6

])

+ Is
Qξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) + Pr
Qξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)
+

(
nξF(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
VξQξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

))

+

 nξSb(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
VbξQξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)
]. (4.13)

4.2. Multi-buyers’ model

There are m buyers whose order sizes are different. The vendor sends products with unequal shipments. This
is due to the controllable lead time, which follows a normal distribution. Shortages exist and shipments are
partially backordered when a lead time crashing cost is used to reduce. During the final products are delivered
to m buyers, vendor sends q1 shift in first lot. Then, the second shipment lot size is αq2 at the increasing rate of
α. Therefore, number of shipment lotsizes are 2αq3, 3αq4, and so on. Thus, nξth delivery is (nξ−1)αqξ (nξ > 1).
Summing the shipment lots as follows:

q1 + αq2 + 2αq3 + . . .+ (nξ − 1)αqξ = qξ +
αqξnξ(nξ − 1)

2
· (4.14)

Now, the production cycle length of the multi-buyer is obtained as

qξ + α
nξ(nξ−1)

2 qξ

Dξ
=

(2qξ + qξαnξ(nξ − 1))
2Dξ

. (4.15)

4.2.1. Ordering cost

The m buyers’ production cycle time length is expressed as (2qξ+αqξnξ(nξ−1))
2Dξ

. The m buyers consider their
ordering costs given by Aξ. Therefore, the ordering cost per unit time is

m∑
ξ=1

2AξDξ

(2qξ + αqξnξ(nξ − 1))
· (4.16)
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4.2.2. Holding cost

When the inventory level reaches at reorder points Rξ, the order quantities of the buyer ξ (2qξ+αqξnξ(nξ−1))
2

are shifted. Before receiving an order, the expected inventory level is Rξ − DξLξ and the expected inventory
level after a delivery of (2qξ+αqξnξ(nξ−1))

2 is (2qξ+αqξnξ(nξ−1))
2 + (Rξ−DξLξ). Then, the average inventory in one

cycle is (2qξ+αqξnξ(nξ−1))
4 + (Rξ −DξLξ).

Also, the ξ buyers’ holding cost per unit time is
m∑
ξ=1

rbξCbξ

[
(2qξ + αqξnξ(nξ − 1))

4
+ (Rξ −DξLξ)

]
. (4.17)

4.2.3. Backordering cost

The lead time demand X follows a normal distribution with mean DξLξ corresponding to the buyer ξ and
a standard deviation of σξ

√
Lξ. X has a cumulative distribution function F and the reorder point Rξ =

DξLξ + kξσξ
√
Lξ. If X > Rξ, partially backorder occur. Therefore, the shortage at the end of the cycle is

E(X −Rξ)+ =
∫∞
Rξ

(x−Rξ)dF (x).

The expected shortage costs per unit time is 2ΠjaiDξE(X−Rξ)+
(2qξ+αqξnξ(nξ−1)) .

The expression E(X −Rξ)+ is calculated as follows:

E(X −Rξ)+ =
∫ ∞
Rξ

(x−Rξ)dF (x)

= σξ
√
Lξψξ(kjai). (4.18)

where ψξ(kjai) = φξ(kjai)− kξ[1− Φξ(kjai)], φξ = the standard normal probability density functions, and Φξ =
the cumulative distribution functions of the normal distribution of buyer ξ. The safety factor to be a decision
variable with respect to Rξ.

4.2.4. Lead time crashing cost

The lead time crashing cost per unit cycle is

2DξCξ(Ljai)
(2qξ + αqξnξ(nξ − 1))

· (4.19)

This cost is used to reduce the lead time.
Therefore, the m buyers’ total cost function is

TBmC(nξ, qξ, α, kξ, Lξ) =
m∑
ξ=1

(
2AξDξ

(2qξ + αqξnξ(nξ − 1))

+ rbξCbξ

(
(2qξ + αqξnξ(nξ − 1))

4
+ kξσξ

√
Lξ

)

+
2ΠjaiDξσξ

√
Lξψξ(kjai)

(2qξ + αqξnξ(nξ − 1))

+
2DξCξ(Ljai)

(2qξ + αqξnξ(nξ − 1))

)
· (4.20)

To solve the model, there are two possible cases the players of the supply chain have equal power or have
unequal power. The model is solved using the Stackelberg game policy within unequal power, and there are two
cases: the first case is that the vendor is the leader and the multi-buyer is the follower, and the second case is
the reverse.
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5. Solution methodology

Based on equality and inequality of powers within players of the supply chain, there are two cases, where
Case 1 is unequal powers of the supply chain players and Case 2 is equal powers of the supply chain players.

Case 1: Unequal powers for the supply chain players
Within unequal powers of supply chain players, there are two sub-cases, where Subcase 1.1 is as the vendor

as the leader and the multi-buyer as the follower and Subcase 1.2 is as the multi-buyer as the leader and the
vendor as the follower.

