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A NEWTON METHOD FOR CAPTURING PARETO OPTIMAL SOLUTIONS
OF FUZZY MULTIOBJECTIVE OPTIMIZATION PROBLEMS

Mehrdad Ghaznavi1,∗, Narges Hoseinpoor1 and Fatemeh Soleimani1

Abstract. In this study, a Newton method is developed to obtain (weak) Pareto optimal solutions
of an unconstrained multiobjective optimization problem (MOP) with fuzzy objective functions. For
this purpose, the generalized Hukuhara differentiability of fuzzy vector functions and fuzzy max-order
relation on the set of fuzzy vectors are employed. It is assumed that the objective functions of the fuzzy
MOP are twice continuously generalized Hukuhara differentiable. Under this assumption, the relation-
ship between weakly Pareto optimal solutions of a fuzzy MOP and critical points of the related crisp
problem is discussed. Numerical examples are provided to demonstrate the efficiency of the proposed
methodology. Finally, the convergence analysis of the method under investigation is discussed.
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1. Introduction

Many real decision situations can not be characterized by a single measure of their performance, but rather by
multiobjectives, often conflicting among themselves. This fact has led to the growth of the field of multiobjective
optimization. Multiobjective optimization has been applied in many areas of science, including engineering,
economics, medicine and transportation. From a large amount of publications in the field of multiobjective
optimization, we refer to [1, 2, 8, 10,11,24,25,27], and references therein.

In the crisp optimization problems, all the coefficients of the mathematical formulation appear with exact real
numbers. However, since decision makers often face problems with vague and incomplete information, most of
the realistic optimization problems must be characterized with inexact (or fuzzy) parameters. The optimization
problems with fuzzy parameters are called fuzzy optimization problems. Although there are many methods for
solving crisp optimization problems, these methods can not be easily applied to fuzzy optimization problems.
The first attempt for solving fuzzy optimization problems was done by Bellman and Zadeh [6]. Over the past
years, many scholars have applied fuzzy set theory in optimization problems. We refer to [4,13,21–23,28,29,33,41]
that have been done in this direction.

Zimmermann [40] utilized fuzzified constraints and objective functions for multiobjective linear programming
problems. Afterwards, a lot of papers and books dealing with fuzzy multiobjective optimization were published.
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As an example, for solving a multiobjective optimization problem with fuzzy coefficients, Wu [35,36] transformed
the problem into a vector optimization problem by applying embedding theorem and a suitable scalarization
problem. Moreover, the Karush-Kuhn-Tucker optimality conditions for multiobjective optimization problems
with fuzzy-valued and interval-valued objective functions were considered in [16, 37, 38]. Furthermore, several
applications and different methods to solve a given fuzzy (linear) multiobjective optimization problem can be
found in [3, 18–20,32,34,39].

Newton method for solving a fuzzy single objective optimization problem was proposed by Pirzada and
Pathak [26]. In the developed approach, they utilized the notation of Hukuhara differentiability of fuzzy-valued
functions and max-ordering relation defined on the set of fuzzy numbers. Thereafter, Chalco-Cano et al. [7]
utilized the concept of generalized Hukuhara differentiability of fuzzy functions and resolved some difficulties of
the Pirzada and Pathak’s method [26]. More recently, Ghaznavi and Hoseinpoor [12] obtained a quasi-Newton
approach for solving fuzzy optimization problems. They extended the BFGS method for fuzzy optimization prob-
lems. Moreover, Ghosh [14,15] proposed (quasi-)Newton methods for finding efficient solutions of optimization
problems with interval-valued objective functions.

Now, in this paper, motivated by the works of [7, 9, 12, 26], we propose a Newton method for solving an
unconstrained fuzzy multiobjective optimization problem. In fact, we generalize the idea given in [7] to fuzzy
multiobjective optimization problems. The objective functions of the fuzzy MOP are fuzzy-valued. Using the
concept of gH-differentiable fuzzy vector function, we find the (weak) Pareto optimal solutions of a fuzzy MOP
specified by the fuzzy max-order relation defined on the set of fuzzy numbers. We propose a Newton-method for
solving a fuzzy multiobjective optimization problem. In the proposed algorithm, we assume that the objective
functions of the fuzzy MOP are twice continuously generalized Hukuhara differentiable.

The remainder of the paper is demonstrated in the following sequence: In Section 2, we recall some necessary
terminologies and concepts related to fuzzy set theory that are used throughout the paper. In Section 3 we present
some results on gH-differentiability of fuzzy vector functions. We explain some results in fuzzy multiobjective
optimization problem in Section 4. The proposed Newton method is given in Section 5. To demonstrate efficiency
of the proposed methodology, some illustrative examples are provided in Section 6. Finally, the conclusions and
some suggestions for future research are given in Section 7.

2. Preliminaries and basic definitions

In this section, we review some of the basic definitions and terminologies of fuzzy set theory which are used
in the remaining parts of the paper.

Definition 2.1. [4] Let R be the set of real numbers and A be a subset of R. Then, the corresponding indicator
function of A is given by (Fig. 1)

χA(x) =

{
1 x ∈ A
0 x /∈ A.

Definition 2.2. [4] Let X ⊆ R be the universe whose generic element be denoted by x. A fuzzy subset u in X
is a function u : X → [0, 1]. A fuzzy set u is characterized by its membership function µu : X → [0, 1], which
associates with each x in X, a real number µu(x) in [0, 1] (Fig. 1).

Definition 2.3. [41] Let u be a fuzzy set in X and α ∈ [0, 1]. The α-cut or α-level of the fuzzy set u is the
crisp set [u]α given by [u]α = {x ∈ X : µu(x) ≥ α} (Fig. 2).

Definition 2.4. [41] Let u be a fuzzy set in X. Then, the support of u denoted by S(u), is the crisp set given
by S(u) = {x ∈ X : µu(x) > 0}.

Definition 2.5. [4] (Subset) A fuzzy set A is a subset of a fuzzy set B, or A is contained in B if µA(x) ≤ µB(x)
for all x ∈ X. This is denoted as A ⊆ B (Fig. 3).



A NEWTON METHOD FOR FUZZY MULTIOBJECTIVE OPTIMIZATION PROBLEMS 869

x

µ(x)
χ(x)

1

0

Figure 1. Indicator function and membership function.

Figure 2. α-level set.

Figure 3. Subset of a fuzzy set (A ⊂ B).

