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EVALUATION OF A NEW DECISION-AID PARAMETER FOR JOB SHOP
SCHEDULING UNDER UNCERTAINTIES

ZAKARIA YAHOUNIY™, NASSER MEBARKI' AND ZAKI SARI?

Abstract. This paper addresses the groups of permutable operations method. This method is a
flexible scheduling approach to hedge against uncertainties and is composed of a proactive/reactive
phase. The proactive phase consists of computing a set of solutions (schedule) to a scheduling problem,
leaving the choice of executing one of these solutions during the reactive phase according to the current
state of the shop floor. During the reactive phase, the remaining decisions have to be made in real-
time. The worst-case evaluation of the remaining solutions is a decision-aid parameter used during the
reactive phase in order to control the final schedule from exceeding a worst-case performance. While
the existing literature only tackles the worst-case evaluation of the groups of permutable operations,
this paper deals with its best-case evaluation. For solving this problem, a new lower bound calculating
this parameter in polynomial time is proposed. The computational efficiency of this parameter in a
reactive algorithm exhibits very good performance. Moreover, the experiments show the robustness of
this evaluation allowing this parameter to be used in an unstable job shop environment.
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1. INTRODUCTION

Most of the classical scheduling studies assume that all data and parameters of the problem are fully known.
However, in practice, manufacturing systems are not so deterministic. During the execution of the offline gener-
ated schedule, many disturbances may occur, like arrival of new jobs, uncertain task duration, machine break-
down, etc., [9,20,31]. These disturbances will in most cases, deteriorate the expected performances.

This issue has received considerable critical attention over the past years, [5,10,26,27] are among who first
considered this problem. To address this issue, different approaches have been proposed in the literature. These
approaches have been classified by [20,30,43] into three main classes: proactive, reactive and proactive-reactive
approaches.

The proactive approaches rely generally on estimating and anticipating the perturbations before executing
a schedule [23]. One of the most known proactive methods in project scheduling is the classical critical chain
method used in several project management pieces of software [28]. This method introduces slacks on the
operations of the critical path to absorb the delays caused by the perturbations. Another proactive method
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is just-in-case scheduling [45]. This method identifies the activities most likely to fail based on the available
uncertainty information. The weakness of this kind of approaches is that it deals with a prediction of the system
instead of the current state of the shop.

The second class encompasses the reactive approaches. Over the past years, much effort has been devoted
to developing reactive methods that use generally a real-time control heuristics [19,35,46,47]. These real-time
control methods build dynamically the schedule based on the current state of the system [18]. Although, these
reactive methods consider the current state of the shop floor contrarily to the proactive methods, their perfor-
mance is good on a very high disturbed environment and generally poor on a low disturbed environment [13].

The third class combines the proactive and reactive approaches. The work of [43] addresses the relative
importance of such combination to hedge against uncertainties. The basic idea of these approaches is to develop
during the offline phase of the scheduling process, a flexible schedule with some degree of freedom, allowing
during the online reactive phase (execution phase) to revise and adapt the schedule according to the new state
of the shop.

The right choice of the scheduling approach depends on the scheduling environment and some assumptions
that are taken into account when analyzing manufacturing systems [49]. The proactive-reactive approaches
seem to be the most effective approaches to absorb production uncertainties while maintaining a good per-
formance [48]. These approaches focus on the proper combination between a proactive flexible method and a
reactive algorithm capable of revising the flexible schedule without deteriorating too much the expected perfor-
mances. Some of these methods can be found in [8,25,32,37,40,48]. Groups of Permutable Operations (GoPO)
is one of the most studied proactive-reactive methods [2,3,9,13,22]. This method was created by LAAS-CNRS
laboratory of Toulouse, France [21] and is implemented in an industrial software [41]. It is composed of two
phases:

e A proactive phase which aims at computing a flexible solution offline. This solution is represented by groups
of permutable operations such that each permutation between two operations gives a feasible schedule.

e A reactive phase in which the proactive schedule is processed online on the shop floor. This phase consists
of choosing during the execution of a GoPO solution, the order of operations to be executed in each group
of permutable operations. The decision of ordering the operations in each group can be chosen either using
a reactive algorithm or by a human, named the operator. The schedule executed during this phase is called
realized schedule.

This flexible method has an interesting property; once the groups are generated during the proactive phase, the
worst schedule called the worst-case (which represents the worst permutation in each group), can be computed
in polynomial time [1,2,22]. This allows to guarantee a minimal quality of the realized schedule (after taking
all the decisions). Due to this property, the worst-case can be used during the reactive phase of GoPO in a
decision-aid algorithm/system in order to schedule the operations inside each group according to the current
state of the shop. The literature review has primarily focused on this parameter. However, making a decision
during the reactive phase of GoPO using only the worst-case parameter can lead prioritizing lower quality
solutions.

