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SINGLE-MACHINE LOT SCHEDULING PROBLEM FOR DETERIORATING
ITEMS WITH NEGATIVE EXPONENTIAL DETERIORATION RATE

AMIR HOSSEIN NOBIL', ABOLFAZL KAZEMI™* AND ATA ALLAH TALEIZADEH?
)

Abstract. Determining production-inventory level is one of the most important and challenging prob-
lems in a manufacturing system. Economic Batch Quantity (EBQ) is the simplest and the most em-
ployed inventory model in this field. Here, a single-source production lot-sizing model for deteriorating
products with negative exponential deterioration rate is developed. In this manufacturing system, we
assume that all items are manufactured using a single source. In this paper the optimal values for cycle
length and lot size are derived in a way that the total cost (consists of machine setup cost, manufacturing
cost, carrying and disposal costs of the deteriorating items) is minimized. Consequently, the developed
model for the proposed problem is formulated. According to the derived mathematical model, we could
not provide a closed form optimal solution, but we show that there is a unique optimal solution for the
cycle length. At first, the upper and lower bounds of the optimal solution are determined, then using a
Bi-section method (root-finding method) the problem is solved. To demonstrate the applicability of this
method, we solve a simple example for a manufacturing system with three products. Finally, results
of ten experiment that obtain from this method compare to answers from Newton-Raphson method,
then it has been shown that this method has great effectiveness and less calculation efforts for the
single-machine problem with deteriorating items.
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1. INTRODUCTION

The Economic Batch Quantity (EBQ) model is one of the most famous, the simplest and the most utilized
inventory model. First, the EOQ model was introduced by Harris in February 1913. The main focus of his
model was the balancing of the carrying against the fixed costs in order to optimize the total cost [3]. Five
years later, Taft developed the Harris’s model for manufacturing system, and introduced the first economic
manufacturing quantity (EMQ) model [20]. In the late 20th century, Erlenkotter [8,9] rediscovered the Harris’s
paper and provided a brief history of the EOQ’s early life. Both EOQ and EMQ inventory control models are
developed under some restrictive assumptions e.g., non-perishability of goods. However, these assumptions are
not always true e.g., in food industry and so forth. One of the first investigations on the inventory models
regarding perishable products was presented by Whitin [35]. He developed an inventory model considering the
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fashioned goods. After that, Hadley and Whitin [12] presented an inventory system for those products which
are outdated after a specific time. Ghare and Schrader [10] extended lot size system for perishable items with
negative exponential distribution. There are some important studies that consider the deteriorating items such
as [2,5-7,11,15,17-19,24,27,33, 34].

Considering multiple items for the manufacturing organization is another extension of the classical inventory
models [4]. In 1957, Eilon presented the first EMQ model for a manufacturing system with several products [26].
Johnson and Montgomery [16] studied a single-machine manufacturing system under a production constraint for
all items. After that, Haji and Mansuri [14] extended Johnson and Montgomery’s [16] study with consideration
of budgetary constraint. Then, Haji et al. [13] proposed an EMQ model for a manufacturing system wherein
multiple products were produced on a single-machine. Some features of single-machine production systems are:
savings on initial capital by buying only one machine, saving the production space floor, and integrating the
production process (postponement).

Taleizadeh et al. [29] developed the Haji et al.’s [13] study with consideration of a defective manufacturing
system. In their problem, the scrapped items are produced. Also, they assumed that the shortage is allowed
and partially backordered. Afterwards, Taleizadeh et al. [28] recommended a closed-from solution to minimize
expected total cost for a defective single-machine system with immediate repair process. Pasandideh et al. [25]
presented a single-machine nonlinear model for nonconforming items including scrap and repair, where repairable
items are categorized into several groups based on defective rate. After that, Nobil et al. [21] extended the single-
machine scheduling problem and proposed multi-machine lot-sizing scheduling with defective items. Then, they
solved the problem by a hybrid genetic algorithm (GA). Taleizadeh et al. [31] introduced an EMQ model for a
defective manufacturing system with rework process, partial backordering and breakdown in production process
for preventive maintenance. At same year, Nobil et al. [22] considered a two-level supply chain composed of
one vendor and one buyer in order to investigate the impact of the single-machine EBQ problem on the total
cost of the supply chain (SC) network. Recently, Nobil et al. [23] extended the Pasandideh et al. [25] study
by considering the non-zero setup times for rework processes. Finally, these studies conducted in the field of
single-machine multi-items lot-sizing inventory and their contributions are shown in Table 1.