Definition 2.6. [41] (Standard complement) The standard complement of a fuzzy set A is another fuzzy set,
denoted by Ac whose membership function is defined as µA′(x) = 1− µA(x) for all x ∈ X (Fig. 4).

Definition 2.7. [4] (Standard union) The standard union of two fuzzy sets A and B is a fuzzy set C whose
membership function is given by

µC(x) = max (µA(x), µB(x)) ,

for all x ∈ X (Fig. 5).

Definition 2.8. [4] (Standard intersection) The standard intersection of two fuzzy sets A and B is a fuzzy set
D whose membership function is given by

µD(x) = min (µA(x), µB(x)) ,

for all x ∈ X (Fig. 5).
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Figure 5. Standard union and standard intersection.

Definition 2.9. [41] (Convex fuzzy set) A fuzzy set A in Rn is called a convex fuzzy set if its α−cuts Aα are
(crisp) convex sets for all α ∈ (0, 1].

Definition 2.10. [4] (Bounded fuzzy set) A fuzzy set A in Rn is called a bounded fuzzy set if its α−cuts Aα
are (crisp) bounded sets for all α ∈ (0, 1].

A fuzzy set A in Rn which is both bounded and convex is called bounded convex fuzzy set. The following result
gives an equivalent definition of a convex fuzzy set.

Theorem 2.11. [41] A fuzzy set A in Rn is a convex fuzzy set if and only if for all x1, x2 ∈ Rn and 0 ≤ λ ≤ 1,

µA (λx1 + (1− λ)x2) ≥ min (µA(x1), µA(x2)) .

Definition 2.12. [41] A fuzzy set u in R is called a fuzzy number if it satisfies the following conditions:

(i) u is normal,
(ii) [u]α is a closed interval for every α ∈ [0, 1],
(iii) the support of u is bounded.
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Figure 6. Triangular fuzzy number.

The set of all fuzzy numbers on R is denoted by F (R). By definition of fuzzy numbers, we can see that [u]α is
a compact interval in R, for all α ∈ [0, 1], and therefore the α−level sets of a fuzzy number u are denoted by
[u]α = [uα, uα], where uα, uα ∈ R for all α ∈ [0, 1].

Let u and v be two fuzzy numbers. Using their α-level sets, the addition and scalar multiplication in F (R) are
defined as follows, respectively:

[u+ v]α = [uα + vα, uα + vα], (2.1)

and
[λu]α = [min {λuα, λuα} ,max{λuα, λuα}] , (2.2)

where λ ∈ R and α ∈ [0, 1].

Definition 2.13. [41] A fuzzy number u is called a triangular fuzzy number, if its membership function is given
by (Fig. 6):

µu(x) =


x− a
b− a , a ≤ x ≤ b,
c− x
c− b , b ≤ x ≤ c,
0, otherwise.

(2.3)

A triangular fuzzy number is shown by u = (a, b, c). The α−level set of a triangular fuzzy number u = (a, b, c)
is given by:

[u]α = {x : µu(x) ≥ α} =
{
x :

x− a
b− a ≥ α,

c− x
c− b ≥ α

}
= [(1− α)a+ αb, (1− α)c+ αb], ∀α ∈ [0, 1].
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Definition 2.14. [38] Let u and v be two fuzzy numbers in F (R). Hence [u]α = [uα, uα] and [v]α = [vα, vα]
are two intervals in R, for all α ∈ [0, 1]. We define

u � v ↔ [u]α � [v]α,∀α ∈ [0, 1]↔ uα ≤ vα and uα ≤ vα,∀α ∈ [0, 1]

and
u ≺ v ↔ u � v and u 6= v ↔ [u]α � [v]α ∀α ∈ [0, 1], and ∃α∗ ∈ [0, 1] s.t. uα

∗
< vα

∗

or uα
∗
< vα

∗
.

We say that x = (x1, x2, . . . , xm) is a fuzzy vector if each xi, for i = 1, . . . ,m is a fuzzy number. Let x =
(x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) be two fuzzy vectors. We write x � y if and only if xi � yi for all
i = 1, 2, . . . ,m and write x ≺ y if and only if xi � yi for all i = 1, 2, . . . ,m and xj ≺ yj for at least one index
j ∈ {1, 2, . . . ,m}.

Definition 2.15. [30] Let u, v ∈ F (R). The fuzzy number w is the generalized Hukuhara difference (gH-
difference) of u and v, if it exists such that

u	gh v = w ⇐⇒
{

(i) u = v + w or
(ii) v = u+ (−1)w.

It is obvious that (i) and (ii) are both valid if and only if w is a crisp number.

If u	gh v exists then, in terms of α-levels, we have

[u	gh v]α = [u]α 	gh [v]α = [min {uα − vα, uα − vα} ,max {uα − vα, uα − vα}] ,

∀α ∈ [0, 1], where [u]α 	gh [v]α denotes the gH-difference between two intervals (see [30,31]).

Proposition 2.16. [37] Let u, v ∈ F (R). Then we have

(i) u⊕ v ∈ F (R) and
(u⊕ v)α = [u+ v, ū+ v̄] ,

(ii) u	 v ∈ F (R) and
(u	 v)α = [u− v̄, ū− v] ,

(iii) u⊗ v ∈ F (R) and

(u⊗ v)α = uα × vα = [min{uαvα, uαv̄α, ūαvα, ūαv̄α},max{uαvα, uαv̄α, ūαvα, ūαv̄α}] .

Definition 2.17. [7] Let X be an open subset of Rn and F (R) display the set of all fuzzy numbers. A function
f : X −→ F (R) is called a fuzzy function defined on X. For each α ∈ [0, 1], associated to f, the family of
interval-valued functions fα : X → Xc is defined by fα(x) = [f(x)]α, where Xc is the family of all bounded
closed intervals in R. For any α ∈ [0, 1], we denote

fα(x) = [f(x)]α =
[
fα(x), f

α
(x)
]
.

