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USE OF “E” AND “G” OPERATORS TO A FUZZY PRODUCTION
INVENTORY CONTROL MODEL FOR SUBSTITUTE ITEMS

Debnarayan Khatua1,∗, Anupam De2, Kalipada Maity3 and Samarjit Kar4

Abstract. In this paper, a fuzzy optimal control model for substitute items with stock and selling
price dependent demand has been developed. Here the state variables (stocks) are assumed to be fuzzy
variables. So the proposed dynamic control system can be represented as a fuzzy differential system
which optimize the profit of the production inventory control model through Pontryagin’s maximum
principle. The proposed fuzzy control problem has been transformed into an equivalent crisp differential
system using “e” and “g” operators. The deterministic system is then solved by using Newton’s forward-
backward method through MATLAB. Finally some numerical results are presented both in tabular and
graphical form.
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1. Introduction

Many dynamical problems have been formulated as a mathematical model in real life. These problems can be
formulated either as a system of ordinary or partial differential equations. But Fuzziness is a kind of uncertainty
in real life problems. So, some dynamic control systems may be described by fuzzy differential equations and
fuzzy control. When the information about the behavior of a dynamical system is insufficient then fuzzy dif-
ferential equations are a useful tool to formulate a model. Fuzzy initial value problems arise in several areas of
mathematics and science including population models [17], mathematical physics [5] and other applications [25].

Till now, many authors have been developing several techniques for controlling the fuzzy dynamical systems.
Filev and Angelove [23] have formulated the problem of fuzzy optimal control of nonlinear system and solved
this problem on the basis of fuzzy mathematical programming. Zhu [28] has introduced a method to solve
fuzzy optimal control problem by using dynamic programming. In [21] a model of an optimal control problem
with chance constraints is introduced. Also, Najariyan and Farahi [16] have formulated a technique to solve
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fuzzy control system governed by fuzzy differential equation. Recently, Ahmad et al. [1], Jia et al. [7], Jameel
et al. [6],Wang and Wu [27] and others have developed different techniques for solving said type of problems.

Now-a-days, the product assortment has made an arena of research across several fields, including economics,
analytical and empirical modelling. Common assortment decisions contain matters such as assortment size, num-
ber of categories, number of items within a group of the existing product lines, overall attraction of the goods, the
relational properties of the goods, pricing strategies and the variety of goods over time. Maity and Maiti [13, 14]
have developed the optimal production control problem for complementary and substitute items on the finite time
horizon. Next, Chernev [4] has done an interdisciplinary review on product assortment and consumer choice. Re-
cently, Katsifou et al. [9] have developed the joint product assortment inventory problem to attract the loyal and
non-loyal customers. The above said papers briefly stated that demand is negative due to the effect of substitute
items i.e. when the demand of an element increases, the demand of another element decreases.

Inventory management acts as a significant character in businesses because of it can help companies achieve
the goal of ensuring without delay delivery, avoiding shortages, helping sales at competitive prices and so forth.
To control an inventory system, one cannot ignore demand of the product since inventory is partially determined
by demand. A manager of a company has to investigate the factors that influence demand pattern, because
customers’ purchasing behavior may be affected by factors such as the selling price, inventory level, seasonality,
and so on. Besides this, many business practices give you an idea about that the existence of a larger quantity
of goods displayed may attract more than consumers that with a smaller quantity of goods. This occurrence
implies that the demand may have a optimistic correlation with stock level. Under such a situation, a firm
should sincerely consider its price and order policy since the demand for their products may be affected by their
selling prices and inventory level [8]. Generally, demand rate decreases with sales price yet increases with the
stock quantity on display.

One of the weaknesses of present production-inventory models is the unreasonable supposition that all pro-
duced items are of good quality. But production of imperfective items is a normal phenomenon due to different
difficulties in a long-run production process. The defective items as a result of imperfect quality production pro-
cess were initially considered by Porteus [18] and later by several researchers such as Panda et al. [20], Sana [26],
Khan and Jaber [10], Chen et al. [3], Yadav et al. [24], Krishnamoorthi and Panayappan [12], Sivashankari and
Panayappan [22], Bartoszewicz and Lesniewski [2] and others.

