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OPTIMAL DYNAMIC PRICING, PRESERVATION TECHNOLOGY
INVESTMENT AND PERIODIC ORDERING POLICIES FOR AGRICULTURAL
PRODUCTS

JING Lu!, JIANXIONG ZHANG!, XINYUN Jia' AND GUOWEI ZHU?*

Abstract. This paper focuses on the inventory management of agricultural products, a specific type of
perishable items carrying the deterioration property. In practice, the deterioration rate of agricultural
products is varying with time and can be slowed down wia investing in the preservation technology.
This objective of this paper is to maximize the firm’s total profit per unit time by simultaneously
determining dynamic pricing, replenishment cycle length, replenishment quantity and preservation
technology investment. We first derive pricing policy by solving a dynamic optimization problem and
then propose a solution procedure to obtain the optimal strategies that maximize profit. Furthermore,
numerical examples and sensitivity analysis are conducted to gain more managerial insights. We find
that the firm should take a penetration pricing policy. In addition, if the shelf life of products is
very long, the firm should not take preservation technology investment. When the unit holding cost
is relatively small or the unit purchasing cost is relatively large, the firm should increase preservation
technology investment.
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1. INTRODUCTION

Agriculture product accounts for a large proportion of the market demand, and the consumption of such
kind of products in the world has the potential to increase because of a highly growing population. Different
from other products, there is a continuous and significant reduction in quality and quantity over time for
agricultural products. The deterioration property leads that agricultural products possess limited shelf lives.
In fact, deterioration occurs due to a variety of phenomena of complicated chemical, physical and biochemical
origins after products are harvested. Owing to the fact that products cannot maintain the original value or utility
until they are unfit for human consumption and finally have to be discarded, a loss or waste of agricultural
products naturally emerges. In recent decades, huge loss of agricultural products has been a problem of increasing
severity, with rising awareness of managers. For example, it is roughly estimated by the Food and Agricultural
Organization of the United Nations that one third of the food produced globally is wasted along the entire
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supply chain annually (Gustavsson et al. [16]). Redlingshofer et al. [33] presented the data on the extent of
food loss and waste in France, reporting that in the year 2013, the loss of fruits and vegetables from production
to retailing sectors reaches up to 12%. In China, the average deteriorating rate of fruit and vegetable is up
to 20-30% and causes more than 100 billion yuan of economics loss per year (Li and Zhu [23]). The serious
circumstance that large quantities of foods which should have been eaten end up as waste makes food waste
a topic of concern worldwide (Mirabella et al. [28]). Such challenging situation turns the proper management
of agricultural product supply chain an urgent need which is crucial to profitability and drives the enterprises
to adopt effective measures to cut losses. As such, various available preservation technologies or approaches are
commonly applied to extend the shelf life of agricultural products since improvements in storage conditions can
protect products from deteriorative effect or retard the rate of deterioration. The technologies include physical,
chemical and biopreservation technologies, such as modified atmosphere packaging, pressurized inert gases, cold
plasma and so forth (Ma et al. [27]). For instance, sliced carrots under high oxygen and high carbon dioxide
can be stored for more 2-3days in contrast with the condition in the air (Amanatidou et al. [3]). Sharma
et al. [38] found that all coating formulations have the potential to improve the shelf life and preserve the
quality of fresh pineapple for 15 days. Papachristodoulou et al. [30] reflected that application of ozonated water
before packaging yields a shelf-life extension of 3 days for spinach with decreasing yellowing and maintained
compositional characteristics of the leaves. Eriksson et al. [10] found that reducing temperature for stored meat
products from 4 °C to 2 °C would potentially lead to a prolongation of shelf life in the range 28-36% and a 19%
reduction in mass of wasted meat.

Agricultural products are a specific type of perishable items which capture the deterioration property. As
defined in Wee [43], deterioration refers to phenomena of spoilage, pilferage, decay, evaporation, obsolescence,
or damage that commonly exists in practice and be viewed as a focal factor influencing perishable inventory.
Recently, researchers gradually highlight the effect of deterioration and give considerable attention to relevant
management problems of perishable items since Ghare and Schrader [13] first considered a deteriorating in-
ventory model with a constant rate of deterioration. However, in real life situations, for agricultural products,
deterioration rate usually depends on time. Covert and Philip [7] further extended the model by considering a
two-parameter Weibull distribution deterioration. Soon afterwards, Philip [31] developed the model associating
with a three-parameter Weibull deterioration rate without shortage. Recently, Skouri et al. [39] formulated a
deteriorating inventory model with general a ramp type demand rate and Weibull distribution deterioration. In
addition, several related articles concerning of either a constant or exponential deterioration rate have been pro-
posed by Cohen [6], Feng et al. [11], Hwang and Shinn [19], Lo et al. [26] and many others. Sana [35] determined
the optimal selling price and lot size with partial backlogging. In the model, deterioration is characterized as
a function of time and related with shelf life of perishable products. Sarkar and Sarkar [36] proposed an EOQ
model where the suppliers entitled a trade-credit offer to the retailers for the purpose of promoting more sales
with different discount rates on the purchasing costs. The time-varying deterioration in the work reflects that
the quantity or utility of the product drops at an accelerating rate as it approaches closely to the maximum
shelf life, which is also considered in this study.

Suffering from spoiled products in large quantities, an increasing number of firms have the incentive to
reduce the loss by means of effective capital investment in warehouse equipments, i.e., preservation technology
investment. Accordingly, the firm will see a commensurate reduction of waste as well as an increase in profit.
This is consistent with Tsao [40] who found that the retailer earns less profit when facing with a higher rate
of deterioration. Geetha and Uthayakumar [12] and Ouyang et al. [29] discovered that a reduction of the rate
of deterioration produced by the improvement of storage facility will bring out a lowered inventory cost. Hsu
et al. [18] formed an inventory model of deteriorating products where the retailer attempts to reduce the
deterioration rate of the item by taking the preservation technology investment. Then, a solution procedure
was proposed to make decisions including the optimal replenishment cycle, shortage period, periodic order
quantity and preservation technology cost to maximize profit. Dye [8] considered an inventory system for a
non-instantaneous item to discuss the effect of preservation technology on the inventory decisions. Liu et al.
[24] developed an inventory model for perishable foods where the demand depends on both the price and the
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quality of foods with the later decaying continuously overtime and then derived the joint dynamic pricing and
preservation technology investment strategies to maximize profit. Saha et al. [34] addressed a replenishment
problem of deteriorating items through determining the joint dynamic pricing, investment in green operations,
preservation technology, and optimal replenishment times in presence of reference price. The demand rate in
the model relays on the sales, reference prices and green concern level simultaneously. Other papers related to
preservation technology investment can be found in Refs. [9,15,45] and so forth.

