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AN EXACT APPROACH FOR THE R-INTERDICTION MEDIAN PROBLEM
WITH FORTIFICATION

MARCOS COSTA ROBOREDOM, ARTUR ALVES PESSOA! AND LUIZ AIZEMBERG?

Abstract. We study the r-interdiction median problem with fortification (RIMF), which considers
demand points that are served by facilities. If a facility is interdicted, it can not serve any demand
point, increasing the total system cost. To avoid an interdiction, a facility can be fortified. The problem
consists of fortifying facilities knowing that some facilities will be interdicted. We propose a branch-
and-cut algorithm for the RIMF and several experiments attest that our method outperforms the best
exact algorithm found.
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1. INTRODUCTION

Critical infrastructures are systems composed of facilities, networks and assets whose a minor destruction
or disruption of some component causes a huge negative impact on the whole efficiency. In the United States,
for example, the department of homeland security considers the following sixteen critical infrastructure sectors:
Chemical, Commercial Facilities, Communications, Critical Manufacturing, Dams, Defense Industry, Emergency
Services, Energy, Financial Services, Food and Agriculture, Government Facilities, Nuclear Reactors, Materials,
Waste, Transportation Systems, Water and Wastewater Systems [8].

The History has shown that critical infrastructures are subject to natural disasters, failures or intentional
attacks. These events are called interdictions in the literature. In general, the system is represented by a network
where the infrastructures and the customers are located on the nodes or on the links. The customers are served
by the infrastructures according to some rule, generating a serving cost of the system. In this context, the
interdictor problem consists of maximizing the increase on this cost identifying a subset of infrastructures to
be interdicted. The literature about interdiction problems is vast. [7] proposed integer linear programming
(ILP) formulations for the node interdiction problem on median and covering networks. [11] dealt with the
interdiction problem on hub-and-spoke networks. Recently, [23] reviewed several interdiction models on supply
chain systems. In response to the interdictions, several models have been proposed in the literature aiming
to mitigate the damage caused by those events. [6] proposed an ILP formulation for the protection of median
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networks. To protect power grids, [25] proposed a decomposition approach. [20] proposed an algorithm to identify
the best way to protect a rail intermodal terminal network. [16] proposed a model to defend organizations from
cyber attacks. For a more complete overview of the literature on definitions, models and algorithms to protection
and interdiction problems, we refer to [2,5].

We focus in this paper on the r-interdiction median problem with fortification (RIMF) which was proposed
by [6]. In the RIMF model, we are given n demand points and p facilities where each demand point is served by
the closest facility, generating a serving cost proportional to the distance between them. The total serving cost
of the system is the sum of the serving cost of each demand point. If a facility is interdicted then the demand
points served by this facility skip to the closest facility not interdicted, increasing the total serving cost. A way
to mitigate this damage is fortifying the facilities. If a facility is fortified then it can not be interdicted. The
problem consists of choosing a group of ¢ facilities to fortify knowing that r facilities will be interdicted. The r
facilities to be interdicted are chosen in order to increase the cost of the damaged system as much as possible.

The literature on RIMF is rather recent. The RIMF was proposed by [6], where the authors proposed a mixed
integer formulation with an exponential number of constraints and variables. That formulation could optimally
solve instances with up to p = 20, ¢ = 10 and r = 43. [21] proposed a reformulation for the RIMF and new
techniques that significantly reduce the resulting model size. The main weakness of proposed reformulation is
that it requires a complete enumeration of all possible ways of interdicting r of the p facilities. The authors

optimally solved instances with up to p = 30, ¢ = 7 and r = 7. In [22], the authors proposed a bilevel formulation
ratl_q

and a specialized tree search algorithm where it is necessary to solve at most ~——5~ second level subproblems.
That tree search algorithm could optimally solve instances with up to p = 60, ¢ = 12, and r = 5.