In this paper, a production control problem with stock and price dependent demand has been developed for
substitute items in fuzzy environment. Here the selling prices are the control variables. It is also assumed that
the state variables (stock variable) are fuzzy in nature. So the dynamic control system can be described by fuzzy
differential equation(FDE). Next, a optimal pricing inventory control model is considered in optimizing form
and then it(FDE) is converted into crisp differential equation by using “e” and “g” operators method. Finally,
total profit, which consists of the sales proceeds, inventory holding cost and production cost is formulated as an
optimal control problem and solved by using Pontryagin’s Maximum principle [19]. Then to obtain the numerical
result by using MATLAB, an algorithm is also developed. Subsequently, the numerical results are presented
both in tabular form and graphically. So first time we have developed the following methods for the multi item
production inventory model:

(1) The “e” and “g” operators method to solve a optimal price control problem for substitute items in fuzzy
environment.

(2) A new algorithm by using Newton’s forward-backward method in MATLAB software to obtain the numerical
results of optimal price, stock level, production rate, demand rate and profit function.

2. Interval Arithmetic

An interval number A is represented by closed interval [a, a] and defined by A = [a, a] = {x : a ≤ x ≤
a, x ∈ R}. Where R is the set of all real numbers and a, a are the left and right limits of the interval number
respectively. Also every real number a can be represented by the interval number [a, a], for all a ∈ R. Here we
present some arithmetic operations on interval valued functions as follows:
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Let A = [a, a] and B = [b, b] be two interval numbers.

Then De et al. [11], the following operations can be defined as

Addition: A+B = [a, a] + [b, b] = [a+ b, a+ b].

Subtraction: A−B = [a, a]− [b, b] = [a− b, a− b].

Scalar Multiplication:

αA = α[a, a] =

[αa, αa], if α ≥ 0

[αa, αa], if α < 0

Multiplication:

A ∗B =



[a b, a b], if a ≥ 0 and b ≥ 0

[a b, a b], if a ≥ 0 and b < 0 < b

[a b, a b], if a ≥ 0 and b ≤ 0

[a b, a b], if a < 0 < a and b ≥ 0

[a b, a b], if a < 0 < a and b ≤ 0

[a b, a b], if a ≤ 0 and b ≥ 0

[a b, a b], if a ≤ 0 and b < 0 < b

[a b, a b], if a ≤ 0 and b ≤ 0

[min(a b, a b),max(a b, a b)], if a < 0 < a and b < 0 < b

Division:

1
B

=
[

1
b
,

1
b

]
if (0 /∈ B)

And,
A

B
= A ∗ 1

B
if (0 /∈ B)

3. “e” and “g” operators

In this section, we have used two operators “e” and “g” [15] for quasi-level system for FDE’s. Let C be a
complex set i.e C = {a+ ib : a, b ∈ <}. Then “e” is a identity operator and “g” corresponds to a flip about the
diagonal in the complex plane, i .e., ∀a+ ib ∈ C,{

e : a+ ib→ a+ ib,

g : a+ ib→ b+ ia.
(3.1)

3.1. Use of “e” and “g” operators in Fuzzy dynamical system

Let us consider the following non-homogeneous fuzzy dynamical system

˙̃x(t) = Ax̃(t) + f(t), x̃(0) = x̃0, t ∈ [0,∞) (3.2)
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where A = [aij ]n×n, ˙̃x(t) = [ ˙̃x1(t) . . . ˙̃xn(t)]T and f(t) = [f1(t) . . . fn(t)]T .
Let Y

α
(t) = [ȳα1 (t) . . . ȳαn(t)]T , Yα(t) = [yα

1
(t) . . . yα

n
(t)]T be the solutions of quasi-level-wise systemẎ

α
(t) + iẎ

α

(t) = B[Yα(t) + iY
α

(t)] + (f(t) + if(t)),

Y α(0) = xα0 , Y
α

(0) = xα0

(3.3)

where f(t) = f(t) = f(t) and B = [bij ]n×n, bij =

{
aije aij ≥ 0
aijg aij < 0

. Then x̄αi (t) = max
t∈(0,∞)

{ȳαi (t), yα
i

(t)}

xαi (t) = min
t∈(0,∞)

{ȳαi (t), yα
i

(t)}, i = 1, 2, . . . , n are also the solutions of the fuzzy dynamical system (3.2). Now if

the dynamical system (3.3) is unstable, then moving the instability property to the level-wise system, we get to
the same system as (3.3) i.e.,e[Ẏ

α
(t) + iẎ

α

(t)] = B̄[Yα(t) + iY
α

(t)] + (f(t) + if(t)),

Y α(0) = xα0 , Y
α

(0) = xα0

(3.4)

or g[Ẏ
α

(t) + iẎ
α

(t)] = B̄[Yα(t) + iY
α

(t)] + (f(t) + if(t)),

Y α(0) = xα0 , Y
α

(0) = xα0

(3.5)

where B̄ = [b̄ij ]n×n, b̄ij = aije or aijg

4. Proposed models

In this section, following assumptions and notations are used in the mathematical model for production
control system in finite time horizon.