Here, for each α ∈ [0, 1], the endpoint functions fα, f
α

: X −→ R are called upper and lower functions of fα(x),
respectively.
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3. Differentiability of fuzzy vectors

Let X be an open subset of Rn and fi : X −→ F (R),∀i = 1, 2, . . . ,m be fuzzy functions defined on X.
Moreover, let Fm(R) = F (R)×. . .×F (R) (m times). A function F : X → Fm(R) with F (x) = (f1(x), . . . , fm(x))
is called a fuzzy vector function. Let Xc be the family of all bounded closed intervals in R. Corresponding to
each fuzzy function fi : X → F (R),∀i = 1, . . . ,m we define the family of interval-valued functions fiα : X → Xc

presented by fiα(x) = [fi(x)]α. For any α ∈ [0, 1], fiα(x) is denoted by fiα(x) = [fi(x)]α =
[
fα
i

(x), f
α

i (x)
]
,∀i =

1, 2, . . . ,m. Here, the endpoint functions fα
i
, f
α

i : X −→ R are called upper and lower functions of fiα(x),∀i =
1, . . . ,m, respectively. Therefore the α-level set of fuzzy vector function F , denoted by [F ]α, is defined by

Fα : X −→ Xm
c ⇒ Fα(x) = [F (x)]α = ([f1(x)]α, [f2(x)]α, . . . , [fm(x)]α)⇒

Fα(x) =
[
Fα, F

α
]

=
([
fα

1
(x), f1

α
(x)
]
,
[
fα

2
(x), f2

α
(x)
]
, . . . ,

[
fm

α(x), fm
α

(x)
])
.

Definition 3.1. [5] Let X ⊂ R and f : X −→ F (R) be a fuzzy function. Also, assume that x0 ∈ X and h is
such that x0 + h ∈ X. The generalized Hukuhara derivative (gH-derivative) of f at x0 is defined as

f ′(x0) = lim
h→0

f(x0 + h)	gh f(x0)
h

· (3.1)

If f ′(x0) ∈ F (R) satisfying (3.1) exists, we say that f is generalized Hukuhara differentiable (gH-differentiable)
at x0. If f is gH-differentiable at any x ∈ X, we say that f is gH-differentiable over X.

Now, we present the concept of gH-differentiability of a fuzzy vector function.

Definition 3.2. The generalized Hukuhara derivative (gH-derivative) of a fuzzy vector function F : X ⊂ R −→
Fm(R) is defined by

F ′(x0) = (f ′1(x0), f ′2(x0), . . . , f ′m(x0)).

In fact, F is gH-differentiable at x0 if and only if fi,∀i = 1, . . . ,m are gH-differentiable at x0.

Definition 3.3. [31] Let X be an open set in R. An interval-valued function f : X → Xc is gH-differentiable
at x0 ∈ X, if (3.1) exists with respect to the limit in the metric space (Xc, H), where the difference is given by
the gH-difference between intervals.

Theorem 3.4. [7] Let f : X −→ F (R) be a fuzzy function. If f is gH-differentiable, the interval-valued function
fα : X −→ Xc is gH-differentiable for each α ∈ [0, 1]. Moreover

f ′α(x) = [f ′(x)]α =
[
f ′α(x), f

′α
(x)
]
.

Corollary 3.5. Let F : X −→ Fm(R) be a fuzzy vector function. If F is gH-differentiable, the interval-valued
vector function Fα : X −→ Xm

c is gH-differentiable for each α ∈ [0, 1]. Moreover

F ′α(x) = [F ′(x)]α = ([f ′1(x)]α, [f ′2(x)]α, . . . , [f ′m(x)]α) .

Proof. The proof follows from Theorem 3.4 and Definitions 3.2 and 3.3. �

Definition 3.6. [7] Let f be a fuzzy function defined on X ⊆ Rn and let x0 = (x0
1, x

0
2, . . . , x

0
n) be a fixed

element of X. Consider the fuzzy function h(xi) = f(x0
1, . . . , x

0
i−1, xi, x

0
i+1, . . . , x

0
n). If h is gH-differentiable at

x0
i , we say that f has the ith partial gH-derivative at x0 (denoted by ∂f

∂xi
(x0)) and ∂f

∂xi
(x0) = (h′)(x0

i ).
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Definition 3.7. Let F = (f1, f2, . . . , fm) be a fuzzy vector function defined on X ⊆ Rn and let x0 =
(x0

1, x
0
2, . . . , x

0
n) be a fixed element of X. Then, we say that the fuzzy vector function F has the ith partial

gH-derivative at x0, if and only if fj , for each j = 1, 2, . . . ,m, has ith partial gH-derivative at x0 and is
denoted by (

∂F

∂xi

)
(x0) =

(
∂f1
∂xi

(x0),
∂f2
∂xi

(x0), . . . ,
∂fm
∂xi

(x0)
)
.

Definition 3.8. Let F be a fuzzy vector function defined on X ⊆ Rn and let x0 = (x0
1, x

0
2, . . . , x

0
n)

∈ X be a fixed element of X. We say that F is gH-differentiable at x0 if all the partial gH-derivatives
∂F
∂x1

(x0), ∂F∂x2
(x0), . . . , ∂F∂xn (x0) exist in some neighborhood of x0 and are continuous at x0.

Now, we can provide the following theorem.

Theorem 3.9. Let F : X −→ Fm(R) be a fuzzy vector function. If F is gH-differentiable at x0 ∈ X, for each
α ∈ [0, 1] the real-valued vector function Fα + F

α
: X −→ Rm is differentiable at x0. Moreover,

∂Fα

∂xi
(x0) +

∂F
α

∂xi
(x0) =

∂(Fα + F
α

)
∂xi

(x0)

=

(
∂(fα

1
+ f1

α
)

∂xi
(x0),

∂(fα
2

+ f2
α

)
∂xi

(x0), . . . ,
∂(fmα + fm

α
)

∂xi
(x0)

)
·

Proof. The proof follows from Proposition 1 in [7]. �

Definition 3.10. [7] Let f : X −→ F (R) be a fuzzy function. The gradient of f at x0, denoted by ∇̃f(x0), is
defined by

∇̃f(x0) =
((

∂f

∂x1

)
(x0),

(
∂f

∂x2

)
(x0), . . . ,

(
∂f

∂xn

)
(x0)

)
.

The α-level set of ∇̃f(x0) is defined and denoted by

[∇̃f(x0)]α =
([

∂f

∂x1

]α
(x0),

[
∂f

∂x2

]α
(x0), . . . ,

[
∂f

∂xn

]α
(x0)

)
,

where [
∂f

∂xi

]α
=

[
∂fα

∂xi
,
∂f

α

∂xi

]
.

Definition 3.11. Let F : X −→ Fm(R) be a fuzzy vector function. The Jacobian of F at x0, denoted by
D̃F (x0), is defined as:

D̃F (x0) =
(
∇̃f1(x0), ∇̃f2(x0), . . . , ∇̃fm(x0)

)T
.

