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BENCHMARKING WITH NETWORK DEA IN A FUZZY ENVIRONMENT

ADEL HATAMI-MARBINT*

Abstract. Benchmarking is a powerful and thriving tool to enhance the performance and profitabili-
ties of organizations in business engineering. Though performance benchmarking has been practically
and theoretically developed in distinct fields such as banking, education, health, and so on, benchmark-
ing of supply chains with multiple echelons that include certain characteristics such as intermediate
measure differs from other practices. In spite of incremental benchmarking activities in practice, there
is the dearth of a unified and effective guideline for benchmarking in organizations. Amongst the bench-
marking tools, data envelopment analysis (DEA) as a non-parametric technique has been widely used
to measure the relative efficiency of firms. However, the conventional DEA models that are bearing out
precise input and output data turn out to be incapable of dealing with uncertainty, particularly when
the gathered data encompasses natural language expressions and human judgements. In this paper, we
present an imprecise network benchmarking for the purpose of reflecting the human judgments with
the fuzzy values rather than precise numbers. In doing so, we propose the fuzzy network DEA mod-
els to compute the overall system scale and technical efficiency of those organizations whose internal
structure is known. A classification scheme is presented based upon their fuzzy efficiencies with the
aim of classifying the organizations. We finally provide a case study of the airport and travel sector to
elucidate the details of the proposed method in this study.
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1. INTRODUCTION

The literature on supply chain management (SCM) showcases the fact that many supply chains fail thanks to
poor and inappropriate tools for benchmarking their performance. The supply chain failures can be prevented
by the use of integrated and adequate benchmarking approaches in which the performance of several supply
chain networks are assessed simultaneously to determine the best practices.

A large volume of research over the past three decades has substantiated that data envelopment analysis
(DEA) is a very powerful benchmarking methodology for identifying the relative efficiency of homogeneous
decision making units (DMUs). DEA models such as CCR and BCC models exploits the set of efficient obser-
vations in input-output space to construct an empirical production frontier (i.e., efficient frontier) and, in turn,
obtain efficiencies relative to this frontier [4,9]. In fact, a production possibility set (PPS) is estimated as the
set of all feasible input-output combinations along with satisfying certain axioms. A DMU is said to be relative
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efficient if one cannot find a point in the PPS that produces more output without a consequent relative increase
in inputs, or that consumes less inputs while keeping the outputs unchanged. Contrarily, the DMU is said to
be relative inefficient if the amounts of the current inputs can be reduced with the same amounts of outputs or
the amounts of the current outputs can be augmented without changing the amounts of inputs.

An evaluated DMU is traditionally examined as a black box that transforms initial inputs consumed into
final outputs produced without focusing on the internal structure and mathematical transformation function.
However, a production system usually includes the internal operations in which the inputs go through several
processes to produce a number of intermediate measures and outputs. The negligence of the network structure
in benchmarking for both manufacturing and service sectors often results in a truly misleading analysis.

As reported in the literature throughout, the theoretical development and applications aspect of DEA have
been fully grown, particularly for precise situations [12,20].

There is a certain stream of research in the DEA literature that takes account of the operations of processes
and it has been called network DEA [24]. The fundamental idea is to think of the production technology of indi-
vidual processes as the production technology when one wishes to estimate the system efficiency. Many network
DEA models have been developed for treating internal network structures (e.g., Agrell and Hatami-Marbini [38];
Chen et al. [10]; Kao, [42]). It is worth noting that the aim of our literature review underneath is not to review
all the existing network DEA models but it is need here to point out that many of the developed models require
substantial modifications and only suit for a certain network structure.

According to Chen et al. [10], the existing network DEA approaches include two groups based on the con-
ventional DEA models. One group entails the multiplier-based network DEA models which measure the overall
network efficiency by combining the ratio efficiency of each division in the network using geometric or arithmetic
averages. The other group embraces the DEA envelopment models by defining the PPS for each division through
the network structure.

Castelli et al. [8] and Castelli and Pesenti [7] reviewed the DEA models that have been developed for evaluating
the DMUs with known internal structures in which three main categories of models involving (i) shared flow
models, (ii) multilevel models, and (iii) network models are introduced with the aim of stating the commonalities
and discrepancies between these models.

The shared flow models require to be deployed in those situations where DMUs have the network processes
with shared input resources either allocated to various processes of operations or considered as a decision
variable to maximize the DMU efficiencies as a whole (see e.g., Beasley, [5]; Wu et al. [69]; Ding et al. [16]). The
multilevel models embrace DMUs with independent divisions when additional inputs/outputs are not connected
to any of its divisions (see e.g., Cook et al. [13]). The network models are composed of intermediate measures
among the divisions. Put differently, the divisions in the network models are interdependent and intermediate
measures produced by the preceded division may be consumed as an input by other divisions (see e.g., Prieto
and Zofio, [56]; Kao and Hwang, [43]; Herrera-Restrepo et al. [39]; Despotis et al. [15]). The network DEA
models have been initially proposed by Fare and Whittaker [25] and Féare and Grosskopf [23] based on the
two-stage process and later generalized to multiple processes by Fire and Grosskopf [24].

