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DYNAMIC FUZZY DATA ENVELOPMENT ANALYSIS MODELS: CASE
OF BUS TRANSPORT PERFORMANCE ASSESSMENT

Barbara T.H. Yen1,∗ and Yu-Chiun Chiou2

Abstract. In the transport field, two characteristics–inter-temporal dependency and fuzziness–need to
be considered when assessing transport performance. First, input and output levels are inter-temporal
dependent due to heavy capital investment and because quasi-fixed input can influence output levels
over multiple periods. Second, conventional Data Envelopment Analysis (DEA) models are, in nature,
formulated with quantitative variables. However, qualitative measurements that are characterized with
“vagueness” or “fuzziness” are as important as quantitative variables for multi-period transport perfor-
mance assessment. To rectify these problems, the present study extends previous research by proposing
a Dynamic Fuzzy Data Envelopment Analysis (DFDEA) method for assessing the comparative effi-
ciency where inter-temporal dependence exists in operating production processes with some “fuzzy”
variables. An case study was conducted to evaluate the performance of city bus transport companies
in Taipei, Taiwan. Results showed the superiority of the proposed DFDEA model by comparing the
results with static models.
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1. Introduction

Data Envelopment Analysis (DEA) is a well–known non–parametric technique that employs the linear pro-
gramming method to determine the relative efficiencies of a set of homogeneous and comparable decision making
units (DMUs). DMUs are generally regarded as the evaluated units (e.g., companies, organizations, departments)
that perform the same or similar tasks in a production or service system within an industry or across different
industries. The DEA technique has three distinct advantages: (1) it can measure the relative efficiency of DMUs
that produce similar products with multiple inputs and outputs; (2) it does not impose functional relationships
between input and output variables, or assumptions on the statistical distribution of error terms [1]; and (3) it
can identify efficient performers and provide actionable measures for rectifying the inefficient counterparts [2,3].
Therefore, a variety of DEA models have been developed for performance evaluation, ranking, and benchmarking
among DMUs in different fields [4].
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In the transport field, numerous studies have employed DEA models to evaluate the efficiency and/or effec-
tiveness of airline services (e.g. [5–9]), air-express couriers (e.g. [10–18]), maritime services (e.g. [19, 20]), bus
services (e.g. [21–34]), and rail transport services (e.g. [35–38]). Most of these studies have focused on mea-
suring efficiency using only quantitative variables for a single year period. However comparative performance
assessments for passenger or freight sector in different transport modes require both quantitative measures (e.g.
bus number, operating revenue, service frequency) and qualitative measures (e.g. passenger satisfaction, driver
quality, crew member attitude). Qualitative measures have largely been overlooked by previous studies that
adopted Conventional Data Envelopment Analysis (CDEA) models. CDEA models are in nature, formulated
with quantitative variables [34]. Selected studies in the transport field are reviewed in the Appendix.

In order to consider the fuzziness of variables, Fuzzy Data Envelopment Analysis (FDEA) models have been
proposed over the past decade (e.g. [34,39–41]). Hatami-Marbini et al., [42] and Emrouznejad and Tavana [43]
reviewed the FDEA method and presented a classification scheme with four primary categories, including the
tolerance approach, the α-level approach, the fuzzy ranking approach, and the possibility approach. The α-
level approach has been adopted by most of the previous studies that used two CDEA models which were
used to evaluate the efficiency score of the lower-limit and the upper-limit separately with a specific α-level.
For example, Kao and Liu’s [47] modeling approach transformed a FDEA model to a family of CDEA models
by applying the αlevel approach. However, the distorted fuzzy number for this type of FDEA can result in
inconsistent efficiency frontier ranking or unreasonable efficiency score [34]. Further, results generated by the
CDEA modeling approach would require another method to rank fuzzy sets and different fuzzy ranking methods
may lead to different evaluation results [50]. To avoid the need to use another method to rank fuzzy sets that
might result inconsistent results, Lan et al. [34] developed an integrated Fuzzy Data Envelopment Analysis
Model that can generate a crisp efficiency score for each DMU by combining both lower- and upper-bound
efficiency frontiers into a single model under a specific αlevel.