Definition 3.12. [7] Let f : X −→ F (R) be a fuzzy function. If gradient of f , ∇̃f, is itself gH-differentiable
at x0, that is, for each i, the function ∂f

∂xi
: X −→ F (R) is gH-differentiable at x0, we say that f is twice

gH-differentiable at x0. The gH-partial derivative of ∂f
∂xi

is denoted by

D̃2
ijf(x0) =

∂2f

∂xixj
(x0), i 6= j,

and

D̃2
iif(x0) =

∂2f

∂xi2
(x0), i = j.

If for each i, j = 1, 2, . . . , n, the cross-partial derivative ∂2f
∂xixj

is continuous from X to F (R), we say that f is
twice continuously gH-differentiable.
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Definition 3.13. The fuzzy vector function F : X → Fm(R) is twice gH-differentiable at x0 ∈ X if and only if
fi for each i = 1, . . . ,m is twice gH-differentiable at x0. We say that F is twice gH-differentiable on X if fi, for
each i = 1, . . . ,m, is twice gH-differentiable at each x0 ∈ X. Moreover, F is m times gH-differentiable on X, if
and only if all of the partial gH-derivatives of order m exist and are continuous.

Theorem 3.14. Let F : X −→ Fm(R) be a fuzzy vector function. If F is m-times gH-differentiable at x0 ∈ X,
for each α ∈ [0, 1] the real-valued vector function Fα + F

α
: X −→ Rm is m times differentiable at x0.

Proof. The proof follows from Theorem 3.9. �

4. Fuzzy multiobjective optimization

We consider the following unconstrained fuzzy multiobjective optimization problem (FMOP):

(FMOP ) minx∈Rn F (x) = (f1(x), f2(x), . . . , fm(x)), (4.1)

where each objective function fi : X ⊆ Rn −→ F (R), i = 1, . . . ,m is a fuzzy-valued function and X ⊆ Rn is
the domain of F which is assumed to be an open set. In the remainder of the paper we assume that F is twice
gH-differentiable. We use the ordering relation defined in Definition 2.14 to investigate a solution concept for
FMOP (4.1).

Definition 4.1. [37] Let x∗ ∈ X.
(i) x∗ is called a Pareto optimal solution of FMOP (4.1) if there exists no x ∈ X such that F (x) ≺ F (x∗), i.e,

there exists no x ∈ X such that fi(x) � fi(x∗) for all i = 1, . . . ,m and fj(x) ≺ fj(x∗) for at least one index
j.

(ii) x∗ is called a weakly Pareto optimal solution of FMOP (4.1) if there exists no x ∈ X such that fi(x) ≺ fi(x∗)
for all i = 1, 2, . . . ,m.

Definition 4.2. [37] Let X ⊂ Rn be an open set. We say that x∗ ∈ X is a locally Pareto optimal solution of
FMOP (4.1) if there exists no x ∈ Nε(x∗) ∩ X such that F (x) ≺ F (x∗), where Nε(x∗) is an ε-neighborhood
of x∗.

In the following theorem, based on the sum of the endpoints of the objective functions, we present a sufficient
condition for a locally Pareto optimal solution of FMOP (4.1). This theorem, generalizes Theorem 4 in [7] from
fuzzy single objective to fuzzy multiobjective optimization problems.

Theorem 4.3. Let X ⊂ Rn be an open set and F : X −→ Fm(R) be a fuzzy vector function. If x∗ is a local
minimizer of the real-valued function fα

i
+ f

α

i , for all i = 1, . . . ,m and for all α ∈ [0, 1] then x∗ is a locally
Pareto optimal solution of the FMOP (4.1).

Proof. Suppose that x∗ is not a locally Pareto optimal solution of FMOP (4.1). Then, there exists x ∈ Nε(x∗)
such that F (x) ≺ F (x∗). Therefore fi(x) � fi(x∗) ∀i = 1, . . . ,m and fj(x) ≺ fj(x∗) for at least one index
j. Hence, fα

j
(x) ≤ fα

j
(x∗) and f

α

j (x) ≤ f
α

j (x∗), for all α ∈ [0, 1]. Moreover, there exists α∗ ∈ [0, 1] such that

fj
α∗(x) < fj

α∗(x∗) or fj
α∗

(x) < fj
α∗

(x∗). Therefore,(
fα
∗

j
(x) + f

α∗

j (x)
)
<
(
fα
∗

j
(x∗) + f

α∗

j (x∗)
)
.

This is a contradiction to local minimality of x∗ for fα
∗

j
+ f

α∗

j . Therefore, x∗ is a local Pareto optimal for
FMOP (4.1). �

Now, we present the definition of a critical point.
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Definition 4.4. Let α ∈ [0, 1]. A point x is critical (or stationary) for F
α

+ Fα, if

R(D(F
α

+ Fα)(x)) ∩ (−Rm++) = ∅, (4.2)

where

D((F
α

+ Fα)(x)) =



∂(f
α
1 +fα

1
)(x)

∂x1

∂(f
α
1 +fα

1
)(x)

∂x2
. . .

(f
α
1 +fα

1
)(x)

∂xn

∂(f
α
2 +fα

2
)(x)

∂x1

(f
α
2 +fα

2
)(x)

∂x2
. . .

∂(f
α
2 +fα

2
)(x)

∂xn

...
...

. . .
...

∂(f
α
m+fα

m
)(x)

∂x1

∂(f
α
m+fα

m
)(x)

∂x2
. . .

∂(f
α
m+fα

m
)(x)

∂xn


,

and R(D) is the linear combination of the columns of D. It can be observed that for m = 1 (scalar optimization),
relation (4.2) reduces to the one given in [7].

Relation (4.2) is equivalent to the following condition:

(

s1
∂(f

α

1 + fα
1

)

∂x1
(x) + . . .+ sn

∂(f
α

1 + fα
1

)

∂xn
(x), . . . , s1

∂(f
α

m + fα
m

)

∂x1
(x) + . . .+ sn

∂(f
α

m + fα
m

)

∂xn
(x)

)T
(4.3)

∩(−Rm++) = ∅,

where s = (s1, s2, . . . , sn) ∈ Rn.
We suppose that at each point xk, the values of fi(xk), ∇̃fi(xk) and ∇̃2fi(xk), for all i = 1, 2, . . . ,m can

be calculated. From gH-differentiability of fi, ∀i = 1, . . . ,m and according to Theorems 3.9 and 3.14 we can
calculate 5(fα

i
+ f

α

i )(xk),∀i = 1, 2, . . . ,m. Let α ∈ [0, 1]. If x is critical for F
α

+ Fα, from relation (4.3) it can
be seen that for all s ∈ Rn, there is an index i = i(s) ∈ {1, . . . ,m} such that

5
(
f
α

i + fα
i

)
(x)

T

s ≥ 0. (4.4)

Also, we can observe that if x ∈ Rn is non-critical, there exists a s ∈ Rn so that

5
(
f
α

j + fα
j

)
(x)

T

s < 0, ∀ j = 1, . . . ,m.