Subcase 1.1: Vendor as leader and multi-buyer as the follower
In this subcase, the vendor is the leader, thus the vendor is watching the optimum values of all decision

variables of the multi-buyer. Observing these optimum values and using these data, the vendor optimizes his
total cost to reach the optimum level. Thus, the optimization will start from back substitution process as follows:

The partial derivatives of TBmC(nξ, qξ, α, kξ, Lξ) with respect to qξ, kξ, and Lξ where α is not continuous
variable, are as

∂TBmC(nξ, qξ, α, kξ, Lξ)
∂qξ

= −W1

W2

1
q2
ξ

+
rbξCbξ

4
W2 (5.1)

∂TBmC(nξ, qξ, α, kξ, Lξ)
∂kξ

= rbξCbξσξ
√
Lξ +

2ΠξDξσξ
√
Lξ

(2qξ + αqξnξ(nξ − 1))

(
Φξ(kjai)− 1

)
(5.2)

∂TBmC(nξ, qξ, α, kξ, Lξ)
∂Lξ

=
ΠjaiDξσξψξ(kjai)

(2qξ + αqξnξ(nξ − 1))
1√
Lξ

+ rbξCbξkξσξ
1

2
√
Lξ

+
2Dξ

(2qξ + αqξnξ(nξ − 1))
∂Cξ(Ljai)
∂Lξ

· (5.3)

The values of these parameters qξ, nξ, and kξ can be obtained by setting these derivatives equal to zero as
follows:

qξ =
2
W2

√
W1

rbξCbξ
(5.4)

Φξ(kjai) = 1− rbξCbξ(2qξ + αqξnξ(nξ − 1))
2ΠjaiDξ

· (5.5)

The second order partial derivative of Lξ is

∂2TBmC(nξ, qξ, α, kξ, Lξ)
∂L2

ξ

= −Dξ

2
Πξσξψξ(kjai)L

−3/2
ξ

+
2Dξ

(2qξ + αqξnξ(nξ − 1))
∂2Cξ(Lξ)
∂L2

ξ

− 1
4
rbξCbξkξσξL

−3/2
ξ < 0. (5.6)

The second term derivative is less than zero, indicating that Lξ is concave function. Hence, the minimum
value can be found at the end point of the interval [Lξ, Lξ−1].

For sufficient condition, Hessian matrix can be used. All principal minors have to be positive. Substituting
all these optimum values into the vendor’s equation and the equation becomes a function of a single variable.
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The equation is then,

TVC(Kζ) =
y∑
ζ=1

m∑
ξ=1

[ Kζ(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
S0e
−rKζ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)


+
rvCv(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)(
 m∑
ξ=1

Qξ

 m∑
ξ=1

qξ
P

+
m∑
ξ=1

αqξnξ(nξ − 1)
2Dξ


− 1

2P

 m∑
ξ=1

Qξ

2

− 1
2Dξ

 m∑
ξ=1

qξ

2 [
1 +

α2nξ(nξ − 1)(2nξ − 1)
6

])

+ Is
Qξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) + Pr
Qξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)
+

(
nξF(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
VξQξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

))

+

 nξSb(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
VbξQξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)
] (5.7)

where, qξ, nξ, and α are already in the optimized points. Now, the value of decision variable Kζ can be calculated
as follows:

∂TVC(Kζ)
∂Kζ

= 1(
qξ
P +

αqξnξ(nξ−1)
2(P−Dξ)

)
(
1 + S0e

−rKζ (−r)
)
. (5.8)

Now, the optimum value is

Kζ =
ln(rS0)

r
· (5.9)

For a sufficient condition,

∂2TVC(·)
∂K2

ζ

=
1(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)S0e
−rKζ (r)2 > 0. (5.10)

[See Appendix L for all values]

Subcase 1.2: Multi-buyer as the leader and vendor as the follower
For this subcase, the multi-buyer is the leader and the vendor is the follower. Thus, as before, the optimization

will starts from the vendor and the optimum values will be used in the multi-buyer equation to calculate the
multi-buyer’s minimum cost.

Therefore, the partial derivatives of TVC(nξ, qξ, α,Kζ) are taken with respect to Kζ , and qξ as

∂TVC(nξ, qξ, α,Kζ)
∂Kζ

=
1(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) (1 + S0e
−rKζ (−r)

)
(5.11)

∂TVC(nξ, qξ, α,Kζ)
∂qξ

=
[
− 1

(qξ)2
U1 + U2

]
. (5.12)
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Then, the values of these parameters Kζ , qξ can be obtained by setting the above derivatives equal to zero
as

Kζ =
ln(rS0)

r
(5.13)

qξ =
√
U1

U2
· (5.14)

After substituting all these optimum values in the buyer’s cost equation, the equation becomes a function of
two variables kξ, and Lξ.