Variants of the RIMF have also been considered. [12] considered uncertainty on the number of facilities
to be interdicted. [1] studied a variant of the RIMF where the number of facilities to be fortified is under a
budget constraint. Besides, the authors consider an unitary cost when the closest facility of a demand point is
interdicted based on the assumption that, in this case, it is necessary to expand the capacity of another facility.
In the RIMF variant studied by [13], a facility can be interdicted just partially and the impact of an interdiction
can propagate across the network. In the variant proposed by [14], the role of facility recovery time on system
performance and the possibility of multiple disruptions over time is taken into account.

The RIMF can be seen as a bilevel integer problem (BIP) where the first level decision chooses the group of
q facilities to fortify and the second one chooses the group of r facilities to interdict. In the literature, there are
a few papers about generic exact methods for BIP. Branch-and-bound algorithms for linear BIPs were proposed
by [4,15], but it is able to solve only instances with up to 10 general integer and 35 binary variables for the first
level problem. Some techniques are based on specific characteristics of the problem, such as a decomposition
method based on super valid inequalities [10,17] and cutting plane algorithms [24]. Recently, [19] derived a
MILP formulation for a competitive location problem named discrete (r|p)-centroid. That formulation allowed
the use of commercial integer programming solvers which opened the room for the resolution of several open
instances.

The contribution of this paper is to propose an exact approach for the RIMF. First, we present a bilevel
formulation for the problem that can be translated into an ILP with a polynomial number of variables and
an exponential number of constraints. To solve the formulation, the constraints are generated on demand in a
branch-and-cut algorithm. Our approach was compared with the best exact one proposed by [22], being faster
mainly for median and large values of p, ¢, and r. Besides, optimal solutions for several open instances are
reported in this paper.

The remainder of this paper is divided as follows. Section 2 presents formally the problem and a bilevel
formulation for it. Section 3 presents the proposed bilevel formulation. Section 4 derives an ILP formulation
for the RIMF and shows how to solve this formulation wia branch-and-cut algorithm. Section 5 presents our
computational experiments. Finally, Section 6 summarizes our conclusions.

31t is usual to measure the complexity of instances in the RIMF literature by the values of p, g, and 7, and not by n as usual.
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2. THE PROBLEM

Consider n demand points and p facilities where the demand w; of each demand point j (j = 1,...,n) is
completely served by the closest facility. The distance between a facility ¢ (¢ = 1,...,p) and a demand point j
is denoted by d;;, yielding a serving cost of ¢;; = w;d;;. The total serving cost of the system is given by the
sum of the serving costs of all demand points. If a facility is interdicted, then the demand points served by this
facility skip to the non-interdicted facility that causes the smallest increase in the serving cost of the system.
A way to avoid part of this cost increase is to fortify a set of facilities. Fortified facilities cannot be interdicted.
The problem consists of choosing a group of ¢ facilities to fortify knowing that r facilities will be interdicted.
When choosing which facilities to fortify, one aims to minimize the final serving cost of the system, assuming
that such a cost is maximized when the interdicted facilities are chosen.

The formulation proposed by [22] to solve this bilevel optimization problem is present in the following. Let
Vij = {k € I|ck; > ci;} be the set of all facilities that are farther from the customer j than facility ¢. Define
also the following decision variables:

v 1 if the facility ¢ is fortified
10 otherwise

L 1 if the facility ¢ is the cheapest not interdicted facility to the demand point j
77710 otherwise

1 if the facility ¢ is interdicted
37; = .
0 otherwise

The formulation follows.

mxinZZcijzij (2.1)

i€l jeJ
s.t.Zzi =q (2.2)
i€l
z;€{0,1}, Viel (2.3)
H;fi;XZ Z CijZZ‘j (24)
il jed
st Y zij=1, VjelJ (2.5)
i€l
Zsi =r (2.6)
i€l
> ay<si, VjeJViel (2.7)
heVi;
s; €{0,1}, Viel .
zi; €{0,1}, VjeJViel (2.10)

The first level objective function (2.1) shows that the system planner’s goal is to minimize the total serving
cost after the fortifications and interdictions. The constraint (2.2) indicates that ¢ facilities are fortified. The
second level objective function (2.4) shows that the interdictor aims to maximize the total serving cost. The set
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of constraints (2.5) ensures that just one facility serves a customer j. The constraint (2.6) shows that r facilities
are interdicted. The constraints (2.7) ensure that each customer j must be served by the cheapest non-interdicted
facility. Finally, the constraints (2.8) indicate that a facility ¢ cannot be fortified and interdicted at the same
time.