Let α ∈ [0, 1] and x ∈ Rn be non-critical. From continuous differentiability of f
α

j + fα
j
,∀j = 1, . . . ,m we have:

lim
t→0

(
f
α

j + fα
j

)
(x+ ts)−

(
f
α

j + fα
j

)
(x)

t
= 5

(
f
α

j + fα
j

)
(x)

T

s < 0, ∀ j = 1, . . . ,m.

Hence, s is a descent direction of F
α

+ Fα at x, that is, there exists t0 > 0 such that the following inequalities
hold for all t ∈ (0, t0]: (

f
α

j + fα
j

)
(x+ ts) <

(
f
α

j + fα
j

)
(x), ∀j = 1, . . . ,m. (4.5)

Pareto optimality and criticality are related. In the following theorem, under some assumptions, we show that
if x is a critical point then x is weakly Pareto optimal.
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Theorem 4.5. Assume that F : X → Fm(R) is continuously gH-differentiable. If X is convex, F
α

+ Fα is
strictly Rm-convex, for all α ∈ [0, 1] (i.e., F

α
+ Fα is componentwise strictly convex) and x ∈ X is critical for

F
α

+ Fα, for all α ∈ [0, 1] then x is weakly Pareto optimal for FMOP (4.1).

Proof. Consider x ∈ X and α∗ ∈ [0, 1]. Since x is critical for F
α∗

+Fα
∗
, therefore there exists jα∗ ∈ {1, 2, . . . ,m}

such that (4.4) holds for s = x− x, that is:

5
(
f
α∗

jα∗
+ fα

∗

jα∗

)
(x)

T

(x− x) ≥ 0. (4.6)

Now, since f
α∗

jα∗
+ fα

∗

jα∗
is strictly convex, we have:(

f
α∗

jα∗
+ fα

∗

jα∗

)
(x) >

(
f
α∗

jα∗
+ fα

∗

jα∗

)
(x) +5

(
f
α∗

jα∗
+ fα

∗

jα∗

)
(x)T (x− x) (4.7)

≥
(
f
α∗

jα∗
+ fα

∗

jα∗

)
(x).

Therefore, for any α ∈ [0, 1] and each x ∈ X, there exists jα ∈ {1, 2, . . . ,m} such that(
f
α

jα + fα
jα

)
(x) >

(
f
α

jα + fα
jα

)
(x̄). (4.8)

Now, by contradiction, assume that x is not a weakly Pareto optimal solution of FMOP (4.1). Therefore, there
exists x ∈ X such that fi(x) ≺ fi(x) for all i = 1, 2, . . . ,m. Hence, f

α

i (x) ≤ f
α

i (x) and fα
i

(x) ≤ fα
i

(x) for all
α ∈ [0, 1] and i = 1, 2, . . . ,m. Therefore, for any α ∈ [0, 1], we have

f
α

i (x) + fα
i

(x) ≤ fαi (x) + fα
i

(x), ∀ i = 1, 2, . . . ,m, (4.9)

which is a contradiction to (4.8). �

In the remainder of the paper, we assume that Fα + F
α

for each α ∈ [0, 1] is Rm-strictly convex, that is
52(fα

j
+ f

α

j )(x), ∀j = 1, 2, . . . ,m, x ∈ X, is positive definite.

5. Newton method

In this section, we will define the Newton direction for the FMOP (4.1). We assume that the objective
functions of the FMOP (4.1) are twice continuously gH-differentiable. We define the Newton direction for the
unconstrained fuzzy multiobjective optimization problem (4.1) at x ∈ X, as the optimal solution of the following
problem and is denoted by s(x):

min max
j=1,...,m

∫ 1

0

(
5
(
f
α

j + fα
j

)
(x)T s+

1
2
sT52

(
f
α

j + fα
j

)
(x)s

)
dα

s.t. s ∈ Rn. (5.1)

Function gj(s) = 5(f
α

j + fα
j

)(x)T s + 1
2s
T52(f

α

j + fα
j

)(x)s is strictly convex, for all j ∈ {1, . . . ,m} and all
α ∈ [0, 1], since

52gj(s) = 52
(
f
α

j + fα
j

)
(x).

Since f
α

j + fα
j

is strictly convex for all j = 1, . . . ,m and all α ∈ [0, 1], (5.1) has a unique solution. Let θ(x) be
the optimal objective function value for (5.1), hence we have

θ(x) = min
s∈Rn

max
j=1,...,m

∫ 1

0

(
5
(
f
α

j + fα
j

)
(x)T s+

1
2
sT52

(
f
α

j + fα
j

)
(x)s

)
dα, (5.2)
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and

s(x) = arg min
s∈Rn

max
j=1,...,m

∫ 1

0

(
5
(
f
α

j + fα
j

)
(x)T s+

1
2
sT52

(
f
α

j + fα
j

)
(x)s

)
dα. (5.3)

Next, we state some important lemmas. We prove some properties of function θ(x) and analyze its relation with
criticality. Indeed, for a non-critical point x, due to Lemma 5.2, we have that θ(x) < 0. Algorithm 1 uses the
stopping criterion θ(x) = 0. So, x is critical point for F

α
+ Fα, for all α ∈ [0, 1] and under Theorem 4.5, x is

weakly Pareto optimal for FMOP (4.1).

Lemma 5.1. Consider θ(x) as defined by (5.2). Then, for any x ∈ X, θ(x) ≤ 0.

Proof. Let s = 0, so we have

θ(x) ≤ max
j=1,...,m

∫ 1

0

(
5(f

α

j + fα
j

)(x)T 0 +
1
2

0T52(f
α

j + fα
j

)(x)0
)

dα = 0.

�

Lemma 5.2. Consider θ(x) as defined by (5.2). If x is non-critical for some F
αi+Fαi , αi ∈ [0, 1] then θ(x) < 0.