Thus, these decision variables are calculated by taking derivatives of TBmC(kξ, Lξ) with respect to kξ, and
Lξ.

∂TBmC(kξ, Lξ)
∂kξ

= rbξCbξσξ
√
Lξ +

2ΠξDξσξ
√
Lξ

(2qξ + αqξnξ(nξ − 1))
(Φξ(kjai)− 1) (5.15)

∂TBmC(kξ, Lξ)
∂Lξ

=
ΠjaiDξσξψξ(kjai)

(2qξ + αqξnξ(nξ − 1))
1√
Lξ

+ rbξCbξkξσξ
1

2
√
Lξ

+
2Dξ

(2qξ + αqξnξ(nξ − 1))
∂Cξ(Ljai)
∂Lξ

· (5.16)

Similarly, as on the last case, the second term partial derivative of Lξ is

∂2TBmC(nξ, qξ, α, kξ, Lξ)
∂L2

ξ

= −Dξ

2
Πξσξψξ(kjai)L

−3/2
ξ

+
2Dξ

(2qξ + αqξnξ(nξ − 1))
∂2Cξ(Ljai)

∂L2
ξ

− 1
4
rbξCbξkξσξL

−3/2
ξ < 0.

As before, Lξ is a concave function. Hence, the minimum value can be found at the end point of the interval
[Lξ, Lξ−1].

The value of kξ is

Φξ(kξ) = 1− rbξCbξ(2qξ + αqξnξ(nξ − 1))
2ΠjaiDξ

· (5.17)

For the global minimum, to calculate the Hessian matrix, the principal minors have to be calculated. (See
Appendix M for all values)
Case 2: Equal powers for the supply chain players

For equal powers of the vendor and multi-buyer, the total cost function is optimized simultaneously. Thus,
the total cost function is

TCvb(·) =
y∑
ζ=1

m∑
ξ=1

[ Kζ(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
S0e
−rKζ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)


+
rvCv(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)(
 m∑
ξ=1

Qξ

 m∑
ξ=1

qξ
P

+
m∑
ξ=1

αqξnξ(nξ − 1)
2Dξ


− 1

2P

 m∑
ξ=1

Qξ

2

− 1
2Dξ

 m∑
ξ=1

qξ

2 [
1 +

α2nξ(nξ − 1)(2nξ − 1)
6

])
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+ Is
Qξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) + Pr
Qξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)
+

(
nξF(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
VξQξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

))

+
( nξSb(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) +
VbξQξ(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

))]

+
m∑
ξ=1

[
2AξDξ

(2qξ + αqξnξ(nξ − 1))
+ rbξCbξ

[
(2qξ + αqξnξ(nξ − 1))

4

+ kξσξ
√
Lξ

]
+

2ΠjaiDξσξ
√
Lξψξ(k)

(2qξ + αqξnξ(nξ − 1))
+

2DξCξ(Ljai)
(2qξ + αqξnξ(nξ − 1))

]
· (5.18)

Therefore, the partial derivatives of TCvb(nξ, qξ, α, kξ, Lξ,Kζ) are taken with respect to qξ, kξ, Lξ, and Kζ

as

∂TCvb(nξ, qξ, α, kξ, Lξ,Kζ)
∂qξ

=
m∑
ξ=1

[
−U3

q2
ξ

+ U4

]
(5.19)

∂TCvb(nξ, qξ, α,Kζ , Lξ,Kζ)
∂kξ

= rbξCbξσξ
√
Lξ +

2ΠξDξσξ
√
Lξ

(2qξ + αqξnξ(nξ − 1))

(
Φξ(kξ)− 1

)
(5.20)

TCvb(nξ, qξ, α, kξ, Lξ,Kζ)
∂Lξ

=
ΠjaiDξσξψξ(kjai)

(2qξ + αqξnξ(nξ − 1))
1√
Lξ

+ rbξCbξkjaiσξ
1

2
√
Lξ

+
2Dξ

(2qξ + αqξnξ(nξ − 1))
∂Cξ(Ljai)
∂Lξ

(5.21)

∂TCvb(nξ, qξ, α, kξ, Lξ,Kζ)
∂Kζ

=
1(

qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) (1 + S0e
−rKζ (−r)

)
. (5.22)

The values of these parameters qξ, kξ, and Kζ can be obtained by equating these derivatives to zero as

qξ =
√
U3

U4
(5.23)

Φξ(kξ) = 1− rbξCbξ(2qξ + αqξnξ(nξ − 1))
2ΠjaiDξ

(5.24)

Kζ =
ln rS0

r
· (5.25)

The second order partial derivative with respect to Lξ is

∂2TBmC(nξ, qξ, α,Kζ , Lξ)
∂L2

ξ

= −Dξ

2
Πξσξψξ(kjai)L

−3/2
ξ

+
2Dξ

(2qξ + αqξnξ(nξ − 1))
∂2Cξ(Ljai)

∂L2
ξ

− 1
4
rbξCbξkjaiσξL

−3/2
ξ < 0. (5.26)
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Table 2. Parametric values of multi-buyer and vendor.