4.1. Assumptions

(i) A single period production inventory model with finite time horizon is considered;
(ii) Defective rate is constant;
(iii) Shortages are not allowed;
(iv) There is no repair or replacement of defective units over whole time period;
(v) Demand rate depends on stock and selling price of the product simultaneously; For substitute items,

demand function is defined as a linear form of the two products retail prices-downward slopping in its own
price and increasing with respect to its substitute item’s selling price.

4.2. Notations

For the ith (i = 1; 2) item,
X̃i(t): the stock level at time t which is fuzzy in nature (state variable);
X̃3−i(t): the stock level at time t of another item which is fuzzy in nature (state variable);
D̃i(t): demand rate at time t which is fuzzy in nature;
Ũi(t) = (1 − δi)ui0(1 − X̃i(t)

Ximax
): stock dependent production which is also fuzzy in nature with X̃i(t)

Ximax
< 1 and

ui0 is production parameter;
h̃i: holding cost per unit which is fuzzy in nature;
d̃i0: constant part of demand function which is fuzzy in nature;
c̃ui: production cost which is also fuzzy in nature;
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S̃i: selling price per unit for ith item which is fuzzy in nature (control variable);
S̃3−i: selling price per unit another ith item which is fuzzy in nature (control variable);
βii: measure of responsiveness of ith item’s consumer demand to its own price;
βi3−i: measure of responsiveness of another ith item’s consumer demand to its own price;
ηii: measure of responsiveness of ith item’s consumer demand to its own stock;
ηi3−i: measure of responsiveness of another ith item’s consumer demand to its own stock;
γi: marginal selling price per unit for ith item;
λ̃i(t): adjoint function treated as shadow price which is also fuzzy in nature;

4.3. Formulation of the defective production optimal control model for substitute items

Here, the items are produced at a rate Ũi(t) with

Ũi(t) = (1− δi)ui0
(

1− X̃i(t)
Ximax

)
, i = 1, 2,

X̃i(t)
Ximax

< 1 (4.1)

of which δi is constant defective rate and ui0 is a production parameter. Here a two-items production-inventory
problem of substitute type is considered.

In this model, the demand rate depends on the stock rate. Also demand of one item is dependent on the
retail prices of its own and substitute item positively.

D̃i(t) = d̃i0 − βiiS̃i(t) + βi3−iS̃3−i(t) + ηiiX̃i(t)− ηi3−iX̃3−i(t), i = 1, 2 (4.2)

where d̃i0 is the constant part of demand, βii are the measure of responsiveness of ith product’s consumer
demand to its own price and which are positive for substitute item. ηii are the measure of responsiveness of ith
product’s consumer demand to its own stock and which are negative for substitute item.

The differential equations of rate of change of stock for ith item representing above system during a finite
time-horizon is

˜̇Xi(t) = (1− δi)ui0
(

1− X̃i(t)
X1max

)
− D̃i(t), i = 1, 2

which can be written as

˜̇Xi(t) = (1− δi)ui0

(
1− X̃i(t)

X1max

)
−
(
d̃i0 − βiiS̃i(t) + βi3−iS̃3−i(t) + ηiiX̃i(t)− ηi3−iX̃3−i(t)

)
, i = 1, 2(4.3)

Then the total profit consisting of selling prices, holding costs, and production costs leads to

J =
∫ T

0

∑
i=1,2

S̃i(t)D̃i(t)− h̃iX̃i(t)− c̃uiŨi(t)

+
∑
i=1,2

γiS̃i(T )X̃i(T ) (4.4)

where the final stock X̃i(T ) is selling with salvage value price γiS̃i(T ) and the corresponding marginal revenue
is γiS̃i(T )X̃i(T ).