As it can be seen in Table 1, all performed studies did not consider perishable items for case of multi-
product. Here, we extend a single-machine inventory model for perishable products with a negative exponential
deterioration rate. Although we could not derive a closed form solution, but both lower and upper bounds of the
optimal solution are obtained, and a nonlinear solution procedure, bi-section method, was employed to obtain
the near optimal solution.

The rest of this paper is categorized as follows, the proposed single-machine EM(Q model is developed and
formulated in Section 2. Section 3 represents solution procedure and Section 4 studies a numerical example and
its sensitivity analysis. Finally, the future research directions and conclusion are presented in Section 5.

2. PROBLEM STATEMENT

The aim of this research is to find the acceptable (near optimal or optimal) value of cycle length so that
the total inventory cost is minimized. In this problem, the constant manufacturing rate of the item i, (F;), is
assumed to be greater than to the constant demand rate of item i, (D;). Mathematically speaking, P; > D;
or P, — D; > 0. Additionally, the assumptions of the proposed single-machine lot-sizing inventory-production
model are as follows:

— Shortages are not permitted.

All products are manufactured using a single source and the manufacturing period length for all products
is the same, d.e. T=T;, =Ty, =Ty =--- =1T,.

— Both production and demand rates are known and constant.

— The machine setup time to produce each item is negligible.

— Deterioration rate follows a negative exponential distribution with parameter o, o; < 1.
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TABLE 1. A brief review of the Single-machine multi-item lot scheduling problems.

Defective Shortage
g ow £ . & %
g ¢ 2 8§ & 9 e

Study 0 PO ?3 2 S8 & v 2

E 4 & §5 =% g § =~ § @ g 5]

£ £ § % £ & % 5§ § T % :

¥t = 8§ &2 3 % E % §8 2 & §

X # A & & 5 o < 3 3 3 3
Johnson and Montgomery [16] Derivative
Haji et al. [13] v Derivative
Taleizadeh et al. [29] v v v Derivative
Taleizadeh et al. [28] v Derivative
Taleizadeh et al. [30] v v v Derivative
Pasandideh et al. [25] v v v v Derivative
Nobil et al. [21] v v v' Hybrid GA with Derivative
Taleizadeh et al. [31] v v v v Derivative
Nobil et al. [22] v v Hybrid integer GA
Nobil et al. [20] v v v v Derivative
This research v Bi-section

Moreover the problem is modeled using the following notations (i = 1,2,...,n).

I;
Qi
T

N

Number of items

Manufacturing rate of ith item

Demand rate of ith item

Bi=1- % >0

Deterioratizng rate of ith item

The ith item inventory level during manufacturing period; 0 < ¢; < ¢}
The ith item inventory level during down-time period; t} <t; <T
Machine’s setup cost of producing ith item ($/setup)

Production cost of ith item per item ($/unit)

Disposal cost of ith deteriorating item ($/scrap unit)

Inventory carrying cost of ith item ($/unit/unit time)

lot size of the ith item (decision variables)

Period length (a decision variable)

Number of cycles per year N = %

Manufacturing of the ith item starts at ¢; = 0 and continues up to t; = t}. Afterwards, at ¢; = t} produc-
tion stops and consumption period begins until the inventory level reaches to zero (see Fig. 1). So, during the
production period (i.e. (0,t})) system faces production, consumption and deterioration simultaneously. More-
over, during down-time period (i.e. (t}.T)) the system faces consumption and deterioration. Thus, the following
differential equation expresses the inventory level of the ith item during the up time manufacturing period:

dhi(t:)

dt;

(2.1)

Using initial condition (h} (0) = 0) inventory level of the production period is expressed by:

(P —Dy)

&%

hi(t;) =

(L—e™™%),  0<t; <t

(2.2)
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On-hand
inventory level

]II!H‘?X

P time

F1GURE 1. Cycle length for on-hand inventory of the ith deteriorating item.