Parameter(s) ((ξ = 1, . . . , 4)) Values Parameter(s) Values

Dξ (units/year) 1600, 1610, 1615, Cv ($/unit) 10
1620

Aξ ($/order) 200, 210, 205, Sb ($/shipment/year) 0.21
220

rbξ ($/unit/unit time) 0.2, 0.2, 0.2, F ($/shipment/year) 0.1
0.2

Cbξ ($/unit) 1, 5, 2, 1 Pr ($/unit/year) 0.01
Πjai ($/unit) 50, 50, 50, 50 rv ($/unit/unit/time) 0.01
σξ 7, 7, 7, 7 Is ($/unit/year) 0.01
Vξ ($/unit) 0.01, 0.02, 0.01, r ($/year) 0.27

0.03
Vbξ ($/unit) 0.01, 0.02, 0.02, S0 ($/setup) 1600

0.01
P ($/unit/year) 2500

Table 3. Lead time data.

Lead time Normal Minimum Unit crashing
component duration duration cost cj
j bj (days) aj (days) ($/day)

1 20 6 0.4
2 20 6 1.2
3 16 9 5.0

As the second term of the derivative is less than zero, it follows that Lξ is a concave function. Hence, the
minimum value can be found at the end point of the interval [Lξ, Lξ−1].
For a sufficient condition, the global minimum can be obtained by using the Hessian matrix. [Assuming
TCvb(nξ, qξ, α, kξ, Lξ,Kζ)=TCvb(·)], (See Appendix T for all values).

6. Numerical example

Example 6.1. The input values are given in Tables 2 and 3. The optimum solution is given by Table 4.
Table 4 provides the comparison of results under three different cases. In Subcase 1.1, the follower is multi-

buyer and numerical output is $2400.54 which is calculated first. As vendor is leader thus, another result is
$1808.88 for vendor side and two parties total cost $4209.42. On the other Subcase 1.2, similarly, follower’s
result (vendor) is $1732.09 and output of multi-buyer (leader) is $2974.04. Therefore, total evaluating cost is
$4706.13. Again, it is obtained the numerical value from total cost function ($4146.17) after adding separate
two players’ cost equations in Case 2.

7. Sensitivity analysis

The sensitivity analysis of the key parameters of the model is given with respect to the above example in
Table 5.

• Little bit changes are shown in the parameters like buyers’ holding cost rbξ, variable transportation cost Vξ,
premium cost Pr, Sb, vendor’s inspection cost Is, and unit backordering cost of multi-buyer Π2, respectively,
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Table 4. The optimum results for all cases.

Decision
variables
(ξ, ζ = 1, . . . , 4) Subcase 1.1 Subcase 1.2 Case 2

nξ 3, 2, 3, 2 2, 3, 2, 2 2, 2, 2, 2
qξ 50, 59.99, 69.99, 77.02, 56.05, 45.02, 540, 306.18, 438.31,
($/unit) 80 63.91 517.30
kξ 3.36, 3.08, 3.24, 3.49, 2.67, 3.45, 3.39, 3.05, 3.23,

3.34 3.55 3.38
Kζ 22.48, 22.48, 22.48, 23.75, 22.62, 24.84, 22.43, 21.54, 22.46,
($/year) 22.48 22.40 21.08
α 12 14 3
L2 6 6 6
($/week)
C2(L) 5.6 5.6 5.6
($/unit)
Total cost TBmC = 2400.54, TBmC = 2974.04, TCvb = 4146.17
($/year) TVC = 1808.88 TVC = 1732.09

TCSCM = 4209.42 TCSCM = 4706.13

Table 5. Sensitivity analysis for Subcase 1.1.

Parameter Change ξ = 1 ξ = 2 ξ = 3 ξ = 4 Parameter Change TCSCM

(in %) (in %) (in %) (in %) (in %) (in %) (in %)
−50% −5.09 −12.33 −7.45 −5.35 S0 −50% −0.83
−25% −2.34 −5.69 −3.43 −2.45 −25% −0.35

rbξ +25% +2.07 +5.08 +3.05 +2.18 +25% +0.61
+50% +3.96 +9.72 +5.83 +4.16 +50% +1.10

−50% −5.08 −12.33 −3.45 −5.08 Cv −50% −24.73
−25% −2.33 −5.69 −3.43 −2.33 −25% −12.37