In this paper, we raised this issue by proposing a new parameter that can be used for the reactive phase of
GoPO. This parameter consists of evaluating the best-case performance which corresponds to the best possible
permutation in each group, such that the final realized schedule is an optimal solution of GoPO. The literature
research has not focused on this parameter (best-case) as its computation is NP-hard and can be too time-
consuming to be used in real-time in a decision-aid system. But a lower bound of this parameter should be of
good interest for different reasons:

o Associated with the worst-case value, it permits to better represent the quality of GoPO as denoted by [22].
This quality can be measured by a range of all possible performances [worst-case . .. best-case].

e It also permits to know, once the groups are generated during the proactive phase, the best achievable
performance in case of no disruptions. For example, if the scheduling objective is to minimize the tardiness,
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it permits to know if there is no schedule that has no late job which can be of great interest for the decision
maker.

e Most importantly, it permits to know, during the execution of a GoPO solution (reactive phase), the next
optimal (or near-optimal) operation to be chosen in each group of permutable operations.

Two main contributions are presented in this work: the first one concerns the computation of the best-case of
GoPO. As this problem is challenging, an efficient polynomial lower bound for the best-case makespan perfor-
mance has been proposed. Three steps are used for the computation of this new lower bound: first, we adapt
the literature findings to GoPO. Then, this lower bound is tightened using the groups precedence property
and the last step is the improvement of this lower bound using a precedence constraint property between the
operations. The second contribution of the work presented in this article concerns the study of the usefulness
of the best-case parameter in a decision-aid system. For this, the best-case parameter has been implemented in
a decision-aid reactive algorithm and experimented in both deterministic and non-deterministic environments.
This experimental implementation of the best-case parameter exhibits good performance.

The rest of the article is structured as follows: in Section 2 and 3, GoPO is described and the problematic of
the presented work is discussed. In Section 4, the lower bound for the best-case of GoPO is presented. Section 5
is devoted to the reactive phase of GoPO where a new reactive algorithm using the best-case parameter has been
evaluated on well-known instances of the job shop problem. In the same section, the reactive decision-aid algo-
rithm which uses the best-case parameter is studied on both deterministic and non-deterministic environments.
Finally, main conclusions are summarized in the last section.

2. GROUPS OF PERMUTABLE OPERATIONS

We consider the job shop problem with release dates and precedence constraints (J/r;,Pred/f according to
the classification of [29]) where we have n jobs Ji, Ja, ..., J, to be processed on m machines My, Ms, ..., M,,,
each machine can treat only one operation at a time. Job ¢ consists of n; operations. Associated with every
operation O;: a machine allocation 1i;, a release date r;, a processing time p; and a completion time C;. I';” and
I’;r denote respectively the predecessor and the successor of a given operation. Generally, the job shop problem
uses a regular objective function f that is a non-decreasing function of the C;. In this work, we focus on the
makespan objective Cax = max(C}).

GoPO is defined as a sequence of groups (of permutable operations) on each machine to be performed in a
particular given order. The group containing operation O; is denoted G;. Every group contains one or many
operations that can be executed in an arbitrary order. On a given machine, the group after (resp. before) the
group containing the operation O; is denoted by G (resp. G ). A GoPO schedule is feasible if for each group,
all the permutations among all the operations of the same group give a feasible schedule (i.e. a schedule which
satisfies all the constraints of the problem).

To illustrate this problem, let us study a job shop example of three jobs and three machines as described
in Table 1. Figure 1 presents a feasible GoPO solving this problem. This GoPO is made of seven groups: two
groups of two operations and five groups of one operation. The first machine is composed of two groups, the
group Gg containing Og and its predecessor group G containing the permutable operations O; and O7. To
generate these groups of permutable operations, a greedy algorithm (described in [22]) may be used for the
construction of the groups. This algorithm starts with an initial schedule with one operation per each group
(this initial schedule is usually generated using simple heuristics). Then, the algorithm tries to merge each two
successive groups according to different criteria® until no group merging is possible.