Also, for the down-time period,

dh?(t;)

dt;
Using ending condition (h? (T') = 0) the inventory level of the down-time period is obtained by:
D;
h2(t) = = (e%‘”—ti) - 1) . << (2.4)
6%

Moreover, h} (t1) = h? (t}), so:

(P — Dy) (1-emot) = Di (es(r=t) —1). (2.5)

&%)

Therefore, ¢} can be expressed as:

1 D,
ti=—In(=e*"+3). 2.6
P (e ) (2:6)
Moreover, the total inventory cost is:
total cost (TC) = annual setup cost (TSC) 4 annual manufacturing cost (TPC) (2.7)

+ annual disposal cost (TDC) + annual inventory carrying cost (TIC)

(1) Annual setup cost
Total setup cost of the ith item equals % So, the setup cost of all the items is calculated as:

TAC =) % (2.8)
=1

(2) Annual manufacturing cost
The manufacturing rate and uptime of the ith item are P; and t}, respectively. So, the related manufacturing
lot size equals:
manufacturing lot size = Pjt;. (2.9)
Therefore, the total manufacturing cost according to the production cost per unit of the ith product per

period (¢;) can be expressed as:

" e Pl
TPC=Y" % (2.10)

=1
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(3) Annual disposal cost
Based on Figure 1, the amount of deteriorated products of the ith type is calculated by:

(P, —D;)ti — D; (T —t}). (2.11)

Therefore, the total deterioration cost is as follows:

" v (P — D;) ¢! — D, (T — ¢} Pit!
TDC = v |(P = Do) tZT Di(T=t)] _ > (m%z - viDi) : (2.12)
i=1 i

(4) Total inventory carrying cost
From Figure 1, the holding cost of the ith product regarding its carrying cost is calculated as:

T
T /hg (ti)dti—&-/h? (t;)dt; | . (2.13)

From equations (2.2) and (2.4), we have:

tl

i T

I; P — D, —a;t; D; o \T—t;
(e e )

o t}

oo, 0 -]

%
—_— Ii . 1 — .
== (Pit; — D;T) .

K3
Substituting equation (2.5) in equation (2.13), the inventory carrying cost of the ith item is:

1;
OziT

(Pit; — D;T) . (2.14)

Therefore, the inventory carrying cost of all items is determined as:

_ - Ii T o
TIC = ; T (Pit! — D.T). (2.15)

Inserting equations (2.8), (2.10), (2.12), and (2.15) into equation (2.7) results in total cost presented in
equation (2.16).

TCTSC+TPC+TDC+Tch{?+

=1

CZPZtll UZHt,} Iz 1
7 7wt T (Pit; — DiT)} (2.16)

3. SOLUTION PROCEDURE

The decision variable of the proposed inventory model is the common cycle length. So, the optimal cycle
length should be derived such that the total inventory cost shown in equation (2.16) is optimized. Therefore,
the optimal period length can be derived using the derivatives method. Indeed setting the partial derivative of
equation (2.16) with respect to period length equal to zero gives;
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value

f( TMax)

P time

f( TMin) -

FIGURE 2. The graph of the root of the function (2.16).

- P; (cial- —+ v + IZ) dtl .
> o ( —t) Zs_o (3.1)

i=1

Equation (3.1) is the optimality condition of equation (2.16). So,

£(T) = Zn: Pileio + vio 1 1) ( jt;i - t}) - ans (3.2)

Y
i=1 v

Therefore, we can write:

! _ _ )
where,
241 D. P. 3T
&, Dilifie >0, i=12....n (3.4)

T (DjeesT + P,G;)°

Using equation (3.4), we have f/(T) = Y7, Pileicitviaith) ( ) > 0. Thus, f(T) is increasing on (0, cc)

[e23

as well. Since: .
-> 8 <0 (3.5)
i=1

and,
lim f(T)=00>0 (3.6)

we have:
(T)<o0. if Te(0,T%)
T

T f
— L f(T)=0. if T=T . (3.7)
f(T)>0. if Te(T*o0)