Cbξ +25% +2.08 +5.08 +3.05 +2.08 +25% +12.37
+50% +3.92 +9.72 +5.83 +3.92 +50% +24.63
−50% −0.88 −1.94 −1.86 −0.89 rv −50% −24.63
−25% −0.37 −0.90 −0.86 −0.38 −25% −2.36

Vbξ +25% +0.64 +1.17 +1.13 +0.64 +25% +2.36
+50% +1.14 +2.20 +2.12 +1.16 +50% +24.63
−50% −0.88 −1.34 −0.86 −2.94 Pr −50% −6.99
−25% −0.37 −0.90 −0.36 −1.40 −25% −3.43

Vξ +25% +0.64 +1.17 +0.63 +1.67 +25% +3.69
+50% +1.14 +2.20 +1.13 +3.20 +50% +7.26
Change TCSCM Change TCSCM Change TCSCM

(in %) (in %) (in %) (in %) (in %) (in %)
Sb −50% −0.02 Is −50% −6.99 Π2 −50% −0.40

−25% −0.05 −25% −3.43 −25% −0.17
+25% +0.21 +50% +3.69 +25% +0.14
+50% +0.29 +50% +7.26 +25% +0.26
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Table 6. Sensitivity analysis for Subcase 1.2.

Parameter Change ξ = 1 ξ = 2 ξ = 3 ξ = 4 Parameter Change TCSCM

(in %) (in %) (in %) (in %) (in %) (in %) (in %)

−50% −1.36 −1.36 −1.36 −1.36 S0 −50% −1.21
−25% −0.68 −0.68 −0.68 −0.68 −25% −0.60

rbξ +25% +0.68 +0.68 +0.68 +0.68 +25% +0.60
+50% +1.36 +1.36 +1.36 +1.36 +50% +1.21
−50% −2.15 −21.06 −2.68 −1.82 Cv −50% −12.17
−25% −1.07 −10.52 −1.34 −0.91 −25% −5.56

Cbξ +25% +1.07 +10.51 +1.33 +0.91 +25% +4.90
+50% +2.14 +21.00 +2.66 +1.81 +50% +11.19
−50% −1.08 −2.08 −2.13 −1.06 rv −50% −12.16
−25% −0.54 −1.04 −1.07 −0.53 −25% −5.56

Vbξ +25% +0.54 +1.04 +1.07 +0.53 +25% +4.90
+50% +1.08 +2.08 +2.13 +1.06 +50% +12.17
−50% −1.08 −2.09 −1.07 −3.18 Pr −50% −12.83
−25% −0.54 −1.04 −0.53 −1.59 −25% −2.90

Vξ +25% +0.54 +1.04 +0.53 +1.59 +25% +0.04
+50% +1.08 +2.09 +1.07 +3.18 +50% +1.48
Change TCSCM Change TCSCM Change TCSCM

(in %) (in %) (in %) (in %) (in %) (in %)
Sb −50% −0.18 Is −50% −7.44 Π2 −50% −0.38

−25% −0.09 −25% −3.72 −25% −0.17
+25% +0.09 +50% +3.72 +25% +0.14
+50% +0.18 +50% +7.44 +25% +0.28

then the changes make total supply chain cost TCSCM in the feasible region by alternating percentages from
±25% to ±50%.

• Changing values of the parameters like unit purchasing cost parameter Cbξ, variable carbon emission cost
value Vbξ, and initial setup cost S0 are increased gradually in positive direction with respect to changing
percentages at ±25%, ±50%. Thus, it implies total cost TCSCM function is also in feasible range.

• The percentage of unit production cost and holding cost for vendor rv, are symmetric in nature with respect
to increasing percentages that implies the total cost function is the at equilibrium position.

The sensitivity analysis of the key parameter of the model is shown in the following under the Table 6.

• It is found that almost all parameteric values of initial setup cost S0, Buyers’ holding cost parameter rbξ,
Sb, vendor’s inspection cost Is, multi-buyers’ variable carbon emission cost Vbξ, variable transportation
cost Vξ alter equal values with opposite directions from negative to positive direction of ±25%, and ±50%
percentages. Therefore, total cost TCSCM has at symmetric region at these parameters.

• On other side, the unit purchasing cost parameter Cbξ, unit production cost Cv, and holding cost for vendor
rv, change with small gap of sensitivity values from −50% to +50% for all values of ξ = 1, 2, . . . 4. It concludes
the consistant solution of the total cost TCSCM.

• The changes of premium cost Pr, and unit backordering cost of Π2 have large gap in between outputs along
with increasing percentages from negative to positive which provides the total cost TCSCM value is also
followed a feasible region.

The following sensitivity analysis of the parametric values is given with respect to the Table 7.

• The impact cost of holding cost of buyer rbξ, and unit purchasing cost Cbξ on TCvb are huge at an extreme
points i.e., are also affecting the total cost by ±1% at extreme points almost ±10%.
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Table 7. Sensitivity analysis for Case 2.