In this paper, we focus on the execution phase of GoPO; we suppose that the groups are already given.
The execution of a GoPO schedule can be viewed as a sequence of decisions: each decision consists in choosing

3Such that the groups are not related with a precedence constraint and the worst-case permutation in this group does not exceed
a given threshold.
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TABLE 1. Example of a job shop problem.
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FIGURE 1. Groups of Permutable Operations solution.

an operation to execute in a group when this group is composed of more than one operation. The number of
decisions that need to be taken is expressed as follows:

> oG -1)

Vi

For instance, for the solution described on Figure 1 and Table 1, there are two decisions to be taken: on
M, at the beginning of the scheduling, either operation O; or O7 has to be executed. Let us suppose that the
decision taken is to schedule O; before O7. There is another decision to be taken on Mjs: scheduling operation
Os or Og first. Figure 2 represents all the different semi-active? schedules that can be obtained after taking these
two decisions. Note that these schedules do not always have the same quality (performance); the best schedule
has a Chax = 10 as shown in Figure 2a and the worst schedule has a Cpax = 12 as shown in Figures 2¢ and 2d.

3. PROBLEMATIC

The main problematic of this paper is to find the best schedule (best-case) to be used as a decision-aid param-
eter during the decision phase of GoPO. This problem is computationally challenging as it is a combinatorial
problem and the number of possible schedules that can be described by a GoPO solution is [ [, ((|Gi])!).

The most effective and commonly operational research tool for solving optimally this problem is to use
an exact method like the branch and bound algorithm. However, an exact method can be very costly and
time-consuming in a decision-aid system, especially for solving large scale NP-hard combinatorial optimization
problems. Instead, an effective lower bound can be computed in real-time to produce a near optimal (or optimal)
anticipation of the best schedule that can be achieved.

To compute this lower bound and to avoid the exhaustive enumeration of all possible schedules, we can use a
symmetrical calculation of the worst-case evaluation [2,3]. This new evaluation can be measured by computing
the best-case-earliest-starting-time of operations and groups.

4A feasible schedule is called semi-active if no operation can be finishing earlier without changing the order of the operations on
the machines.
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FIGURE 2. Set of semi-active schedules.

The computation of this best-case-earliest-starting-time problem is similar to the computation of the longest
path in a disjunctive graph [11,15]. A disjunctive graph is defined as G = (N, A, B) [42], N denotes the set
of nodes (operations) including two fictitious operations; a source operation Op and sink operation O, xm)+1
(n x m being the number of operations), A is the set of conjunctive arcs representing the precedence constraints
between operations and denoted by O; — Oj (i.e., O; precedes O;). B represents the set of disjunctive arcs for
each pair of operations that must be performed in the same group and denoted by O; «----+ O; which means
that either O; — O; or O; — O;. A feasible semi-active schedule can be obtained as soon as all the disjunctive
arcs are selected.

Figures 3a and 3b present respectively the disjunctive graph representation of the initial job shop problem
described in Table 1 and the groups of permutable operations shown in Figure 1. These two figures show that
the GoPO example is a partial schedule of the initial job shop problem, where some disjunctive arcs are selected.
In this GoPO representation, there are two remaining disjunctive arcs O1 «----+ O7 and Oz «----» Og. The
selection of these arcs leads to one of the schedules presented in Figure 2.

The literature review on the job shop lower bound problem are based on two main techniques identified
by [44]: the adjustment conjunctive constraints based techniques and the classical one-machine relaxation-based
techniques [4,16,17,38]. These techniques can be the starting point of the GoPO lower bound computation.

However, computing a lower bound for the best-case in a GoPO problem is quite different from computing a
lower bound for the optimal schedule of the general job shop problem, because of the conjunctive constraints
between groups on the same machines as shown in Figure 3. Moreover, due to these conjunctive constraints, the
best-case is not necessarily the optimal schedule of the initial general job shop problem. In the next section, this



598 7. YAHOUNI ET AL.

(b) GoPO problem described in fig. 1

FiGURE 3. Disjunctive graph representation.

lower bound calculation is presented in three steps: a job shop lower bound adaptation, the groups’ conjunctive
constraints improvement and a precedence constraint improvement.

4. LOWER BOUND OF THE BEST-CASE SCHEDULE

4.1. The best-case-earliest-starting/completion-time of an operation

The lower bound of the best-case-earliest-completion-time of an operation (x;) corresponds to the smallest
value of C; in every semi-active schedule described by GoPO. To compute y; we need first to calculate the lower
bound of the best — case — earliest — starting — time of this operation (6;).

In the first step, we can compute such a lower bound using a relaxation on the resources by making the
assumption that each resource has an infinite capacity. In the GoPO problem, 6; is computed as the maximum
of the best—case—earliest—completion—time (lower bound) ()x;) of all its predecessors: for an operation O;, its
predecessors include the predecessors given by the problem () and also the operations of the previous group
on the same machine (each operations in G; ). In the job shop example described in Figure 1, the predecessors
of operation Og (executed on M) are: operation Os (executed on M3) because of the precedence constraints,
and the operations O; and Oz executed on the same machine M; because they are in the previous group Gg .