Cook et al. 2010 and Agrell and Hatami-Marbini [2] provided an overview of DEA models for fielding two-stage
network structures. Agrell and Hatami-Marbini [2] zeroed in on performance analysis in SCM, particularly the
methodological studies made by way of two-stage models and the related state-of-the-art was categorized into
three groups; (i) two-stage process DEA models, (ii) game theory DEA models, and (iii) bi-level programming.
The two-stage models are the special case of multi-stage framework where each DMU is composed of two
divisions (see e.g., Chen et al. [11]; Kao and Hwang [43]; Despotis et al. [15]). The game theory DEA models
use the concept of non-cooperative and cooperative games in game theory to treat the network structure of
operations (see e.g., Liang et al. [49]; Zha et al. [71], Du et al. [17]). The final group defined by Agrell and
Hatami-Marbini [38] includes those methods which have been developed based on bi-level programming aiming
to evaluate the performance of a two-stage process in decentralized decisions (Wu [68]).

Recently, Kao [42] presented a review on network DEA models and introduced two different classifica-
tions. One classification has nine categories of models based on efficiency measurement, distance measure and
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output-input ratio as follows: independent, system distance measure, process distance measure, factor distance
measure, slacks-based measure, ratio-form system efficiency, ratio-form process efficiency, game theoretic, and
value-based, and the other classification bears on network structures as follows: two-stage, general two-stage,
series, parallel, mixed, hierarchical, and dynamic structures.

Setting aside the internal structure of DMUs, uncertain data in DEA can be classified into incomplete precise
data and imprecise data. The former utilizes probability methods, and the latter utilizes fuzzy sets theory to
give verbal statements without missing their imprecise characteristics. The majority of management decisions
in real-world practice are made in terms of expert’s intuitive judgement and are expressed linguistically (e.g.,
“low delay” and “big delay”). Therefore, it is essential to consider the expert’s judgement in the decision-
making process by means of linguistic expressions. The values of linguistic variables are not numbers but are
words, phrases, or sentences and the theory of fuzzy sets has been developed in the area of decision sciences to
quantitatively deal with the linguistic variables in a rational manner (cf. Bellman and Zadeh [6]; Zadeh [70]).

While real-world problems contain qualitative, incomplete, subjective and judgment information, conven-
tional black-box and network DEA models only require crisp data. For instance, separate and incompatible
information systems gathering production data in distinct segments of production process may lead to “noise”
or measurement errors in the collected data. Given that the DEA approach is sensitive to data fluctuations, the
correct consideration of such uncertain information is vital for evaluating accurately the performance of DMUs
and, in turn, making appropriate decisions.

To tackle incomplete precise and imprecise data in DEA, three major approaches including “fuzzy DEA”
(see e.g., Sengupta [62]; Hatami-Marbini et al. [29-31]), “interval DEA” (see e.g., Cooper et al. [14]; Toloo
et al. [66], Toloo [65]; Hatami-Marbini et al. [33]) and “stochastic DEA” (see e.g., Olesen and Petersen [54,55])
have dominated the literature. This paper places emphasis on fuzzy DEA approach to conquer the uncertainty
in the performance evaluation process.

As per two recent surveys conducted by Hatami-Marbini et al. [32] and Emrouznejad et al. [22] the DEA
literature includes multiple approaches for solving fuzzy DEA models, which can be categorised into six groups:
the tolerance approach (see e.g., Sengupta [62]), the a-level based approach (see e.g., Saati et al. [59]; Hatami-
Marbini et al. [34, 36, 38]; Saati et al. [60]), the fuzzy ranking approach (see e.g., Emrouznejad et al. [21];
Hatami-Marbini et al. [35]), the possibility approach (see e.g., Lertworasirikul et al. [48]), the fuzzy arithmetic
(see e.g., Wang et al. [67]; Hatami-Marbini et al. [37]), and the fuzzy random/type-2 fuzzy sets (see e.g., Tavana
et al. [63,64]).

Although the above-mentioned discussions show the recent increased interest in the network DEA approach,
there exist only few studies examining notion of fuzziness to handle the subjective data. Kao and Liu [46]
and Kao and Lin [44] developed the fuzzy version of relational two-stage model of Kao and Hwang [43] and
parallel processes of Kao [40,44] to obtain the fuzzy efficiency using a pair of two-level mathematical programs
introduced by Kao and Liu [45]. Based upon Kao and Liu [46] and Kao and Lin [44], Lozano [51] [52] proposed
the alternative methods for estimating the fuzzy efficiencies of the different processes.

In this paper, we propose a fuzzy network benchmarking model that enables us to treat a general network
structure such as supply chain network with multiple stages and multiple levels where the observations are
represented by fuzzy numbers. The intermediate measures render the proposed model relational and interde-
pendent. The proposed fuzzy network DEA models in this research are concentrated on fuzzy arithmetic to
evaluate the overall system scale and technical efficiency of the firms whose internal structure is known. Besides,
we introduce a classification scheme based on overall system scale and technical efficiency to classify the firms.
We also present a case study of the airport and travel sector to interpret the application and detailed results of
the proposed method.