Nowadays, compensating for the negative impact of deterioration may be achieved by implementing efficient
marketing policies. As an important marketing tool, pricing strategy is broadly adopted to maximize profit
due to its ability of effectively matching supply and demand. Wang et al. [42] verified that dynamic pricing
enjoys better performance compared to a fixed price. The rapid development of information technology and
the prevalence of the Internet and e-commerce make dynamic pricing an easier and more popular measure in
reality. Particularly for perishable items, dynamic pricing enables the firm to flexibly control and respond to
changeable inventory circumstances. Therefore, a large number of related researches on dynamic pricing for
perishable goods can be found, such as in Refs. [2,5,17,25,32,41] and so forth. In this work, we focus on
dynamic pricing for agricultural products with a time-varying deterioration rate. It is worth to note that a
varying deterioration with time makes perishable inventory system more complicated which is a crucial concern
for most firms. For the products with the varying deterioration, taking continuous time dynamic pricing policy
is flexible and profitable. Related problems of ordering decisions are also rich research topics in the field of
perishable inventory management problems. Thus, the integration problem of pricing and ordering decisions
draw extensive attentions from relevant managers and scholars. Abad [1] set a generalized model of dynamic
pricing and lot-sizing in which demand is partially backordered. Jia and Hu [21] studied dynamic pricing and
ordering policies for a perishable product supply chain that consists of one supplier and one retailer in a finite
horizon with uncertain demand. Until now, a variety of investigations continue to gush and enrich the literature
of perishable items. For more related investigations, we refer to Bakker et al. [4], Goyal and Giri [14] and Janssen
et al. [20] for a detailed review on the deteriorating inventory literature.

Inspired by the aforementioned studies, we present a continuous time inventory model for agricultural prod-
ucts where pricing and inventory decisions are to be determined while capital is to be invested in preservation
technology. Regarding agricultural products, to prolong the product’s shelf life has been a common practice
existing in real world and an increasing number of firms are attempting to reduce a large waste caused along
the agricultural product chain. In this study, with the objective of maximizing the total profit per unit time, the
enterprise simultaneously determines the optimal pricing policy, replenishment quantity, replenishment cycle
length and preservation technology investment with the assumption that shortage is not allowed. The demand
is linearly decreasing with the selling price, and the deterioration rate is increasing with respect to time, which
implies the deterioration rate sharply increases as the product approaches the expiration date. The combination
of time-varying deterioration and dynamic pricing raises the complexity of this model and makes it challenging
to obtain the optimal solution in an analytical approach. By virtue of dynamic optimization method, we first
derive the optimal pricing strategy wvia solving an optimal control problem. Then, we propose a solution proce-
dure to acquire the optimal strategies numerically. Furthermore, we carry out numerical examples to illustrate
the effectiveness of the proposed method. Additionally, we address sensitivity analysis with respect to major
parameters to probe potential managerial insights. We observe that facing a time-varying deterioration rate,
the firm should take a penetration pricing policy which enables him to capture a large market demand at the
beginning of the selling horizon, and then gradually raise the marginal profit with an increasing selling price. We
find that the optimal price is positively impacted by market potential, unit purchasing cost and unit holding cost
but negatively influenced by price sensitivity, fixed order cost, investment efficiency and shelf life of the product.
We show that the investment strategy of the firm depends on the key parameters including the shelf life of the
product. If the shelf life is very long, the firm has no incentive to invest. For example, storage of walnuts in light
and at room temperature is common practice, and walnuts can exist for several months after being harvested.
As reported in Koyuncu and Askin [22], shelled walnuts can be stored for 10-12 months at temperature of 5°C
with relative humidity of 55-65%. Regarding this stability of walnuts, many firms keep them simply instead of
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investing in extending the shelf life. In absence of a long shelf life, the investment decision relies on the cost
coefficients. Specially, a relatively small unit holding cost or a relatively large unit purchasing cost stimulates
preservation technology investment.

To summarize, the primary contributions of this paper which distinguish our study from existing literature

are threefold.

1. We first investigate the problem of simultaneously determining the optimal dynamic pricing policy, preser-
vation technology investment and periodic ordering strategies for agricultural products with limited shelf
life and time-varying deterioration rate.

2. We propose a solution procedure to effectively derive the joint decision of dynamic pricing, preservation
technology investment, and inventory ordering.

3. We find that wether or not the firm should extend products’ shelf life via investing in preservation technology

depends on the shelf life and the cost coefficients which provides managerial insights for the firm.

The remainder of the paper is organized as follows: In Section 2, notations and assumptions are provided.
In Section 3, the model and the solution method are presented. Then, some numerical examples and sensitivity
analysis are conducted to illustrate the theoretical results in Section 4. Finally, Section 5 gives the conclusion
and further research directions.

2. NOTATIONS AND ASSUMPTIONS

The following notations have been used in this study, see Table 1.
The mathematical model of the inventory control and pricing problem is based on the following assumptions:

1. Product starts to deteriorate once it gets stocked during a replenishment cycle [0, 7.
2. The demand is linearly decreasing with respect to price as follows

where a > 0 and 8 > 0. It should be satisfied that p € [0, %] to ensure a non-negative demand.

D(t)=a — Bp(t),

TABLE 1. Notations.