So, we have:
0; = max(r;, max x,, max x;)
JEG, JeET; (4'1)
Xi = 0; +p;
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TABLE 2. Computation of the Lower bounds using equation (4.2).

Oi 01 07 04 02 05 Og 03 06 09

0; o 0 0 2 2 4 T 5 6
i 1 4 2 6 5 6 8 6 9
v(Gy) 5 2 6 7 8 6 9

Calculating 6; using equation (4.1) is equivalent to the head computation of operation O; as explained
in [15]. [44] used a similar idea based on a one-machine relaxation using the precedence constraints property
between operations.

In a second step, we use the precedence constraints between groups to improve the computation of the lower
bound; in this case, an operation in a given group G; cannot be executed before all the operations of its previous
group G; have been executed. As a consequence, an operation can only begin after the optimal max(C;) of the
previous group.

Thus, it needs the computation of the optimal completion time of a group (named as v(G;)). We have
previously computed 6; as a release date so we can generate a 1|r;|Cpax problem instance that corresponds to
our problem, with r; = ;. This problem is polynomially solvable by ordering the operations in ascending release
dates [12,33].

Thus, the improved lower bound for O; is computed as follows:

0; = max(r;,v,-, max x;)
jer=(i
xi =0 +pi (4.2)

’}/(Gj) = Cmaxofl\rj|(]max,VOj S Gj,’/‘j = 9]'

Table 2 illustrates the computation of the lower bound of all the groups and operations best —case —earliest —
completion — times in our job shop example. The computation shows that g = 9 which is not the optimal
completion time of Oy (= 10) as shown in Figures 2a and 2b.

4.2. Precedence constraint improvement

Using equation (4.2) for the computation of the best — case — earliest — completion — time of operation nine
(69) has given an error gap of one. It is noticeable that for the calculation of this lower bound, we put O and
Og on their both best — starting — time, as well as O; and O; transitively, which is inconsistent. We know for
a fact that O7; and O; cannot start together at their best — starting — time at the same time. In this section,
we present a precedence constraint rule to improve 6; using an adjustment technique based on the precedence
consistency of operations belonging to the same group.

This improvement is based on a property about any two operations (O; and O;) that belongs to two successive
groups (G; and G; / G; = GI) on the same machine and have their predecessors (direct or indirect) in the
same group (I, and I e G}). In this case, one of the operations O; or Oj has to start after the other one.
Executing one of these operations at first and delaying the other one will have an influence on the completion
time of G;. Figure 4 shows this precedence constraint property for our job shop example.

From the example shown in Figure 4, we have on Machine M, operation Og that has to start after Og because
of the precedence constraint, and after operation O, because of the group precedence on the same machine.
Both predecessors of these operations, O; and O7 are in the same group. Executing one of them first will have
an influence on the starting time of operation Og.

To take into account this situation, we propose an adjustment technique for x; that requires two times the
calculation of x; using equation (4.2); in our job shop example xg will be computed one time for the case when
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FIGURE 4. Precedence consistency between Oy and Oy.

TABLE 3. Improved Lower bounds results.

ry <rry ry < 11

O: 0 xi & 0 xi ~& min(vg,,78,)
O1 0 1 4 5

O 1 5 5 0 4 5 5
Oy 0 2 2 0 2 2 2
O 2 6 6 5 9 9 6
Os 2 5 2 5

Os 5 7 7 4 6 7 7
O3 7 8 8 9 10 10 8
Os 5 6 6 5 6 6 6
Og 7 10 10 9 12 12 10

0O, is executed before O7 and the other one when O7 is executed before O;. The new yg will be the minimum
value between these two evaluations. The results of this improvement are shown on Table 3. In this case, the
lower bound’s improvement gives the optimal value for the Ciax.

Computing ; using equation (4.2) is polynomial and has a complexity of O(n?). In a GoPo, this precedence
constraints property may be found at most n x m times. So we have a complexity of O(n?).

4.3. Heads and tails for the best-case schedule

The classical computation of a job shop lower bound is generally based on the calculation of:

e The best-case-earliest-starting-time, called Head, which represents the longest path from O, and the operation
O; in a disjunctive graph.

e The best-case-latest-completion-time of an operation, called Tail, which represents the distance between the
latest completion time of an operation and the end of the schedule.