The rest of this paper is organized as follows. The next section presents the deterministic network relational
DEA model developed by Lozano [50]. Section 3 extends the deterministic case to a fuzzy environment using
the standard fuzzy arithmetic to conquer fuzziness in observations. Section 4 presents a case study on airport
operations to illustrate the way of modelling and benchmarking airport operations as a network system under
a fuzzy environment. The paper is concluded in Section 5.
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2. RELATIONAL NETWORK DEA MODEL

Suppose that there is a set of n DMUs (supply chains) to be evaluated and DMUj, j =1, ..., n encompasses
p processes denoted by P = 1, o p where I(p) and O( ) stand for the set of inputs and outputs of the pth
process, respectively. Let us the pt™ process consumes x”, i€ I(p),j=1, ..., n to produce yzj, k € O(p),
j =1, ..., n along with assuming that the total amount of the ith mput and kth output of all processes

associated with DMUj, j =1, ..., narex;; = 3 o, andyr; = . yy; where Pr(i) and Po(k) are the
pE Py (i) p€Po (k)
sets of processes that correspond to input ¢ and output k. Consider L links or intermediate measures between

the processes denoted by zlpj and gfj, l=1,..., L,j =1, ..., n that are divided into two different inward
and outward sets including Int™(p) and Int°"*(p) within the network structure, in which the total amount of
the intermediate measures of the pth process associated with DMU; is > zlpj, l=1,...,L j=1,...,
pelntin(l)
nand 3z, l=1,..., L, j=1,..., n. We also suppose that > = 2 apl=1,
pEIntovt(l) peIntin(l) pEIntout(l)
L,j=1,...,n[50].

The idea of benchmarking used in network production systems (e.g., supply chain) is to estimate a universal
underlying technology for comparing the production systems. In what follows, the technology or production
possibility set (PPS) is first defined based on the observed data, and then the observed production of a network
production system is evaluated relative to the estimated PPS.

T, = {(a:p,yp,zp,gp) GRi(p)xRi(p) xRi|yp can be produced by «?, 2z and gp} .

The PPS of the network production system, denoted by T is the combination of the PPS of all processes,
denoted by 7},. Let us initially represent 7, as follows:

T, = { (ay"2, 27) eRVP x RO S RE[IND € ¢P(Q) = Y Noa, <ol Vie I (p Zvy,w

Jig
J

yk,Vk S O Z)\pzlj <Zp A c Intln Z)\pzlj >Zp vl c Intout( ) ,

where the T, set satisfies the minimal extrapolation technologies and the following axioms:
Al.Envelopment: (:c%,y%,zf},g%) €Ty, Vj.
A2. Free disposability:

e Free disposability of inputs: (aP,y? 2P, zP) ETp, T > P — ( P 2P zp) €T,.
e Free disposability of outputs: (2P, yP, 2P, 2P) € Tp, <y = (xp, U ,zp,gp) e T,.
e Free disposability of intermediate measures: (z?,y?,27, 2P) €T, Z° > 2P for all Z° € p™ (r)Z" < 2P for all
7' c pom(r) = (2P P 2", 2") €T,
A3. Convezity: The set T, is convex if for any two points (aP,yP 2P, 2P) €T, (T ( T zp) €T, and any arbitrary
weight 0 < A< 1, (1—A) (2P,yP,2P,2P) + A (T°,7 .2, Z') also belongs to T).

A4. (-returns to scale: (xP,yP,2P, 2P) €T, = K (z,y) € T}, V€GP ({) where the ¢P({) set identifies the shape of
the frontier under the condition of the returns to scale (RTS). In particular, ¢?(crs) = {\;€RT|\Y free} and
PP (vrs) = {NJERFIION =1}

J
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At present, we can define the following PPS for the network production system, Ts which satisfies the above-
mentioned axioms:

Ts = < (zi,yr) |3 (2P yP 2P, 2P) € Ty Z xy; < @y, Vi,
pEPI(3)

J ‘
pEPo (k) peIntovt(l) pEInti™ (1)

> yzj = Yk, Vk, > le — > zZ > O’Vl} .

The Farrell [26] input efficiency measure is applied to determine the [input-oriented] technical efficiency of
DMUj as defined below:
fp = min {60‘(901@) S TS} .

According to the input efficiency measure, a network production system is classified as efficient if 05 = 1 and as
inefficient if 6y < 1. Given Ty, the efficiency measure can be calculated for a DMU under evaluation by solving
the following linear programming (LP) problem:

min00—6<25{+25:+252¢>
i k 1

st. Z Z)\’;xfj+si_ = Opxo, Vi,

pEPr(i) J
Do 2N s = ok,
pEPo(k) J
# _
D 2N X DN sl =0,
pEInti™(l) J pelntovt(l) J

D A€ ¢(0), Vp,
J
X2 > 0,5, p,
s st st >0,V k, 1, 2.1
1 “k l

where ¢ is a very small positive number and s;, SZ_ and sl# are the slack variables indicating input excesses,
output shortfalls and intermediate shortfalls, respectively. We note that ¢({) identifies the shape of the frontier
under the condition of RTS. In this study, we concentrate on constant and variable RT'S models by utilizing
AeR™ and Z Al =1 constraints in lieu of Z A} €¢(C) for each p, which these two distinct models are respec-

tively called ghe CRS and VRS network DEJA models, respectively. If an optimal solution 6 of the above LP
model satisfies §; = 1, then DMUj, is called efficient. If a value of 8§ is less than 1 DMUj, is called inefficient and
(1 — 6;) bespeaks the maximal proportionate reduction of inputs allowed by the PPS, and any more reductions
are also associated with nonzero slacks.