Parameters and system variables

&+
£

JEEROTDIW®R
IS

ecision

S 'ﬂ@%@

The demand rate at time ¢

The inventory level at time ¢

The basic market potential

The price sensitivity

The time-varying deterioration rate at time ¢ with given
The unit holding cost

The unit purchasing cost

The fixed order cost

The effect of investment on extending the shelf life, f(u) > 1
The shelf life of products

The total profit per unit time

variables

The unit sales price at time ¢

The replenishment quantity at the leadtime

The replenishment cycle length

The preservation technology investment per unit time to prolong the shelf life
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3. The investment effect, f(u) is a continuous, increasing and concave function of preservation technology
investment u, i.e., f'(u) > 0, f’(u) < 0 with f(0) =1, reflecting the effect of investment on extending the
shelf life w. Correspondingly, f(u)w refers to the prolonged shelf life.

4. Deterioration is dependent on both time and preservation technology investment

1
o(t =— 05t T 2.2
() = o=y OS¢ T (2.2
by following Sana [35] with the assumption of § = ﬁ, 0 < 6 < 1. Consistent with the reality, we consider

that the length of replenishment cycle T is less than or equal to f(u)w. When w — oo, § — 0 representing
nonperishable items.

5. Replenishment rate is instantaneous and lead time is neglected.

6. Shortage and backlogging are not allowed to occur.

3. BASIC MODEL

In this section, we consider a monopolist that dynamically prices agricultural products in stock to fulfill
the market demand during the finite horizon [0,7]. We assume that the deterioration rate of inventory is
proportional to the inventory level, i.e., 6(t,u)I. The inventory level is depleted by the combined effect of
demand and deterioration, and hence governed by the following differential equation:

I(t)= —0(t,u)I(t) — D(t), 0<t<T, (3.1)

with the initial inventory level I(0) =@ and the inventory level reaching zero by the terminal time T, i.e.,
I(T)=0.

It can be inferred from (3.1) that the inventory level keep nonnegative at all times, i.e., I(¢t) > 0 for all
t € [0, 7] and there exists no backorder during the selling period. According to the above analysis, the dynamics
of the inventory level per cycle is depicted in Figure 1.

The firm’s total profit per replenishment cycle is comprised of the earnings of sales less the holding cost, the
investment cost and the ordering cost that includes a variable part c@) and a fixed one K. The former refers to
the total purchasing costs and the latter corresponds to the replenishment cost per order. Besides, it is assumed
that the holding cost is linear in inventory. Accordingly, the total profit can be described as

/0 (p()D(p()) — hI(E)) dt — uT — (cQ + K. (3.2)

T ‘ T ]

FIGURE 1. Graphical representation of the inventory system.
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Our objective is to jointly determine dynamic pricing policy, replenishment quantity, the replenishment cycle
length and the preservation technology investment to maximize the total profit per unit time, which formulates
the optimization problem as

cQ+ K
max — —hI(t))dt —u — ,
(p(~),Q,u7T) / ®) T
s.t. ) - 1+f(,(;))w ;@ + ﬂp(t)ﬂt € [OvT]v (33)
1(0)=Q,1(T) =0,
0<p@) <3

The optimization problem above includes parameter optimization and optimal control problems, but the
complexity of the system makes it challenging to derive the solution simultaneously in an analytical approach.
Therefore, we solve problem (3.3) sequentially. At first, setting @, v and T fixed, we derive the optimal pricing
strategy p* wvia solving the following optimal control problem

maxc 17 = / _ hI()dt,
st ()= - ﬁ o+ Bp(t),t € [0, T, (3.4)

1(0)=Q,I(T) =
0<p(t) < 5

Applying the optimal control theory to obtain the optimal pricing policy p* and associating an adjoint variable
A with the state variable I, we formulate the Hamiltonian function as

H(Lp, 0, 0) = p(t) (@ — Bp(t) = RI(1) + A1) (— 1oy — @+ Bp(D)) - (3:5)

According to Pontryagin’s maximum principle (Sethi and Tompson [37]), the optimal control pricing strategy
p* should satisfy

H(I,p*, A t) =2 H(I,p, A t). (3.6)
The adjoint variable requires to satisfy the following adjoint equation
: OH A

oI 1+ f(u)w—t

Note that the initial condition I(0) =@ and the terminal condition I(T)=0 of the system state variable are
fixed. There is no constraints for the initial and terminal conditions of A. Denoting A(0) = Ay and integrating
(3.7), the adjoint variable can be derived as

—ht? + 2ht(1 + f(u)w) + 200 (1 + f(u)w)

Alt)= , 3.8
®) 214 f(u)w —1t) (38)
where )\ is to be determined.
Noticing that p € [0, %], we have the following proposition.
Proposition 3.1. For any given (Q,u,T), the optimal pricing strategy is given as
0, Zf )‘O < Aa
. —ht?+2ht(1+f (w)w)+220 1+ f (w)w) - By
Prt)=14 35+ Tty 2 if A < o <X, (3.9)
g ifA =X,

)= Bht2(a=Bh(l+ fW)t=2a(+f (Ww) 400 Y — Sht*=2(atBh(tf(ww)t+2a(l+f(we).
A 25147 (w)e) 2001+ (w)w)

where
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Proof. We derive the optimal solution p* by virtue of (3.6) together with the constraint of the control variable.
Specially, we have

0, it A(1) < -4,
pr(t) = SRW i — 2 < \(1) < 3, (3.10)
g, it A(t) > &

It is concluded that A(f) < —F refers to Ao < A, that —5 < A(f) < § implies A < Ag < A, and that A(t) > 3
can be transferred as \g > . Hence, substituting (3.8) into (3.10), we obtain (3.9). Since necessary conditions
(3.6) and (3.7) for the optimal control problem (3.4) hold, and the Hamilton function is concave, p* is optimal.

The proof is complete. O

It is inferred from Proposition 3.1 that the optimal pricing policy is determined on the basis of different
values of A\g. In fact, for the real inventory management system, p =0 generates no revenue margin, and p= %
results in zero demand rate, which clearly indicates that the cases of p=0 and p= % will not appear in the set

of the optimal solutions. Therefore, we just focus on the case of A < A\g < A. Under this case, substituting p*
into (2.1) and solving the differential Equation (3.1) with the initial condition I(0) =@, we have

()= — %a(l + fww—t)In W + %ﬂ/\ot + iﬁth e ET%W?Q (3.11)
Then, together with the terminal condition I(T) =0, we can finally calculate
a1+ flu)w —T) 14+ flww 20+ fluw-T)Q 1
Ao = AT T fww—-T — BT+ f(u)w) T (3.12)
We denote
T = min {MZZ} , (3.13)
1 1+ f(u)w 1
Q= min {;a(l + f(u)w)In W + iT(Qa + BhT),
1+ fu)w 1+ f(uw)w)T

%a(l + f(ww) In (20 — ﬂhT)}.