So any improvement of these two values will generally improve the lower bound for the objective function. In a
job shop problem, the classical concept of the one-machine relaxation is used; each machine is considered alone
and heads and tails have to be found for each one-machine-problem. The maximum value of these evaluations
represents the lower bound of the job shop problem.

In a GoPO problem, we can use this relaxation more efficiently relying on the concept of one-group-one-
machine-problems relaxation. In this relaxation each group is considered as a one-machine and efficient heads
and tails are computed for each group.
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Using equation (4.2), 6; is a valid head and must be quite effective. Because of the symmetry of heads and
tails, tails can be computed as 6; using a reversed version of equation (4.2): rather than starting the computation
at the beginning of the scheduling problem, the computation begins at the end. So, replacing predecessor by
successor, the new formulation is:

0, = max(’yG;r, max x;;)
jer;
X; =0, +pi (4.3)

’y,Gj = Cmax0f1|7'j|cmax,v0j e Gj; r; = 0;

With 6; being a valid head and 9; being a valid tail for the group relaxation. The one-group-one-machine-
problems are then generated. Then, as for the classical lower bound for the job shop problem, we optimally eval-
uate the one-group-one-machine-problems using the branch and bound method of [14]. The maximal evaluation
is a lower bound of the best-case schedule of GoPO. In the rest of the article, LB_best-case and LB_best-case(O;)
denote respectively the lower bound of the best-case schedule (for all semi-active schedules generated by the
GoPo solution), and the lower bound of the best-case schedule when O; is executed first in its group.

5. REACTIVE PHASE OF GOPO

During the reactive phase, each time a group containing more than one operation has to be executed, a lower
bound of the best-case of each operation of this group is calculated. This lower bound (LB_best-case(O;)) can
be either used in a decision reactive algorithm or can be proposed in a decision-aid system.

Similarly to the best-case, the worst-case of an operation (worst-case(O;)) represents the worst realized sched-
ule if operation O; is sequenced first in its group. These two parameters (LB_best-case(O;) and worst-case(O;))
are available to help the decision maker to look for an alternative schedule in case of a disturbance, without the
need of rescheduling again. In this context, LB_best-case(O;) should be of good interest for selecting only the
schedules with the highest performances.

The algorithm RA_best-case described bellow is a reactive algorithm which simulates the decision process
based only on LB_best-case(O;) parameter.

Algorithm 1: RA_best-case for the reactive phase of GoPO.
L(G) = {G1,Ga,...Gr};

(G5 is a group containing more than one operation) LB_best-case:= mazimum value;
for every group G; in L(G) do
while Card(G;) > 1 do
for every operation O; in G; do
- Put O; first ;
- Calculate LB_best-case(O;) ;
end
- LB_best-case:= minp,cq, (LB-best-case, LB _best — case(O;));
(Ties are broken using 6;) - Remove O; from G;;
end
- remove G; from L(G).;
end

As an illustration of how RA_best-case works, let us enumerate all the groups of our job shop GoPO example.

G1 . {01,07},G2 : {05,08}
L:={G1,Gy}
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The reactive procedure is executed on the first group of the list G; : {O1, O7}:

o LB best-case(O1) = 10 and LB_best-case(Or) = 12 (using the result in Tab. 3)
e Remove O; from the group and update LB_best-case = min(10,12) = 10
e The current group contains only O7 and is removed from the list.

Then the reactive procedure is executed on the second group of the list Gs : {Os, Os}:

o LB best-case(Os) = 10 and LB_best — case(Og) = 11
e Remove Oj from the group
e The current group contains only Og and is removed from the list.

At the end of the reactive phase, the realized schedule generated by RA_best-case has an optimal value of 10.
Of course, in this example no disturbances occurred and therefore the final schedule generated by RA _best-case
(based on the lower bound) is the optimal schedule of GoPO.

Similarly to RA_best-case, we create two other reactive algorithms, both based on the worst-case(O;) pa-
rameter; the first one called RA_worst-case-1 is similar to the algorithm described above where the variable
LB_best-case(0O;) is replaced by worst-case(O;). The second reactive algorithm is called RA_worst-case-2 and
is similar to RA_worst-case-1 with an additional condition; ties between operations having the same value of
worst-case(O; ) are broken using LB_best-case(O;). The following steps illustrates RA_worst-case-2 on our job
shop example for the two groups, G at first then G:

o worst-case(O1) = 11 and worst-case(O7) = 12 (using the polynomial algorithm of [2] described also in [3]),
therefore O, is sequenced before O; using RA_worst-case-2.

e Remove O; from the group and update worst-case = min (11,12) = 11 and go to the second group.

o worst-case(Os) = 10 and worst-case(Og) = 11 (if for example worst-case(Os) = worst-case(Og) then LB_best-
case(Os) and LB_best-case(Og) will be calculated to determine which operation should be sequenced first.

e In this case, O is sequenced before Og and the realized schedule will have a makespan of 10.

