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AN OPTIMAL INVENTORY MODEL WITH INTERACTION OF LOT SIZE,
PRODUCTION RATE AND LEAD-TIME IN A FUZZY BACK-ORDER SYSTEM

S. Priyan1,∗, P. Mala2 and S. Tiwari3

Abstract. This paper examines the decision-making about the interaction of lot size, production rate
and lead time between a vendor and a buyer with the consideration of trade credit and fuzzy back-order
rate. We assume that the lead time demand is distribution free and the back-order rate is triangular
fuzzy number. An economic model is design to determine the optimal lot-size, production rate and
lead time while minimizing system total cost. A minimax approach is applied to tackle the model
and designed an iterative algorithm to obtain the optimal strategy. Numerical example and sensitivity
analyses are given to demonstrate the performance of the proposed methodology and to highlight the
differences between crisp and the fuzzy cases. This paper provides optimal decision support tools for
managers in the form of mathematical model that improve operational, tactical, and strategic decision
making in the fuzzy system. This paper aims to raise the awareness of managers with regard to realistic
inventory problems.
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1. Introduction

Coordination among different business entities such as buyer, vendor, producer, etc. are an important way
to gain today’s competitive advantages. It involves synchronization of different efforts or actions of the various
units of an organization to provide the requisite amount, timing, quality and sequence of efforts so that the
planned objectives may be achieved with minimum conflict. In the retailing industry, WalMart and Proctor and
Gamble received substantial collaboration benefits by implementing collaborative planning, and replenishment,
a business model that intends to help supply chain members to collaborate in both tactical and strategic levels.
Accordingly Yang and Wee [44] stated that the integrated policy results in an impressive cost reduction when
it is compared with the independent decisions made by the vendor and the buyer. Recently several researchers
such as Hoque [13], Kebing et al. [18] and Fernandes et al. [6], Bibhas et al. [3] and Jun-Yeon et al. [16], Ali
et al. [1], Hong-Fwu and Wen-Kai [12] addressed integrated inventory models under various environment.

Trade credit is a powerful tool to improve sales and profits in an industry in real life business via share
marketing. In developing countries, vendor providing credit to their buyers is an important form of financing for
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business and particularly role of trade credit is immense where growth of financial institutions is less compared
to developed nations. The volume of trade credit in aggregate represents 17.8% of total assets for United States
firms, 22% for United Kingdoms firms, and more than 25% for countries such as Germany, France and Italy.
Hence, trade credit is one of the most important sources of short-term external financing for firms in a wide range
of industries and economies in today’s business transactions. In view of that trade credit inventory problem has
been studied many times in the literatures such as Sarmah et al. [33], Thangam and Uthayakumar [41], Kreng
and Tan [20], Mahata [23], Zeng et al. [45], Pramanik et al. [29] and Salem et al. [30] with less attention being
given to probabilistic continuous review inventory system; however, there have been few number of works in
this area in recent years like Wu [43], Salameh et al. [31] and Huang [14].

Make-to-order is a production approach where products are not built until a confirmed order for products is
received. Similarly, in make-to-stock, products are manufactured based on demand forecasts. As the accuracy of
the forecasts will prevent excess inventory and opportunity loss due to stock-out, the issues are very important
in real life problems. But how do we obtain the forecast demands accurately? Thus, these two approaches are
almost near to each other. In addition, the make-to-stock production system is applicable for managing most of
standard products. That is, reserved on-hand stock is immediately available to meet demand when an order is
received. In this case, the production process may start immediately or later when customers place their orders.
Clearly, it is infeasible to utilize such a production policy for custom-made products. In view of this we will
study on the make-to-order approach only.

Cost and operation of inventory depends a great deal on what happens to demand when the system is out
of stock. In view of this Montgomery et al. [24] addressed continuous review inventory problem with a mixture
of backorders and lost sales. Recently the authors Thangam and Uthayakumar [40] and Taleizadeh et al. [38],
Javad et al. [15] and San-Jose et al. [32] addressed back-ordering inventory system with the assumption that the
fraction of excess demand backordered (or lost) is a fixed constant. In the real situation, when stockout occurs
many potential factors such as properties of products and/or image of selling shop may affect customers’ wills of
backorders. In other words, the amount of lost demand caused by stockout probably has a little disturbance due
to various uncertainties [28]. If we express the fuzzy backorder rate as the neighborhood of the fixed backorder
(or lost sales) rate, then it will more match with the real situation.

Fuzzy sets representing linguistic concepts such as low, medium, high, etc., are employed to define states
of a variable. The membership function of a fuzzy set posses a quantity meaning and may be viewed as a
fuzzy number provided they satisfy certain conditions. The application of fuzzy set concepts on economic order
quantity (EOQ) inventory models have been proposed by many authors like Chang et al. [4], Ouyang and
Chang [28], Lin [22], Taleizadeh et al. [39], Wang et al. [42] and Sonia et al. [37], Amalesh et al. [2]. Ouyang
and Chang [28] presented a more extensive EOQ model to modify Moon and Choi’s [26] model by fuzzifying
the lost sales rate and to solve the new inventory model in the fuzzy sense. Lin [22] developed a periodic review
inventory model involving fuzzy expected demand short and fuzzy backorder rate.

Lead time and production rate are essential factors in any supply chain system. In stochastic inventory
models, lead time and production rate are often viewed as a prescribed constant or a random variable that is
not subject to control and both are independent. In many practical situations, lead times can be controlled by
paying additional investment and also it depends on the production rate. Liao and Shyu [21] introduced notion of
the crashing cost into stochastic inventory model, in which lead time can be controlled by additional investment.
Many researchers have developed various analytical inventory models to extend Liao and Shyu’s model. In this
connection, recently, Sofiene et al. [34] derived joint integrated production-maintenance policy with production
plan smoothing through production rate control. Chi et al. [5] addressed an integrated production-inventory
model for deteriorating items with consideration of optimal production rate and deterioration during delivery.

The aforementioned lead time/or production rate inventory models are based on the following two unrealistic
assumptions: (i) lead time is independent of the production process and ordering policy, and has no relationships
with production capacity and order size; (ii) lead time is controlled only by one side of a supply chain. Kim
and Benton [19] challenge the unrealistic assumption (i) on lead time. They established a linear relationship
between lead time and lot size. After that, Hariga [10], Hariga [11], Moon and Cha [25] and Noblesse et al. [27]
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Table 1. Comparison with the literature.

Author (s) Integrated inventory model Lot size and/or production
rate dependent Lead time

Trade credit policy Fuzzy back-order rate

Kim and Benton [19] X
Chang et al. [4] X

Hariga [10] X
Ouyang and Chang [28] X

Sarmah et al. [33] X X
Lin [22] X

Song et al. [36] X X
Kreng and Tan [20] X

Glock [9] X X
Song et al. [35] X X

Taleizadeh et al. [39] X
Noblesse et al. [27] X

Bibhas et al. [3] X X
Kumari and Pakkala 2016 X X

Javad et al. [15] X X
Salem et al. [30] X X

Pramanik et al. [29] X X
Sofiene et al. [34] X

This paper X X X X

incorporated this lead time/lot size relation in the classical stochastic continuous review (Q, r) model, however,
these papers have been developed from the buyer’s point of view by neglecting seller’s decisions. Recently, Song
et al. [35, 36] relaxed the common assumptions on lead time (i) and (ii) with the aim to authorize for a more
practical analysis of production-inventory management of a supply chain, and to extend Moon and Cha’s [25]
inventory model from one-side viewpoint to an interactive decision-making Stackelberg game model from both
two-sides’ viewpoint in a supply chain. Glock [9] also framed lead time reduction strategies in a single-vendor-
single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand.

Today many complex multi-stage manufacturing companies have high levels of work-in-process because of
queueing delays at raw materials (or shortage of raw materials) from outside retailers and consequently long
manufacturing lead times. These delays are directly related to production lot-sizes. Also crisp data are inadequate
to accurate the lost sales rate since human judgements are often vague and decision makers cannot estimate
their lost sales rate with an exact numerical value due to the uncertainties of customer demand and the raw
material arrivals. In view of the above said scenarios we considered the replenishment lead time (i.e., there is
no order lead-time, no delivery lead-time etc.) which is dependent on both order size and production rate as
well as triangular fuzzy numbers are used to express the accurate lost sales ratings of decision makers.