1+ flww—-T 41+ fw)w—-T)

Considered T < T and Q<@< Q, it follows that A < Ao < X is satisfied at all points t € [0,T]. We can
further derive the pricing policy and the corresponding inventory level as below:

« 1 T
p(t):% + BTA T f@)w =D ( 2a0(1+ f(v)w)(1+ f(u)w—T)ln (1 - 1—|—f(u)w)
— Bh(1 + f(u)w)T? 4 (2Bhf(u)wt — Bht(t — 2) +4Q)T — 4Q(1 + f(u)w) , (3.14)

1 t
I(t)= T <2aT(1 + f(u)w —t)In (1 - 1_|_f(u)w)

—2at(1+ f(u)w —T)In (1

T
- 1+f(u)w> — (T = t)(BhT't - 462)) : (3.15)
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Substituting (3.14) and (3.15) into the objective function in problem (3.3) yields the total profit per unit
time IT as follows

= 1 — a2 uw2 Uujw — n2 _L
H_486T2(1+f(u)w)<< 120501+ fluw) (1 + fluje =T (1 1+f(u)w)

+120(1 + fu)w)(1+ flu)w — T)> (BRT(1 + f(ww) - 4Q) In (1 - 1+fT(u)w>

+1202T%(1 + f(u)w) + 6aBRT?*(1 + f(u)w)(2 + 2f (u)w — T)
+ B2R2TH(1 + f(u)w) — 48BKT(1 + f(u)w) — 48(1 + f(u)w — T)Q?

—240T(1 + f(u)w)(2¢c + hT)) —u. (3.16)

Note that the total profit per unit time is a function of @, u and T'. The constraints of @ < @ < Q and
T < T correspondingly result from the constraint of 0 < p < % in the optimization problem (3.3). Therefore,
the original optimization problem (3.3) can be transferred as the following optimization problem

max I1(Q,u,T
Qax, (@Qu,T)

5. Q<Q<Q,0<T<T,u>0. (3.17)
Furthermore, we obtain the following proposition.

Proposition 3.2. For any given preservation technology investment u and replenishment cycle length T < T,
there uniquely exists an optimal replenishment quantity

Q= 5o(l+ f(u)w)In W 0T (et hT)W, (3.18)
which satisfies Q < Q* < Q and the second order conditions for mazimum.
Proof. Taking the first order derivative of IT in (3.16) with respect to @, we have

= e (22 H @+ o =D
— BhT?*(1 + f(u)w) — 4(1 + f(u)w — T)Q — 28T (1 + f(u)w))
Let %C’;’T) =0. We obtain @* in (3.18) which can be shown to satisfy @ < Q* < Q.
Furthermore, taking the second order derivative of (3.16) with respect to @ yields
P (Q,u, T) —2(1+ f(u)w—T)
07 | AT+ fwe)

Thus, there exists a unique @* in (3.18) maximizing IT(Q,w,T). The proof is complete. |

Although we can get the expression of II(Q,u,T) in (3.16), the concavity of IT with respect to (Q,u,T)
is challenging to be proved through an analytical approach. Thus the optimal (Q,u,T) cannot be derived by
the first-order conditions. We design an algorithm to obtain the optimal solution. We first divide the three
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dimensional decision space (Q,u,T') into Q |J{u, T} and then design an iterative algorithm to find the optimal
(Q,u,T), which is inspired by the algorithm proposed in Zhang et al. [44].

Algorithm

Step 1: Set i =0 and initialize the value of @); and calculation accuracy e.

Step 2: For a given replenishment quantity @;, search the optimal preservation technology investment and
(ui, T;) by solving the optimization problem (3.17) via a two-dimensional search algorithm.

Step 3: Based on (u;, T;) obtained from Step 2, calculate the optimal @;41 by virtue of (3.18).

Step 4: If |Q;11— Q:] < €, set Q" =Q;+1, then output the solution (Q*, u*, T*) and stop. Otherwise, set i =i+1
and return to Step 2.

It should be mentioned that although the concavity of total profit per unit time IT with respect to (u,T)
cannot be proved in an analytical approach, we have done a large number of numerical examples and find
that the corresponding concavity holds due to the assumption that f(u) is a concave function. In the above
algorithm, we first provide an initial value of ); and calculation accuracy €. In Step 2, for the current @;, a global
maximum solution of (u*,T™*) of IT(u,T) is obtained. Next, the value of IT(Q,u,T) can be further promoted by
an optimal ;1 in Step 3. Note that Steps 2 and 3 address the corresponding convex optimization problems.
The iteration will be repeatedly executed until it arrives at the calculation accuracy. On the basis of that the
sequence of performance indices is monotonically increasing and upper bounded, hence, the convergence of the
iterative algorithm can be guaranteed by a given calculation accuracy.

4. NUMERICAL STUDY

4.1. Numerical examples

In this subsection, we employ numerical examples to illustrate the theoretical results and obtain managerial
insights.

Let a=50,3=5,h=0.5,c=1.0, K =15, w=>5 and e = 10~%, and consider a concave function f(u) = /I + yu
that is consistent with the previously mentioned assumption. We here denote 7 as the coefficient referring to
the investment efficiency and set v=1.0. We choose the parameters according to prior literature on perishable
inventory systems (e.g., Saha et al. [34] and Zhang et al. [45]) for a comprehensive illustration. By applying the
algorithm proposed in Section 3, we calculate Q* =32.2546, u* =0.4316, T* =1.3639, IT* =79.4216. As shown
clearly in Figure 2, the numerical results present that IT(Q,u,T) is jointly concave with respect to (u,T’) for
given @ = Q* and the total profit per unit time reaches the maximum at the point of (u,T") =(0.4316,1.3639).
In the next moment, we run the computational result with different feasible values of @Q. Figure 3 illustrates the
concavity of II with respect to @ and it can be found that the total profit per unit time reaches the maximum
at the point of Q) =32.2546 for given (u,T) = (u*,T™).