For fixed z satisfying (2.2) and (2.3), let H(z) be the optimum value for (2.4) - (2.10). In this case, the
previous formulation can be rewritten as len H(z) subject to (2.2) and (2.3), as presented in [22].

3. PROPOSED BILEVEL FORMULATION

In this section, we present a new bilevel formulation for the problem. The main advantage of our formulation
is to model the interaction between the fortification and interdiction strategies only through the objective
functions. This means that no constraint in one of the levels uses a decision variable of the other level. Moreover,
the objective functions (which are represented by the same expression with opposite signs) are bilinear, i.e. it
becomes linear if we fix all variables of either the system planner or the interdictor. As a result, we reduced
the problem to a min-max bilinear optimization problem. This structure will permit to derive an equivalent
formulation with a unique level, a polynomial number of variables and an exponential number of constraints.

The proposed bilevel formulation for the RIMF uses four sets of binary variables: z,y,y’,s and t. The
variables x and s receive the same definition that in the formulation (2.1)-(2.10). The other variables receive
the following definition:

, 1 if none of the r closest facilities to the demand point j are fortified
0 otherwise
{1 if the facility ¢ is interdicted
i = .
0 otherwise
1 if the facility ¢ is interdicted and any closer facility to the demand point j is also
ty; = interdicted
0 otherwise
We only create the variable y;; when the facility ¢ is one of the r closest facilities with respect to the demand
point j. It is not necessary to create all other y variables because, since only r facilities are interdicted, fortifying
a facility farther from the demand point j than its rth closest facility does not change the cost of serving j.
To represent these cases (where the fortified facilities cannot change the cost of serving j), we use the binary
variables yg Similarly, we also only create the variable ¢;; when the facility ¢ is one of the r closest facilities
with respect to the demand point j. It is easy to see that the remaining variables would be fixed to zero by

definition.
Now, let ¢(i, j) indicate the ith closest facility to the demand point j. The formulation follows.

min Cly,y'st) =D o + DD Letis (yé- + ) y@<k,j>j> (Cotitrig = Cotiys)  (3:1)

jeJ jedi=1 k=i+1

s.t. le =q (3.2)

iel

ytp(i,j),j S mgﬁ(i,j)’ V] S J, Vi = ]., 2, ceey T (33)

=1



AN EXACT APPROACH FOR THE R-INTERDICTION MEDIAN PROBLEM WITH FORTIFICATION 509

x; € {0,1}, Viel (3.5)

y},y¢(i7j)7j e{0,1}, VjeJVi=1,2,...,r (3.6)

max  C(y,y',1) (3.7)

s.t. Zsi =r (3.8)
icl

t§9(ivj)7j S sg@(i,j)? VJ € J, Vi = 2, 3, ceey T (39

to(1y)i = Se(ty), Vi€ J
to(ig)i = totirrg)iy VI E€ESLVi=1,2,...,r—1
s; €4{0,1}, Viel