From the literature, till to date, none of the authors framed the decision-making based on the above sce-
nario. The contribution of the proposed paper intends to fill this remarkable gap in the inventory literature. A
comparison of our paper with the literature is provided in Table 1. This paper designs an optimal inventory
strategy for a two-echelon supply chain system with the consideration of the following realistic assumptions: (i)
lead time is dependent upon the production process and ordering policy, (ii) the vendor provides a trade credit
period to the buyer and (iii) the lead time demand is distribution free and the back-order (or lost sales) rate is
triangular fuzzy number. A mathematical model and an algorithm are designed to obtain the optimal strategy
for the inventory system. Numerical example and sensitivity analyses are given to demonstrate the novelty of
the proposed approach and to highlight the differences between proposed study and existing studies.

The subsequent sections have been organized as follows: Section 2 outlines the notations, assumptions and
preliminary concepts that have been used for model building purposes. In Section 3, the model developing
methodology was formulated. A numerical example illustrates the proposed methodology in Section 4. Section 5
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demonstrates the sensitivity analysis and some managerial implications of the model. Finally some concluding
remarks have been made in Section 6.

2. Notations, assumptions and preliminaries

We list the following notations, assumptions and preliminaries which will be used throughout the context.

2.1. Notations

Q Order lot-size, a decision variable of the buyer.
P Production rate, that is production quantity per year, a decision variable of the vendor.
k Safety factor, a decision variable of the buyer.
L Replenishment lead time.
P0 Regular production quantity per year.
P1 Maximum production quantity per year.
D Average demand per year.
A buyer’s ordering cost per order.
S Setup cost for the vendor.
p Unit purchase cost paid by the buyer.
s Unit selling price by the buyer.
Cv Additional cost per unit product for increasing production rate.
hb Cost of holding a unit product per year for the buyer.
hv Cost of holding a unit product per year for the vendor.
π0 Marginal profit per unit.
β Fraction of the shortage that will be backordered, 0 6 β 6 1.
Id Interest rate of deposit for the buyer per year.
Ic Interest charge to be paid per $ in stock to the bank per year.
Iv Interest rate for calculating company’s opportunity interest loss due to the delay payment per year.
tc The length of the trade credit period, in years.
σ Standard variance of demand per year.
r Reorder point.
ss Safety stock.
X Demand during lead time, a stochastic variable.

2.2. Assumptions

(1) The buyer and the vendor belong to different corporate entities and are enthusiastic to have the collaboration
inventory system. Thus, both members agree to minimize the integrated expected annual total cost in the
integrated strategy.

(2) The information about the form of cumulative distribution function (cdf) F of lead time demand X is
unknown, while only the mean DL and standard deviation σ

√
L are known.

(3) buyer uses a continuous review inventory policy and the order quantity Q is placed whenever inventory
level falls to the reorder point r. The safety stock is established based on the criterion of service level per
replenishment cycle. The safety factor k is determined by:

1− F (k) =
∫ ∞
k

f(x)dx.

(4) The reorder point r = expected demand during the lead time (DL) + the safety stock (ss), and ss = k ×
(standard deviation of lead time demand), i.e.

r = DL+ kσ
√
L. (2.1)
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(5) The shortages occur when X > r, therefore the buyer’s expected shortages at the end of the cycle time is
given by

E(X − r)+ =
∫ ∞
r

(x− r)f(x)dx.

(6) There is no order lead-time (for processing the order placed), no delivery lead-time etc. The replenishment
lead time is considered which is dependent on both order size and production rate, i.e.,

L =
Q

P
(2.2)

here, it is assumed that the lead time is in direct proportion to the buyer’s ordering size and in inverse
proportion to the vendor’s production rate [35].

(7) The vendor offers a certain trade credit period, tc, to attract the buyer to cooperate in the integrated
strategy. Thus, the buyer is not necessary to pay immediately after receiving the product. Besides, the
credit period tc is less than the reorder interval, which means that the credit period cannot be longer than
the time at which another order is placed. This is in agreement with the usual practice.

(8) The buyer deposits the sale income in a bank with annual interest rate Id before the payment is due. At the
payment time, the buyer pays off the purchased products’ cost to the vendor. The buyer has a loan from a
bank for the unpaid purchase cost of unsold units. During the period of delayed payment, the vendor has
an opportunity interest loss with annual rate Iv where Iv = Id.

Note: For the fuzzy back-order (or lost sales) rate in multi-echelon integrated inventory model based on the
Centroid or center of gravity method, all pertinent definitions of fuzzy sets are given in Appendix A.

Remark 2.1. Centroid or center of gravity method obtains the center of area (x∗) occupied by the fuzzy sets.
It is given by the following formula x∗ =

∫
xµ(x)dx∫
µ(x)dx

where µ(x) is membership function [8].

3. Model formulation

In this study a continuous review integrated inventory policy is adopted for a two-stage supply chain with
interactive decisions on lead time between a vendor and a buyer. In the proposed scenario, replenishment lead
time is interactively determined by both the two sides’ decisions. For the vendor, once an order is placed from
the buyer (here, vendor manufactures product according to make-to-order mode. Hence, the buyer’s order size
is also his production lot-size), he starts producing product and his inventory rises until the production finishes.
As soon as the buyer’s order size is completed by the vendor, it is delivered to the buyer and he receives it
immediately (zero delivery time). This is a reasonable assumption as long as the delivery time is shorter than
the manufacturing time. In addition, the vendor offers a certain trade credit period to attract the buyer to
cooperate in the integrated strategy. Hence, the buyer deposits the sale income in a bank with annual interest
rate before the payment is due. The decision objectives of the vendor and buyer are to minimize their joint
expected total cost of the system. The inventory profile for both the vendor (or vendor) and the buyer (buyer)
is depicted in Figure 1.

In this study, the integrated expected annual total cost of the supply chain C(Q,P, k) is sum of buyer’s
expected total cost, Cb(Q, k), and vendor’s expected total cost, Cv(Q,P ).

The buyer places an order of Q units, therefore for expected cycle time of Q/D, the expected ordering cost
per unit time can be given by AD/Q. Buyer’s expected net inventory level just before arrival of a procurement
quantity Q is only the safety stock ss = r − DL. The buyer’s expected net inventory level immediately after
arrival of a procurement Q is Q+ ss units. Hence, the buyer’s expected inventory over the cycle is Q

2 + kσ
√
L.

Let tc be the credit period and let hb be the unit stock-holding cost per unit time excluding interest charges
for stock financing. The expected inventory over the cycle is Q

2 + kσ
√
L, where Q

2 is the expected cycle stock.
Hence, the buyer’s holding cost for the cycle stock per unit time is hbQ

2 .
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Figure 1. The inventory pattern for the vendor and the buyer.

On the other hand, the safety stock kσ
√
L which is held throughout the cycle. The vendor charges interest at

rate Ic for this portion of the stock and the buyer must pay the corresponding holding cost as per the trade credit
policy. Therefore, buyer’s safety stock cost is the sum of the holding cost and interest charged: (hb + pIc)kσ

√
L.

The credit period, tc, which is assumed less than the reorder interval. Note that this assumption is reasonable,
because the payments of previous order should be made before another order is placed. Therefore, when the
buyer’s permissible delay period expires on or before all inventories are depleted completely, the buyer can sell
the items and earn interest with the rate of Id until the end of the credit period tc. Hence, the buyer’s interest
earned per unit time is sIdD

Q

∫ tc
0
Dtdt = D2t2csId

2Q . In addition, the expected shortage, E(X − r)+, is partially
backordered in the previous cycle and is partially cleared in the beginning of the current cycle. Therefore, the
buyer earns interest of DstcId

Q βE(X − r)+ per unit time during the credit period. On the other hand, the lost
sales (1− β)E(X − r)+ which is held throughout the cycle. Therefore, the vendor charges interest at rate Ic for
this portion of the stock and the buyer must pay the corresponding holding cost as well as the buyer incurs the
marginal profit of the lost sales. Hence, the buyer’s total cost for the shortage stock per unit time is the sum of
the holding cost, interest charged and marginal profit: (1− β)E(X − r)+

(
Dπ0
Q + hb + pIc

)
.