Proof. From Lemma 5.1, we see that θ(x) ≤ 0. Consider an arbitrary partition of the interval [0, 1] as the form
0 = t0 < t1 < . . . < tl = 1, where l tends to ∞. Assume that αi ∈ [ti−1, ti], ∀i = 1, 2, . . . , l. Therefore

θ(x) = min
s∈Rn

max
j=1,...,m

[
5
(
fj
α1 + fj

α1

)
(x)T s(t1 − t0) +

1
2
sT52

(
fj
α1 + fj

α1

)
(x)s(t1 − t0)

+ . . .+5
(
fj
αi + fj

αi
)

(x)T s(ti − ti−1) +
1
2
sT52(fj

αi + fj
αi)(x)s(ti − ti−1)

+ . . .+5
(
fj
αl + fj

αl
)

(x)T s(tl − tl−1) +
1
2
sT52

(
fj
αl + fj

αl
)

(x)s(tl − tl−1)
]
.

Now suppose that ϕαij (s) = 5(fj
αi + fj

αi)(x)T s(ti− ti−1) + 1
2s
T52(fj

αi + fj
αi)(x)s(ti− ti−1), ∀i = 1, 2, . . . , l.

Therefore, we have

θ(x) = min
s∈Rn

max
j=1,...,m

[
ϕα1
j (s) + . . .+ ϕαij (s) + . . .+ ϕαlj (s)

]
≤ min
s∈Rn

max
j=1,...,m

ϕα1
j (s) + . . .+ min

s∈Rn
max

j=1,...,m
ϕαij (s) + . . .+ min

s∈Rn
max

j=1,...,m
ϕαlj (s). (5.4)

Moreover
min
s∈Rn

max
j=1,...,m

ϕαij (s) ≤ max
j=1,...,m

ϕαij (0) = 0 ≤ 0, ∀i ∈ {1, . . . , l}. (5.5)

Now assume that x is a non-critical point for Fαi + F
αi , for some αi ∈ [ti−1, ti] then there exists s ∈ Rn such

that the following relationship is established:

5
(
f
αi
j + fj

αi
)

(x)
T

s < 0, ∀j = 1, 2, . . . ,m.

Due to this relationship, for t > 0 we have:

min
s∈Rn

max
j=1,...,m

ϕαij (ts) ≤ max
j=1,...,m

(
5
(
fj
αi + fj

αi
)

(x)T ts+
1
2
tsT52

(
fj
αi + fj

αi
)

(x)ts
)

= t max
j=1,...,m

(
5
(
fj
αi + fj

αi
)

(x)T s+
1
2
sT52

(
fj
αi + fj

αi
)

(x)ts
)
.
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Therefore, for t > 0 small enough, the right hand side of the above inequality is negative, that is:

min
s∈Rn

max
j=1,...,m

ϕαij (ts) < 0. (5.6)

Therefore, letting ϕ(α) = mins∈Rn max
j=1,...,m

ϕαj (s), we have ϕ(αi) < 0. But, since ϕ(α) is a continuous function,

there exists a neighborhood of αi such that

ϕ(α) < 0, ∀α ∈ [αi − ε, αi + ε], ε > 0. (5.7)

So, if x is non-critical for Fαi + F
αi , for some αi ∈ [ti, ti+1], then from equations (5.4)–(5.7) and by splitting

the integral into three separate integrals on the intervals [0, αi − ε], [αi − ε, αi + ε] and [αi + ε, 1] we have
θ(x) < 0. �

We use the following lemma to choose an appropriate step length t, for the Newton algorithm.

Lemma 5.3. Let θ(x) < 0. Then, for each 0 < σ < 1 there exists t ∈ (0, 1] such that

x+ ts(x) ∈ X and
∫ 1

0

((
f
α

j + fα
j

)
(x+ ts(x))

)
dα ≤

∫ 1

0

((
f
α

j + fα
j

)
(x) + σtθ(x)

)
dα, (5.8)

for any t ∈ [0, t] and j ∈ {1, . . . ,m}.

Proof. Since X is an open set and x ∈ X, it follows that there exists 0 ≤ t̄ ≤ 1 such that x+ ts(x) ∈ X for all
t ∈ [0, t̄]. Hence, for t ∈ [0, t̄] we have(

f
α

j + fα
j

)
(x+ ts(x)) =

(
f
α

j + fα
j

)
(x) + t5

(
f
α

j + fα
j

)
(x)T s(x) + oj(t), j = 1, 2, . . . ,m, α ∈ [0, 1],

where limt→0+ oj(t)/t = 0. However,
∫ 1

o
5(f

α

j + fα
j

)(x)T s(x) ≤ θ(x) =
∫ 1

0
θ(x)dα. Therefore for all α ∈ [0, 1]

and t ∈ [0, t̄], we conclude that:∫ 1

0

(
f
α

j + fα
j

)
(x+ ts(x))dα ≤

∫ 1

0

((
f
α

j + fα
j

)
(x) + tθ(x) + oj(t)

)
dα

=
∫ 1

0

((
f
α

j + fα
j

)
(x) + tσθ(x) + t[(1− σ)θ(x) + oj(t)/t]

)
dα, ∀j = 1, 2, . . . ,m.

Since θ(x) < 0, it follows that
∫ 1

0
t[(1− σ)θ(x) + oj(t)/t]dα ≤ 0, for t ∈ [0, t̄] small enough. Hence∫ 1

0

((
f
α

j + fα
j

)
(x+ ts(x))

)
dα ≤

∫ 1

0

((
f
α

j + fα
j

)
(x) + σtθ(x)

)
dα,

for all t ∈ [0, t̄] and j = 1, 2, . . . ,m. �

The algorithmic implementation of Newton method for fuzzy multiobjective optimization problems is given in
Algorithm 1. In this algorithm we pick x(0) ∈ Rn arbitrarily. At each step, by solving the min-max optimization
problem (5.1) we obtain the descent direction. Thereafter, we determine the step length by means of Lemma 5.3.
Note that, due to Lemma 5.2, if x(k) is a non-critical point, we have θ(x(k)) < 0 and therefore a descent direction.
Hence, selecting a step length by using Lemma 5.3 leads to a decrease of the objective function.

The following theorem provides a sufficient condition for local convergence of the Newton Algorithm 1.



880 M. GHAZNAVI ET AL.

Algorithm 1. Newton algorithm for fuzzy multiobjective optimization problems.
Step 0. Initialization: Let x(0) be the initial decision vector chosen from X. Consider 0 < σ < 1, set

k := 0 and define J = {1/2n | n = 0, 1, 2, . . .}.
Step 1. Generation of search direction: Solve the problem (5.1) to obtain θ(x(k)) and s(x(k))

as in (5.2) and (5.3).