Since the optimal time cannot be expressed as a closed form, see root diagram proposed in Figure 2. Based
on the equation (3.7), we employ a well-known method called Bi-section. This method is a simple and robust
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procedure that finds roots by bisecting intervals repeatedly to find a sub-interval containing a root. This pro-

cedure finds the optimum solution by searching point to point, so the upper and lower bounds of the optimal
solution are needed. In this study, the lower bound of the optimal cycle length is computed as follows:

" P; (cioz,» + v + Iz) dtll 1 “
=1

i=1
2 P; (ciai + v + Iz) 2
<> —~ (T)=>_S:. (3.8)
i=1 ¢ i=1
So,
P (o + vy + 1) .
' o (T) — Z S; = 0. (3.9)
=1 =1
Let,

Z?:l Si

Zn Pi(cioitviaitly) |
i=1 a;

Trin = (3.10)

Moreover, the upper bound of the cycle length cannot be expressed as a closed form. As a result, we consider
the smallest integer that its related f (T') is greater than zero as the upper bound. So, the upper bound can be
obtained from the following procedure: (Tyiax procedure)

1. Set j = 1.

2. Set Tyax = J, calculate f (Thax) according to equation (3.2) and go to Step 3.
3. If f(Tmax) > 0, then go to Step 5, else set j = j+1 and go to Step 2.

4. Show the value of Tyrax.

Now, based on the lower (Thin) and upper (Thax) bounds of the cycle length, we propose a hybrid approach
employing Bi-section method as follows:

1. Twin is calculated using equation (3.10) and Tyax determined by Thax procedure. Thereafter, compute
f (Twvin) and f (Thax) based on the equation (3.2), then go to Step 2.

2. Compute the midpoint of the (Tyin-TMax), i-€. m, using m = % Then, calculate f (m) by equation

(3.2). Then, go to Step 3.

If |f (m)| < e where ¢ is acceptable error defined by user, go to Step 5, else go to Step 4.

If f (m) > 0, then Tyax = m, else set Ty = m. Then, go to Step 2.

5. Let T* = m, calculate QF and TC; using equations (2.9) and (2.16) respectively and terminate the
procedure.

=

4. COMPUTATIONAL STUDY AND SENSITIVITY MEASUREMENT

The employed parameters in this numerical example are shown in Tables 2 and 3. Also, € is equal to 0.0001.
We performed steps of proposed solution procedure for this numerical example to obtain optimal solution.

TABLE 2. Example.

General data
Item  P.i(units/year) D;(units/year) (;=1— % ;

1 2000 1000 0.5 0.01
3000 1500 0.5 0.02
3 4000 2000 0.5 0.03
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TABLE 3. Example continued.

Item ¢;($/ unit) v; ($/rework unit) S;($/ setup) I;($/unit/unit time)
1 20 7 1000 2
2 18 9 1500 3
3 16 8 1300 4

TABLE 4. Solutions for each iteration of the proposed algorithm.

Iter (.7) Tl\/[in f(Tl\/Tin) m(]) f(mj) TMax f(Tl\/[ax)
1 0.002353912863927 —-3799.976  0.501176956431964  —2731.257 1 454.661
2 0.501176956431964  —2731.257  0.750588478215982  -1402.912 1 454.661
3 0.750588478215982  —-1402.912  0.875294239107991  —540.273 1 454.661
23 0.945055662825067 —0.001342  0.945055781753748  —0.000382  0.945055900682429  0.000570
24 0.945055781753748  —0.000382  0.945055841218089  0.000092 0.945055900682429  0.000570

TABLE 5. Values of Qf and TC*.

1 2 3
Q; 947.288657905653  1424.28213914104  1903.50818916205
TC* 87042.0436587025
TABLE 6. The sensitivity analysis.
% In change
Tvin Thvax T TC*

Initial 0 0 0 0 0
P; 40 —28.5714285714187 0 —11.9782699809848 1.24717572116698

—-40  66.6666666666892 +100 74.7521511817443 —3.92854311599222
D; 40 0 +100 9.47371083608061 35.5188531958653

-40 0 +100 8.74726364068090 —37.0615477629997
; 40 32.4206085699958 0 —2.83291347991889 0.269563734205412

40 —36.3572648823780 0 3.09733311615932 —0.277704910432716
c; 40 -3.76743631521188 0 —1.93984989194744 36.4870594283114