Conversely, the buyer still has (Q−Dtc) unsold units at the end of the permissible delay period. The vendor
charges interest for this portion of the stock. However, the buyer has a loan from a bank for unpaid purchase
costs for unsold units, at the common interest rate of Ic. Therefore, the opportunity interest cost per cycle time
for unsold units is pIcD

Q

∫ Q
D

tc
(Q−Dt)dt = (Q−Dtc)2pIc

2Q .
Accordingly, the expected annual total cost per unit time for the buyer comprised of ordering cost, holding

cost, safety stock cost, opportunity interest cost, shortage cost and interest earned, is expressed by

Cb(Q, k) =
D

Q
A+

hbQ

2
+ (hb + pIc)kσ

√
L+ (1− β)E(X − r)+

[
Dπ0

Q
+ hb + pIc

]
+

(Q−Dtc)2pIc
2Q

− D2t2csId
2Q

− DstcId
Q

βE(X − r)+. (3.1)

For the vendor, his expected annual total cost can be given by Cv(Q,P ) = setup cost+holding cost+productivity
improvement investment + opportunity interest loss.
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Here, vendor’s annual setup cost per year can be given by D
QS; his annual holding cost given by Song

et al. [35] is Q
2
D
P hv. The productivity improvement investment given by Moon and Cha [25] is D

Q (P −P0)LCv =(
1− P0

P

)
DCv. The expected opportunity interest loss per unit time for the vendor is IvptcD.

Therefore, the vendor’s expected annual total cost is given by

Cv(Q,P ) =
D

Q
S +

Q

2
D

P
hv +

(
1− P0

P

)
DCv + IvptcD. (3.2)

From the view of the whole supply chain, the integrated expected annual total cost is the sum of the buyer’s
and the vendor’s total annual cost. That is,

C(Q,P, k) =
D

Q

{
A+ S − βstcIdE(X − r)+

}
+ (hb + pIc)

(
Q

2
+ kσ

√
L

)
+
D2t2

2Q
(pIc − sId)

+Dtcp(Iv − Ic) +
Q

2
D

P
hv +

(
1− P0

P

)
DCv + (1− β)E(X − r)+

[
hb + pIc +

π0D

Q

]
. (3.3)

Now we attempt to modify model (3.3) by fuzzifying the backorder rate (or equivalently, fuzzifying the lost sales
rate). For convenience, we first let δ ≡ 1 − β denote the lost sales rate. Therefore, for any Q > 0, P > 0 and
k > 0, we may remodify the expected annual total cost function (as expressed in Eq. (3.3)) as follows:

C(Q,P,k)(δ) ≡ C(Q,P, k)

=
D

Q

{
A+ S − βstcIdE(X − r)+

}
+ (hb + pIc)

(
Q

2
+ kσ

√
L

)
+
D2t2

2Q
(pIc − sId)

+Dtcp(Iv − Ic) +
Q

2
D

P
hv +

(
1− P0

P

)
DCv + δE(X − r)+

[
hb + pIc +

π0D

Q

]
· (3.4)

It should be noted that in the above model, the lost sales rate δ during the planning horizon is assumed a fixed
constant. However, when the inventory planning is completed, due to various uncertainties the lost sales rate
in practical problem may be not equal to δ but just close to it. Therefore, it is difficult for the decision maker
to determine a fixed value δ for the lost sales rate in the planning horizon. On the contrary, it is easier to set
the lost sales rate in the interval [δ −∆1, δ + ∆2], where 0 < ∆1 < δ, 0 < ∆2 and ∆1, ∆2 are determined by
the decision-maker. To find the corresponding fuzzy set with this interval [δ −∆1, δ +∆2], we take any value δ̇
from this interval and then compare it with δ of crisp value. If δ̇ = δ, then we define the error |δ̇ − δ| = 0. In
the fuzzy sense, we can use the term confidence level instead of error.

When the error is zero the confidence level will be the largest, and we set it to be 1. If δ̇ is located in [δ−∆1, δ]
or [δ, δ +∆2] the farther the value δ̇ deviates from δ, the larger of the error |δ̇ − δ|, and hence, the smaller the
confidence level. When δ̇ = δ−∆1 and δ̇ = δ+∆2, the error |δ̇− δ| will attain to the largest, and the confidence
level will be the smallest and we set it be zero. Therefore, corresponding to the interval [δ −∆1, δ +∆2] we set
the triangular fuzzy number, δ̃ = (δ −∆1, δ, δ +∆2), 0 < ∆1 < δ, 0 < ∆2.

The membership grade of δ in δ̃ is 1. The farther the point in [δ−∆1, δ+∆2] is from both sides of δ, the less
the membership grade is. The membership grade shares the same property with the confidence level. If we make
a correspondence between membership grade and confidence level, it is reasonable to set a fuzzy number in
δ̃ = (δ−∆1, δ, δ+∆2) corresponding to the interval [δ−∆1, δ+∆2]. Further, here we describe the membership
function of δ̃ similar to [28] as follows:

µδ̃(x) =


x−δ+∆1
∆1

, if δ −∆1 ≤ x ≤ δ
δ+∆2−x
∆2

, if δ ≤ x ≤ δ +∆2

0, otherwise.

(3.5)
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Figure 2. Triangular fuzzy number δ̃ [28].

Then, according to [28], the centroid for µδ̃(x) is given by

δ∗ =

∫∞
−∞ xµδ̃(x)dx∫∞
−∞ µδ̃(x)dx

= δ +
1
3

(∆2 −∆1).

We regard this value as the estimate of lost sales rate in the fuzzy sense.
For any Q > 0, P > 0 and k > 0, we let C(Q,P,k)(x) = y (>0). By extension principle [17], the membership

function of the fuzzy cost C(Q,P,k)(δ̃) similar to [28] is given by

µC(Q,P,k)(δ̃)
(y) =

{
supx∈C−1

(Q,P,k)(y)
µδ̃(x), if C−1

(Q,P,k)(y) 6= ∅
0, if C−1

(Q,P,k)(y) = ∅.
(3.6)

From C(Q,P,k)(x) = y and equation (3.4), we get
D
Q {A+ S − βstcIdE(X − r)+}+ (hb + pIc)

(
Q
2 + kσ

√
L
)

+ D2t2

2Q (pIc − sId)

+Dtcp(Iv − Ic) + Q
2
D
P hv +

(
1− P0

P

)
DCv + xE(X − r)+

[{
hb + pIc + π0D

Q

}]
= y.

(3.7)

Hence,

x =
yQ−

{
WD +QW0 + D2t2

2 (pIc − sId) +QDtcp(Iv − Ic) + Q2

2
D
P hv +Q

(
1− P0

P

)
DCv

}
E(X − r)+ [Q(hb + pIc) + π0D]

(3.8)

where W = A+ S − βstcIdE(X − r)+ and W0 = (hb + pIc)
(
Q
2 + kσ

√
L
)

.