Therefore, the optimal pricing policy and the corresponding optimal inventory level can be obtained as

(1) 8403+ 325041 + 0.1250¢2
p t—6.9825 ’
I*(1) = (174.5619 — 25.0000¢) In(6.9825 — ) + 46.4656¢ — 306.9895 -+ 0.62502,

for t € [0,1.3639]. As clearly shown in Figure 4, optimal price is increasing with time which indicates that
the firm adopts a penetration pricing policy. This is because facing an accelerating deterioration rate overtime,
the firm intends to capture a large enough market by setting a lower initial price at the beginning of the
selling horizon. Then, a quick fall in the inventory level resulted from the large demand rate allows the firm
to significantly reduce the loss of deterioration and the corresponding inventory cost which in the meanwhile
enables the firm to gain more profit with increasing price in later period when the inventory level is relatively
low.
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79.5

79

80 T

32.2546

74 i . i
25 30 35 40

F1GURE 3. Total profit per unit time with respect to @ for fixed u and T.

4.2. Sensitivity analysis

Now, we study the impacts of changing the values of the system parameters of o, 3, h, ¢, K and . The
sensitivity analysis is addressed by varying one parameter by —20%, —10%, +10%, and +20% at a time and
keeping the remaining parameters fixed. Using the previously proposed algorithm, the computational results
are reported in Tables 2 and 3. The former concludes the effects on optimal pricing policy of the parameters,
and the latter illustrates the impacts of key parameters on other optimal decisions.

From Table 2, it is easy to find that market potential, unit purchasing cost and unit holding cost lift price,
whereas price sensitivity, fixed order cost and investment efficiency force price down. Put differently, we find
that the optimal price is positively impacted by market potential, unit purchasing cost and unit holding cost
but negatively influenced by price sensitivity, fixed order cost, investment efficiency and shelf life of the product.

From Table 3, we obtain the following conclusions.

1) When the market potential « increases and other parameters keep unchanged, it can be seen in Table 2 that
the optimal replenishment quantity Q*, the optimal preservation technology investment u* as well as the
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595 1

59 1

5.85 - : : 1

58 1

5.75 - 4

p*(t)

57 1

5.65 - : b
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5.55 - 1
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FIGURE 4. Optimal pricing policy p*.

TABLE 2. Impacts on the optimal price p* of key parameters.

TABLE 3. Impacts of key parameters on optimal strategies and total profit.

Q* u* T* H* Q* u* T* H*
40 28.1152  0.3392 1.5442  41.9960 4.0 32.7599 0.4458 1.3402 110.1074
45 30.2647  0.3877 1.4449 59.4114 4.5 32.5080 0.4388 1.3518 93.0274
a 50 32.2546 0.4316 1.3639 79.4216 8 5.0 32.2546  0.4316 1.3639 79.4216
55 34.1244  0.4723 1.2962 102.0085 5.5 31.9907  0.4241 1.3762 68.3432
60 35.9110 0.5111 1.2389  127.1590 6.0 31.7280 0.4165 1.3892 59.1609
0.8 33.3448 0.2985 1.3679 84.2234 12.0 28.7184 0.2835 1.2161 81.7475
0.9 32,7926  0.3670 1.3659 81.8043 13.5  30.5322 0.3594 1.2919 80.5513
c 1.0 32.2546 0.4316 1.3639 79.4216 K 15,0 32.2546 04316 1.3639 79.4216
1.1 31.7389 0.4931 1.3623 77.0743 16.5 33.8793 0.5001 1.4319 78.3486
1.2 31.2433  0.5517 1.3611 74.7617 18.0  35.4493 0.5663 1.4975 77.3246
0.40 35.1820 0.5115 1.4710 81.0197 0.8 31.9732  0.2673 1.3438  79.3426
0.45 33.6283 0.4693 1.4143 80.2033 0.9 32.0892 0.3589 1.3532 79.3798
h 0.50 32.2546 0.4316 1.3639 79.4216 v 1.0 32.2546  0.4316 1.3639 79.4216
0.55 31.0336 0.3979 1.3189 78.6706 1.1 32.3618 0.4866 1.3719 79.4654
0.60 29.9367 0.3674 1.2783 77.9470 1.2 32.4584  0.5300 1.3791  79.5097

total profit per unit time IT* increase while the optimal length of replenishment cycle T* declines. This is
because a large market potential a has positive effect on the demand rate. Hence, such situation encourages
the firm to order more agricultural products to fulfill the larger demand. Obviously, a larger demand rate
expedites the reduction of the stocks. Put differently, the length of replenishment cycle is shortened by
the fast decline of the inventory level. As shown in Table 1, price is promoted by the firm to produce a
higher profit margin. Therefore, the total profit per unit time rises. It is intuitive to note that the increase



742 J.LU ET AL.

in replenishment quantity will consequently generate more losses of deteriorated units. As such, this case
requires the firm to invest more in preservation technology to slow down the rate of deterioration.

2) When the price sensitivity 8 increases, the optimal Q*, u* and IT* decrease while the optimal length of
replenishment cycle T* increases. When consumers become more sensitive to price, the demand accordingly
shrinks which leads to a smaller amount of products ordered per cycle. For the sake of keeping enough sales
volume, the firm needs to charge a lower price so as to enlarge demand. However, it cannot compensate
for the lost demand caused by a larger price sensitivity. Thus, lower price and less sales jointly result in a
decrease in revenue. In order to save cost, the firm prefers to cut the expenditures of investment. In addition,
the replenishment cycle length will be prolonged due to the decrease in the amount of product sales.

3) When the unit purchasing cost ¢ increases, the optimal u* increases whereas the optimal Q*, T* and IT*
decline. The rise in unit purchasing cost decreases the net margin per unit product that burdens the firm.
Hence, a larger cost alters the firm to replenish less products per cycle. Obviously, replenishing less products
implies a shorter replenishment cycle. In order to compensate for the reduction in profit margin resulted
from a larger purchasing cost, the firm is willing to increase price as shown in Table 1 which in turn incurs
a shrinkage of demand. What’s more, the increase in marginal cost stimulates the firm to invest more to
reduce the deterioration loss. It is obvious that a larger marginal cost will reduce the profit of the firm.