Step 2. If θ(x(k)) = 0, stop. Else, go to Step 3.
Step 3. Choose tk as the largest t ∈ J such that it satisfies in the following relationships:

x(k) + ts(x(k)) ∈ X

and ∫ 1

0

(
(f
α
j + fα

j
)(x+ ts(x))

)
dα ≤

∫ 1

0

(
(f
α
j + fα

j
)(x) + σtθ(x)

)
dα,

j = 1, . . . ,m.
Step 4. Define

x(k+1) = x(k) + tks(x
(k))

and set k := k + 1. Go to Step 1.

Theorem 5.4. Let {x(k)}k be a sequence generated by Algorithm 1. Suppose that V ⊂ X, 0 < σ < 1,
a, b, r, δ, ε > 0 and

(a) aI ≤
∫ 1

0

(
52(f

α

j + fα
j

)(x)
)

dα ≤ bI, for all x ∈ V and all j = 1, . . . ,m,

(b) ‖
∫ 1

0

(
52(f

α

j + fα
j

)(x)−52(f
α

j + fα
j

)(y)
)

dα‖ ≤ ε, for all x, y ∈ V that ‖x− y‖ < δ,
(c) ε/a ≤ 1− σ,
(d) Nr(x(0)) ⊂ V ,
(e) ‖s(x(0))‖ ≤ min{δ, r(1− ε/a)}.
Then, for all k, we have:

(1) ‖x(k) − x(0)‖ ≤ ‖s(x(0))‖1− (ε/a)k

1− ε/a ,

(2) ‖s(x(k))‖ ≤ ‖s(x(0))‖(ε/a)k,
(3) tk = 1,
(4) ‖s(x(k+1))‖ ≤ ‖s(x(k))‖(ε/a).

Moreover, the sequence {x(k)}k converges to some locally Pareto optimal point x ∈ Rn with

‖x− x(0)‖ ≤ ‖s(x0)‖
1− ε/a ≤ r. (5.9)

The convergence rate of {x(k)}k is superlinear.

Proof. The proof follows from the classical proof of the crisp Newton algorithm for multiobjective optimization
problems [9]. �

6. Numerical examples

In this section numerical examples are provided to illustrate the mentioned methodology. We note that the
objective functions of the fuzzy MOPs are twice continuously gH-differentiable. All examples are executed within
MATLAB (R2013a). The implementation employs the termination condition θ(x(k)) > −ε, where ε > 0 is a
pre-specified tolerance level, in order to stop at the point x(k). It is important to note that (weakly) Pareto
optimal solution of an FMOP is not necessarily unique. Therefore, if the user starts with any initial point and
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runs the algorithm then (s)he may reach at one of these (weakly) Pareto optimal points. If the assumptions of
Theorem 4.5 are satisfied, every accumulation point of the sequence {x(k)} can be a weakly Pareto optimal or
Pareto optimal solution of FMOP (4.1).

Example 6.1. As the first example, consider the following nonlinear unconstrained fuzzy single objective op-
timization problem, given in [7, 26]:

min
x∈R2

F (x) = f(x),

where

f(x) =(−1, 1, 3)x2
1 + (0, 1, 2)x1x2 + (1, 2, 4)x2

2.

With the help of fuzzy arithmetics, we obtain(
f
α

+ fα
)

(x) = 2x2
1 + 2x1x2 + (5− α)x2

2.

Therefore ∫ 1

0

(
f
α

+ fα
)

(x)dα =
(
f + f

)
(x) = 2x2

1 + 2x1x2 + 4.5x2
2.

Then

5
(
f + f

)
(x) =

[
4x1 + 2x2

2x1 + 9x2

]
, 52

(
f + f

)
(x) =

[
4 2
2 9

]
.

Consider the initial point x(0) = (1, 2) and the stopping condition θ(x(k)) ≥ −10−10. A program in MATLAB is
written following the Algorithm 1. A weakly Pareto optimal solution of this problem is found after two iterations
as x(2) = (−10−8 × 0.2396,−10−8 × 0.2660) ' (0, 0). The iterations of x(k) are given in Table 1.

Table 1. Performance of Newton Algorithm 1 on Example 6.1.

k (x(k))T
(
f + f

)
(x(k)) tk s(x(k)) θ(x(k))

0

(
1

2

)

24 1 (−1.0000,−2.0000) −24.0000

1

(
−10−7 × 0.1401

10−7 × 0.0896

)

10−16 × 5.0298 0.0020 (10−5 × 0.5946,−10−5 × 0.5952) −10−12 × 2.1849

2

(
−10−8 × 0.2396

−10−8 × 0.2660

)

10−17 × 5.6067

Example 6.2. Consider the following bi-objective nonlinear programming problem with fuzzy parameters:

(FMOP ) minx∈R3 F (x) = (f1(x), f2(x)),

where

f1 (x) =
(

0,
1
2
, 1
)
x2

1 +
(

0,
1
2
, 1
)
x2

2 +
(

0,
1
2
, 1
)
x2

3,

f2 (x) =
(

0,
1
6
,

1
3

)
x2

1 +
(

0,
1
6
,

1
3

)
x2

2 +
(

0,
1
6
,

1
3

)
x2

3 +
(−4

3
,
−2
3
, 0
)
x1

+
(−4

3
,
−2
3
, 0
)
x2 +

(−4
3
,
−2
3
, 0
)
x3 + (0, 2, 4) .



882 M. GHAZNAVI ET AL.

Table 2. Performance of Newton Algorithm 1 on Example 6.2.

k x(k)
((
f1 + f1

)
(x(k)),

(
f2 + f2

)
(x(k))

)
tk

(
s(x(k))

)T
θ(x(k))

0 (−25,−15,−12) (994.0000, 404.6667) 1




27.0000

17.0000

14.0000



 −404.6667

1 (2.0000, 2.0000, 2.0000) (12.0001, 0.0000) 10−9 × 7.4506




−10−4 × 0.7523

−10−4 × 0.6388

−10−4 × 0.2453



 −10−7 × 3.2071

2 (2.0000, 2.0000, 2.0000) (12.0001, 0.0000) 1




−10−4 × 0.2430

10−4 × 0.0253

10−4 × 0.1039



 −10−10 × 2.5853

3 (2.0000, 2.0000, 2.0000) (12.0000, 0.0000) 1




−10−5 × 0.0955

−10−5 × 0.1264

−10−5 × 0.1345



 −10−12 × 4.4702

4 (2.0000, 2.0000, 2.0000) (12.0000, 0.0000) 1




−10−6 × 0.3754

−10−6 × 0.3712

−10−6 × 0.3802



 −10−13 × 5.2942

5 (2.0000, 2.0000, 2.0000) (12.0000, 0.0000)

With the help of fuzzy arithmetics, we can write

∫ 1

0

(
f1
α

+ fα
1

)
(x)dα = x2

1 + x2
2 + x2

3,∫ 1

0

(
f2
α

+ fα
2

)
(x)dα =

1
3
x2

1 +
1
3
x2

2 +
1
3
x2

3 −
4
3
x1 −

4
3
x2 −

4
3
x3 + 4.