Therefore, from equations (3.5) and (3.8), the membership function of C(Q,P,k)(δ̃) can be written as

µC(Q,P,k)(δ̃)
(y) =



yQ−
{
WD+QW0+

D2t2
2 (pIc−sId)+QDtcp(Iv−Ic)+Q2

2
D
P hv+Q(1−P0

P )DCv
}

E(X−r)+[Q(hb+pIc)+π0D]∆1
− δ−∆1

∆1
, y1 ≤ y ≤ y2

δ+∆2
∆2

+

{
WD+QW0+

D2t2
2 (pIc−sId)+QDtcp(Iv−Ic)+Q2

2
D
P hv+Q(1−P0

P )DCv
}
−yQ

E(X−r)+[Q(hb+pIc)+π0D]∆2
, y2 ≤ y ≤ y3

0, otherwise
(3.9)
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where

y1 =
WD

Q
+W0+

D2t2

2Q
(pIc − sId)+Dtcp(Iv−Ic)+

Q

2
D

P
hv+DCv

(
1− P0

P

)
+(δ−∆1)E(X−r)+

[
hb + pIc +

π0D

Q

]
,

y2 =
WD

Q
+W0+

D2t2

2Q
(pIc − sId)+Dtcp(Iv−Ic)+

Q

2
D

P
hv+DCv

(
1− P0

P

)
+δE(X−r)+

[
hb + pIc +

π0D

Q

]
,

y3 =
WD

Q
+W0+

D2t2

2Q
(pIc − sId)+Dtcp(Iv−Ic)+

Q

2
D

P
hv+DCv

(
1− P0

P

)
+(δ+∆2)E(X−r)+

[
hb + pIc +

π0D

Q

]
·

The pictorial of the membership function of C(Q,P,k)(δ̃) is shown in Figure 3. Now we derive the centroid of
µC(Q,P,k)(δ̃)

(y) as follows:

IETC(Q,P, k) =

∫∞
−∞ yµC(Q,P,k)(δ̃)

(y)dy∫∞
−∞ µC(Q,P,k)(δ̃)

(y)dy
=

1
3

(y1 + y2 + y3)

= C(Q,P, k) +
(∆2 −∆1)

3
E(X − r)+

[
hb + pIc +

π0D

Q

]
·

Thus, we obtain the following property.

Property 3.1. For any Q > 0, P > 0 and k > 0, the estimate of the integrated expected annual total inventory
cost in the fuzzy sense is

IETC(Q,P, k) =
D

Q

{
A+ S − βstcIdE(X − r)+

}
+ (hb + pIc)

(
Q

2
+ kσ

√
L

)
+
D2t2

2Q
(pIc − sId)

+Dtcp(Iv − Ic) +
Q

2
D

P
hv +

(
1− P0

P

)
DCv + δE(X − r)+

[
hb + pIc +

π0D

Q

]
+

(∆2 −∆1)
3

E(X − r)+
[
hb + pIc +

π0D

Q

]
· (3.10)

Remark 3.2. If we let Z = (∆2−∆1)
3.C(Q,P,k)E(X − r)+

(
hb + pIc + π0D

Q

)
, then from equation (3.10) we obtain

IETC(Q,P,k)−C(Q,P,k)
C(Q,P,k) ×100% = Z×100%, which implies [IETC(Q,P, k)− C(Q,P, k)]×100% = Z×C(Q,P, k)×

100%.

Note 1. If ∆1 = ∆2, then Figure 2 is an isosceles triangle and equation (3.10) reduces to IETC(Q,P, k) =
C(Q,P, k), this implies that the fuzzy case becomes the crisp case; that is, the fixed lost sales rate inventory
model is a special case of our new fuzzy lost sales rate inventory model.

Note 2. If∆1 < ∆2, then the triangle in Figure 2 is skewed to the right. In this case, IETC(Q,P, k) > C(Q,P, k)
and the increment of IETC(Q,P, k) is Z% of C(Q,P, k).

Note 3. If ∆1 > ∆2, then the triangle in Figure 2 is skewed to the left. In this case, IETC(Q,P, k) < C(Q,P, k)
and the decrement of IETC(Q,P, k) is |Z|% of C(Q,P, k).

Now, the objective of this study is to minimize the integrated expected annual total cost in the fuzzy sense
(as expressed in Eq. (3.10)) by simultaneously selecting lot-size Q, production rate P and safety factor k. Thus
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Figure 3. Triangular fuzzy number C(Q,P,k)(δ̃) [28].

the problem of integrated inventory system with trade credit financing and fuzzy backorder rate when lead time
depends on both lot-size and production rate can be mathematically formulated as the following model:

MinQ,P,kMaxF∈ΩIETC(Q,P, k) =
D

Q

{
A+ S − βstcIdE(X − r)+

}
+ (hb + pIc)

(
Q

2
+ kσ

√
L

)
+
D2t2

2Q
(pIc − sId)

+Dtcp(Iv − Ic) +
Q

2

D

P
hv +

(
1− P0

P

)
DCv + δE(X − r)+

[
hb + pIc +

π0D

Q

]

+
(∆2 −∆1)

3
E(X − r)+

[
hb + pIc +

π0D

Q

]
· (3.11)

Subject to P1 ≥ P ≥ P0, Q > 0, k > 0.
Now, we try to use minimax approach similar to Song et al. [35] to solve this distribution-free problem. The

minimax approach is to find the most unfavorable cdf F in Ω (which is a class of F with mean DL and standard
deviation σ

√
L) for each (Q,P, k) and then to minimize the expected annual total cost over (Q,P, k). In order

to minimize (3.11) we need the following lemma from [7]:

Lemma 3.3. For any F ∈ Ω,

E(X − r)+ ≤ 1
2

(√
σ2L+ (r −DL)2 − (r −DL)

)
. (3.12)

Moreover, the upper bound equation (3.12) is tight.

Proof. Proof of Lemma 3.3 is given in [7] so we skip the proof details. �

Now, substituting equation (2.1) into (3.12), we can get

E(X − r)+ ≤ 1
2
σ
√
L
(√

1 + k2 − k
)
. (3.13)

For convenience, letting Ψ(k) = 1
2

(√
1 + k2 − k

)
, we have

E(X − r)+ ≤ σ
√
L Ψ(k). (3.14)



AN OPTIMAL INVENTORY MODEL 527

Using equation (3.14), we can transform equation (3.11) denoting Π = Π(Q,P, k) = MaxF∈ΩIETC(Q,P, k) to

Π =
D

Q

{
A+ S − βstcIdσ

√
L Ψ(k)

}
+ (hb + pIc)

(
Q

2
+ kσ

√
L

)
+
D2t2

2Q
(pIc − sId)

+Dtcp(Iv − Ic) +
Q

2
D

P
hv +

(
1− P0

P

)
DCv + δσ

√
L Ψ(k)

[
hb + pIc +

π0D

Q

]
+

(∆2 −∆1)
3

σ
√
L Ψ(k)

[
hb + pIc +

π0D

Q

]
· (3.15)

Subject to P1 ≥ P ≥ P0, Q > 0, k > 0.
Now, inserting equation (2.1) into (3.15), we obtain

Π =
D

Q

{
A+ S − βstcIdσ

√
Q

P
Ψ(k)

}
+ (hb + pIc)

(
Q

2
+ kσ

√
Q

P

)
+
D2t2

2Q
(pIc − sId) +Dtcp(Iv − Ic)

+
Q

2
D

P
hv +

(
1− P0

P

)
DCv + σ

√
Q

P
Ψ(k)

(
hb + pIc +

π0D

Q

)[
δ +

(∆2 −∆1)
3

]
· (3.16)

Subject to P1 ≥ P ≥ P0, Q > 0, k > 0.
Thus, the objective of this study (as expressed in Eq. (3.11)) is equivalent to

MinQ,P,k Π =
D

Q

{
A+ S − βstcIdσ

√
Q

P
Ψ(k)

}
+ (hb + pIc)

(
Q

2
+ kσ

√
Q

P

)
+
D2t2

2Q
(pIc − sId) +Dtcp(Iv − Ic)

+
Q

2
D

P
hv +

(
1− P0

P

)
DCv + σ

√
Q

P
Ψ(k)

(
hb + pIc +

π0D

Q

)[
δ +

(∆2 −∆1)
3

]
· (3.17)

Subject to P1 ≥ P ≥ P0, Q > 0, k > 0.
In order to solve the above problem, some analysis need to be done firstly similar to Song et al. [35], For

convenience, we temporarily ignore the constraints of the problem.

Lemma 3.4. For fixed P and k, Π is convex in Q and the optimal solution to minimize Π occurs at the unique
value which satisfies that ∂Π

∂Q = 0.