tcp(i,j),j S {0, 1}, VJ S J7VZ = 1,27 e, T

The first level objective function (3.1) indicates the total serving cost of the system after the fortifications and
the interdictions. The first part of this function is a constant, representing the total cost if each demand point
is served by the closest facility, while the second part indicates the cost increase when each closest facility to
each demand point is interdicted. Constraint (3.2) ensures that ¢ facilities are fortified. Constraints (3.3) ensure
that y,(;,;),;¥i = 1,...,7 can only be 1 if 7 is fortified. Constraints (3.4) ensure that exactly one facility can
be considered as the closest fortified for each given demand point j. The second level objective function (3.7)
indicates that the interdictor aims to maximize the total serving cost. Constraint (3.8) ensures that r facilities
are interdicted. Constraints (3.9) and (3.10) ensure that ¢; ; can only be 1 if ¢ is interdicted. Constraints (3.11)
ensure that ¢; ; can only be 1 if all closer facilities of j are also interdicted. Note that the model does not
avoid fortification and interdiction at the same time. In this case, any customer can be covered by this facility
normally.

4. THE BRANCH-AND-CUT ALGORITHM

In this section, we present the newly proposed algorithm, referred to as B&C-RIMF. As previosly mentioned,
the formulation (3.1)—(3.13) has the following three characteristics: the first level variables z, y and y" do
not appear in the second level constraints, the second level variables s and ¢ do not appear in the first level
constraints, and the objective functions are opposite and bilinear. As a min-max bilinear formulation with linear
constraints, it leads to the following ILP formulation. Let F' be the set of values that can be assigned to the
variable vectors s and t satisfying the constraints (3.8)—(3.13). Note that each element of F represents a feasible
interdiction strategy. We replace the second level problem (3.7)—(3.13) by a set of linear inequalities over an
auxiliary variable z that represents the objective function. The proposed reformulation follows.

min 2 (4.1)
s.t. (3.2)—(3.6) (4.2)

z>C(y,y,t), Y(s,t)€F

Consider a relaxed model (referred to as the master problem) that contains all constraints (3.2)—(3.4), and
a initially empty subset of the constraints (4.3). The missing constraints (4.3) may be inserted on demand by
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a cut separation routine. Given a feasible solution (Z,%,v’,z) € {0, 1}p+(r+1)" X R to the master problem, a
violated constraint (4.3) can be found by solving the ILP (3.7)—(3.13), where ¢, and 3/ are treated as constants,
taking advantage of the fact that the objective function is bilinear. This problem is referred to as the separation
subproblem. Let s* and ¢t* be the optimal values of the variable vectors s and ¢, respectively, for the separation
subproblem solved in a given iteration. if the constraint z > C(y,y’,t*) is violated in the master problem, then
it should be inserted on it. Otherwise, the solution represented by (Z,%,%/, ) satisfies all constraints (4.3).

However, it may be inefficient to wait for the full resolution of the master problem to add new constraints to
it. The proposed algorithm overcomes this limitation by allowing to solve the separation subproblems associated
to intermediary solutions found through the execution of the ILP solver. As a result, the B&C-RIMF is a branch-
and-cut method built on the top of the algorithm implemented by any general purpose ILP solver. In this case,
given a feasible solution to a linear relaxation (z,%,y’, z) € [0, 1]”*(”1)” X R of the master problem, a violated
constraint to be inserted on it can be found in the same way as before. Note that the fact that z, ¢, and 3’
are not necessarily integer does not impact the separation algorithm. The constraints (4.3) are added in a cut
callback provided by the solver, which is responsible to manage all the branch-and-bound tree.

The separation subproblem can be executed for both integer and fractional relaxed solutions. Separating
cuts for fractional relaxed solutions can strengthen the bound, reducing the number of nodes of the branch-
and-bound tree. On the other hand, it increases the number of executions of the separation subproblems. The
following cut separation strategy is then used to speed up the method. In each node of the tree, we consider the
current optimality gap, which is provided by the solver. If this gap is greater than a given parameter €, we solve
the separation subproblem associated to (4.3) regardless of whether Z, 7, and 3/ are integer or not. Otherwise,
if this gap is smaller than or equal to €, the separation is only solved if all those variables have integer values.
Note that skipping the separation subproblem when Z, 7, and 3 are all integer is not possible since it may let
the ILP solver accept infeasible solutions as valid. We set the value of € according to the instance size.