The notion of scale efficiency (SE) can be also taken into account in the network structure to measure the
amount of depletion from not operating at the optimal scale size. Given the input efficiency of DMU in the
CRS and VRS models, we calculate its network SE using the following ratio; SE = 65(CRS)/65(V RS) The SE,
measure varies within [0, 1] and it is equal to 1 when DMU is operating at optimal scale size, i.e., the VRS and
CRS technologies of DMU coincide. When a value of SE is smaller than one, it deduces that the system is not
scale efficient.
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3. Fuzzy NETWORK DEA MODEL

Suppose that we look into the performance evaluation of a network production system where observations are
imprecisely measured, and these imprecise data can be characterized by fuzzy numbers. We note that a fuzzy
number is a normal and convex fuzzy subset characterized by a given membership with a grade of between 0
and 1. The functional form of the membership function hinges on a prior: information that interprets how each
fuzzy variable conceptualizes during a production period. Generally, a trapezoidal fuzzy number, denoted as
a = (aM,a® a® ™), is the most widely used fuzzy numbers in practical and theoretical studies with the
following membership function [72]:

afz%‘%v o <z <a®
1, a? <z <a®
() =4 (3.1)
ﬁ7 a® <z <a®
0, otherwise.

If a® = @™, then @ is called a triangular fuzzy number. Note that a non-fuzzy number a is a special case of
the fuzzy number in which a(!) = a(® = a3 = 4. Let us consider n network production systems (DMUs)
to be evaluated with the identical notations as those presented in the preceding section. We assume that for

a given process of DMUj the corresponding observation (z Z,yi ’’ zf’j, 2y j) Vi, k,l is uncertain and characterized

by the trapezoidal fuzzy number jpj = (xfj(l) .Z‘fj(z) xfj@) fj(4)) Vi, yk] (yzgl),yzgz),yigs),yz§4 ) VEk, zlj =

(zf;(l) zlp]@) zfj(s), p(4)) Vi and z}; = (zfj(l) zf]@) zfj(?’) p(4)) VI where the values of xp(l), yiﬁl) zf](l) and zp(l) are
positive. In the presence of the fuzzy data, the network DEA model (2.1) can be re—formulated by the followmg
fuzzy LP model to obtain the fuzzy efficiency measure of DMU:

minéo —€ (Zsi —&—ng—l—zﬁsf&)
i k l
Z Z )\?.TZ + S = eofio,VL

peEPr(i) Jj

Z Z)\pyk] — s¢ = Jro, Vk,
pEPo (k

Z Z)‘pzlg_ Z Z)‘J lJ_S#:O’W’
pePn(l) j pepout(l) J

D> A €g(0), vp,
J

A > 0,V5,p,
s, 85,8 # >0,Vi, k1, (3.2)
where 0 = ¥ @ = (¥ oY, ¥ P ¥ oY, ¥ oY) = @Yk el oY)
pEPr (1) pEPr (1) pEPr (1) pEPr(7) pEPr (i)
~ ~ 1 2 3 4 1 2 3 4
and oo = . G = (2w’ X ol X ) X ) = v ).

pEPo(k) pePo(k) pEPo (k) pEPo(k) pGPo )
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The substitution of the trapezoidal fuzzy numbers into model (3.2) leads to the following model:

min (0(()1), 0(()2), 9(()3), 9(()4)) —€ (Z s; + Z s; + Z sl#>
i k l

Z Z AP ( p(2 ,xfj.(g),xfj.(4)) +s; =6 (a:fo(l), b, 1‘%3),@“%4)) , Vi,
pEPr(i) J
1 2 3
ST TR b2 D Wy s = (yié)7yié)7yié),yké)),Vk,
pEPo(k) Jj

3) 4
Z Z/\ Zl] le ij( Zfa( ))

peEPIn(l) j
- Z Z)‘p (le Zl] @ ZZI;(S) 22(4)) - 8# =0, W?
pePout(l) j

sty st >0,V k, 1. (3.3)

To compute the efficiency measure of the network production system under evaluation denoted by subscript “0”,
we require to solve the fuzzy network DEA model (3.3) subject to the complexity stemming from the notion
of fuzziness. As stated earlier, the existing fuzzy DEA literature includes several distinct categories. For the
purpose of preserving the characteristics of conventional DEA models along with treating the computational
burden of existing fuzzy DEA models, the fuzzy arithmetic group might be the most suitable approach to
measure the relative efficiency of the DMUs with consideration of the internal complexity of the production
process.

According to the standard fuzzy arithmetic operations, model (3.3) can be rewritten by the four DEA models
to determine the optimal value of 9(()1), 9(()2), 9(()3) and 0(()4) individually which is allowed to establish the best
fuzzy relative efficiency of DMUjg. We take account of a fixed and unified production frontier for all the DMUs
to attain an unbiased and consistent evaluation when calculating 981), 9(()2), 9(()3) and 9(()4). In this respect, the
best production activities of the n DMUs come from the uppermost bound of outputs and lowest bound of
inputs are equipped with a unified production frontier, which is used in the following four DEA models:

Network DEA model for calculating 0(()1)
min&él) —€ (228z +Zs: + Zsf)
i k 1
S S b = ofati v

pEPr(3) J

> S st =l

pEPo(k) J

STOoN o ST ST s =0,

ePwL l) ] pepout(l) J
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D A € ¢(C), Vp,
J

A2 > 0,4, p,

s; s;,sl > 0,Vi,k, L.