-40  4.07444019428046 0 2.05972218766752 —36.4907484609302
V4 40 -1.77666004136111 0 —0.949929560780985  0.0886041392622797

—-40 1.84211633092188 0 0.977793391604097 —0.0894621131106956
I; 40 —25.5266799938387 0 —13.6389305593052 1.45908418115332

-40  52.1520578071207 +100 23.1661536850676 —1.73770802747757
Si 40 40.0000000000187 +100 18.3232784765361 1.69272862523786

40 —=39.9999999999919 0 —22.5414351170800 —2.08252679300697

TABLE 7. Initial data of the proposed problems.

P; ~ U(2000,8000); D; ~ U(1000,4000); cv; ~ U(0.010, 0.20); ¢; ~ U(10, 100); v; ~ U (5, 40);
S; ~ U(1000, 6000); h; ~ U(2,20)

Notes. U: Uniform distribution.
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TABLE 8. Comparison between Bi-section and Newton-Raphson methods by measuring total
cost and computational time measures.

Size n Bi-section Newton-Raphson
TC ($) CPU (s) TC (%) CPU (s)
1 21197.02 0.014 21198.89 0.013
3 87042.04 0.015 87119.65 0.013
4 92191.28 0.016 92191.28 0.014
6 87727.74 0.022 87812.32 0.019
8 102931.88  0.029 10300.01 0.026
10 110921.00 0.032 110921.00 0.029
12 142901.27  0.034 143629.19  0.031
14 162938.09  0.037 163888.52  0.034
16 219471.77  0.042 221938.31 0.038
18 250181.89  0.047 251983.44  0.044

Notes. TC: total profit, CPU: computational time.

Eventually, solutions for each iteration and the final solution are proposed in Table 4. As can be seen in Table 4,
the final solution (optimal) cycle length equals 0.945055839863656. Based on T = 0.945055839863656, () and
TC* are represented in Table 5.

In order to perform the sensitivity analysis of the results with respect to the parameters, we increased or
decreased parameters presented in Table 6, about 40% fixing other parameters of the problem. As can be seen
in Table 6, the demand rate and the production cost have great impacts on the total inventory cost. Meanwhile,
the manufacturing rate, the carrying cost, and the machine setup cost have great impacts on the optimal cycle
length. Additionally, the manufacturing rate, the deterioration rate, the holding cost, and the machine setup
cost have great impacts on the lower bound of the cycle length.

4.1. Numerical comparison

In this subsection, we solve ten proposed instances of the proposed problem with Bi-section and Newton-
Raphson methods, and compare the results of these methods with one another. The input data of these instances
is generated randomly from Table 7. Newton-Raphson method is suitable for solving non-linear programming
problems with no constraint [1]. For this method, we call the objective function and its first derivation f (T7})
and f’ (1), respectively. So the value of the variable T in step j+1 is obtained by equation (4.1).

f (1)

Ty =T - 4 ) (4.1)
where,
n
S; e Ptt  w P! I; 1
T — — 4 Lt 4+ L D Pit; — DiT 12
£(T)) ; T tog o T uDit o (P ) (4.2)
S P(coi tviag + ) (o ditb 1 (D -~ S
, T — (00 i QO i T i v o T 2 _ . 4.3
f(T5) ; i T? ( ATy o "\ R 0 ;sz o

This method is repeated while the value of the objective function in a step is less than or equal to the solutions
of its neighbors (f (T;-1) > f (T}) and f (Tj4+1) > f (T})). The results of ten instances solved by Bi-section and
Newton-Raphson methods are shown in Table 8.

Based on Table 8, Bi-section and Newton-Raphson methods obtain a high quality solution in a very short
running time for problems with different sizes. Since, these times are less than 1 second, these two methods are
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not different in obtaining final solutions. But the objective functions obtained by Bi-section method are better
(less or equal) than the solutions of Newton-Raphson method. So, Bi-section method improves solution quality
without increasing computational efforts.