Proof. Taking the first partial derivative of Π using equation (3.17) with respect to Q, we obtain

∂Π

∂Q
=
H

2
+
Dhv
2P

+Q−1/2

(
Hkσ

2
√
P

+
Hζ

2
√
P
− D [π0ζ − βstcIdσΨ(k)]

2
√
PQ

− D(A+ S)
Q3/2

− D2t2c(pIc − sId)
2Q3/2

)
where H = hb + pIc and ζ = σΨ(k)

(
δ + ∆2−∆1

3

)
.

Denote

G(Q) = Q−1/2

(
Hkσ

2
√
P

+
Hζ

2
√
P
− D [π0ζ − βstcIdσΨ(k)]

2
√
PQ

− D(A+ S)
Q3/2

− D2t2c(pIc − sId)
2Q3/2

)
,

g1(Q) = Q−1/2, (3.18)

and

g2(Q) =
(
Hkσ

2
√
P

+
Hζ

2
√
P
− D [π0ζ − βstcIdσΨ(k)]

2
√
PQ

− D(A+ S)
Q3/2

− D2t2c(pIc − sId)
2Q3/2

)
· (3.19)

Then we have G(Q) = g1(Q)g2(Q) when H(kσ+ζ)

2
√
P

> D
2
√
P

{
− [π0ζ−βstcIdσΨ(k)]

Q − 2
√
P (A+S)
Q3/2 − Dt2c(pIc−sId)

√
P

Q3/2

}
,
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and
∂Π

∂Q
=
HP +Dhv

2P
+G(Q).

It is obvious that g2(Q) is an increasing function of Q for Q > 0.

Since lim
Q→0+

g2(Q)→ −∞ and lim
Q→∞

g2(Q) =
H(kσ + ζ)

2
√
P

> 0, there exists a unique Q = Q01 which satisfies

g2(Q01) = 0 and G(Q01) = 0.
Based on equation (3.18), we can observe that for Q > 0, g1(Q) > 0 and g1(Q) is a decreasing function

of Q. Then, for any Q1 ∈ (0, Q01), Q2 ∈ (0, Q01) and Q1 < Q2, we know that g1(Q1) > g1(Q2) > 0, and
0 > g2(Q1) > g2(Q2).

Hence, g1(Q1)g2(Q1) < g1(Q2)g2(Q2) < 0, i.e., G(Q1) < G(Q2) < 0.
This shows that G(Q) is an increasing function of Q on the interval (0, Q01). Thus, ∂Π

∂Q = HP+Dhv
2P + G(Q)

is also an increasing function of Q on the interval (0, Q01).
For

lim
Q→0+

∂Π

∂Q
= −∞, ∂Π

∂Q

∣∣∣∣
Q=Q01

=
HP +Dhv

2P
> 0

and
∂Π

∂Q
is an increasing function of Q on the interval (0, Q01),

therefore there exists a unique solution to the equation ∂Π
∂Q = 0 on the interval (0, Q01).

Let Q02 denote the solution to the equation ∂Π
∂Q = 0 on the interval (0, Q01), we observe that

(i) for 0 < Q < Q02,
∂Π
∂Q < 0;

(ii) for Q02 < Q < Q01,
∂Π
∂Q > 0;

(iii) for Q > Q01,
∂Π
∂Q > 0. This is because g1(Q) > 0, g2(Q) > 0.

Hence, G(Q) = g1(Q)g2(Q) > 0 and ∂Π
∂Q = HP+Dhv

2P +G(Q) > 0. This means that ∂Π
∂Q < 0 for 0 < Q < Q02 and

∂Π
∂Q > 0 for Q > Q02.

Thus, Π is convex in Q and the minimum value of Π occurs at the unique value Q02.
Now, setting ∂Π

∂Q equal to 0 and solving for Q, we obtain

Q=

√
P 1/2

[
2D(A+S)P 1/2+D2t2c(pIc−sId)P 1/2+ζπ0DQ1/2−DβstcIdσΨ(k)Q1/2−HkσQ3/2−HQ3/2ζ

]
HP+Dhv

·

(3.20)
�

Lemma 3.5. For fixed Q and P , Π is convex in k and the optimal solution to minimize Π occurs at the unique
value which satisfies that ∂Π

∂k = 0.

Proof. Taking first and second partial derivative of Π using equation (3.17) with respect to k, we have

∂Π

∂k
=
HσQ1/2

P 1/2
+
σQ1/2

2P 1/2

(
k√

1 + k2
− 1
)(

H +
π0D

Q

){
δ +

∆2 −∆1

3

}
− DβstcIdσ

2P 1/2Q1/2

(
k√

1 + k2
− 1
)

(3.21)

and

∂2Π

∂k2
=

DβstcIdσ

2P 1/2Q1/2

(
k2

(1 + k2)3/2
− 1√

1 + k2

)
+
σQ1/2

2P 1/2

(
1√

1 + k2
− k2

(1 + k2)3/2

)(
H +

πD

Q

){
δ +

∆2 −∆1

3

}
> 0.

(3.22)
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From equation (3.22), we can observe that Π(Q,P, k) is convex in k.
Now, setting ∂Π

∂k equal to 0 and solving for k, we obtain

k =

√√√√√ 1

4H{
(H+

π0D
Q )(δ+∆2−∆1

3 )−DβstcIdQ

}

(
1− H{

(H+
π0D
Q )(δ+∆2−∆1

3 )−DβstcIdQ

}

) − 1 · (3.23)

�

Lemma 3.6. For fixed Q and k, Π is strictly increasing or decreasing or a concave function when P1 ≥ P ≥ P0.
Therefore, the optimal production rate P to minimize Π is either P0 or P1.

Proof. Taking first partial derivative of Π using equation (3.17) with respect to P , we can obtain

∂Π

∂P
=
DβstcIdσΨ(k)

2Q1/2P 3/2
+
DCvP0

P 2
− HkσQ1/2

2P 3/2
− QDhv

2P 2
− Q1/2σΨ(k)

2P 3/2

(
H +

πD

Q

){
δ +

∆2 −∆1

3

}
. (3.24)

For fixed Q and k, without loss of generality, equation (3.24) can be re-written as:

∂Π

∂P
=

1
2P 2

(
λ− ηQ1/2

√
P
)

(3.25)

where

λ =
DβstcIdσΨ(k)P 1/2

Q1/2
+ 2DCvP0

and

η = Hσk +
Q1/2Dhv
P 1/2

+ σΨ(k)
(
H +

πD

Q

){
δ +

∆2 −∆1

3

}
·

Based in equation (3.25), we can observe that the sign of ∂Π
∂P is determined by the value

(
λ− ηQ1/2

√
P
)

, and

it is obvious that λ > 0. When P1 ≥ P ≥ P0, the maximum value of
(
λ− ηQ1/2

√
P
)

is
(
λ− ηQ1/2

√
P0

)
and

the minimum value of
(
λ− ηQ1/2

√
P
)

is
(
λ− ηQ1/2

√
P1

)
. Since the trend of Π depends on the sign of ∂Π

∂P ,

we discuss the signs of ∂Π
∂P in three cases:

Case 1. If
(
λ− ηQ1/2

√
P0

)
< 0, then ∂Π

∂P < 0 for all P ∈ [P0, P1]. Hence, Π is a strictly decreasing function of
P on the interval [P0, P1].

In this case, P1 is the optimal production rate for minimizing Π.

Case 2. If
(
λ− ηQ1/2

√
P1

)
> 0, then ∂Π

∂P > 0 for all P ∈ [P0, P1]. Hence, Π is a strictly increasing function of
P on the interval [P0, P1].

In this case, P0 is the optimal production rate for minimizing Π.