Algorithm 1 describes the steps of our method, where € is a given parameter. The algorithm starts in the line
10 where the ILP (4.1)—(4.2) is built. To solve the problem (line 11), we use a commercial ILP solver where we
set the procedure SEPARATE as a cut callback. The solver calls this procedure at each node of the classical
branch-and-bound algorithm or whenever it finds a new integer solution. First the procedure SEPARATE, tries
to find a violated cut (4.3) by solving the ILP (3.7)—(3.13) fixing the current solution. To avoid some ILP
optimizations, we do not solve (3.7)—(3.13) when the current solution is fractional and the relative difference
between the current cost z and the best feasible cost does not exceed e.

Algorithm 1. B&C-RIMF (I, J, ¢, q, 7€)
1: procedure SEPARATE(Z, 7,/ , 2, €)
2 if (current gap > €) or ((Z,¥,y’) are integer) then
3 Solve the ILP (3.7) - (3.13) for fixed y = § and y' = ¢/
4 Let (s*,t*) be the obtained optimal solution.
5: if C(y,y’,t*) > z then
6: add z > C(y,y’,t*) to the ILP as a cut.
7 end if
8 end if
9: end procedure

10: Build the Master ILP (4.1)—(4.2).
11: Call the ILP solver with the Procedure SEPARATE as a cut callback.

5. COMPUTATIONAL EXPERIMENTS

In this section, we report computational experiments with the instances used by [22]. In order to show the
robustness of our method, we also test it on larger instances. The experiments include tests on the 150-node



AN EXACT APPROACH FOR THE R-INTERDICTION MEDIAN PROBLEM WITH FORTIFICATION 511

London [9] and 316-node Alberta [3] benchmark data sets. The London and Alberta data sets are composed of
respectively 150 nodes (n = 150) and 316 nodes (n = 316). To generate the instances, we varies the parameters
as follows: p € {25, 30,40, 50,60}, ¢ € {3,4,5,6,7,8,9,10,12} and r € {2,3,4,5,6,7,8,9,10}. In all tests, the p
facilities are initially located at the optimal p-median sites of the data set. We set ¢ = 0.05 because this value
gives better results for the set of instances tested. We used a PC with Intel Core i7-4790 3.60GHz CPU and
3 GB of memory running the Windows 8 operating system, CPLEX 12.5.1 and the C++ language. A single
thread was used for the tests. Sections 5.1 and 5.2 show respectively the comparison between the proposed
method B&C-RIMF and the Implicit Enumeration proposed by [22], and statistics of our method for several
instances.

5.1. Comparison between our method and the best exact one.

In this subsection, we present a comparison of the computational performance of B&C-RIMF against the
Implicit Enumeration (IE) proposed by [22] for London instances with p > 40. The IE results for Alberta
instances with p > 40 were not available. Table 1 shows the comparison for instances with p € {40,50,60} and
small values of r(r < 5), while Table 2 shows this comparison for instances with p = 40 and large values of
r(r > 5). The following headers are used for the columns: p, ¢ and r identify the instance, Time(s) indicates
the computational time in seconds consumed by each method, and W%IMF indicates the ratio between the
computational time consumed by the IE and our method. For each instance, we marked in bold the smallest
computational time. The results for the IE were obtained directly from the authors of [22]. These results were
carried out in a HP 2500 workstation, with an Intel(R) Xeon(R) CPU E5630 @ 2.53 GHz processor and 6GB
RAM using CPLEX 12.5. To overcome the difference between the machines specifications, we took a Passmark
scores for the two processors at the website of the PassMark Software [18] and calculated a ratio between
them. The Passmark scores obtained by our processor and the one used by [22] was respectively 9997 and 5166,
indicating that our processor is about 1.935 times faster. Therefore we divided each time obtained by [22] by
that previous ratio.

To complement the comparative results presented in Tables 1 and 2, we present the Table 3 with the average
ratios for each pair of values for p and r for instances with p € {40, 50,60} and small values of r.