Therefore the optimal price control policy for substitute items by maximizing the finite time horizon profit
function is

Maximize J =
∫ T

0

∑
i=1,2

S̃i(t)D̃i(t)− h̃iX̃i(t)− c̃uiŨi(t)

+
∑
i=1,2

γiS̃i(T )X̃i(T ) (4.5)

subject to (4.3).
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5. Optimal control policy for substitute items

Thus the problem reduces to maximize the profit function J subject to the state constraint satisfying the
dynamic price-stock relation.

Maximize J =
∫ T

0

∑
i=1,2

S̃i(t)D̃i(t)− h̃iX̃i(t)− c̃uiŨi(t)

+
∑
i=1,2

γiS̃i(T )X̃i(T ) (5.1)

Subject to,

˜̇Xi(t) = (1− δi)ui0

(
1− X̃i(t)

X1max

)
−
(
d̃i0 − βiiS̃i(t) + βi3−iS̃3−i(t) + ηiiX̃i(t)− ηi3−iX̃3−i(t)

)
, i = 1, 2 (5.2)

The above equations (5.2) are defined as an optimal control problem with control variable Si(t) and state
variable Xi(t). It can be deduced to algebraic forms using e and g operators.

Let us consider Hamiltonian H as

H(Yi(t), Si(t), t) =
∑
i=1,2

[(
Sαi (t)Dα

i (t) + iS
α

i (t)D
α

i (t)
)
−
(
h
α

i Y
α

i (t) + ihαi Y
α
i (t)

)
−
(
cαuiU

α

i (t) + icαuiU
α
i (t)

)]
+
∑
i=1,2

(λαi (t)Ẏ
α

i (t) + iλ
α

i (t)Ẏ
α

i (t)) (5.3)

with
Ẏ
α

i (t) = ui0(1− δi)

(
1− Y

α

i

Ximax

)
− di0 + βiiS

α
i − βi3−iS

α

3−i − ηiiY
α

i (t) + ηi3−iY
α
3−i(t)

Ẏ
α

i (t) = ui0(1− δi)
(

1− Y αi
Ximax

)
− di0 + βiiS

α

i − βi3−iS
α
3−i − ηiiY

α
i (t) + ηi3−iY

α

3−i(t), i = 1, 2

where Xα
i = min{Y αi , Y

α

i }, X
α

i = max{Y αi , Y
α

i } and λi(t) are adjoint variables. The optimal controls
Sαi (t), S

α

i (t), which maximize H, must satisfy the following conditions:
∂H

∂Sαi (t)
= 0

∂H

∂S
α

i (t)
= 0

(5.4)


λ̇
α

i (t) = − ∂H

∂Y αi (t)

λ̇
α

i (t) = − ∂H

∂Y
α

i (t)

(5.5)

Now solving equations (5.4) we have,

dα10 − β11S
α

1 (t) + β12S
α
2 (t) + η11Y

α
1 (t)− η12Y

α

2 (t) + β21S
α
2 (t)− β11S

α

1 (t) + β11λ
α
1 (t)− β21λ

α

2 (t) = 0

d
α

10 − β11S
α
1 (t) + β12S

α

2 (t) + η11Y
α

1 (t)− η12Y α2 (t) + β21S
α

2 (t)− β11S
α
1 (t) + β11λ

α

1 (t)− β21λ
α
2 (t) = 0

dα20 − β22S
α

2 (t) + β21S
α
1 (t) + η22Y

α
2 (t)− η21Y

α

1 (t) + β12S
α
1 (t)− β22S

α

2 (t) + β22λ
α
2 (t)− β12λ

α

1 (t) = 0

d
α

20 − β22S
α
2 (t) + β21S

α

1 (t) + η22Y
α

2 (t)− η21Y α1 (t) + β12S
α

1 (t)− β22S
α
2 (t) + β22λ

α

2 (t)− β12λ
α
1 (t) = 0

(5.6)
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And solving equations (5.5) we get,



λ̇
α

1 (t) = −

(
η11S

α
1 (t)− η22S

α

2 (t)− hα1 +
C
α

u1

Y1max
u10 (1− δ1)

)
+
(
u10 (1− δ1)
X1max

+ η11

)
λ
α

1 (t)− η22λα2 (t)