In this study, the α-level approach was adopted because it will allow operators and policymakers to choose
the α-level to manage the level of fuzziness. For example, in public transport, customer satisfaction is one of the
most important qualitative variables for transport operators to consider when evaluating performance. From
the perspective of customers (i.e. passengers), a higher level of service (e.g. high service frequency) would be
important for saving time on travel, which will lead to higher satisfaction. However, a higher level of service
might lead to higher costs. From the perspective of operators or policymakers, customer satisfaction is not the
only index taken into account when deciding on the level of service. That is, other indexes such as labor costs
(e.g. hiring more drivers) or vehicle costs (e.g. purchasing more vehicles) need to be taken into account. The
level of fuzziness of qualitative variables (e.g. customers satisfaction) would be an important control variable
for operators and policymakers. Therefore, the α-level approach was used in this study.

The CDEA model is able to correctly measure efficiency if there are no quasi–fixed inputs and/or inter–
temporal dependence between input and output variables in the production process. However, if the DMU
cannot adjust the quasi–fixed input variables instantaneously to the optimal level in the CDEA model, the
performance evaluation results may be biased [51]. Therefore, a dynamic framework for the CDEA model has
been proposed to address this problem [51–54]–hereinafter termed as Dynamic Data Envelopment Analysis
(DDEA). Emrouznejad and Thanassoulis [52] classified two types of multi–period production processes for
DDEA: (1) multi–period without inter–temporal input–output dependence and (2) multi–period with inter–
temporal input–output dependence.

The Malmquist index was developed by Färe et al. [55,56], and is used to measure productivity change over
time without inter-temporal input–output dependence [53]. It is also used to decompose the total productivity
change between the two periods into technical change and efficiency change [52]. In the case of multi–period
production processes with inter-temporal input–output dependence capital stock and lagged output should be
considered in the production process. In order to capture the characteristics of inter–temporal input-output
dependence, Emrouznejad and Thanassoulis [53] used an input-output “path” mapped out by operating units.

Based on previous research, this study used the input-output “path” to account for the instantaneous resource
allocation within CDEA That is, the quasi-fixed input variables at the end of the period were treated as output



DYNAMIC FUZZY DATA ENVELOPMENT ANALYSIS MODELS 993

variables in that period in the DDEA models The next question is then how the “fuzziness” of variables can be
considered without generating inconsistent results. To answer this question, this study proposed a novel approach
that can incorporate both lower- and upper–bound into a FDEA model under a DDEA framework. The proposed
approach aimed to advance FDEA and DDEA models to evaluate the holistic performance of transport services.
Specifically, the proposed approach used a Dynamic Fuzzy Data Envelopment Analysis (DFDEA) method,
which integrated lower- and upper–bound efficiency into the objective functions and constraints to assess the
comparative efficiency where inter–temporal dependence exists. This study used bus companies in Taipei, Taiwan
as an example to demonstrate the applicability and superiority of the proposed DFDEA model. However, the
proposed modeling approach can be applied to wider production systems with similar characteristics.

In this paper, FDEA and DDEA were extended to be a DFDEA model. A DDEA model for crisp data and a
FDEA model will be reviewed in Section 2. The proposed DFDEA model will be derived in Section 3. The case
study of Taipei city bus companies will be presented in Section 4 with policy implications. Finally, conclusions
and directions for future studies will be discussed.

2. Preliminary models

2.1. DDEA model in crisp DEA

Consider n DMUs to be evaluated; each DMU utilizes m inputs to produce s outputs within the period t,
t = τ, . . . , τ + T . m inputs can be divided into two sub-sets of periodspecific inputs and capital inputs, I1
and I2 respectively. The DDEA model for measuring the efficiency of DMU proposed by Emrouznejad and
Thanassoulis [53] is as follows:

Model [DDEA]