4) When the fixed order cost K increases, the optimal Q*, u* and T* increase while the total profit per unit
time IT* decreases. It is inferred that a relatively large fixed order cost K discourages the firm to replenish
frequently. Hence, the firm is enticed to order more units per replenishment cycle. That is to say, a larger
fixed order cost decreases the order frequency and prolongs the optimal length of replenishment cycle which
in turn generates more deterioration loss. For this reason, a long selling horizon induces the firm to increase
investment so as to mitigate the deteriorative effect, i.e., postpone the deteriorating process of each unit.
Aiming to stimulate demand associated with a larger replenishment quantity, the firm intentionally forces
price down which in turn cuts the profit margin per unit. Thus, it can be concluded that a larger K will
damage the interests of the enterprise.

5) When the unit inventory holding cost h increases, the optimal @*, v* and T* and IT* all decrease. Intuitively,
a larger h adds to the inventory cost and lowers the profit margin. Facing this situation, the firm tends to
order a smaller amount of products per cycle to avoid a relatively larger holding cost which further produces
a shorter replenishment cycle length. Furthermore, the firm has no incentive to enhance the investment in
preservation technology since it will produce more cost in two aspects, one referring to the investment cost
and the other one stemming from the added holding cost with a larger h. As seen in Table 1, the firm will
charge a higher price so as to attain more profit but this cannot offset the decrease in profit margin which
results from the increasing holding cost. For this reason, a larger inventory cost of agricultural products
finally whittles down the interests of the firm.

6) When the efficiency of the preservation technology investment v increases, the optimal strategies Q*, u*,
T* and the total profit per unit time IT* are increasing. It is easy to see that a higher efficiency 7 requires
a lower expenditure of preservation technology investment. That is to say, the firm is able to retard the
deteriorative effect by spending a lower cost. With this regard, it will be advantageous for the enterprise to
reinforce the investment so as to reduce the deterioration loss to a greater extant. Thus, it will lead to a
significant reduction of spoiled units. Meanwhile, in presence of high efficiency, the enterprise intentionally
orders more agricultural products per replenishment cycle to enlarge sales. Then, a large amount of stocks
may accordingly prolong the replenishment cycle length. The firm prefers to set a lower price so as to expand
demand as shown in Table 1 and replenishes more agricultural products. Then, the decline in deterioration
loss associated with a large amount of sales volume boosts the firm’s total profit per unit time under a larger
investment efficiency.

Next, we analyze the impact of shelf life on the optimal strategy. We set the same parameters as above
except for the given shelf life (w = 1, 2, ..., 10). Hence, we calculate the optimal values @*, u*, T, and IT*
respectively and show them in Table 4.
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TABLE 4. Optimal strategies and total profit under different w.

w
1 2 3 4 5 6 7 8 9 10

Q" 26.7864 29.5056 30.8536 31.6820 32.2546 32.6732 32.9894 33.2587 33.4596 33.6714

u* 1.6959 1.1937 0.8453 0.6060 0.4316 0.2981 0.1918 0.1057 0.0331 0

T* 1.0128 1.1773 1.2659 1.3231 1.3639 1.3946 1.4185 1.4368 1.4545 1.4710
T 72.6987 76.1142 77.7519 78,7442 79.4216 79.9190 80.3026 80.6092 80.8610 81.0716
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FIGURE 5. Impact of w on optimal price.

From Table 4, we find that when the shelf life of each product w increases, the optimal replenishment quantity
Q*, the optimal replenishment cycle length T* and the total profit per unit time IT* increase whereas the optimal
investment u* drops. This reflects that in presence of a relatively long shelf life of the product, the firm is allowed
to cut investment in preservation technology that helps to save investment cost since the deterioration rate is
relatively low. Put differently, a longer shelf life corresponds to a reduced u*. As clearly shown in Table 4, when
the product’s shelf life w approaches 10, the firm just stops investing in preservation technology since at this
point the positive effect brought out by investment on the reduction in deterioration rate is not obvious. The
shelf life represents the quality attribute of the product and a longer shelf life represents a higher quality and
less waste of products. Facing this, the firm is likely to order a larger quantity of products per replenishment
cycle to squeeze more profit, which extends the length of the replenishment cycle accordingly. Besides we assess
the impact of the shelf life on optimal price in Figure 5. It is shown that the optimal price is negatively impacted
by the shelf life suggesting that the firm would like to enlarge demand via charging a lower price when the rate
of the product’s deterioration is relatively low. On the contrary, the firm will charge a higher price aiming to
raise the profit margin per unit product under the situation in which the agricultural products highly decay. It
is obvious to note that a longer shelf life contributes to benefit the firm.

In the following, we concentrate on whether or not the firm takes preservation technology investment for
agricultural products with different shelf lives under two distinct cost coefficients h and c respectively. Also, we
consider the impacts of investment efficiency v on the corresponding results. The results are shown in Figures 6
and 7.
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FIGURE 7. Investment decisions via ¢ and w under different efficiencies.

Notice that the solid lines that are depicted in Figures 6 and 7 refer to the threshold curves that distinguish
the firm’s different investment strategies when v =1.0, while the dashed ones represent the cases of y=1.2. We
observe that the investment strategy of the firm depends on the key parameters including the shelf life of the
product. If the shelf life is vary long, the firm has no incentive to invest. Otherwise, the investment decision
relies on the cost coefficients. Specially, a relatively small unit holding cost or a relatively large unit purchasing
cost stimulates preservation technology investment. To be specific, it can be clearly found in Figure 6 that
when the shelf life of the product is very short, the firm tends to take investment because when facing a large
deterioration rate, investing in preservation technology can greatly mitigate the deteriorative effect of products
which accordingly improves profit. When w is large, no investment appears to be a better choice for the firm
when the unit holding cost is relatively large. It is shown that as w goes up, whether to inhibit investment
relies on the magnitude of h. Specially, for a moderate shelf life such as w=9, if the unit holding cost is
below about 0.56, the firm adopts an investment. Otherwise, the firm has no incentive to invest since investing
creates more costs including the inventory cost as well as the investment cost. Specially, as the shelf life of the
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product becomes relatively long, the firm does not take preservation technology investment due to the fact that
the improvement in deterioration rate brought out by the investment is slight compared with the investment
cost.