Table 3 shows that the average ratio increases as the value of r also increases. Besides, Tables 1 and 2 show
the B&C-RIMF is slower than the IE for almost instances with » < 3. On the other hand, for instances r > 4,
B&C-RIMF is faster for the most instances. More specifically, our method was faster for all the instances with
r > 6. This can be explained by the fact that our method performs expensive ILP optimizations to separate
cuts in order to obtain good lower bounds in the nodes that are close to the root. On the one hand, it reduces
the asymptotic increase of running time as a function of the value of r, on the other hand it increases the
absolute running time for small instances. As a result, on instances with small values of r, where the number of
enumerated solutions is not so big, the reduction on the number of alternatives tested does not pay the increase
in the time required to process each alternative. The opposite is observed for large values of r. In short, the
comparison indicated that our method is clearly more suitable for instances with r > 4.

5.2. Statistics of our method for several instances.

In this section we present statistics of B&C-RIMF for several instances. The Table 4 shows the optimal cost
and the total computational time in seconds spent by our method for Alberta instances with p = 40 or p = 60
and r > 5. In this Table, we can note that the hardest instance spent just 51.14 seconds.

The London instances are significantly harder. So we present more detailed results of B&C-RIMF for them.
Tables 5 and 6 these results for instances with r > 5 and p = 40 and p = 60 respectively. It is valid to
emphasize that the optimal solutions for those instances are being presented by the first time in this paper.
The following new headers are used for the columns: Root time shows the total CPU time in seconds spent
at the root node. Root gap(%) indicates the gap between the root node relaxation lower bound and the value
in the column Optimal value, #Nodes indicates the total number of nodes created by the branch-and-cut tree,
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TABLE 1. Comparing runtime between our method and [22] (IE) for London instances with
p € {40,50,60} and small values of r.

Instance Optimal Time
D q T Value This Paper 1E m
40 4 2 75676.41 0.89 0.14 0.16
40 6 2 75418.05 2.27 0.43 0.19
40 8 2 74847.58 4.09 1.08 0.26
50 5 2 60168.5 1.81 0.22 0.12
50 8 2 59225.56 6.20 0.89 0.14
50 10 2 58553.08 7.94 1.70 0.21
60 6 2 46563.64 3.47 0.59 0.17
60 9 2 45889.14 9.98 1.22 0.12
60 12 2 45310.07 12.16 2.03 0.17
40 4 3 81766.35 3.25 1.19 0.37
40 6 3 81424.85 11.23 4.55 0.40
40 8 3 80370.63 31.13 23.95 0.77
5 5 3 65160.41 6.69 2.40 0.36
50 8 3 63552.59 21.02 14.93 0.71
50 10 3 62261.17 29.77 48.36 1.62
60 6 3 50809.54 14.13 5.46 0.39
60 9 3 49697.61 36.34 35.99 0.99
60 12 3 48814.47 64.84 170.24 2.63
40 4 4 88495.16 5.84 4.05 0.69
40 6 4 87178.67 17.19 28.73 1.67
40 8 4 86182.77 111.25 225.56 2.03
50 5 4 69918.29 15.44 8.31 0.54
50 8 4 68302.73 54.16 84.48 1.56
50 10 4 67026.53 109.05 324.57 2.98
60 6 4 54621.16 26.91 17.12 0.64
60 9 4 53509.22 106.92 172.29 1.61
60 12 4 52011.79 202.81 894.47 4.41
40 4 5 94687.71 17.27 11.01 0.64
40 6 5 93286.72 58.61 106.61 1.82
40 8 5 91664.38 204.16 870.06 4.26
50 5 5 74694.85 30.81 30.04 0.98
50 8 5 73055.22 152.61 500.08 3.28
50 10 5 71140.4 308.39 2831.10 9.18
60 6 5 58615.76 61.05 63.48 1.04
60 9 5 56932.06 259.27 814.02 3.14
60 12 5 55469.28 768.69 5740.46 7.47

#Sep and #Cuts indicate respectively the total number of separation problems solved and the total number
of cuts generated during the algorithm. Sep Time(s) and Total time(s) indicate the total CPU time in seconds
consumed by respectively the ILP separations and the complete branch-and-cut algorithm.