λ̇
α

1 (t) = −
(
η11S

α

1 (t)− η22Sα2 (t)− hα1 +
Cαu1

X1max
u10 (1− δ1)

)
+
(
u10 (1− δ1)
X1max

+ η11

)
λα1 (t)− η22λ

α

2 (t)

λ̇
α

2 (t) = −

(
η21S

α
2 (t)− η12S

α

1 (t)− hα2 +
C
α

u2

X2max
u20 (1− δ2)

)
+
(
u20 (1− δ2)
X2max

+ η21

)
λ
α

2 (t)− η12λα1 (t)

λ̇
α

2 (t) = −
(
η21S

α

2 (t)− η12Sα1 (t)− hα2 +
Cαu2

X2max
u20 (1− δ2)

)
+
(
u20 (1− δ2)
X2max

+ η21

)
λα2 (t)− η12λ

α

1 (t)

(5.7)

From equations (5.6) we get the control variables (Sα1 (t), S
α

1 (t), Sα2 (t), S
α

2 (t))which can be expressed as,



Sα1 (t) = −[(−2β22d
α
10 − (β12 + β21)d

α

20 + (β2
12 + β12β21 − 2β11β22)λ1(t) + (β21β22 − β12β22)λ4(t)

+(η21β12 + η21β21 − 2η11β22)Y α1 (t) + (2η12β22 − η22η12 − η22β21)Y
α

2 (t))]/[−(β12 + β21)2 + 4β11β22];

S
α

1 (t) = −[−(β12 + β21)(dα20 − β12λ2(t) + β22λ3(t)− η21Y
α

1 (t) + η22Y
α
2 (t))− 2β22(d

α

10 + β11λ2(t)

−β21λ3(t) + η11Y
α

1 (t)− η12Y α2 (t))]/[(−(β12 + β21)2 + (4β11β22))];

Sα2 (t) = −[(−2β11d
α
20 − (β12 + β21)d

α

10 + (β2
21 + β12β21 − 2β11β22)λ3(t)− β11(β21 + β12)λ2(t)

+(2η21β11 − η11β12 − η11β21)Y
α

1 (t) + (η12β12 − 2η22β11 + η12β21)Y α2 (t))]/[(−(β12 + β21)2 + (4β11β22))];

S
α

2 (t) = −[(−(2β11)(d
α

20 − β12λ1(t) + β22λ4(t) + η22Y
α

2 (t)− η21Y α1 (t))− (β12 + β21)(dα10 + β11λ1(t)

−β21λ4(t)− η12Y
α

2 (t) + η11Y
α
1 (t)))]/[−(β12 + β21)2 + 4β11β22];

(5.8)

Now to obtain the optimal values of Y α∗i , Y
α∗
i , S

α∗
i , S

α∗
i , λ

α∗
i , λ

α∗
i numerically, we have developed a algorithm

by using Newton’s forward-backward method in MATLAB software which is given below:

5.1. Algorithm for the solution method

First we set the variables as follows Sα1 = S1, S
α

1 = S2, S
α
2 = S3, S

α

2 = S4, Y α1 = Y1, Y
α

1 = Y2, Y
α
2 = Y3, Y

α

2 =
Y4, Dα

1 = D1, D
α

1 = D2, D
α
2 = D3, D

α

2 = D4, λα1 = λ1, λ
α

1 = λ2, λ
α
2 = λ3, λ

α

2 = λ4, set the constants as
Y α10 = z1, Y

α

10 = z2, Y
α
20 = z3, Y

α

20 = z4, and also set the functions as follows

f1(Y α1 , Y
α

1 , Y
α
2 , Y

α

2 , S
α
1 , S

α

1 , S
α
2 , S

α

2 )←− (1− δ1)u10

(
1− Y

α

1

X1max

)
− dα10 + β11S

α
1 − β12S

α

2 − η11Y
α

1 + η12Y
α
2 ;

f2(Y α1 , Y
α

1 , Y
α
2 , Y

α

2 , S
α
1 , S

α

1 , S
α
2 , S

α

2 )←− (1− δ1)u10

(
1− Y α1

X1max

)
− dα10 + β11S

α

1 − β12S
α
2 − η11Y

α
1 + η12Y

α

2 ;

f3(Y α1 , Y
α

1 , Y
α
2 , Y

α

2 , S
α
1 , S

α

1 , S
α
2 , S

α

2 )←− (1− δ2)u20

(
1− Y

α

2

X2max

)
− dα20 + β22S

α
2 − β21S

α

1 − η22Y
α

2 + η21Y
α
1 ;