Figure 7 describes the impact of the unit purchasing cost ¢ on the firm’s investment decision. We ob-
serve that when agricultural products have a relatively short shelf life, the firm intentionally invests to re-
duce the deterioration waste. Furthermore, as the shelf life of the product elongates, the firm’s investment
decision hinges on the size of the unit purchasing cost, and taking investment is no longer beneficial when
the firm is confronted with a relatively small c¢. For example, as clearly shown in Figure 7 that if unit pur-
chasing cost of the product of w=9 is lower than around 0.94, the firm will not invest. This is because a
relatively small unit purchasing cost implies a high profit margin per unit product, at this point, it is un-
necessary for the firm to undertake the extra cost on investing wvia trading off between the improvement in
the originally low deterioration rate and the expenditure of the investment. Therefore, as w increases, the
investment becomes more disadvantageous. Above all, it is concluded that a long shelf life, a high unit hold-
ing cost, or a small unit purchasing cost will make the firm not to invest in preservation technology. Oth-
erwise, investing is beneficial for the firm. In addition, from Figures 6 and 7, we find that a higher invest-
ment efficiency stimulates the firm to invest in technology investment because it reduces the corresponding
cost.

Finally, in order to verify the robustness of our results with regard to the form of demand function, we further
numerically analyze the corresponding results under the case for a non-linear demand D(t) = Ap(t)~2 where A
is a constant. The additional numerical studies verify that our main results remain qualitatively. Here, we do
not present the detailed computational results for saving space.

5. CONCLUSION AND FURTHER RESEARCH

In this paper, we establish an inventory model for agricultural products in which the deterioration rate of
units is increasing with time and the demand is linearly decreasing with respect to price without shortage.
Through applying dynamic optimization method and designing a solution procedure, we derive the optimal
dynamic pricing strategy, the replenishment cycle length, replenishment quantity and the preservation technol-
ogy investment simultaneously so that we can maximize the total profit per unit time. It is observed through
numerical studies that it is advantageous for the firm to take the penetration pricing policy. Importantly, the
preservation technology investment strategy of the firm relies on the key parameters, especially the shelf life of
each product. That is, if the shelf life is long enough, the firm will not take the investment. Otherwise, whether
to invest in preservation technology depends on the cost coefficients, i.e., when the unit holding cost is relatively
small or the unit purchasing cost is relatively large, investing in preservation technology may benefit the firm.
Additionally, we observe that a higher investment efficiency encourages the firm to take preservation technology
investment.

There exist some further researches to extend this inventory model. For instance, we can consider the situation
that consumer demand is time dependent as well, since the demand for agricultural products may change as
time goes by. Besides, we can extend the model in the context of an uncertain setting where the demand is
random, at this point, allowing the shortage and determining related replenishment policies may be another
potential extension. In addition, it can be further discussed that the product’s shelf life or freshness may influence
consumer demand or product goodwill which is in line with the reality. With this regard, it is interesting to
study the corresponding impacts on the firm’s strategies.

Acknowledgements. This work was supported by National Natural Foundation of China No. 61473204, Humanity and
Social Science Youth Foundation of Ministry of Education of China No. 14YJCZH204.



746

(1]
2]
(3]
(4]
(5]
[6]

[7]
(8]

(9]
(10]
(11]
(12]
13]
14]
(15]
(16]
(17]
(18]
(19]
(20]

(21]
(22]

[23]
[24]
[25]
[26]
[27]
28]
[29]
[30]

(31]
32]

J. LU ET AL.

REFERENCES

P.L. Abad, Optimal pricing and lot-sizing under conditions of perishability and partial backordering. Manage. Sci. 42 (1996)
1093-1104.

Y. Akcay, H.P. Natarajan and S.H. Xu, Joint dynamic pricing of multiple perishable products under consumer choice. Manage.
Sci. 56 (2010) 1345-1361.

A. Amanatidou, R.A. Slump, L.G.M. Gorris and E.J. Smid, High oxygen and high carbon dioxide modified atmospheres for
shelf-life extension of minimally processed carrots. J. Food. Sci. 65 (2000) 61-66.

M. Bakker, J. Riezebos and R.H. Teunter, Review of inventory systems with deterioration since 2001. Eur. J. Oper. Res. 221
(2012) 275-284.

X. Cai, Y. Feng, Y. Li and D. Shi, Optimal pricing policy for a deteriorating product by dynamic tracking control. Int. J.
Prod. Res. 51 (2013) 2491-2504.

M.A. Cohen, Joint pricing and ordering policy for exponentially decaying inventory with known demand. Nav. Res. Logist. 24
(1977) 257-268.

R.P. Covert and G.C. Philip, An EOQ model for items with Weibull distribution deterioration. AIIE Trans. 5 (1973) 323-326.

C.Y. Dye, The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega-Int.
J. Manage. Sci. 41 (2013) 872-880.

C.Y. Dye and C.T. Yang, Optimal dynamic pricing and preservation technology investment for deteriorating products with
reference price effects. Omega-Int. J. Manage. Sci. 62 (2016) 52—67.

M. Eriksson, I. Strid and P.A. Hansson, Food waste reduction in supermarkets-Net costs and benefits of reduced storage
temperature. Resour. Conserv. Recy. 107 (2016) 73-81.

L. Feng, J. Zhang and W. Tang, Optimal inventory control and pricing of perishable items without shortages. IEEE Trans.
Autom. Sci. Eng. 13 (2016) 918-931.

K.V. Geetha and R. Uthayakumar, Economic design of an inventory policy for non-instantaneous deteriorating items under
permissible delay in payments. J. Comput. Appl. Math. 233 (2010) 2492-2505.