Network DEA model for calculating 0(()2)

min 9(()2)5 (Z s; + Z sp+ Z s#)
i k 1

LY S b — o

pGP](’L 7
2
D 2N st =ui” vk,
pEPo(k) J
(4)
POED R D DD RV Al
pePin(l) j pePout(l) j

Z N €6(C), Y,

AL > 0,95, p,
s; 82781 > 0,VYi, k, L.

Network DEA model for calculating 0(()3)

minﬁ(()g) —€ (228z +Zsz + Zsf)
i k 1

Z Z}\P P(l T = 6‘63)1':053) Vi

34 0 5 VD

PEPI() J

oo — s = i) vk,

pEPo(k) J

=0,V

(3.5)

STOoN T ST ST s =0,

pepzn l) ] pepout(l) J

> AP €6(¢), Vp,

AL > 0,V5, p.

sz,sz,sl >0,Vi, k, .
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Network DEA model for calculating 984)

min@é‘g —€ (Zs; +Zs; JrZsf)
k 1

%

S S+ <0 v

pEPI(i) J
4)
>0 oMY st = vk,
pEPo (k) J
D WIVELID DD 9= LA
pEPI(l) J pePOU(l) j

ZA§ €¢(Q),V,

AL > 0,V5,p,s; sk7sl >0,Vi, kL (3.7)

Solving models (3.4)—(3.7) enables us to acquire the best possible relative fuzzy [overall] efficiency
(9(()1)*79,(32)*,9(()3)*,9(()4)*) of DMUy. What’s more, the optimal solutions of the above models can be used to
define the efficient and inefficient DMU; in a subjective way.

Definition 3.1. Let 9(()1)*, 0(()2)*, 0(()3)* and 6(()4)* are the optimal solutions of models (3.4)—(3.7), respectively.

(a) A DMU; is called fully efficient if 6M* = 1 in model (3.4), implying that #(1)* = () 9(3)* =W = 1.
(b) A DMU; is called very highly efficient if 2* = 1 in model (3.5), implying that ()* = §(3)* = g+ =

(c) A DMU; is called highly efficient if ©* =1 in model (3.6), implying that §(3)* = g4 = 1.
(d) A DMU; is called efficient if 0(* = 1 in model (3.7).

Definition 3.2. A DMU; is called inefficient if the optimal value of §* derived from model (3.7) is less than
unity.

Given that the decision-makers normally wish to rank the inefficient DMUs resulted from Definition 3.2, we
utilise the nearest point of each fuzzy efficiency score through the following formulation developed by Asady
and Zendehnam [1]:

02 1 9B g4 _p2) _ B 1L p1)

Mé = 9 + 4 : (3‘8)

A larger value of the nearest point (M) shows that DMUj is preferred. This simple and efficient defuzzification
method generates very realistic results against other complicated methods without losing the basic properties®.
The fuzzy measure of efficiency provided by CRS and VRS network models are known as total technical

efficiency (TTE) and pure technical efficiency (PTE). The ratio “TTE /PTE” stands for a fuzzy measure of
scale efficiency (SE). Assume that 0o (crs) = (9(1)* HC?«):, 9£‘:g ,Ocﬁ)s*) and 6, (vrs) = (97117,):,91(,%g ,91(}3«):, 91,4,1«29*) are

crs

the fuzzy efliciencies for the TTE and PTE, respectively, the fuzzy measure of SE for DMU is expressed as

follows:
Gisp — Dolers) (052080505 -
(SEo) = = (D* p2)% HB) &) (3.9)
90 (UTS) (9 Ovr's 761175 791)75 )

vrs )

23ee Asady and Zendehnam [1] for going through certain mathematical advantages of this ranking fuzzy number.
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Given that 1/ (9(1)* 91(3-)3*,05‘:'):, 91()%)8*) = (9(4)* 9,(}%*,01(,%):, 97(}1)3*), equation (3.9) can be transformed into a mul-

vrs? vrs?

tiplication operation as follows:

0 (SEo) = (052,082,080 ,000) @ (060,080, 02,00 ) (3.10)
Dubois and Prade [18] suggested the following standard approximation to calculate the above multiplication,
which is definitely easy and computationally efficient.

0 (SEo) = (00,000,002, 0090007, 020, 00,6017 (3.11)
Even though the standard approximation associated with the multiplication operation is widely used in the
literature, Dubois and Prade [18] noted that erroneous results are considerably appeared when the spread of the
fuzzy number is not small and the membership value is near 1. To acquire the actual product, the multiplication
operation can be carried out at each « level. Let us initially define the interval confidence method for 6y (crs)
and 0.} (vrs), leading to (054" — 052 o+ 05", — (054 — 05 )a+ 05" ) and (055 — 050 o+ 050, (05 —
Qg‘:’):)a + 95,%«)5*) for every o € [0, 1] [47]. Next, the product §(SEy) of two trapezoidal fuzzy numbers 8g(crs) and
0y (vrs) is simply computed by means of the interval confidence method,

0 (SEq) =0y (crs) = 05" (vrs)
= (082 = 60 )0+ 007 =04 — 68 )+ 04

The lines connecting the endpoints for every a € [0, 1] lead to the “actual result”, which is a fuzzy measure of
SEq. Note that if ém (crs) turns out to be precise as (9&)3*, 0((;)5*, 981*, 9&)3*), then é(SEO) can be expressed as

follows:
(D* oy 4 pB*g(1)*

crs vrs Ccrs )

(D* oy 4 gL g(1) _(91()3)* — 9(3)*)9

Ccrs vrs crs ) S vrs

(3.13)

vrs

0 (SEo) = (02 — 050

The upper and lower limits of interval SEg measure varies within [0, 1] in which the lower limit is always smaller
than or equal to the upper limit. Therefore, we think of the following definition to provide a classification in
terms of the scale efficiency measure of the DMU under evaluation.