5. CONCLUSION AND SUGGESTIONS

In this research, a single-machine lot-sizing inventory problem was derived for deteriorating items with neg-
ative exponential rate. In the proposed production system all products are manufactured by a unique source,
so products share the same manufacturing cycle length. To find the optimal common cycle length, both upper
and lower bounds are determined. Therefore, a root-finding method (Bi-section) is applied to solve the pro-
posed non-linear programming problem. Then, to demonstrate the effectiveness of Bi-section method, we solved
ten different instances of the proposed problem with Bi-section and Newton-Raphson methods, and compared
the results of these methods to one other. At the end, it has been shown that Bi-section method has great
effectiveness, efliciency and less computational efforts for this single-machine problem with deteriorating items.

For future research directions, the maximum available warehouse space, purchase discounts for deteriorating
items, uncertainties in some parameters such as demand or deterioration rates, and the defective production
systems including rework and scraps can be explored to extend this work. Also, this mathematical model can
be extended by assuming shortage as a combination of lost-sale and backordering, and marketing decisions e.g.,
advertisement impact on customer demands.

REFERENCES

[1] S. Abbasbandy, Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition
method. Appl. Math. Comput. 145 (2003) 887-893.

[2] S.P. Aggarwal and C.K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments. J. Oper. Res.
Soc. 46 (1995) 658-662.

[3] L.E. Cérdenas-Barrén, K.J. Chung and G. Trevifio-Garza, Celebrating a century of the economic order quantity model in
honor of Ford Whitman Harris. Int. J. Prod. Econ. 155 (2014) 1-7.

[4] L.E. Cardenas-Barrén, G. Trevifio-Garza, G.A. Widyadana and H.M. Wee, A constrained multi-products EPQ inventory model
with discrete delivery order and lot size. Appl. Math. Comput. 230 (2014) 359-370.

[5] K.J. Chung, L.E. Cérdenas-Barrén and P.S. Ting, An inventory model with non-instantaneous receipt and exponentially
deteriorating items for an integrated three layer supply chain system under two levels of trade credit. Int. J. Prod. Econ. 155
(2014) 310-317.

[6] R.P. Covert and G.C. Philip, An EOQ model for items with Weibull distribution deterioration. AIIE Trans. 5 323-326.

[7] E.A. Elsayed and C. Teresi, Analysis of inventory systems with deteriorating items. Int. J. Prod. Res. 21 (1983) 449-460.

[8] D. Erlenkotter, Note — an early classic misplaced: Ford W. Harris’s economic order quantity model of 1915. Manage. Sci. 35
(1989) 898-900.

[9] D. Erlenkotter, Ford Whitman Harris and the economic order quantity model. Oper. Res. 38 (1990) 937-946.

[10] P.M. Ghare and G.F. Schrader, A model for exponentially decaying inventory. J. Ind. Eng. 14 (1963) 238-243.

[11] S.K. Goyal and B.C. Giri, Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 134 (2001) 1-16.

[12] G. Hadley and T.M. Whitin, An optimal final inventory model. Manage. Sci. 7 (1961) 179-183.

[13] R. Haji, A. Haji, M. Sajadifar and S. Zolfaghari, Lot sizing with non-zero setup times for rework. J. Syst. Sci. Syst. Eng. 17
(2008) 230-240.

[14] R. Haji and M. Mansuri, Optimum common cycle for scheduling a single-machine multiproduct system with a budgetary
constraint. Prod. Plan. Control 6 (1995) 151-156.

[15] C.K. Jaggi, L.E. Cérdenas-Barrén, S. Tiwari and A.A. Shafi, Two-warehouse inventory model for deteriorating items with
imperfect quality under the conditions of permissible delay in payments. Sci. Iran. Trans. E. Ind. Eng. 24 (2017) 390.

[16] L.A. Johnson and D.C. Montgomery, Operations Research in Production Planning and Inventory Control. John Wiley and
Sons, New York, NY (1974).

[17] J.J. Liao, On an EPQ model for deteriorating items under permissible delay in payments. Appl. Math. Model. 31 (2007)
393-403.

[18] U. Mishra, L.E. Cérdenas-Barrén, S. Tiwari, A.A. Shaikh and G. Trevifio-Garza, An inventory model under price and stock
dependent demand for controllable deterioration rate with shortages and preservation technology investment. Ann. Oper.
Res. 254 (2017) 165-190.