Case 3. If
(
λ− ηQ1/2

√
P0

)
≥ 0 and

(
λ− ηQ1/2

√
P1

)
≤ 0, then the case shows that Π is a concave function

on the interval [P0, P1].
In this case, the optimal production rate that minimize Π for fixed Q and k can be selected as either P0 or

P1 by comparing Π(Q,P0, k) and Π(Q,P1, k).
Therefore, the optimal production rate is always P0 or P1. �

As analyzed above, there is no closed-form solution to problem (3.11). Hence, iterative algorithm is used to
search for the optimal solutions. In terms of Lemma 3.5, if substituting a given Q into the right-hand side of
equation (3.23), then a unique k can be obtained by equation (3.23). Then, using the present values of Q and k,
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Table 2. Solving process of the model.

∆1 ∆2 Iteration Q k P
0.2 0.2 0 1277.3 2.6570 109 500

1 1278.5 2.4572 109 500
2 1278.5 2.4560 109 500
3 1278.5 2.4560 109 500

0.1 0.4 0 1276.3 2.9361 109 500
1 1277.2 2.7204 109 500
2 1277.2 2.7194 109 500
3 1277.2 2.7194 109 500

0.4 0.1 0 1278.6 2.3450 109 500
1 1280.2 2.1627 109 500
2 1280.2 2.1612 109 500
3 1280.2 2.1612 109 500

a unique value of P can be determined according to Lemma 3.6, i.e., P = argminP {Π(Q,P0, k), Π(Q,P1, k)}.
Next, in terms of Lemma 3.4, if substituting the present values of (Q,P, k) into the right-hand side of equa-
tion (3.20), then a new unique value of Q can be obtained by equation (3.20). With the new value of Q, repeat the
above mentioned process. Once no change occurs in the values (Q,P, k), the optimal solution to problem (3.11)
can be got. Combining the above finding and Lemmas, we propose the following iterative algorithm similar to
Song et al. [35] for solving the problem.

Algorithm

Step 1. Set an error tolerance, ε > 0 (small positive number), go to step 2.

Step 2. Set Q0 =
√

2D(A+S)
H . Compute k by substituting Q0 for Q in equation (3.23). Next, find P using

Lemma 3.6, that is, P = argminP {Π(Q,P0, k), Π(Q,P1, k)}.
Step 3. Compute Q by substituting the present value of k,Q0 and P for k,Q and P respectively in equa-
tion (3.20).
Step 4. If |Q−Q0| < ε, then output the Q,P and k and END the iterations; else let Q0 = Q, go to Step 2.

4. Numerical example

In this section, a numerical example is given to illustrate the above solution procedure, and to highlight
the differences between crisp and the fuzzy cases. The solutions to this example is obtained by using the
computer MatLab software. We consider the values of the following parameters which are used in Song et al. [35]:
D = 36 500 units/year, σ = 955 units/year, A = $4000/order, S = $5000/setup, hb = $500/unit/year, hv =
$100/unit/year, π0 = $1000/unit, P0 = 73 000 units/year, P1 = 109 500 units/year and Cv = $5/unit. For
measuring lead time in day units, it is assumed that there are 365 days in a year.

In addition, for trade credit and fuzzy backorder integrated inventory model, we take p = $600/unit, s = $800,
Id = 0.02, Iv = 0.02, Ic = 0.06 and β = 0.5. Here, we consider three cases: (∆1, ∆2) = (0.2, 0.2), (∆1, ∆2) =
(0.1, 0.4) and (∆1, ∆2) = (0.4, 0.1). Further, we solve each case for lost sale rate δ = 0.5. Given error tolerance
ε = 0.01, the solving process for these cases is summarized in Table 2.

From Table 2, when ∆1 = ∆2 = 0.2 (in this situation, the fuzzy case becomes the crisp case), by comparing
IETC(Q∗, P ∗, k∗), we obtain the optimal solution (Qδ̃, Pδ̃, kδ̃) = (1278.5, 109 500, 2.4560) and the corresponding
minimum expected total annual cost IETC(Qδ̃, Pδ̃, kδ̃) = $969 530. Moreover, when ∆1 = 0.1 and ∆2 = 0.4, i.e.,
the fuzzy number δ̃ = (0.4, 0.5, 0.9), we have (Qδ̃, Pδ̃, kδ̃) = (1277.2, 109 500, 2.7194) and IETC(Qδ̃, Pδ̃, kδ̃) =
$998 550. Note that since C(Q,P, k) = $969 530 is the corresponding minimum expected total annual cost in the
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Table 3. Effects of D on optimal solution.

% of change in D (∆1,∆2) Q k P L Π

+50 (0.2, 0.2) 1649.7 2.6666 109 500 5.4990 1 256 300

(0.1, 0.4) 1648.4 2.9478 109 500 5.4947 1 291 600

(0.4, 0.1) 1618.5 2.3788 73 000 8.0925 1 211 700

RZ = 2.81% R̃Z = 3.55%

+25 (0.2, 0.2) 1468.7 2.5723 109 500 4.8957 1 115 500

(0.1, 0.4) 1467.4 2.8455 109 500 4.8913 1 147 900

(0.4, 0.1) 1445.8 2.2884 73 000 7.2290 1 078 500

RZ = 2.90% R̃Z = 3.32%

–25 (0.2, 0.2) 1075.2 2.3052 109 500 3.5840 814 940

(0.1, 0.4) 1073.9 2.5560 109 500 3.5797 840 150

(0.4, 0.1) 1076.8 2.0241 109 500 3.5893 786 690

RZ = 3.09% R̃Z = 3.47%

–50 (0.2, 0.2) 850.3 2.0941 109 500 2.8343 645 040

(0.1, 0.4) 849.0 2.3277 109 500 2.8300 665 730

(0.4, 0.1) 852.0 1.8316 109 500 2.8400 621 820

RZ = 3.21% R̃Z = 3.60%

crisp case, and hence the absolute relative variation in the fuzzy sense for the minimum expected total cost is

RZ =

∣∣IETC(Qδ̃, Pδ̃, kδ̃)− C(Q,P, k)
∣∣

C(Q,P, k)
× 100% =

|998 550− 969 530|
969 530

× 100% = 2.99%.

Similarly, for the case ∆1 = 0.4 and ∆2 = 0.1, i.e., the fuzzy number δ̃ = (0.1, 0.5, 0.6), we have (Qδ̃, Pδ̃, kδ̃) =
(1280.2, 109500, 2.1612) and IETC(Qδ̃, Pδ̃, kδ̃) = $937 050, and the absolute relative variation in the fuzzy sense
for the minimum expected total annual cost is

R̃Z =
|937 050− 969 530|

969 530
× 100% = 3.35%.

5. Effects of parameters and managerial implications

5.1. Effects of parameters

To further illustrate the model and algorithm, we now study the effects of parameters D,A, S,Cv, hb, σ, s and
π0. The sensitivity analysis is performed by changing the parameters of D,A, S,Cv, hb, σ, s and π0 by +50%,
+25%, −25% and –50%. The effects of parameters are shown in Tables 2 to 9. On the other hand, we summarize
the computational results for different tc = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 in Table 10.
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Table 4. Effects of A on optimal solution.

% of change in A (∆1,∆2) Q k P L Π

+50 (0.2, 0.2) 1375.9 2.3584 109 500 4.5863 1 024 500

(0.1, 0.4) 1374.5 2.6134 109 500 4.5817 1 053 600

(0.4, 0.1) 1377.7 2.0727 109 500 4.5923 991 970

RZ = 2.84% R̃Z = 3.18%

+25 (0.2, 0.2) 1328.1 2.4050 109 500 4.4270 997 540

(0.1, 0.4) 1326.7 2.6641 109 500 4.4223 1 026 600

(0.4, 0.1) 1329.9 2.1149 109 500 4.4330 965 010

RZ = 2.91% R̃Z = 3.26%

–25 (0.2, 0.2) 1227.0 2.5121 109 500 4.0900 940 400

(0.1, 0.4) 1225.7 2.7803 109 500 4.0857 969 380

(0.4, 0.1) 1228.6 2.2121 109 500 4.0953 907 950

RZ = 3.08% R̃Z = 3.45%

–50 (0.2, 0.2) 1173.1 2.5745 109 500 3.9103 909 980

(0.1, 0.4) 1171.9 2.8484 109 500 3.9063 938 930

(0.4, 0.1) 1174.7 2.2686 109 500 3.9157 877 580

RZ = 3.18% R̃Z = 3.56%

Table 5. Effects of S on optimal solution.