Min α =

τ+T∑
t=τ

θt

T
− ε

(
τ+T∑
t=τ

∑
i∈I1

St−i +
τ+T∑
t=τ

∑
i∈I2

δt−i +
τ+T∑
t=τ

s∑
r=1

St+r +
∑
i∈I2

γ−i +
∑
i∈I2

γ+
i

)

s.t. D1 :
n∑
j=1

λjx
t
ij = θtxtik − St−i ; i ∈ I1, t = τ, . . . , τ + T

D2 :
n∑
j=1

λjz
t
ij = θtztik − δt−i ; i ∈ I2, t = τ, . . . , τ + T

D3 :
n∑
j=1

λjy
t
rj = ytik − St+r ; r = 1, . . . s, t = τ, . . . , τ + T

D4 :
n∑
j=1

λjZ
τ+T
ij = Zτ+Tik − γ+

i ; i ∈ I2

D5 :
n∑
j=1

λjZ
τ−1
ij

λj > 0;∀j, St−i > 0; δt−i > 0(∀t, ∀i ∈ I1);St+r > 0(∀t,∀i ∈ I1); γ+
i > 0, γ−i > 0(∀i ∈ I2),

where I1 ⊂ {1, . . . ,m} are inputs that do not have inter-temporal dependence with outputs, I2 ⊂ {1, . . . ,m} are
inputs where the end amount will be converted, directly or indirectly, into more outputs in some future period.
Zτ−1
ij is the initial amount of typei input for DMUj . Zτ+Tij is the end amount of typei input for DMUj .
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2.2. FDEA model

We also consider n DMUs to be evaluated; each DMU utilizes m inputs to produce s outputs. FDEA model
for measuring the efficiency of DMUk was proposed by Lan et al. [34]. The DDEA model is as follows:

Model [FDEA]

Minθ,λ θ − ε

(
m∑
i=1

s−i1 +
m∑
i=1

s−i2 +
s∑
r=1

s+r1 +
s∑
r=1

s+r2

)

s.t. F1 : θxLikα −
n∑
j=1

λjx
L
ijα − s−i1 = 0

F2 : θxUikα −
n∑
j=1

λjx
U
ijα − s−i2 = 0

F3 :
n∑
j=1

λjy
L
rjα − yLrkα − s+r1 = 0

F4 :
n∑
j=1

λjy
U
rjα − yUrkα − s+r2 = 0

F5 :
n∑
j=1

λj = 1

F6 : θxik −
n∑
j=1

λjxij − s−i = 0

F7 :
n∑
j=1

λjyrj − yrk − s+r = 0

λj , s
−
i1
, s−i2 , s

−
i , s

+
r1 , s

+
r2 , s

+
r > 0; r = 1, . . . , s; i = 1, . . . ,m; j = 1, . . . , n

θ unrestricted in sign

where θ represents the efficiency score of DMU k. If θ equals 1, then the DMU is regarded as relatively efficient;
otherwise, it is relatively inefficient. λj is the influence from DMU j. s−i1 , s

−
i2

are slack variables of the ith input
and s+r1 , s

+
r2 are slack variables of the rth output for lower-bound and upper-bound corresponding to a specific

α-level, respectively Constraints F1 to F4 were applied for fuzzy data, and constraint F6 and F7 were applied
for crisp data (refer to Lan et al. [34] for further details about FDEA models).

3. Model formulation

The DDEA model modifies the CDEA model by adding constraint D2, D4 and D5 which are formulated for
crisp variables. These constraints are used to capture inter-temporal dependence. However, the variables ztij ,
Zτ−1
ij and Zτ+Tij could take crisp and/or fuzzy forms. Therefore, constraint D2, D4 and D5 could be extended
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to fuzzy forms by introducing a lower-bound and an upper-bound under a specific αlevel FDEA model and can
be stated as follows:

D2L :
n∑
j=1

λjz
Lt
ijα = αtzLtikα − δt−i1 ; i1 ∈ I2, t = τ, . . . , τ + T

D2U :
n∑
j=1

λjz
Ut
ijα = αtzUtikα − δt−i2 ; i2 ∈ I2, t = τ, . . . , τ + T

D4L :
n∑
j=1

λjZ
L(τ+T )
ijα = Z

L(τ+T )
ikα − γ+

i1
; i1 ∈ I2

D4U :
n∑
j=1

λjZ
U(τ+T )
ijα = Z

U(τ+T )
ikα − γ+

i2
; i2 ∈ I2

D5L :
n∑
j=1

λjZ
L(τ−1)
ijα = Z

L(τ−1)
ikα − γ−i1 ; i ∈ I2

D5U :
n∑
j=1

λjZ
U(τ−1)
ijα = Z

U(τ−1)
ikα − γ−i2 ; i ∈ I2

Combining equation D2L, D2U, D4L, D4U, D5L, D5U into the FDEA model with a dynamic framework of
DDEA, the DFDEA model can be proposed as follows:

Model [DFDEA]

Min α =

τ+T∑
t=τ

θt

T

− ε


τ+T∑
t=τ

∑
i∈I1

St−i +
τ+T∑
t=τ

∑
i∈I2

δt−i +
τ+T∑
t=τ

s∑
r=1

St+r +
∑
i∈I2

γ−i +
∑
i∈I2

γ+
i +

τ+T∑
t=τ

∑
i∈I1

st−i1 +
τ+T∑
t=τ

∑
i∈I1

st−i2

+
τ+T∑
t=τ

∑
i∈I2

δt−i1 +
τ+T∑
t=τ

∑
i∈I2

δt−i2 +
τ+T∑
t=τ

s∑
r=1

st+r1 +
τ+T∑
t=τ

s∑
r=1

st+r2 +
∑
i∈I2

γ−i1 +
∑
i∈I2

γ−i2 +
∑
i∈I2

γ+
i1

+
∑
i∈I2

γ+
i2

,
s.t.DF1 :

n∑
j=1

λjx
t
ij = θtxtik − St−i ; i ∈ I1, t = τ, . . . , τ + T,

DF2 :
n∑
j=1

λjz
t
ij = θtztik − δt−i ; i ∈ I2, t = τ, . . . , τ + T,

DF3 :
n∑
j=1

λjy
t
rj = ytik − St+r ; r = 1, . . . s, t = τ, . . . , τ + T,

DF4 :
n∑
j=1

λjZ
τ+T
ij = Zτ+Tik − γ+

i ; i ∈ I2,

DF5 :
n∑
j=1

λjZ
τ−1
ij = Zτ−1

ik − γ−i ; i ∈ I2,
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DF6 :
n∑
j=1

λjx
Lt
ijα = θtxLtikα − st−i1 ; i ∈ I1, t = τ, . . . , τ + T,

DF7 :
n∑
j=1

λjx
Ut
ijα = θtxUtikα − st−i2 ; i ∈ I1, t = τ, . . . , τ + T,

DF8 :
n∑
j=1

λjz
Lt
ijα = αtzLtikα − δt−i1 ; i1 ∈ I2, t = τ, . . . , τ + T,

DF9 :
n∑
j=1

λjz
Ut
ijα = αtzUtikα − δt−i2 ; i2 ∈ I2, t = τ, . . . , τ + T

DF10 :
n∑
j=1

λjy
Lt
rjα = yLtikα − st+r1 ; r = 1, . . . s, t = τ, . . . , τ + T,

DF11 :
n∑
j=1

λjy
Ut
rjα = yUtikα − st+r2 ; r = 1, . . . s, t = τ, . . . , τ + T,

DF12 :
n∑
j=1

λjZ
L(τ+T )
ijα = Z

L(τ+T )
ikα − γ+

i1
; i1 ∈ I2,

DF13 :
n∑
j=1

λjZ
U(τ+T )
ijα = Z

U(τ+T )
ikα − γ+

i2
; i2 ∈ I2,

DF14 :
n∑
j=1

λjZ
L(τ−1)
ijα = Z

L(τ−1)
ikα − γ−i1 ; i ∈ I2,

DF15 :
n∑
j=1

λjZ
U(τ−1)
ijα = Z

U(τ−1)
ikα − γ−i2 ; i ∈ I2,

λj > 0; ∀j, St−i , st−i1 , s
t−
i2

> 0; δt−i , δt−i1 , δ
t−
i2

> 0 (∀t,∀i ∈ I1); St+r , st+r1 , s
t+
r2 > 0 (∀t,∀i ∈ I1);

γ+
i , γ

+
i1
, γ+
i2
, γ−i , γ

−
i1
, γ−i2 > 0 (∀i ∈ I2);

Following the above DFDEA procedures for Constant Returns To Scale (CRS), the DFDEA-VRS model for

Variable Returns To Scale (VRS) can then be easily derived by simply adding a convexity constraint:
n∑
j=1

λj = 1.