[19] V.K. Mishra, L.S. Singh and R. Kumar, An inventory model for deteriorating items with time-dependent demand and time-
varying holding cost under partial backlogging. J. Ind. Eng. Int. 9 (2013) 1-5.



20]
(21]

(22]

(23]

[24]
25]
[26]

27]

28]
[29]
[30]
[31]
[32]
133
[34]

(35]

OPTIMIZING SINGLE-MACHINE MANUFACTURING SYSTEMS WITH DETERIORATING ITEMS 1307

A.H. Nobil, L.E. Cérdenas-Barrén and E. Nobil, Optimal and simple algorithms to solve integrated procurement-production-
inventory problem without/with shortage. RAIRO: OR 52 (2018) 755-778.

A.H. Nobil, A.H.A. Sedigh and L.E. Cardenas-Barrén, A multi-machine multi-product EPQ problem for an imperfect manu-
facturing system considering utilization and allocation decisions. Ezp. Syst. App. 56 (2016) 310-319.

A.H. Nobil, A.H.A. Sedigh and L.E. Cérdenas-Barrén, A multiproduct single machine economic production quantity (EPQ)
inventory model with discrete delivery order, joint production policy and budget constraints. Ann. Oper. Res. 257 (2017)
1-37.

A.H. Nobil, A.H.A. Sedigh, S. Tiwari and H.M. Wee, An imperfect multi-item single machine production system with shortage,
rework, and scrapped considering inspection, dissimilar deficiency levels, and non-zero setup times. Sci. Iran. 26 (2019) 557—
570.

B. Pal, S.S. Sana and K. Chaudhuri, A stochastic production inventory model for deteriorating items with products’ finite
life-cycle. RAIRO: OR 51 (2017) 669-684.

S.H.R. Pasandideh, S.T.A. Niaki, A.H. Nobil and L.E. Cdrdenas-Barrén, A multiproduct single machine economic production
quantity model for an imperfect production system under warehouse construction cost. Int. J. Prod. Econ. 169 (2015) 203-214.
L. Salvietti, N.R. Smith, and L.E. Cirdenas-Barrén, A stochastic profit-maximizing economic lot scheduling problem with
price optimization, Fur. J. Ind. Eng. 8 (2014) 193-221.

A.A. Shaikh, L.E. Cdrdenas-Barrén, A.K. Bhunia and S. Tiwari, An inventory model of a three parameter Weibull distributed
deteriorating item with variable demand dependent on price and frequency of advertisement under trade credit. RAIRO-Oper.
Res. (2018) in press.

A. Taleizadeh, L. Cdrdenas-Barrén, J. Biabani and R. Nikousokhan, Multi products single machine EPQ model with immediate
rework process. Int. J. Ind. Eng. Comput. 3 (2012) 93-102.

A.A. Taleizadeh, H.M. Wee and S.J. Sadjadi, Multi-product production quantity model with repair failure and partial backo-
rdering. Comput. Ind. Eng. 59 (2010) 45-54.

A.A. Taleizadeh, H.M. Wee and S.G. Jalali-Naini, Economic production quantity model with repair failure and limited capac-
ity. Appl. Math. Model. 37 (2013) 2765-2774.

A.A. Taleizadeh, A constrained integrated imperfect manufacturing-inventory system with preventive maintenance and partial
backordering. Ann. Oper. Res. 261 (2018) 303-337.

M.D. Toksari, A branch and bound algorithm to minimize the single machine maximum tardiness problem under effects of
learning and deterioration with setup times. RAIRO: OR 50 (2016) 211-219.

H.M. Wee, Economic production lot size model for deteriorating items with partial back-ordering. Comput. Ind. Eng. 24 (1993)
449-458.

G.A. Widyadana, L.E. Cdrdenas-Barrén and H.M. Wee, Economic order quantity model for deteriorating items with planned
backorder level. Math. Comput. Model. 54 (2011) 1569-1575.

T.M. Whitin, Theory of Inventory Management. Princeton University Press, Princeton, NJ (1957).



	Introduction
	Problem statement
	Solution procedure
	Computational study and sensitivity measurement
	Numerical comparison

	Conclusion and suggestions
	References