% of change in S (∆1,∆2) Q k P L Π

+50 (0.2, 0.2) 1399.2 2.3365 109 500 4.6640 1 037 700

(0.1, 0.4) 1397.7 2.5898 109 500 4.6590 1 066 800

(0.4, 0.1) 1401.0 2.0528 109 500 4.6700 1 005 100

RZ = 2.80% R̃Z = 3.14%

+25 (0.2, 0.2) 1340.2 2.3930 109 500 4.4673 1 004 400

(0.1, 0.4) 1338.8 2.6510 109 500 4.4627 1 033 400

(0.4, 0.1) 1342.0 2.1040 109 500 4.4733 971 840

RZ = 2.89% R̃Z = 3.24%

–25 (0.2, 0.2) 1213.7 2.5271 109 500 4.0457 932 920

(0.1, 0.4) 1212.5 2.7965 109 500 4.0417 961 890

(0.4, 0.1) 1215.3 2.2257 109 500 4.0510 900 480

RZ = 3.11% R̃Z = 3.48%

–50 (0.2, 0.2) 1145.3 2.6084 109 500 3.8177 894 240

(0.1, 0.4) 1144.1 2.8850 109 500 3.8137 923 170

(0.4, 0.1) 1146.8 2.2993 109 500 3.8227 861 850

RZ = 3.20% R̃Z = 3.62%

5.2. Results analysis

In this section, we investigate the proposed model based on the numerical results and sensitivity analyses.

(i) Table 2 shows that the optimal solution for the given data is obtained after three iterations. We observe
that the computational effort and time are small to find the optimal solutions of the given data using the
proposed algorithm.
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(ii) Tables 3 to 5 show that when the parameters D,A and S decrease, the absolute relative variation in
the fuzzy sense for the minimum expected total annual cost increases. On the other hand, when σ and s
decrease, the absolute relative variation in the fuzzy sense for the minimum expected total annual cost also
decreases (see Tabs. 8 and 9).

(iii) From Tables 2 to 11, it is interesting to note that when (∆1, ∆2) = (0.4, 0.1), the order lot-size Q is higher
than (∆1, ∆2) = (0.2, 0.2) and (∆1, ∆2) = (0.1, 0.4), but the IETC(Q,P, k) is lower than others.

Table 6. Effects of Cv on optimal solution.

% of change in Cv (∆1,∆2) Q k P L Π

+50 (0.2, 0.2) 1261.2 2.4744 73 000 6.3060 980 240

(0.1, 0.4) 1259.6 2.7398 73 000 6.2980 1 015 800

(0.4, 0.1) 1263.2 2.1776 73 000 6.3160 940 460

RZ = 3.62% R̃Z = 4.06%

+25 (0.2, 0.2) 1261.2 2.4744 73 000 6.3060 980 240

(0.1, 0.4) 1259.6 2.7398 73 000 6.2980 1 015 800

(0.4, 0.1) 1263.2 2.1776 73 000 6.3160 940 460

RZ = 3.62% R̃Z = 4.06%

–25 (0.2, 0.2) 1278.5 2.4560 109 500 4.2617 954 330

(0.1, 0.4) 1277.2 2.7194 109 500 4.2573 983 340

(0.4, 0.1) 1280.2 2.1612 109 500 4.2673 921 840

RZ = 3.04% R̃Z = 3.40%

–50 (0.2, 0.2) 1278.5 2.4560 109 500 4.2617 9391 20

(0.1, 0.4) 1277.2 2.7194 109 500 4.2573 968 130

(0.4, 0.1) 1280.2 2.1612 109 500 4.2673 906 630

RZ = 3.09% R̃Z = 3.46%

Table 7. Effects of hb on optimal solution.

% of change in hb (∆1,∆2) Q k P L Π

+50 (0.2, 0.2) 1066.7 2.1954 109 500 3.5557 1 170 700

(0.1, 0.4) 1065.4 2.4370 109 500 3.5513 1 206 100

(0.4, 0.1) 1068.5 1.9241 109 500 3.5617 1 131 100

RZ = 3.02% R̃Z = 3.38%

+25 (0.2, 0.2) 1158.3 2.3098 109 500 3.8610 1 074 800

(0.1, 0.4) 1156.9 2.5610 109 500 3.8563 1 107 100

(0.4, 0.1) 1160.0 2.0284 109 500 3.8667 1 038 600

RZ = 3.00% R̃Z = 3.37%

–25 (0.2, 0.2) 1446.5 2.6543 109 500 4.8217 851 610

(0.1, 0.4) 1445.2 2.9346 109 500 4.8173 876 930

(0.4, 0.1) 1422.9 2.3656 73 000 7.1145 821 500

RZ = 2.97% R̃Z = 3.54%

–50 (0.2, 0.2) 1663.1 2.9931 73 000 8.3155 712 830

(0.1, 0.4) 1704.0 3.2596 109 500 5.6800 736 000

(0.4, 0.1) 1664.9 2.6474 73 000 8.3245 684 040

RZ = 3.25% R̃Z = 4.04%
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(iv) Table 11 shows that when trade credit period tc increases, the lead time L and integrated expected total
annual cost IETC(Q,P, k) also increase without affecting production rate P .

(v) From Table 11, we can observe that if the trade credit period tc increases, then the absolute relative
variation in the fuzzy sense for the minimum expected total annual cost increase.

(vi) The results of Tables 2–11 highlighted the differences between crisp and the fuzzy cases.

Table 8. Effects of σ on optimal solution.

% of change in σ (∆1,∆2) Q k P L Π

+50 (0.2, 0.2) 1281.0 2.4533 109 500 4.2700 1 105 100

(0.1, 0.4) 1279.0 2.7173 109 500 4.2633 1 148 700

(0.4, 0.1) 1283.6 2.1603 109 500 4.2787 1 056 400

RZ = 3.95% R̃Z = 4.41%

+25 (0.2, 0.2) 1279.8 2.4546 109 500 4.2660 1 037 300

(0.1, 0.4) 1278.1 2.7183 109 500 4.2603 1 073 600

(0.4, 0.1) 1281.9 2.1596 109 500 4.2730 996 720

RZ = 3.50% R̃Z = 3.91%

–25 (0.2, 0.2) 1259.7 2.4761 73 000 6.2985 897 190

(0.1, 0.4) 1276.3 2.7204 109 500 4.2543 923 490

(0.4, 0.1) 1261.2 2.1796 73 000 6.3060 867 360

RZ = 2.93% R̃Z = 3.32%

–50 (0.2, 0.2) 1258.2 2.4777 73 000 6.2910 814 130

(0.1, 0.4) 1257.5 2.7422 73 000 6.2875 831 890

(0.4, 0.1) 1259.2 2.1815 73 000 6.2960 794 250

RZ = 2.18% R̃Z = 2.44%

Table 9. Effects of s on optimal solution.

% of change in s (∆1,∆2) Q k P L Π

+50 (0.2, 0.2) 1202.6 2.5387 109 500 4.0087 920 800

(0.1, 0.4) 1201.4 2.8094 109 500 4.0047 950 290

(0.4, 0.1) 1204.2 2.2359 109 500 4.0140 887 660

RZ = 3.20% R̃Z = 3.60%

+25 (0.2, 0.2) 1241.2 2.4957 109 500 4.1373 945 500

(0.1, 0.4) 1239.9 2.7626 109 500 4.1330 974 750

(0.4, 0.1) 1242.8 2.1971 109 500 4.1427 912 680

RZ = 3.09% R̃Z = 3.47%

–25 (0.2, 0.2) 1314.9 2.4188 109 500 4.3830 992 970

(0.1, 0.4) 1313.5 2.6790 109 500 4.3783 1 021 700

(0.4, 0.1) 1316.6 2.1276 109 500 4.3886 960 810

RZ = 2.89% R̃Z = 3.24%

–50 (0.2, 0.2) 1350.2 2.3842 109 500 4.5007 1 015 900

(0.1, 0.4) 1348.8 2.6413 109 500 4.4960 1 044 400

(0.4, 0.1) 1352.0 2.0963 109 500 4.5067 984 020

RZ = 2.81% R̃Z = 3.14%
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Table 10. Effects of π0 on optimal solution.