4. Case study

To demonstrate the applicability and superiority of the proposed DFDEA modeling approach in terms of the
benchmarking power over the CDEA modeling approaches, a case study on evaluating the dynamic efficiency
of bus companies in Taipei, Taiwan is presented.

4.1. Data

The case study evaluates the efficiency and service effectiveness of 10 city bus companies in Taipei. Based on
previous studies (e.g., [9,10,32,34,38,57,58]), two crisp input variables were selected: number of buses (NB) and
operating network (ON). Four output variables were selected: number of bus runs (NBR), operating revenue
(OR), passenger-km (P–km), and passenger satisfaction (PS). Of the output variables, NBR, OR, an P–km
were crisp variables and PS was a fuzzy qualitative variable.

Data were obtained from a questionnaire conducted by the Ministry of Transportation and Communications,
R.O.C. in 2005 and in 2011 to evaluate the performance of city bus companies. In order to be consistent with
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Table 1. Summary of descriptive statistics for 10 Taiwan’s city bus companies 2005 and 2011.

Year Item
Input Output

NB ON (km) NBR OR (NT$) P–km

2005

Mean 245 633 1,357,783 513,424,653 381,508,167
Std. Dev. 204 745 1,658,845 519,306,128 329,287,206

Max. 704 2,570 4,883,988 1,536,823,756 913,099,891
Min. 5 47 38,181 9,879,059 3,039,611

2011

Mean 277 646 991,798 645,298,532 608,782,370
Std. Dev. 232 545 885,491 637,483,557 724,936,755

Max. 796 1,771 2,732,334 1,952,532,018 2,203,607,386
Min. 18 74 43,791 15,013,113 12,204,886

Table 2. Correlation coefficients among crisp input and output variables.

Year 2005 2011
Variables NB ON (km) NBR OR (NT$) P–km NB ON (km) NBR OR (NT$) P–km

NB 1.00 1.00
ON (km) 0.33 1.00 0.42 1.00

NBR 0.94 0.36 1.00 0.95 0.32 1.00
OR (NT$) 0.97 0.38 0.98 1.00 0.97 0.37 0.99 1.00

P-km 0.93 0.28 0.86 0.93 1.00 0.97 0.38 0.96 0.99 1.00

fuzzy output data, this study only used crisp data in 2005 and 2011 to conduct a dynamic efficiency analysis.
All the input and output data from the 10 bus companies were available from the 2005 and 2011 Annual Report
published by the Ministry of Transportation and Communications, R.O.C. In order to capture the nature of the
quasi-fixed input characteristic, NB was considered as a capital input variable. Table 1 presents the descriptive
data from 2005 and 2011.

Table 2 shows the correlation coefficients among the crisp variables. All correlation coefficients between input
and output variables in each year are significantly positive, confirming that the dataset satisfies the isotonicity
property. The fuzzy variable of passenger satisfaction was rated as follows: “poor service,” “fair service” and
“good service,” with half-overlapped triangular membership functions.