Parameter Change ξ = 1 ξ = 2 ξ = 3 ξ = 4 Parameter Change TCvb
(in %) (in %) (in %) (in %) (in %) (in %) (in %)

−50% −1.63 −1.63 −1.63 −1.63 S0 −50% −0.78
−25% −0.79 −0.79 −0.79 −0.79 −25% −0.38

rbξ +25% +0.75 +0.75 +0.75 +0.75 +25% +0.38
+50% +1.46 +1.46 +1.46 +1.46 +50% +0.76
−50% −1.62 −5.69 −2.91 −1.62 Cv −50% −8.87
−25% −0.78 −2.68 −1.39 −0.78 −25% −3.98

Cbξ +25% +0.74 +2.68 +1.30 +0.74 +25% +3.98
+50% +1.45 +5.59 +2.51 +1.45 +50% +8.87
−50% −2.70 −1.35 −1.35 −2.70 rv −50% −7.86
−25% −1.35 −0.67 −0.67 −1.35 −25% −2.97

Vbξ +25% +1.35 +0.67 +0.67 +1.35 +25% +2.97
+50% +2.70 +1.35 +1.35 +2.70 +50% +7.86
−50% −2.70 −1.35 −2.70 −2.03 Pr −50% −2.79
−25% −1.35 −0.67 −1.35 −1.02 −50% −1.35

Vξ +25% +1.35 +0.67 +1.35 +1.02 −50% +1.35
+50% +2.70 +1.35 +2.70 +2.03 −50% +2.70
Change TCvb Change TCvb Change TCvb
(in %) (in %) (in %) (in %) (in %) (in %)

Sb −50% −0.09 Is −50% −3.25 Π2 −50% −0.05
−25% −0.04 −25% −1.63 −25% −0.08
+25% +0.04 +50% +1.63 +25% +0.07
+50% +0.09 +50% +3.25 +25% +0.13

• If it is analyzed the lower impact on the objective, then it is observed that Π2 and initial setup cost S0 are
affecting with the minor change of just almost ±0.3%. It indicates that it has the very minor impact on the
total cost of the whole supply chain.

• When changing production Cv and holding cost rv of vendor, Vbξ, Vξ, Pr, Sb, and Is increases in equal and
opposite direction almost of ±50%, it is found that the total cost of supply chain is showing an equilibrium
position with a change of almost ±5% in the optimal value.

Here, some of the optimum values should be integer values, but results are found as floating values. Thus, it
is taken all possible combinations of n1, n2, n3, n4, α, and q1, q2, q3, q4 for rounding off. Among all possible
combinations of those values, the smallest corresponding cost is considered. Then, the integer values of decision
variables are then substituted in the other’s cost equation to calculate the values.

8. Managerial insights

Managerial decisions conclude a proper way how the industry managers would gain more profit. Generally,
business starts with atleast two parties together at which every party has similar power. Managers have to decide
what are the good policies for their industries. Even though supply chain is there for maintaining the joint profit,
but the players are with the thinking of their own profits. Thus for some business sectors vendors are leader
and for some sectors buyers are leaders. Based on the situation or status of the industry, using our strategy, the
managers can reduce the total cost. Through our modelling, we prove that total cost will be minimized when
buyers are follower and vendor is leader subject to the inequality of power within them; otherwise centralized
supply chain always gives less cost.
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Vendor (leader) Multi-buyer (follower) Total cost

$1808.88 $2400.54 $4209.42

Vendor (follower) Multi-buyer (leader) Total cost

$2974.04 $1732.09 $4706.13

9. Conclusions

This model studied a two-echelon supply chain model with a single-vendor and multi-buyer. The controllable
lead time was used to reduce the lead time. Unequal shipment sizes, fixed and variable transportation costs
as well as carbon emission costs were used to ensure the supply chain is always a two-echelon chain. The
premium cost was utilized to attract more customers for gaining more. This model was solved analytically and
for inequality of powers of supply chain players, Stackelberg game policy were considered. The model obtained
the minimum cost at the optimal solutions. Numerical studies proved that the outcomes has a huge impact on
reality. It was found that the total cost is lower in the case of joint total cost with power equality. The model
has a limitation in that a constant demand for both the vendor and buyer was assumed. Thus, this model can be
extended to stochastic demand for multi-vendor and multi-buyer with multi-product under variable backorder
in a supply chain with queueing structures.

Appendix

Appendix A

W1 = 2AξDξ + 2ΠξDξσξ
√
Lξψξ(kjai) + 2DξCξ(Ljai)

W2 = (2 + αnξ(nξ − 1)).