In the rest of this section, we assess the relative importance of the three algorithms to their overall performances
on a well-known job shop instances.

5.1. Protocol of the experiment

We took a set of benchmark instances called La0l to La40 from [34] with well-known optimal solutions for
the makespan objective [11,22,36]. These forty instances (i.e., from La0l to La40) are widely used in the job
shop literature [7,39]. These are classical job shop instances of different sizes (5 instances for each size) with a
range from 10 x 5 to 30 x 10 where n x m represents n jobs and m machines. These instances can be downloaded
from [6] and each job of these instances can start at time zero.

For each instance, we generate a GoPO schedule with a maximum possible flexibility and such that the
best-case is not only the optimal schedule of GoPO but also the optimal schedule of the instance®. To do so, we
use an adaptation of the algorithm of [22] mentioned in Section 2. This algorithm has the following steps:

e Step 0. Construct a schedule solving the job shop problem. This schedule is called an initial schedule and
can be calculated using a branch and bound algorithm or a simple heuristic. In our case, for each of the
forty Lawrence instances we took the optimal schedule found in [11,36,39)

e Step 1. Initialize the groups in the machines such that each operation O; is contained by a group G;.

e Step 2. Calculate the worst — case for each two successive groups that can be merged. If there is no
possible merging between the groups in all the machines (due to precedence constraints), finish the algorithm.
Otherwise, go to Step 3.

e Step 3. Merge the two groups having the minimum worst — case and go back to Step 2.

5In this way, we can measure the efficiency of the best-case lower bound without using a branch and bound algorithm.
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For each GoPO problem type, we compare the the initial schedule (optimal) with the realized schedule obtained
by the three algorithms RA_worst-case-1, RA_worst-case-2 and RA_best-case. The algorithms were coded using
the JAVA language and the experiments are made on an Intel(R) Core(TM) i5 CPU.

5.2. Results and discussion

The results of these experiments are exposed in Tables 4 and 5. Table 4 presents for each instance, the number
of groups generated, the number of decisions for the reactive phase, the best-case, Brucker’s lower bound [11],
the lower bound of the best-case (LB_best-case) using equation 4.2 and equation 4.3 and the gap error between
LB_best-case and the best-case.

Table 5 presents for each reactive algorithm (RA_worst-case-1, RA _worst-case-2, RA _best-case) the gap error
between the makespan of the realized schedule and the initial schedule. For the three algorithms and for all
instances, the realized schedule were found in almost one second.

Based on the results shown on Table 4, the lower bound computation provided a near-optimal solution with
an average gap error less than 1%. Whereas the average gap error of Brucker’s lower bound is 2.74%. Moreover,
the proposed lower bound gave the optimal solution for twenty-three instances out of forty (57%). Most of these
instances are the same as the optimal instances found by Brucker and are problems of 10(jobs) X 5(machines),
15X5, 20X10, 30X10. This is not that surprising, because the proposed lower bound is based on an adaptation
of the classical job shop lower bound. Moreover, the proposed lower bound has been computed for less than one
second on each instance.

The results presented in Table 5 showed that the reactive algorithm using our improved lower bound (RA_best-
case) dominates all the instances with a performance about fifteen times (11615/745) better than RA_worst-
case-2 and twenty times (14667/745) better than that of RA_worst-case-1.

RA _best-case gave optimal results for all problems with five machines and all problems with thirty jobs and
ten machines except La35; nineteen instances were solved optimally compared to only one instance (Lal4) by
RA_worst-case-1 and RA_worst-case-2. This can be explained by the accuracy of the lower bound calculated
for these instances as shown in Table 4.

Compared to RA_worst-case-1, RA_worst-case-2 that uses the best-case parameter for breaking ties
(RA_worst-case-2) performs better; Its average gap error on the forty instances was 26.45% compared to 32.44%
for the reactive algorithm that uses only the worst-case parameter (RA_worst-case-1). But these two algorithms
have a poor performance compared to RA_best-case which provided a realized schedule with an average gap error
of only 1.71%. These results suggest that a good decision in a group of permutable operations cannot be relied
primarily on the worst-case parameter.

Overall, this suggestion is not that surprising in regards of what is expected from the worst-case parameter;
This parameter is more effective in controlling the performance of the final schedule from not exceeding a
performance threshold than guaranteeing an optimal or near-optimal final schedule.