In Tables 5 and 6 we can note that the B&C-RIMF is able to solve large instances in reasonable computational
time. Just for three instances, it was necessary to spend more than one hour to find the optimal solution. Another
interesting observation is that the total time spent with the separation problems is not so high even for large
instances.
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TABLE 2. Comparing runtime between our method and [22] (IE) for London instances with
p = 40 and large values of r.

Instance Optimal Time(s)
D q r Value This Paper 1E m
40 4 6 101 598.45 18.13 30.51 1.68
40 4 7 108 225.05 31.98 56.39 1.76
40 4 8 115080.07 26.91 109.18 4.06
40 4 9 122170.27 96.14 199.77 2.08
40 4 10 130408.32 80.32 326.57 4.07
40 6 6 100078.89 124.73 357.07 2.86
40 6 7 106 352.95 180.59 773.16 4.28
40 6 8 113960.94 337.52 1825.01 5.41
40 6 9 120606.98 528.11 3669.96 6.95
40 6 10 126 403.82 454.11 6223.10 13.70
40 8 6 97508.17 529.31 3405.67 6.43
40 8 7 102 380.26 410.33 8705.57 21.22
40 8 8 108230.84 727.22 22817.15 31.38
40 8 9 113464.87 832.94  52033.38 62.47
40 8 10 118 595.86 1131.55 75924.43 67.10
40 10 6 94 526.17 564.86  24629.68 43.60
40 10 7 99124.14 854.09 72 302.93 84.65
40 10 8 103 738.66 1422.69 191542.72 134.63
40 10 9 108 677.52 1897.73 432327.93 227.81

TABLE 3. Average ratios for London instances with p € {40,50,60} and small values of r .

(p,r) 2 3 4 5
40 0.21 0.51 146 2.24
50 0.16 0.90 1.69 4.48
60 0.15 1.33 2.22 3.88

The main weakness observed in the algorithm are the root gaps. Consequently, the number of branch-and-
bound tree nodes necessary to guarantee the optimal solution is also high. For the largest two instances, for
example, this number exceeded one million nodes.

6. CONCLUSIONS

In this paper we proposed an exact approach for the RIMF named B&C-RIMF. The main advantage of that
algorithm is the use of an ILP formulation with a polynomial number of variables and exponential number
of constraints, which allows the embedding into efficient commercial ILP solvers. The method proposed is
compared with the best exact one found in the literature, presenting good comparative results, mainly for the
large instances.

Although the results are good, some improvements can be made in future researches, like the use of strength-
ened valid inequalities, which may reduce the root gaps and consequently the total execution time.
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TABLE 4. Statistics of our method for Alberta instances with p = 40 or p = 60 and > 5.

Alberta

Instance p =40 p =60

g r  Optimal Value time total(s) Optimal Value time total(s)
4 7 39621 861 7.44 25459477 4.95
4 8 44 466 470 12.09 28815123 11.45
4 9 46 681 810 13.27 33497305 15.83
4 10 49028457 11.81 35935 342 18.08
6 7 28 282324 9.67 16910414 6.28
6 8 30456 785 13.59 18 309 306 6.98
6 9 32255407 17.42 19 841 887 10.01
6 10 34429 868 14.17 22139538 20.95
8 7 23120651 7.88 14847753 15.09
8 8 24 872232 12.92 16 281 149 23.67
8 9 26578611 12.84 17551630 27.63
8 10 27965427 15.14 18751 848 32.95
10 7 21050525 18.28 14041243 44.66
10 8 22258377 28.14 14808043 37.92
10 9 23449 581 30.52 15641030 51.14
10 10 24618777 38.12 16 466 064 48.52

TABLE 5. Statistics of our method for London instances with p = 40 and r > 5.