f4(Y α1 , Y
α

1 , Y
α
2 , Y

α

2 , S
α
1 , S

α

1 , S
α
2 , S

α

2 )←− (1− δ2)u20

(
1− Y α2

X2max

)
− dα20 + β22S

α

2 − β21S
α
1 − η22Y

α
2 + η21Y

α

1 ;
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and 

g1

(
λα1 , λ

α

1 , λ
α
2 , λ

α

2 , S
α
1 , S

α

1 , S
α
2 , S

α

2

)
←− −

(
η11S

α
1 (t)− η22S

α

2 (t)− pα
1

+
C
α

u1

X1max
u10 (1− δ1)

)
+
(
u10 (1− δ1)
X1max

+ η11

)
λ
α

1 (t)− η22λα2 ;

g2

(
λα1 , λ

α

1 , λ
α
2 , λ

α

2 , S
α
1 , S

α

1 , S
α
2 , S

α

2

)
←− −

(
η11S

α

1 (t)− η22Sα2 (t)− pα1 +
Cαu1

X1max
u10 (1− δ1)

)
+
(
u10 (1− δ1)
X1max

+ η11

)
λα1 (t)− η22λ

α

2 ;

g3

(
λα1 , λ

α

1 , λ
α
2 , λ

α

2 , S
α
1 , S

α

1 , S
α
2 , S

α

2

)
←− −

(
η21S

α
2 (t)− η12S

α

1 (t)− pα
2

+
C
α

u2

X2max
u20 (1− δ2)

)
+
(
u20 (1− δ2)
X2max

+ η21

)
λ
α

2 (t)− η12λα1 ;

g4

(
λα1 , λ

α

1 , λ
α
2 , λ

α

2 , S
α
1 , S

α

1 , S
α
2 , S

α

2

)
←− −

(
η21S

α

2 (t)− η12Sα1 (t)− pα2 +
Cαu2

X2max
u20 (1− δ2)

)
+
(
u20 (1− δ2)
X2max

+ η21

)
λα2 (t)− η12λ

α

1 ;

5.1.1. Algorithm

Step 1. Start the program \\ (For two items);
Step 2. Define function y= optimal feasible solution (Y1, Y2, Y3, Y4, S1, S2, S3, S4);
Step 3. Define test = −1; δ = 0.001; N = 10; T = 100; t = linespace(0, T,N + 1); h = 1

N ; h1 = h
2 ;

Step 4. Define γ1 = 0.7; γ2 = 0.6; For m = 1 to 4
Step 5. Define

Sm ←− zero matrix of order (1, N + 1);

Ym ←− zero matrix of order (1, N + 1);

Dm ←− zero matrix of order (1, N + 1);

λm ←− zero matrix of order (1, N + 1);

Step 6. Define

Y αm(1)←− Ym;

Step 7. Define

dYm = fm

(
Y α1 , Y

α

1 , Y
α
2 , Y

α

2 , S
α
1 , S

α

1 , S
α
2 , S

α

2

)
;

Step 8. Define

dλm = gm

(
λα1 , λ

α

1 , λ
α
2 , λ

α

2 , S
α
1 , S

α

1 , S
α
2 , S

α

2

)
;

Step 9. Do while(test< 0)

old Sm = Sm

old Ym = Ym

old λm = λm
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For State Variables:
for i = 1(1)N

k1m ←− fm(Y1(i), Y2(i), Y3(i), Y4(i), S1(i), S2(i), S3(i), S4(i));

k2m ←− fm

(
Y1(i) + h1k11, Y2(i) + h1k12, Y3(i) + h1k13, Y4(i) + h1k14,

S1(i) + S1(i+ 1)
2

,
S2(i) + S2(i+ 1)

2
,
S3(i) + S3(i+ 1)

2
,
S4(i) + S4(i+ 1)

2

)
;

k3m ←− fm

(
Y1(i) + h1k21, Y2(i) + h1k22, Y3(i) + h1k23, Y4(i) + h1k24,

S1(i) + S1(i+ 1)
2

,
S2(i) + S2(i+ 1)

2
,
S3(i) + S3(i+ 1)

2
,
S4(i) + S4(i+ 1)