Then

5
(
f1 + f

1

)
(x) = (2x1, 2x2, 2x3), 52

(
f1 + f

1

)
(x) =

2 0 0
0 2 0
0 0 2

 ,
and

5
(
f2 + f

2

)
(x) =

(
2
3
x1 −

4
3
,

2
3
x2 −

4
3
,

2
3
x3 −

4
3

)
, 52

(
f2 + f

2

)
(x) =

 2
3 0 0
0 2

3 0
0 0 2

3

 .
Applying Algorithm 1 with initial point x(0) = (−25,−15,−12) and stopping condition θ(x(k)) ≥ −10−12, we
obtain a weakly Pareto optimal solution of this problem after five iterations as x(5) = (2.0000, 2.0000, 2.0000).
The performance of Algorithm 1 is shown in Table 2.

Example 6.3. Consider the following unconstrained nonlinear multiobjective optimization problem with fuzzy
parameters:

(FMOP ) minx∈R3 F (x) = (f1(x), f2(x), f3(x)),
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where

f1 (x) =
(

1
36
,

2
36
,

3
36

)
x1 +

(−3
36
,
−2
36
,
−1
36

)
+
(

1
18
,

1
9
,

3
18

)
x2 +

(−1
3
,
−2
9
,
−1
9

)

+
(

1
12
,

1
6
,

1
4

)
x3 +

(
−1,
−1
3
,
−1
3

)
+
(

1
2
, 1,

3
2

)
x2

1 +
(

3
4
,

3
2
,

9
4

)
x2

2 +
(

1
4
,

1
2
,

3
4

)
x2

3,

f2 (x) = e( 1
9 ,

1
9 ,

1
3 )x1+( 1

12 ,
1
6 ,

1
4 )x2+( 1

12 ,
1
6 ,

1
4 )x3 +

(
1
4
,

1
2
,

3
4

)
x2

1 +
(

1
3
,

1
3
, 1
)
x2

2 +
(

1
4
,

1
2
,

3
4

)
x2

3,

f3 (x) =
(

3
48
,

1
8
,

3
16

)
e(−1,−1

3 ,−1
3 )x1 +

(
1
12
,

1
6
,

1
4

)
e(−3

4 ,−2
4 ,−1

4 )x2 +
(

1
16
,

1
8
,

3
16

)
e(−3

2 ,−1
2 , 12 )x3 .

We have ∫ 1

0

(
f1
α

+ fα
1

)
(x)dα =

1
9

(x1 − 1) +
2
9

(x2 − 2) +
3
9

(x3 − 3) + 2x2
1 + 3x2

2 + x2
3,

∫ 1

0

(
f2
α

+ fα
2

)
(x)dα = e

x1
3 +

x2
3 +

x3
3 + x2

1 + x2
2 + x2

3,

∫ 1

0

(
f3
α

+ f3
α
)

(x)dα =
1
4

e−x1 +
1
3

e−x2 +
1
4

e−x3 .

Also,

5
(
f1 + f

1

)
(x) =


1
9

+ 4x1

2
9

+ 6x2

3
9

+ 2x3

 , 52
(
f1 + f

1

)
(x) =

4 0 0
0 6 0
0 0 2

 ,

5
(
f2 + f

2

)
(x) =



1
3

e
x1

3
+
x2

3
+
x3

3 + 2x1

1
3

e
x1

3
+
x2

3
+
x3

3 + 2x2

1
3

e
x1

3
+
x2

3
+
x3

3 + 2x3


,

52
(
f2 + f

2

)
(x) =



1
9

e
x1

3
+
x2

3
+
x3

3 + 2
1
9

e
x1

3
+
x2

3
+
x3

3 1
9

e
x1

3
+
x2

3
+
x3

3

1
9

e
x1

3
+
x2

3
+
x3

3 1
9

e
x1

3
+
x2

3
+
x3

3 + 2
1
9

e
x1

3
+
x2

3
+
x3

3

1
9

e
x1

3
+
x2

3
+
x3

3 1
9

e
x1

3
+
x2

3
+
x3

3 1
9

e
x1

3
+
x2

3
+
x3

3 + 2


,
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and

5
(
f3 + f

3

)
(x) =


−1
4

e−x1

−1
3

e−x2

−1
4

e−x3

 , 52
(
f3 + f

3

)
(x) =


1
4

e−x1 0 0

0
1
3

e−x2 0

0 0
1
4

e−x3

 .
Consider an initial point x(0) = (15, 2, 2) and stopping condition θ(x(k)) ≥ −10−10. A weakly Pareto optimal
solution of this problem is found after nine iterations as x(9) = (6.2209, 6.4211, 6.3020). Table 3 exhibits the
iterations of x(k) for this example.

7. Conclusions

Employing the obtained theoretical results, we proposed a Newton algorithm for solving unconstrained fuzzy
multiobjective problems. In the proposed algorithmic procedure, we employed a max-min optimization problem
to obtain a descent direction. Moreover, we applied an Armijo-like rule to find the step length. We showed that
for non-critical points the algorithm decreases the objective function values. The convergence of the proposed
algorithm was discussed. The suggested procedure was accompanied by numerical examples to illustrate its
efficiency.

However, to apply the proposed Newton algorithm it is necessary that the objective function be twice contin-
uously gH-differentiable. Therefore, proposing a quasi-Newton method that approximates the Hessian matrix
in each iteration, can be worth studying. Furthermore, future research can be on the extending the suggested
Newton algorithm for solving a fuzzy vector optimization problem. Moreover, finding a Newton procedure for
constrained fuzzy multiobjective optimization problems will be considered in forthcoming papers.
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