% of change in π0 (∆1,∆2) Q k P L Π

+50 (0.2, 0.2) 1277.6 3.0602 109 500 4.2587 1 036 300

(0.1, 0.4) 1276.5 3.3760 109 500 4.2550 1 071 100

(0.4, 0.1) 1279.0 2.7081 109 500 4.2633 997 530

RZ = 3.36% R̃Z = 3.74%

+25 (0.2, 0.2) 1278.0 2.7745 109 500 4.2600 1 004 800

(0.1, 0.4) 1276.8 3.0653 109 500 4.2560 1 036 800

(0.4, 0.1) 1279.5 2.4498 109 500 4.2650 968 970

RZ = 3.18% R̃Z = 3.57%

–25 (0.2, 0.2) 1279.3 2.0899 109 500 4.2643 929 040

(0.1, 0.4) 1277.8 2.3228 109 500 4.2593 954 700

(0.4, 0.1) 1281.3 1.8280 109 500 4.2710 900 190

RZ = 2.76% R̃Z = 3.11%

–50 (0.2, 0.2) 1263.7 1.6588 73 000 6.3185 870 420

(0.1, 0.4) 1261.4 1.8585 73 000 6.3070 897 150

(0.4, 0.1) 1266.6 1.4325 73 000 6.3330 840 090

RZ = 3.07% R̃Z = 3.48%

5.3. Managerial implications

Today’s high competitive business environment, decision-making is very important as there are consequences
to making the wrong decision. When managers are making decisions on behalf of the company, it is important
that they weigh their options because poor choices can result in legal, financial or brand issues. To make better
decisions, most managers start by defining the problem. Defining the problem removes distractions that are
irrelevant to the decision. Once they have a clear understanding the problem, they can determine alternate ways
of approaching the problem and the problem must first be defined for proper framing. The same decision process
managers use works for day-to-day scenarios as well. However, due to uncertain environment, many managers
experience difficulties in framing the realistic inventory problems as they have not addressed how products are
managed, supplied, and used to improve customer satisfaction. This paper provides optimal decision support
tools for managers in the form of mathematical model that improve operational, tactical, and strategic decision
making in the fuzzy supply chain system. This paper aims to raise the awareness of managers with regard to
realistic inventory problems. A simple and classical differential calculus optimization technique is used to find
the optimal solutions so as to easily pick up the proposed methodology by the managers.

6. Conclusion

An economic vendor-buyer supply chain model is presented in this study for a product with the consideration
of vendor offers permissible delay period to buyer, the replenishment lead time is dependent on both lot size of
the buyer and production rate of the vendor, buyer review his inventory using continuous review policy under
fuzzy backorder environment. Here, we assumed that the lost sales rate is uncertain but possible to describe
with a triangular fuzzy number. This assumption is natural, since triangular fuzzy numbers may be used to
model many kinds of uncertainties in this field of study. Triangular fuzzy numbers are also easy to handle. This
is important when analytical solutions are desired. A mathematical model is derived to investigate the effects of
fuzzy backorder rate and trade credit policy on the continuous review integrated inventory system. A minimax
approach similar to Song et al. [35] is applied to tackle the model and an iterative algorithm is established to
obtain the optimal lot-size, production rate, and lead time to minimize the integrated expected total cost in the
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Table 11. Effects of tc on optimal solution.

tc (∆1,∆2) Q k P L Π

0.1 (0.2, 0.2) 1278.5 2.4560 109 500 4.2617 969 530

(0.1, 0.4) 1277.2 2.7194 109 500 4.2573 998 550

(0.4, 0.1) 1280.2 2.1612 109 500 4.2673 937 050

RZ = 2.99% R̃Z = 3.35%

0.2 (0.2, 0.2) 1746.5 2.0607 109 500 5.8217 1 134 600

(0.1, 0.4) 1744.7 2.2913 109 500 5.8157 1 165 000

(0.4, 0.1) 1748.8 1.8014 109 500 5.8283 1 100 300

RZ = 2.68% R̃Z = 3.02%

0.3 (0.2, 0.2) 2325.8 1.7421 109 500 7.7527 1 362 500

(0.1, 0.4) 2323.3 1.9477 109 500 7.7443 1 394 300

(0.4, 0.1) 2329.0 1.5096 109 500 7.7633 1 326 100

RZ = 2.33% R̃Z = 2.74%

0.4 (0.2, 0.2) 2951.7 1.5044 109 500 9.8390 1 616 500

(0.1, 0.4) 2948.6 1.6925 109 500 9.8287 1 649 800

(0.4, 0.1) 2955.9 1.2902 109 500 9.8530 1 578 000

RZ = 2.06% R̃Z = 2.38%

0.5 (0.2, 0.2) 3600.0 1.3224 109 500 12.0000 1 882 900

(0.1, 0.4) 3596.1 1.4982 109 500 11.9870 1 917 900

(0.4, 0.1) 3605.1 1.1209 109 500 12.0170 1 842 100

RZ = 1.86% R̃Z = 2.17%

0.6 (0.2, 0.2) 4260.5 1.1779 109 500 14.2017 2 156 100

(0.1, 0.4) 4255.8 1.3447 109 500 14.1850 2 192 800

(0.4, 0.1) 4266.7 0.9852 109 500 14.2223 2 112 900

RZ = 1.70% R̃Z = 2.00%

0.7 (0.2, 0.2) 4928.2 1.0594 109 500 16.4273 2 433 200

(0.1, 0.4) 4922.7 1.2197 109 500 16.4090 2 471 700

(0.4, 0.1) 4935.5 0.8730 109 500 16.4517 2 387 500

RZ = 1.58% R̃Z = 1.88%

0.8 (0.2, 0.2) 5600.7 0.9596 109 500 18.6690 2 712 800

(0.1, 0.4) 5594.4 1.1149 109 500 18.6480 2 753 100

(0.4, 0.1) 5609.2 0.7775 109 500 18.6973 2 664 400

RZ = 1.49% R̃Z = 1.78%

0.9 (0.2, 0.2) 6276.4 0.8736 109 500 20.9213 2 994 000

(0.1, 0.4) 6269.2 1.0253 109 500 20.8973 3 036 300

(0.4, 0.1) 6286.1 0.6944 109 500 20.9537 2 942 700

RZ = 1.41% R̃Z = 1.71%

fuzzy sense. A numerical example and sensitivity analysis have been carried out to illustrate the behaviors of
the proposed model.

There are several extension of this work that could constitute future research related to this field. One
immediate probable extension could be to discuss the effect of inflation. Also, we can consider multi-echelon
supply chains such as; single-buyer multiple-vendor, multiple-buyer single-vendor and multiple-buyer multiple-
vendor systems.
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Appendix A.

Definition A.1. A fuzzy set Ã is defined by a membership function µÃ(x) which maps each and every element
of X̃ to real interval [0 1], i.e., µÃ(x) : X̃ → [0 1] where X̃ is the universal set.

Definition A.2. A fuzzy set Ã is called convex if its membership function is a convex function. In other words,
if the relation µÃ (λx1 + (1− λ)x2) ≥Min {µÃ(x1), µÃ(x2)} .

Definition A.3. A fuzzy set Ã is empty if its membership function is identically zero, i.e., µÃ(x) = 0,∀x ∈ X̃.

Definition A.4. A triangular fuzzy number is denoted by δ̃ = (a, b, c) and defined by the following membership
function

µδ̃(x) =


x−a
b−a , if a ≤ x ≤ b
c−x
c−b , if b ≤ x ≤ c

0, otherwise

where a, b, c ∈ R, δ̃ ∈ FN , FN is the set of triangular fuzzy numbers.
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