P.M. Ghare and G.F. Schrader, A model for exponentially decaying inventory. J. Ind. Eng. 14 (1963) 238-243.

S.K. Goyal and B.C. Giri, Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 134 (2001) 1-16.

H. Gurnani, M. Erkoc and Y. Luo, Impact of product pricing and timing of investment decisions on supply chain co-opetition.
Eur. J. Oper. Res. 180 (2007) 228-248.

J. Gustavsson, C. Cederberg, U. Sonesson, R. Van Otterdijk and A. Meybeck, Global Food Losses and Food Waste. FAO,
Rome (2011).

T.P. Hsieh and C.Y. Dye, Optimal dynamic pricing for deteriorating items with reference price effects when inventories stimulate
demand. Eur. J. Oper. Res. 262 (2017) 136-150.

P.H. Hsu, H.M. Wee and H.M. Teng, Preservation technology investment for deteriorating inventory. Int. J. Prod. Econ. 124
(2010) 388-394.

H. Hwang and S.W. Shinn, Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition
of permissible delay in payments. Comput. Oper. Res. 24 (1997) 539-547.

L. Janssen, T. Claus and J. Sauer, Literature review of deteriorating inventory models by key topics from 2012 to 2015. Int.
J. Prod. Econ. 182 (2016) 86-112.

J. Jia and Q. Hu, Dynamic ordering and pricing for a perishable goods supply chain. Comput. Ind. Eng. 60 (2011) 302-309.

M.A. Koyuncu and M.A. Akkin. Studies on the storage of some walnut types grown around Van Lake. Turk. J. Agric. For.
23 (1999) 785-796.

S. Li and M. Zhu, Research on the differential outsourcing risks for fresh cold-chain logistics. In: Proceedings of 20th Interna-
tional Conference on Industrial Engineering and Engineering Management. Springer, Berlin, Heidelberg (2013) 827-840.

G. Liu, J. Zhang and W. Tang, Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent
demand. Ann. Oper. Res. 226 (2015) 397-416.

J. Lu, J. Zhang and Q. Zhang, Dynamic pricing for perishable items with costly price adjustments. Optim. Lett. 12 (2018)
347-365.

S.T. Lo, HM. Wee and W.C. Huang, An integrated production-inventory model with imperfect production processes and
Weibull distribution deterioration under inflation. Int. J. Prod. Econ. 106 (2007) 248-260.

L. Ma, M. Zhang, B. Bhandari and Z. Gao, Recent developments in novel shelf life extension technologies of fresh-cut fruits
and vegetables. Trends. Food Sci. Tech. 64 (2017) 23-38.

N. Mirabella, V. Castellani and S. Sala, Current options for the valorization of food manufacturing waste: a review. J. Clean
Prod. 65 (2014) 28-41.

L.Y. Ouyang, K.S. Wu and C.T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permis-
sible delay in payments. Comput. Ind. Eng. 51 (2006) 637-651.

M. Papachristodoulou, A. Koukounaras, A.S. Siomos, A. Liakou and D. Gerasopoulos, The effects of ozonated water on the
microbial counts and the shelf life attributes of fresh-cut spinach. J. Food Process. Pres. 42 (2018) e13404.

G.C. Philip, A generalized EOQ model for items with Weibull distribution deterioration. AIIE Trans. 6 (1974) 159-162.

M. Rabbani, N.P. Zia and H. Rafiei, Joint optimal inventory, dynamic pricing and advertisement policies for non-instantaneous
deteriorating items. Rairo-Oper. Res. 51 (2017) 1251-1267.



133
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]

OPTIMAL DYNAMIC PRICING FOR AGRICULTURAL PRODUCTS 747

B. Redlingshéfer, B. Coudurier and M. Georget, Quantifying food loss during primary production and processing in France.
J. Clean Prod. 164 (2017) 703-714.

S. Saha, I. Nielsen and I. Moon, Optimal retailer investments in green operations and preservation technology for deteriorating
items. J. Clean Prod. 140 (2017) 1514-1527.

S.S. Sana, Optimal selling price and lotsize with time varying deterioration and partial backlogging. Appl. Math. Comput. 217
(2010) 185-194.

B. Sarkar and S. Sarkar, An improved inventory model with partial backlogging, time varying deterioration and stock-dependent
demand. Econ. Model. 30 (2013) 924-932.

S.P. Sethi and G.L. Thompson, Optimal Control Theory: Applications to Management Science and Economics. Kluwer,
Dordrecht, Netherlands (2000).

L. Sharma, S.C. Singh and H.K. Sharma, Development of crosslinked sesame protein and pineapple extract-based bilayer
coatings for shelf-life extension of fresh-cut pineapple. J. Food Process. Pres. 42 (2018) e13527.

K. Skouri, I. Konstantaras, S. Papachristos and 1. Ganas, Inventory models with ramp type demand rate, partial backlogging
and Weibull deterioration rate. Fur. J. Oper. Res. 192 (2009) 79-92.

Y.C. Tsao, Two-phase pricing and inventory management for deteriorating and fashion goods under trade credit. Math. Method.
Oper. Res. 72 (2010) 107-127.

C. Wang and L. Jiang, Inventory policy for deteriorating seasonal products with price and ramp-type time dependent demand.
Rairo-Oper. Res. 49 (2015) 865-878.

Y. Wang, J. Zhang and W. Tang, Dynamic pricing for non-instantaneous deteriorating items. J. Intell. Manuf. 26 (2015)
629-640.

H.M. Wee, Economic production lot size model for deteriorating items with partial back-ordering. Comput. Ind. Eng. 24 (1993)
449-458.

J. Zhang, R. Dai, Q. Zhang and W. Tang, An optimal energy efficiency investment and product pricing strategy in a two-market
framework. IEEE Trans. Syst. Man Cybern. -Syst. 48 (2018) 608-621.

J. Zhang, Q. Wei, Q. Zhang and W. Tang, Pricing, service and preservation technology investments policy for deteriorating
items under common resource constraints. Comput. Ind. Eng. 95 (2016) 1-9.



	Introduction
	Notations and assumptions
	Basic model
	Numerical study
	Numerical examples
	Sensitivity analysis

	Conclusion and further research
	References