4.2. Efficiency scores

Table 3 presents the efficiency score of the bus companies with CRS using the DFDEA model and Table 4
presents the efficiency score of the bus companies with VRS using the DFDEA-VRS model Results in these two
tables show a similar pattern. Table 3 shows that the proposed DFDEA model identified three bus companies
(DMU 1, 6, and 10) to be dynamic efficient. However, the CDEA model in Table 3 identified three bus companies
(DMU 1 6 and 10) to be efficient in 2005 and four (DMU 1, 3, 4 and 10) in 2011, whereas the CDEA model
in Table 4 identified five bus companies (DMU 1, 6, 7, 9 and 10) to be efficient in 2005 and four (DMU 1, 6, 9
and 10) in 2011 This shows that CDEA models fail to capture the inter-temporal effects. For example, DMU
3 is not dynamic efficient but efficient if we only evaluate performance in 2011. These results indicate that the
CDEA model overstated the resource allocation ability for DMU 3 because of the existence of the quasi-fixed
input variable More specifically, DMU 4 cannot adjust its quasi-fixed input variable, i.e., number of buses, to
the optimal levels in 2011 The DFDEA model can identify the instantaneous effects by evaluating productive
efficiency on the basis of an inter-temporal efficiency. It is interesting to note that the efficiency scores do not
vary much with different αlevels, but one can still observe that the efficiency scores of inefficient bus companies
decrease as the αlevel increases.
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Table 3. Efficiency score of 10 city bus companies under various αlevels with CRS.

DMU
DFDEA

CDEA

Average efficiency 2011 2005

in 2005 and 2011

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 0.531 0.531 0.529 0.487 0.483 0.480 0.544 0.537 0.532 0.429 0.428 0.428

3 0.911 0.911 0.911 0.941 0.941 0.941 1.000 1.000 1.000 0.881 0.881 0.881

4 0.667 0.667 0.663 0.785 0.784 0.782 1.000 1.000 1.000 0.570 0.567 0.563

5 0.742 0.742 0.742 0.778 0.778 0.778 0.695 0.695 0.695 0.861 0.861 0.861

6 1.000 1.000 1.000 0.876 0.875 0.874 0.751 0.749 0.748 1.000 1.000 1.000

7 0.661 0.659 0.657 0.672 0.670 0.669 0.561 0.559 0.557 0.782 0.781 0.781

8 0.802 0.801 0.799 0.823 0.817 0.812 0.744 0.732 0.722 0.902 0.901 0.901

9 0.886 0.886 0.886 0.903 0.903 0.903 0.919 0.919 0.919 0.886 0.886 0.886

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4. Efficiency score of 10 city bus companies under various αlevels with VRS.

DMU
DFDEA-VRS

CDEA

Average efficiency 2011 2005

in 2005 and 2011

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 0.541 0.541 0.539 0.487 0.715 0.715 0.715 1.000 1.000 0.429 0.429 0.429

3 1.000 1.000 0.977 1.000 1.000 0.982 0.982 1.000 1.000 1.000 1.000 0.963

4 0.674 0.672 0.670 0.787 0.787 0.787 0.787 1.000 1.000 0.574 0.574 0.574

5 0.762 0.750 0.745 0.861 0.822 0.807 0.807 0.723 0.700 0.926 0.920 0.913

6 1.000 1.000 1.000 0.876 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 1.000 1.000 1.000 0.835 0.899 0.866 0.866 0.798 0.731 1.000 1.000 1.000

8 0.902 0.902 0.902 0.842 0.966 0.961 0.961 1.000 1.000 0.939 0.931 0.922

9 1.000 1.000 1.000 0.960 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4.3. Scale analysis

Table 5 presents the scale efficiency score of these bus companies. The DFDEA model will generate only one
scale value, whereas the CDEA models will generate two scale values corresponding to each evaluated period.
The proposed DFDEA approach is superior for examining the scale property. Under the DFDEA approach, five
bus companies were identified to be Decrease Returns to Scale (DRS), two bus companies were identified to
be Increase Returns to Scale (IRS) and three bus companies were identified to be CRS (αlevel = 0.5). These
results indicate whether a company needs to downsize, upsize, or remain the same. In contrast, with the separate
CDEA models, scale efficiency score in different periods resulted in different numbers of bus companies as CRS,
DRS, and IRS. For example, for DMU 2, the proposed DFDEA model suggests to increase its overall size (IRS).
In contrast, the CDEA models suggest increasing the size (IRS) in 2005 but decreasing the size (DRS) in 2011.
This information may puzzle decision makers.
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Table 5. Scale efficiency score of 10 city bus companies at various αlevels.