5.2.1. Performance of the reactive algorithm RA_best-case on a non deterministic environment

In this section, we investigate the robustness of the reactive algorithm RA_best-case in a disturbed environ-
ment.

For this, we try to quantify the performance of the realized schedule in case of bad decisions. A bad decision
is called so when the operation chosen first from a group of permutable operations is not the one giving the
best-case. For example, in the job shop presented in Section 2, choosing operation O7 (LB-best-case(O7)=12)
to be executed first in G; instead of choosing Oy (LB-best-case(O1)=10) is considered as a bad decision. This
situation may appear whenever a perturbation has occurred on the shop, or simply due to a lack of concentration
by the operator. We focus on determining the number of bad decisions required to deteriorate the makespan of
the realized schedule with a factor p from the optimal schedule (the percentage of performance lost because of
a non-optimal schedule). The degraded performance of the best-case can be computed as follows: best-case =
optimal-solution * (1 + p%).
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TABLE 4. Lower bound results for the best-case parameter (LB_best-case).

Z. YAHOUNI ET AL.

n Xm Instances Number  Number  Optimal Brucker’s Lower bound Gap
of of solution  Lower bound  (LB_best-case)  error
groups  decisions (%)
La01 19 31 666 666 666 0%
La02 18 32 655 655 655 0%
10X 5 La03 15 35 597 588 588 1.51%
La04 14 36 590 567 588 0.34%
La05 15 35 593 593 593 0%
La06 19 56 926 926 926 0%
La07 17 58 890 890 890 0%
15X5 La08 16 59 863 863 863 0%
La09 16 59 951 951 951 0%
Lal0 19 56 958 958 958 0%
Lall 20 80 1222 1222 1222 0%
Lal2 21 79 1039 1039 1039 0%
20 X 5 Lal3 18 82 1150 1150 1150 0%
Lal4 19 81 1292 1292 1292 0%
Lalb 22 78 1207 1207 1207 0%
Lal6 43 57 945 875 931 1.48%
Lal7 36 64 784 739 751 4.21%
10 X 10 Lal8 40 60 848 770 815 3.89%
Lal9 39 61 842 709 796 5.46%
La20 39 61 902 807 850 5.76%
La21 54 96 1046 995 1045 0.10%
La22 49 101 927 913 927 0%
15 X 10 La23 54 96 1032 1032 1032 0%
La24 50 100 935 881 914 2.25%
La25 50 100 977 894 954 2.35%
La26 53 147 1218 1218 1218 0%
La27 56 144 1252 1235 1231 1.68%
20 X 10 La28 63 137 1273 1216 1273 0%
La29 60 140 1202 1114 1189 1.08%
La30 58 142 1355 1355 1355 0%
La31 69 231 1784 1784 1784 0%
La32 64 236 1850 1850 1850 0%
30X 10 La33 64 236 1719 1719 1719 0%
La34 72 228 1721 1721 1721 0%
La35 73 227 1888 1888 1888 0%
La36 88 137 1268 1224 1244 1.89%
La37 84 141 1397 1355 1392 0.36%
15 X 15 La38 88 137 1196 1077 1147 4.10%
La39 86 139 1233 1221 1230 0.24%
La40 86 139 1222 1170 1207 1.23%
Average 0.95%
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TABLE 5. Comparison between the three reactive algorithms.