Appendix U

U1 =
y∑
ζ=1

m∑
ξ=1

Kζ + S0e
−rKζ + nξF + nξSb(

1
P + αnξ(nξ−1)

2(P−Dξ)

)


U2 =
m∑
ξ=1

rvCv(
1
P + αnξ(nξ−1)

2(P−Dξ)

)((2 + αnξ(nξ − 1)
2

)(
1
P

+
αnξ(nξ − 1)

2Dξ

)

− 1
2P

(
2 + αnξ(nξ − 1)

2

)2

− 1
2Dξ

[
1 +

α2nξ(nξ − 1)(2nξ − 1)
6

])

U3 =
y∑
ζ=1

m∑
ξ=1

(Kζ + S0e
−rKζ + nξF + nξSb(

1
P + αnξ(nξ−1)

2(P−Dξ)

)
+

2AξDξ + 2ΠjaiDξσξ
√
Lξψξ + 2DξCξ(Ljai)

(2 + αnξ(nξ − 1))

)
U4 =

m∑
ξ=1

rbξCbξ
(2 + αnξ(nξ − 1))

4
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+
rvCv(

1
P + αnξ(nξ−1)

2(P−Dξ)

)((2 + αnξ(nξ − 1)
2

)( 1
P

+
αnξ(nξ − 1)

2Dξ

)

− 1
2P

(
2 + αnξ(nξ − 1)

2

)2

− 1
2Dξ

[
1 +

α2nξ(nξ − 1)(2nξ − 1)
6

])
·

Appendix L

The first order principal minor of |H| is

|H11|(qξ,kξ) =
∣∣∣∣∂2TBmC(·)

∂(qξ)2

∣∣∣∣
=

2W1

W2

1
q3
ξ

> 0.

The second order principal minor of |H| is

|H22|(qξ,kξ) =
∂2TBmC(·)

∂q2
ξ

∂2TBmC(·)
∂k2

ξ

−
(
∂2TBmC(·)
∂qξ∂kξ

)2

=

[
2W1

W2

1
q3
ξ

][
2ΠξDξσξ

√
Lξ

(2qξ + αqξnξ(nξ − 1))
φξ(kjai)

]

−

(
2ΠξDξσξ

√
Lξ

(2qξ + αqξnξ(nξ − 1))2
(Φξ(kjai)− 1)(2 + αnξ(nξ − 1))

)2

=

[
2ΠξDξσξ

√
Lξ

(2qξ + αqξnξ(nξ − 1))
1
q3
ξ

](2W1

W2
φξ(kjai)

−
(Φξ(kjai)− 1)22ΠξDξσξ

√
Lξ

(2 + αnξ(nξ − 1))

)
> 0

where (
2W1

W2
φξ(kjai)−

(Φξ(kjai)− 1)22ΠξDξσξ
√
Lξ

(2 + αnξ(nξ − 1))

)

=
2φξ(kjai)(2AξDξ + 2ΠξDξσξ

√
Lξψξ(kjai) + 2DξCξ(Ljai))− ((Φξ(kjai)− 1)22ΠξDξσξ

√
Lξ)

(2 + αnξ(nξ − 1))
·

Here, φξ(kjai), ψ(kjai) > 0 and
2φξ(kjai)(2AξDξ + 2ΠξDξσξ

√
Lξψξ(kjai) + 2DξCξ(Ljai))− ((Φξ(kjai)− 1)22ΠξDξσξ

√
Lξ) > 0 for all kξ > 0

∂2TBmC(·)
∂(qξ)2

=
2W1

W2

1
q3
ξ

∂2TBmC(·)
∂(kξ)2

=
2ΠξDξσξ

√
Lξ

(2qξ + αqξnξ(nξ − 1))
∂Φξ(kjai)
∂kξ

∂2TBmC(·)
∂qξ∂kξ

= −
2ΠξDξσξ

√
Lξ

(2qξ + αqξnξ(nξ − 1))2
(Φξ(kjai)− 1)(2 + αnξ(nξ − 1))

∂2TBmC(·)
∂(Kζ)2

=
m∑
ξ=1

1(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)S0e
−rKζ (r)2.
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Appendix M

The first order principal minor of |H| is

|H11|(qξ,Kζ) =

∣∣∣∣
∂2TVC(·)
∂(qξ)2

∣∣∣∣

=
2U1

q3ξ
> 0.