Definition 3.3. Consider the interval SE of DMU derived from (3.13) for a given o. If the lower limit of 6 (SEq)
is equal to 1, i.e., 0 (SEp) = (1,1), then it is called full scale efficient if the upper limit of 6 (SE)p) is equal to 1
and the lower limit of § (SEj) is less than one, then we call it scale efficient, and if the upper limit of 6 (SEp)
is less than one, then we call it scale inefficient.

As an explicit result, a DMU is full scale efficient when the network system is completely operating at optimal
scale size, and the system is scale efficient when the system is partially functioning at optimal scale size.

4. APPLICATION

In this section, we exemplify our proposed method by analyzing and benchmarking the airport operations
which can be observed as a two-process structure including “Aircraft Movement” and “Aircraft Loading” as the
first and second processes, respectively [27,53]. The first process uses three inputs; total runway area (I1Sq),
apron capacity (12S1), number of boarding gates (I13S1) to generate the accumulated flight delays (O1S;) as an
undesirable output as well as the airplane traffic movements (Inter) as an intermediate measure. The second
process consumes two inputs; number of check-in counters (I1S9) and number of baggage belts (I12Ss) and the
intermediate measure (airplane traffic movements) to produce two outputs; annual passenger movements (01S3)
and cargo handled (02Ss). The aircraft traffic movements as an intermediate measure signifies the number of
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FIGURE 1. A two-process system.

airplane movements including landings and take-offs of airplanes, which plays a part in providing the service of
moving passengers and cargos.

In comparison with the structure proposed by Lozano et al. [53], we discard the number of delayed flights as
an undesirable output of the first process since it is highly correlated with the accumulated flight delays. The
structural pattern is depicted in Figure 1.

We draw special attention to the accumulated flight delays which is an unpleasant output derived from the first
process. To deal with undesirable outputs, several approaches have been developed in the literature. Dyckhoff
and Allen [19] classified the respective approaches for handling undesirable outputs into three categories: (i)
taking into account the reciprocal of the undesirable output in which the undesirable output is changed to
the desirable one [61], (ii) taking into account a multi-criteria approach in which the undesirable output is
modelled as an input [57], and (iii) employing the translation property in BCC and additive DEA models which
implies that a positive scalar is added to the reciprocal additive transformation of the undesirable output [3].
Simplistically, the approach to treat undesirable outputs is to consider an undesirable output as an input or
utilizes the reciprocal [28]. In this research, we model the undesirable output of the first process (i.e., accumulated
flight delays) as an input of this process.

The dataset for 39 Spanish airports taken from Lozano et al. [53] is presented in Table 1. To highlight the
importance of inescapable uncertainty in the performance analysis, particularly in airport operations, in this
section, we extend the dataset reported in Table 1 into an uncertain data setting. We assume that 11S;, 12S; and
0185, are not precisely measured due to the uncertainty and subjectiveness. To deal with such uncertainty, we
take account of a trapezoidal fuzzy number whose vertex is identical to the deterministic amount with assigning
a degree of membership of 1. The precise values of 1151, 12S; and O1S; are therefore substituted with the
trapezoidal fuzzy numbers as (0.85 x I1Sq, I1S;, I1S;, 1.25 x I1Sy), (0.85 x 12S;, 12S;, 12S;, 1.25 x 12S;)
and (0.85 x O1S;, 01S;, 01S;, 1.25 x 01S;), respectively. These fuzzy numbers in fact are triangular fuzzy
numbers due to the equality between the two points at the top of each trapezoidal fuzzy numbers.

We calculate the fuzzy efficiencies for every airport using models (3.4)—(3.7) under the VRS assumption,
as shown in “VRS” column of Table 2. Note that we take the two convexity constraints for the first and
second processes into consideration, i.e., > )\ﬁ»’ =1,p =1, 2 to satisfy the VRS assumption. Since the results of

J

models (3.5) and (3.6) are equal, 82 = §®) and the approximated efficiency of each airport is a triangular fuzzy
number. According to Definition 3.1, the Barcelona, Cordoba, Girona-Costa Brava, Madrid Barajas, Saragossa
and Vitoriaa, airports are classified as fully efficient because §()* is equal to 1, and Albacete, Badajoz, El Hierro
and La Gomera airports are classified as efficient since #®)* = 1. In the 5th column of Table 2, “F. Eff.” and
“Eff.” stand for fully efficient and efficient categories, respectively. The airport whose efficiency derived from
model (3.7) is less than one is classified as inefficient.
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TABLE 1. Input and output data for the 39 Spanish airports.