RA_worst-case-1 RA_worst-case-2 RA_best-case

Gap Gap Gap Gap Gap Gap

error  error(%)  error  error(%) error error(%)
La01 155 23.27% 155 23.27% 0 0%
La02 187 28.55% 187 28.55% 0 0%
La03 200 33.50% 282 47.24% 0 0%
La04 184 31.19% 157 26.61% 0 0%
La05 55 9.27% 55 9.27% 0 0%
La06 63 6.80% 63 6.80% 0 0%
La07 132 14.83% 183 20.56% 0 0%
La08 153 17.73% 93 10.78% 0 0%
La09 225 23.66% 97 10.20% 0 0%
Lal0 71 7.41% 30 3.13% 0 0%
Lall 58 4.75% 58 4.75% 0 0%
Lal2 252 24.25% 119 11.45% 0 0%
Lal3 351 30.52% 351 30.52% 0 0%
Lal4 0 0% 0 0% 0 0%
Lal5 272 22.54% 272 22.54% 0 0%
Lal6 239 25.29% 301 31.85% 74 7.83%
Lal7 129 16.45% 119 15.18% 15 1.91%
Lal8 432 50.94% 302 35.61% 43 5.07%
Lal9 437 51.90% 354 42.04% 5 0.59%
La20 373 41.35% 451 50.00% 22 2.44%
La21 317 30.31% 317 30.31% 21 2.01%
La22 824 88.89% 481 51.89% 29 3.13%
La23 522 50.58% 417 40.41% 62 6.01%
La24 181 19.36% 220 23.53% 71 7.59%
La25 206 21.08% 271 27.74% 30 3.07%
La26 747 61.33% 715 58.70% 38 3.12%
La27 495 39.54% 402 32.11% 26 2.08%
La28 326 25.61% 284 22.31% 1 0.08%
La29 645 53.66% 410 34.11% 29 2.41%
La30 527 38.89% 266 19.63% 25 1.85%
La31 416 23.32% 324 18.16% 0 0%
La32 681 36.81% 370 20.00% 0 0%
La33 774 45.03% 677 39.38% 0 0%
La34 352 20.45% 336 19.52% 0 0%
La35 562 29.77% 328 17.37% 31 1.64%
La36 647 51.03% 530 41.80% 41 3.23%
La37 579 41.45% 400 28.63% 40 2.86%
La38 746 62.37% 457 38.21% 45 3.76%
La39 461 37.39% 321 26.03% 38 3.08%
La40 691 56.55% 460 37.64% 59 4.83%

M 14667 11615 745
Average 32.44% 26.45% 1.71%
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FIGURE 5. Number of bad decisions to deteriorate the makespan with a distance factor p from
the optimal schedule.

To determine the number of bad decisions required to deteriorate the makespan, we incorporate these bad
decisions randomly in the reactive algorithm RA_best-case during the decision-aid process. This algorithm was
executed fifty times on each square instance (Lal6 to La20); as these instances have been found to be the most
difficult instances in practice for job shop problems [24]. Then, the number of bad decisions has been measured
according to p% as shown in Figure 5.

The results obtained showed that for an optimal realized schedule (best—case = optimal — solution*(14+0%)),
four bad decisions out of 57 decisions (4/57) does not have any impact on the optimal realized schedule obtained
for Lal7. For the other instances: Lal6, Lal8, La20 and Lal9, the number of bad decisions are respectively
3/57,2/60, 2/61 and 1/60. It means that, for Lal9, two bad decisions are enough to deteriorate the makespan.

For all other variations of p, Lal6 gave the maximum number of possible bad decisions. For example, when
p = 100%, the reactive algorithm was allowed to take 22 bad decisions, which represents 38% of the total
decisions. It can be noticed that the average number of bad decisions for all the five instances almost varies
linearly with regards to p with a coefficient of 3% (the percentage number of bad decisions with regards to the
total number of decisions). Therefore, the percentage number of bad decisions may be expressed by the following
equation:

~ 3% + (p/10% x 3%)

It can be suggested that this computation can be used as a post-evaluation performance deviation check in
order to trigger the operator concentration before taking further decisions.

6. CONCLUSION

In this article we have proposed an evaluation of the base-case parameter in a GoPO schedule. This evaluation
relies on a computation of an efficient lower bound, which is calculated in three steps. The first step is an
application of the general job shop lower bound to the GoPO problem. The second step uses the precedence
property between groups in GoPO to improve this lower bound. This step needs the calculation of a one-machine
problem adapated to GoPO. For this, we proposed the one-machine-one-group relaxation such that the lower
bound of each group is considered separately. Then, in the final step, we introduced a new precedence constraint
property to tighten this lower bound.
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This lower bound can be used as a decision-aid parameter during the reactive phase of GoPO. To evaluate
the efficiency of this parameter, three reactive algorithms for GoPO are proposed: the first two algorithms relies
primarily on the worst-case parameter, whereas the third algorithm relies only on the best-case parameter.
These three algorithms have been implemented in a job shop benchmark problem using the makespan objective.
The comparative results show the benefits of the proposed parameter (best-case) which exhibits clearly better
performance than the worst-case parameter.

The experimentation of the best — case reactive algorithm has been extended to a disturbed environment.
The results obtained has confirmed that the proposed parameter could be of good use during the reactive phase
of GoPO in order to maintain a good performance in presence of disruptions.

However, there is still room for improvement:

e The proposed lower bound should also be implemented in a branch and bound method in order to evaluate
the exact best possible performance of a flexible schedule.

e The calculation of this parameter may be generalized on other regular objectives or multi-objective ap-
proaches.

For further research, the proposed parameter should be implemented in a real decision-aid system involving the
human temper factor in order to confirm and extend the experimental theoretical results.
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