The second order principal minor of |H| is

|H22|(qξ,Kζ) =
∂2TVC(·)

∂q2ξ

∂2TVC(·)
∂K2

ζ

−
(
∂2TVC(·)
∂qξ∂Kζ

)2

=

[
2U1

q3ξ

]


m∑

ξ=1

1(
qξ
P

+
αqξnξ(nξ−1)

2(P−Dξ)

)S0e
−rKζ (r)2





−




m∑

ξ=1

1(
qξ
P

+
αqξnξ(nξ−1)

2(P−Dξ)

) (1 + S0e
−rKζ (−r)) 1

(qξ)2




2

=

m∑

ξ=1

1(
1
P

+
αnξ(nξ−1)

2(P−Dξ)

) 1

(qξ)4

[
2q2ξU1S0e

−rKζ (r)2

q2ξ

− 1

(qξ)4

[
(1 + S0e

−rKζ (−r))2

q2ξ

]

> 0

∂2TVC(·)
∂(qξ)2

=
2U1

q3ξ

∂2TVC(·)
∂(Kζ)2

=

m∑

ξ=1

1(
qξ
P

+
αqξnξ(nξ−1)

2(P−Dξ)

)S0e
−rKζ (r)2

∂2TVC(·)
∂qξ∂Kζ

= −
m∑

ξ=1

1(
qξ
P

+
αqξnξ(nξ−1)

2(P−Dξ)

) (1 + S0e
−rKζ (−r)) 1

(qξ)2
·

Again, for ξth buyers decision variable

∂2TBmC(·)
∂(kξ)2

=
2ΠξDξσξ

√
Lξ

(2qξ + αqξnξ(nξ − 1))
∂Φξ(kjai)
∂kξ

> 0.

Appendix T

The first order principal minor of |H| is

|H11|(qξ,kξ,Kζ) =
∣∣∣∣∂2TCvb(·)
∂(qξ)2

∣∣∣∣
=

2U3

q3
ξ

> 0.

The second order principal minor of |H| is

|H22|(qξ,kξ,Kζ) =
∂2TCvb(·)

∂q2
ξ

∂2TCvb(·)
∂k2
ξ

−
(
∂2TCvb(·)
∂qξ∂kξ

)2
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=

[
2U3

q3
ξ

][
2ΠξDξσξ

√
Lξ

(2qξ + αqξnξ(nξ − 1))

∂Φξ(kjai)

∂kξ

]

−

(
2ΠξDξσξ

√
Lξ

(2qξ + αqξnξ(nξ − 1))2
(Φξ(kjai)− 1)(2 + αnξ(nξ − 1))

)2

=

[
2ΠξDξσξ

√
Lξ

(2 + αnξ(nξ − 1))

1

q4
ξ

](
2U3

∂Φξ(kjai)

∂kξ

−
(2(Φξ(kjai)− 1)ΠξDξσξ

√
Lξ)

2

(2 + αnξ(nξ − 1))

)
·

The above expression is simplified which is greater than zero.
The third order principal minor of |H| is

|H33|(qξ,kξ,Kζ) =

∣∣∣∣∣∣∣∣
∂2TCvb(·)
∂(qξ)2

∂2TCvb(·)
∂qξ∂kξ

∂2TCvb(·)
∂qξ∂Kζ

∂2TCvb(·)
∂kξ∂qξ

∂2TCvb(·)
∂(kξ)2

∂2TCvb(·)
∂kξ∂Kζ

∂2TCvb(·)
∂Kζ∂qξ

∂2TCvb(·)
∂Kζ∂kξ

∂2TCvb(·)
∂K2

ζ

∣∣∣∣∣∣∣∣
= −∂

2TCvb(·)
∂Kζ∂qξ

∂2TCvb(·)
∂qξ∂Kζ

∂2TCvb(·)
∂(kξ)2

+
∂2TCvb(·)
∂(Kζ)2

|H22|

= X1 +
∂2TCvb(·)
∂(Kζ)2

|H22| > 0

where X1 =
m∑
ξ=1

 1(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) (1− S0e
−rKζ (r))

1
(qξ)2


(

1(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) (S0e
−rKζ r− 1)

1
(qξ)2

)

2ΠξDξσξ
√
Lξ

(2qξ + αqξnξ(nξ − 1))
∂Φξ(kjai)
∂kξ

·

Also, the second part has ∂2TCvb(·)
∂(Kζ)2 is positive and |H22| is previously is shown to be positive.

∂2TCvb(·)
∂(qξ)2

=
2U3

q3
ξ

∂2TCvb(·)
∂(kξ)2

=
2ΠξDξσξ

√
Lξ

(2qξ + αqξnξ(nξ − 1))
∂Φξ(kjai)
∂kξ

∂2TCvb(·)
∂(Kζ)2

=
m∑
ξ=1

1(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

)S0e
−rKζ (r)2

∂2TCvb(·)
∂qξ∂kξ

=
∂2TCvb(·)
∂kξ∂qξ

= −
2ΠξDξσξ

√
Lξ

(2qξ + αqξnξ(nξ − 1))2
(Φξ(kjai)− 1)(2 + αnξ(nξ − 1))

∂2TCvb(·)
∂kξ∂Kζ

= 0

∂2TCvb(·)
∂qξ∂Kζ

= −
m∑
ξ=1

1(
qξ
P + αqξnξ(nξ−1)

2(P−Dξ)

) (1 + S0e
−rKζ (−r)) 1

(qξ)2
·
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