Airport 115, 125,  13S: Inter 015, 118, 1259 015, 025,
A Coruna 87300 5 4 17.719 23783.4 10 3 1174.97 283.57
Albacete 162 000 2 2 2.113 1376.5 4 1 19.25 8.92
Alicante 135000 31 16 81.097  142445.8 42 9 9578.3 5982.31
Almeria 144 000 15 5 18.28 20149.1 17 4 1024.3 21.32
Asturias 99000 7 9 18.371 23893.5 11 3 1530.25 139.47
Badajoz 171000 1 2 4.033 2365.4 4 1 81.01 0
Barcelona 475020 121 65 321.693 645924.6 143 19 30272.08 103996.49
Bilbao 207 000 21 12 61.682 80848.2 36 7 4172.9 3178.76
Cordoba 62100 23 1 9.604 254.4 1 0 22.23 0

El Hierro 37500 3 4.775 641.6 5 1 195.43 171.72
Fuerteventura 153000 34 10 44.552 72179.7 34 8 4492 2722.66
Girona-Costa Brava 108 000 17 7 49.927  100305.6 18 3 5510.97 184.13
Gran Canaria 139500 55 38 116.252 136 380.7 86 19 10212.12  33695.25
Granada-Jaen 134550 11 3 19.279 17 868.8 12 3 1422.01 66.89
Ibiza 126 000 25 12 57.233  152840.1 48 8 4647.36 3928.39
Jerez 103500 9 5 50.551 19292.2 13 3 1303.82 90.43
La Gomera 45000 3 2 3.393 420.7 5 1 41.89 7.86
La Palma 99000 5 5 20.109 8286 13 2 1151.36 1277.26
Lanzarote 108 000 24 16 53.375  101685.6 49 8 5438.18 5429.59
Leon 94500 5 2 5.705 7191.5 3 1 123.18 15.98
Madrid Barajas 927000 263 230  469.746 908 360 484 53 50846.49 329186.63
Malaga 144000 43 30 119.821 277663.8 85 16 12813.47 4800.27
Melilla 64 260 5 2 10.959 2979.6 4 1 314.64 386.34
Murcia 138000 5 5 19.339 24103.1 18 4 1876.26 2.73
Palma de Mallorca 295 650 86 68 193.379 501 486 204 16 22832.86  21395.79
Pamplona 99315 7 2 12.971 11691.8 4 1 434.48 52.94
Reus 110475 5 5 26.676 18240.8 8 3 1278.07 119.85
Salamanca 150000 6 2 12.45 6626.1 4 2 60.1 0
San Sebastian 78930 6 3 12.282 11184 6 2 403.19 63.79
Santander 104400 8 5 19.198 17842 8 2 856.61 37.48
Santiago 144000 16 12 21.945 34322.3 19 5 1917.47 2418.8
Saragossa 302310 12 3 14.584 19547.6 6 2 594.95 21438.89
Seville 151200 23 10 65.067 51084.9 42 6 4392.15 6102.26
Tenerife North 153000 16 16 67.8 32637 37 5 4236.62 20781.67
Tenerife South 144000 44 22 60.779  110818.9 87 14 8251.99 8567.09
Valencia 144000 35 18 96.795  102719.2 42 8 5779.34 13325.8
Valladolid 180000 7 5 13.002 14760.6 8 2 479.69 34.65
Vigo 108 000 8 6 17.934 25593.6 12 3 1278.76 1481.94
Vitoria 157500 18 3 12.225 11585.8 7 2 67.82 34989727

Notes. The units of the data are: I1S; (square meters), 12S; (No. of stands), 13S; (No. of gates), Inter (thousand
operations), O1S; (minutes), I1S; (No. of counters), 12S; (Number of belts), O1S, (thousand passengers), and O2S;
(tonnes).
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TABLE 3. SE of the Spanish airports for different a-levels.

Airport 0 (SE), 0(SE), s 0 (SE), 0(SE), s 0(SE), CL.
A Coruna 0.189 0.219 0.190 0.213 0.191 0.206 0.192 0.200 0.193 0.193 SIN
Albacete 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 SIN
Alicante 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 SIN
Almeria 0.069 0.073 0.069 0.073 0.070 0.072 0.071 0.072 0.072 0.072 SIN
Asturias 0.236 0.236 0.236 0.236 0.236 0.236 0.236 0.236 0.236 0.236 SIN
Badajoz 0.065 0.066 0.065 0.066 0.066 0.066 0.066 0.066 0.066 0.066 SIN
Barcelona 1 1 1 1 1 1 1 1 1 1 FSE
Bilbao 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 SIN
Cordoba 1 1 1 1 1 1 1 1 1 1 FSE
El Hierro 0.129 0.134 0.130 0.134 0.131 0.133 0.131 0.133 0.132 0.132 SIN
Fuerteventura 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 SIN
Girona-Costa Brava 1 1 1 1 1 1 1 1 1 1 FSE
Gran Canaria 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 SIN
Granada-Jaen 0.214 0.231 0.216 0.230 0.219 0.228 0.222 0.226 0.224 0.224 SIN
Ibiza 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 SIN
Jerez 0.126 0.129 0.126  0.129 0.126 0.128 0.127 0.128 0.127 0.127 SIN
La Gomera 0.027 0.028 0.027 0.028 0.027 0.028 0.027 0.028 0.028 0.028 SIN
La Palma 0.131 0.181 0.137 0.174 0.142 0.167 0.148 0.160 0.154 0.154 SIN
Lanzarote 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 SIN
Leon 0.119 0.127 0.120 0.126 0.122 0.125 0.123 0.125 0.124 0.124 SIN
Madrid Barajas 0.748 0.748 0.748 0.748 0.748 0.748 0.748 0.748 0.748 0.748 SIN
Malaga 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324 SIN
Melilla 0.246 0.261 0.248 0.260 0.251 0.258 0.253 0.257 0.255 0.255 SIN
Murcia 0.134 0.171 0.137 0.165 0.140 0.158 0.143 0.152 0.146 0.146 SIN
Palma de Mallorca  0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 SIN
Pamplona 0.297 0.321 0.301 0.319 0.304 0.316 0.308 0.314 0.312 0.312 SIN
Reus 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 SIN
Salamanca 0.042 0.044 0.042 0.044 0.042 0.044 0.043 0.043 0.043 0.043 SIN
San Sebastian 0.137 0.143 0.138 0.143 0.139 0.142 0.140 0.141 0.141 0.141 SIN
Santander 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 SIN
Santiago 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 SIN
Saragossa 1 1 1 1 1 1 1 1 1 1 FSE
Seville 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 SIN
Tenerife North 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 SIN
Tenerife South 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 SIN
Valencia 0.276 0.276 0.276 0.276 0.276 0.276 0.276 0.276 0.276 0.276 SIN
Valladolid 0.075 0.078 0.075 0.078 0.076 0.077 0.076 0.077 0.077 0.077 SIN
Vigo 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 SIN
Vitoria 1 1 1 1 1 1 1 1 1 1 FSE