DMU
DFDEA

CDEA
2011 2005

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
1 – – – – – – – – –
2 – irs irs drs drs drs – irs irs
3 drs drs drs – – – drs drs drs
4 irs irs irs – – – irs irs irs
5 drs drs drs drs drs drs drs drs drs
6 – – – drs drs drs – – –
7 drs drs drs drs drs drs drs drs drs
8 drs drs drs drs drs drs drs drs drs
9 drs drs drs drs drs drs drs drs drs
10 – – – – – – – – –

Note: “–” is crs.

4.4. Policy implications

The case study presented in this paper compared results from a DFDEA model and a DFDEA-VRS model
This case study demonstrated that the proposed DFDEA model provides more consistent output when the
target industry is characterized by inter-temporal dependencies and fuzziness. Two aspects of this modeling
approach are worth highlighting: efficiency score and scale analysis. First, the efficiency score from the proposed
DFDEA model not only can provide policymakers a coherent picture of the industry performance over the years
but also can incorportate qualitative performance indicators (e.g., customer satisfication). While the CDEA
model cannot account for inter-temporal dependencies and fuzziness, the DFDEA model can. Furthermore,
the DFDEA model can be used to evaluate the performance over multiple time periods and to consider heavy
investment in the early stages (e.g. number of bus runs in the case study).

The scale analysis for DFDEA can also provide an integrated scale for each DMU over the analysis period.
This integrated scale value provides policymakers or operators information on whether the company size should
be changed. That is, to upsize if IRS, to downsize if DRS, and to remain the same if CRS. In other words, the
DFDEA scale analysis results can provide a clear direction for policymakers and operators in the long term,
and eliminate the potential confusion from CDEA models (refer to the DMU 2 analysis in Sect. 4.2). Therefore
the proposed DFDEA models can better evaluate performance for the industry using a wider range of variables
and take into account the nature of inter–temporal dependencies compared to CDEA models.

5. Conclusion

This paper developed a method for evaluating the performance of DMUs when the input and output variables
are characterized by inter–temporal dependencies and fuzziness. Using the proposed DFDEA model, we can
measure the dynamic efficiency for industries that have a capital fixity issue. Furthermore, considering the
fuzziness of variables allows us to evaluate the holistic performance of transport service. The case study presented
in this paper demonstrated the superiority of using the proposed DFDEA models to evaluate the comparative
efficiency for DMUs under the circumstance that at least one of the variables is measured qualitatively (such as
passenger satisfaction) or characterized by inter–temporal dependence (such as number of buses).

Several research directions for future studies can be identified. The proposed DFDEA model in this study
was specified with the integration of FDEA models [34] and DDEA models [53]. Other specifications or even
multi-objective specifications warrant further exploration. Further, this study only illustrated one case of bus
companies in Taipei, Taiwan. Future research can validate the use of DFDEA models for different modes of
transport and in different locations.
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Appendix A. Summary of literature review for DEA model in transport field.

Ref.

No

Author Industry Approach Input variables Output

variables

Service

variables

Model DMU

1 Odeck and Transit DEA

total number

of seats

seat kilometers

– BCC Bus

Alkadi (2001)
fuel

consumption

Vehicle

kilometers company
consumption

equipment

Passenger

kilometers
passengers

5 Schefczyk Airline DEA

available ton

kilometers

revenue

passenger

kilometers

– CCR Airlines

(1993)

facilities cargo revenue
current assets other revenue
other assets

–
labor
fuel

commissions to

agents

6 Charnes et al. Airline DEA

seat-kilometer

available

Passenger

kilometer
BCC Airlines

(1996) REPF
cargo-ton

kilometer

available

–

fuel
labor

7 Sengupta Airline DEA

available revenue

passenger

– CCR Airlines

(1999)

ton kilometers
kilometers

facilities cargo revenue
current assets other revenue
other assets

–labor
fuel

9 Chiou and Airline DEA

fuel cost number of

flights

Passenger

mile CCR Airline

Chen (2006) personnel cost seat-mile embarkation

passengers
BCC

aircraft cost- – –

13 Peck et al. Airport DEA

labor expenses

on airframes

flights arrivals

delayed

for mechanical

reasons
– BCC Airlines

(1998)
labor expenses

on aircraft

engines
expenditures

on airframe

repairs
–

expenditures

on engine

repairs
material

expenditures

on airframes
material

expenditures

on engines
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Appendix A. (continued).