Instance  Optimal Root Branch and bound tree

P qr value time(s) gap(%) #Nodes #Sep #Cuts Sep time(s) Total time(s)
40 4 6 101598.45 5.48 8.42 1762 17 15 8.69 18.13
40 4 7 108225.05 14.58 8.71 1519 23 20 22.72 31.98
40 4 8 115080.07 9.5 8.60 1318 21 18 17.33 26.91
40 4 9 122170.27 18.38  8.08 1627 57 52 77.22 96.14
40 4 10 130408.32 13.44 8.72 1159 57 50 60.94 80.30
40 6 6 100078.89 8.84 10.31 26706 82 78 30.52 124.73
40 6 7 106352.95 14.73 11.37 20670 108 103 90.73 180.59
40 6 8 113960.94 10.78 11.99 30628 256 250 174.98 337.52
40 6 9 120606.98 17.03 13.29 41550 366 345 267.91 528.11
40 6 10 126403.82 16.38 13.43 32718 314 308 222.20 454.11
40 8 6 97508.17 722 1174 113316 311 305 106.56 529.31
40 8 7 102380.26 8.16  12.68 53051 290 284 153.64 410.30
40 8 8 108230.84 1242 12.56 106010 412 405 181.39 727.22
40 8 9 113464.87 20.27 13.03 83658 586 578 273.30 832.94
40 8 10 118595.86 9.48  14.26 84590 812 806 363.09 1131.50
40 10 6  94526.17 8.42 1274 109972 402 392 98.09 564.80
40 10 7 99124.14 21.59 11.61 100325 811 800 246.95 854.09
40 10 8 103738.66 6.95 13.58 199585 864 856 209.08 1422.69
40 10 9 108677.52 6.63 14.71 267033 900 890 223.88 1897.73
40 10 10 113149.70 9.38 14.88 213973 1452 1438 363.55 2482.63
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TABLE 6. Statistics of our method for London instances with p = 60 and r > 5.

Instance  Optimal Root Branch and bound tree

P q r value time(s) gap(%) F#Nodes #Sep #Cuts Time sep(s) Time total(s)
60 4 6 6376197 10.38 8.18 1937 31 29 15.09 28.77
60 4 7 69139.79 13.36 10.52 4441 44 41 40.44 63.39
60 4 8 74730.36 10.09 12.48 3969 92 87 80.08 116.39
60 4 9 79351.34 19.13 11.63 8093 83 78 129.08 174.72
60 4 10 84507.98 18.88 12.05 6990 100 91 142.63 192.98
60 6 6 62915.66 10.19 11.44 7940 148 143 60.63 117.09
60 6 7 66681.65 16.91 11.97 10551 138 131 112.00 181.48
60 6 8 70687.26 12.38 14.29 23342 181 175 153.41 285.25
60 6 9 74504.22 24.92 10.68 27052 142 139 178.66 315.14
60 6 10 79387.74 17.66 11.85 42603 192 188 233.11 453.06
60 8 6 61129.04 14.09 11.82 36721 264 258 105.09 282.30
60 8 7 64769.70 19.28 11.84 82781 274 268 169.94 534.81
60 8 8 69195.09 16.77 12.64 164055 564 559 376.61 1181.86
60 8 9 73254.84 1589 14.80 248572 826 821 806.45 2158.44
60 8 10 77280.88 11.33 16.11 293539 1085 1073 1026.42 2916.61
60 10 6 60201.28 10.21 15.25 262097 795 786 337.28 1469.36
60 10 7 64273.21 17.87 1399 651907 1134 1130 536.98 3413.61
60 10 8 67807.04 10.69 15.50 810884 1792 1786 1024.16 5719.19
60 10 9 71453.90 24.28 1525 1155956 2133 2123 1299.33 9137.80
60 10 10 75006.42 13.50 16.31 1275396 3022 3017 2020.66 14204.44
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