To provide a ranking for the inefficient airports, we exploit the nearest point whose formula is introduced
in Section 3. The nearest points of inefficient airports are reported in the 5th column of Table 2 and the
numbers in parentheses indicate their rankings. Accordingly, Melilla is superior among the inefficient airports,
followed by Leon, Salamanca and Palma de Mallorca airports, respectively. Interestingly, the Ibiza airport is
the worst performance in total. The method proposed by Lozano et al. [53] without taking uncertainty into
account eight airports including Albacete, Barcelona, Cordoba, Girona-Costa Brava, Madrid Barajas, Palma de
Mallorca, Saragossa and Vitoria are efficient. Contrary to our approach in this paper, apart from the Palma
de Mallorca airport which is not efficient anymore, the outstanding seven airports not only remain efficient but
also the Badajoz, El Hierro and La Gomera airports turn into efficient
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At present, let us analyse the role of convexity constraints for all processes. In what follows, we zero in on
the convexity of Process 1 without regarding convexity constraint for Process 2, i.e., > )\]1 = 1. The associated

J

results are summarized in the “VRS (Convexity for Process 1)” column of Table 2. Contrary to the VRS case,

the fuzzy efficiencies for 59% of inefficient airports are slightly declined in the absence of the convexity constraint

of Process 2 and the significant difference bears on the Madrid Barajas airport as “F. Eff.” which turns out to

be inefficient. It is need to point out that Ibiza is still the most inferior airport. The convexity of Process 2 is,

in turn, considered under the VRS assumption, i.e., > /\]2- =1 to evaluate the fuzzy efficiency of the Spanish
J

airports in the presence of a number of fuzzy data embedded in Process 1. This model setting leads to the
identical solutions for models (3.4)—(3.7), i.e. 8)* = g@* = gB3)* = g()* a5 shown in “VRS (convexity of
Process 2)” column of Table 2.

It is remarked that the Madrid Barajas airport is efficient which is the same as the VRS case. Besides, the
efficiency of two Albacete and La Gomera airports are considerably decreased as can be also observed from their
ranks reported in Table 2. The last column of Table 2 shows the total technical efficiency (TTE) of the airports
under the CRS assumption. Given that the TTE measures are deterministic, we take account of equation (3.16)
to obtain the interval SE for five different « levels, i.e., « = {0,0.25,0.5,0.75,1} as presented in Table 3. Note
that full scale efficient and scale inefficient are denoted by FSE and SIN, respectively, in the last column of
Table 3 under the heading “CL”. The last column of Table 3 shows the associated classification in terms of the
scale efficiency measure which Barcelona, Cordoba, Girona-Costa Brava, Saragossa and Vitoria are classified as
full scale efficient because the lower limit of é(SEo) for all a-levels is equal to 1, meaning that these airports
are completely operating at optimal scale size.

Given some results may be far from the actual performance especially from the practitioner view, we have
need of underlining that our airport benchmarking analysis in this section is not intended to secure an in-depth
study and understanding of the performance of Spanish airports, but rather to signify the application of the
proposed methodology.

5. CONCLUSIONS

Due to the lack of availability of precise input and output data in many real-world applications as well
as going beyond the black-box structure of firms, this study has proposed a new fuzzy network DEA model
based upon the fuzzy arithmetic to conquer the uncertainty and fuzziness embedded in network structures. We
have developed input-oriented fuzzy network DEA models to compute the fuzzy technical and scale efficiencies.
Although most network systems in DEA literature are presumed to be simple, i.e., two processes, we have focused
on general network production structures which can be the mixtures of series and parallel structures. In addition,
a classification framework based on the fuzzy scale and efficiency measures has been introduced to provide a
better understanding of a network production systems against other homogeneous systems. Fuzzy efficiency
and fuzzy scale measures resulted from the proposed approach are more informative than crisp measures. Put
differently, our approach enables us to reflect the real situation and human judgments with the fuzzy values
rather than precise number. To illustrate the main steps of the model, we have applied the fuzzy network DEA
models to evaluate the performances and scale efficiency measure of 39 airports in which every airport includes
the two production processes.
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