Ref.

No

Author Industry Approach Input variables Output

variables

Service

variables

Model DMU

15 Sarkis (2000) Airport DEA

airport

operational
costs

operational

revenue

CCR Airport
number of

airport
employees

passenger

flow BCC

gates commercial
runways general

aviation

movement
total cargo

transportation

17 Adler and Airport DEA

Questionnaire Service

satisfaction
BCC City

Berechman (2001)
Haul charge

–Connection

times
Average delay

time

18 Barros and Airport DEA

labor costs number of

planes

CCR Airport

Dieke (2007)

capital

invested

number of

passenger
BCCoperational

costs
cargo

aeronautical

receipts
handling

receipts
commercial

receipts

19 Tongzon (2001) Port DEA

number of

berths, cranes

and tugs

cargo

throughput CCR City

number of port

authority

employees

ship

working rate

terminal area

of the ports

–

20 Cullinane et al. Port DEA

terminal length
container throughput

CCR Country
(2006) SFA

terminal area

BCCquayside

gantry
yard gantry

straddle carrier

22 Fielding et al. Transit DEA

labor vehicle hours passengers

CCR US City

(1985)

capital vehicle miles Passenger

miles
fuel capacity miles operating

revenue

service
reliability

–
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Appendix A. (continued).

Ref.
No

Author Industry Approach Input variables Output
variables

Service
variables

Model DMU

25 Viton (1998) Transit DEA

fleet sizes vehicle-miles

– BCC Transit

number of gallons
of fuel

Passenger
trips

industry

number of
person-hours of

transportation

vehicle hours

number of

person-hours

of maintenance
number of

person-hours of
administrative

capital
the cost of tires

and other

materials
the cost of services
the cost of utilities

the cost of

insurance

28 Karlaftis (2004) Transit DEA

Number of vehicles Vehicle miles Passenger
miles BCC City

gallons of fuel
Total employees

32 Chiou et al. Transit IDEA

number of buses number of

bus runs

operating

revenue
CCR Bus

(2010)
operating network Bus

kilometer

number of

passengers BCC company

Passenger

kilometer
average

number

of on-board
passengers

per run

33 Chiou et al. Transit RDEA

fuel cost Operating

revenue – CCR

Bus

company

(2012)
labor Passenger-km

BCC
and

Bus
route

bus number –

36 Coelli and Railway DEA

annual mean of
monthly data on

staff levels

passenger
services

BCC Company

Perelman (1999) SFA
available freight

wagons
freight
services

COLS coach transport
capacities in tones –

coach transport
capacities in seats

total length of

lines
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Appendix A. (continued).

Ref.

No

Author Industry Approach Input variables Output

variables

Service

variables

Model DMU

37 Lan and Railway DEA

Lines passenger

train-kilometer

Passenger

kilometers
BCC Railway

Lin (2005) Passenger cars freight-train-

kilometer

Ton

kilometers

Freight cars
– –

Employees

38 Lan and Railway DEA

length of lines Train

kilometer

Passenger

kilometer

CCR

BCC Railway

Lin (2003) number of
locomotives and

cars

–
Ton

kilometer
EXO

number of
employees

CAT

Note:
1 SFA: Stochastic Froniter Analysis
2 CCR model [59] for CRS technology
3 BCC model [60] for VRS technology
4 EXO DEA: exogenously fixed inputs model
5 CAT DEA: To compare the performance measurements in a homogeneous environment can be formulated according to
appropriate categorical variables.
6 COLS: A parametric frontier using corrected ordinary least squares
7 REPF: Robustly Efficient Parametric Frontier
8 IDEA: integrated data envelopment analysis
9 RDEA: Route-based data envelopment analysis
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