2

)
;

k4m ←− fm

(
Y1(i) + hk31, Y2(i) + hk32, Y3(i) + hk33, Y4(i) + hk34, S1(i+ 1), S2(i+ 1), S3(i+ 1), S4(i+ 1)

)
;

Ym(i+ 1)←− Ym(i) +
h(k1m + 2k2m + 2k3m + k4m)

6
;

end\\



λ1(N + 1)←− γ1S1(N + 1);

λ2(N + 1)←− γ1S2(N + 1);

λ3(N + 1)←− γ2S3(N + 1);

λ4(N + 1)←− γ2S4(N + 1);

For Adjoint Variables:
for j = 1(1)N

k
′

1m ←− gm(λ1(j), λ2(j), λ3(j), λ4(j), S1(j), S2(j), S3(j), S4(j));

k
′

2m ←− gm
(
λ1(j) + h1k11, λ2(j) + h1k12, λ3(j) + h1k13, λ4(j) + h1k14,

S1(j)+S1(j−1)
2 , S2(j)+S2(j−1)

2 , S3(j)+S3(j−1)
2 , S4(j)+S4(j−1)

2

)
;

k
′

3m ←− gm
(
λ1(j) + h1k21, λ2(j) + h1k22, λ3(j) + h1k23, λ4(j) + h1k24,

S1(j)+S1(j−1)
2 , S2(j)+S2(j−1)

2 , S3(j)+S3(j−1)
2 , S4(j)+S4(j−1)

2

)
;

k
′

4m ←− gm
(
λ1(j) + hk31, λ2(j) + hk32, λ3(j) + hk33, λ4(j) + hk34, S1(j + 1), S2(j + 1), S3(j + 1), S4(j + 1)

)
;

λm(j − 1)←− λm(j) +
h(k1m + 2k2m + 2k3m + k4m)

6
;

end\\
All Control
Calculate all Sm \\ see (5.8)
end \\
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Step 10.

Sm ←− 0.5(Sm + old Sm);

Step 11. 

temp1 = δ(sum(abs(S1))− sum(abs(old S1 − S1)));

temp2 = δ(sum(abs(S2))− sum(abs(old S2 − S2)));

temp3 = δ(sum(abs(S3))− sum(abs(old S3 − S3)));

temp4 = δ(sum(abs(S4))− sum(abs(old S4 − S4)));

temp5 = δ(sum(abs(Y1))− sum(abs(old Y1 − Y1)));

temp6 = δ(sum(abs(Y2))− sum(abs(old Y2 − Y2)));

temp7 = δ(sum(abs(Y3))− sum(abs(old Y3 − Y3)));

temp8 = δ(sum(abs(Y4))− sum(abs(old Y4 − Y4)));

temp9 = δ(sum(abs(λ1))− sum(abs(old λ1 − λ1)));

temp10 = δ(sum(abs(λ2))− sum(abs(old λ2 − λ2)));

temp11 = δ(sum(abs(λ3))− sum(abs(old λ3 − λ3)));

temp12 = δ(sum(abs(λ4))− sum(abs(old λ4 − λ4)));

Step 12. 

test1 = min(temp1,min(temp2, temp3));

test2 = min(temp4,min(temp5, temp6));

test3 = min(temp7,min(temp8, temp9));

test4 = min(temp10,min(temp11, temp12));

test5 = min(test1,min(test2, test3));

test = min(test4, test5);

Step 13. Print Sm, Ym, λm, Dm.
end\\

6. Numerical results

To illustrate the proposed production inventory model numerically, we consider the following input data given
in Table 1. For these input data, we see that Xα

i = Y αi and X
α

i = Y
α

i . The results for different variables of
substitute items are showed in Table 2 and the respective figures are showed from Figures 1 and 7. It has been
observed that the optimal selling price for first item lie between ($242.3, $244.7) and for second item lie between
($206.9, $208.3). And also the stock level for first item lie between (0.1, 5.3) and for second item lie between
(1.7, 6.1). And the optimum value corresponding the two substitute items lie between ($533800, $684320).

6.1. Input data for substitute items

The input data for inventory parameters are given in Table 1.
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Table 1. Input data for substitute items.

Parameters Values Parameters Values Parameters Values Parameters Values Parameters Values

δ1 0.03 δ2 0.025 dα10 10 d
α
10 10.8 dα20 11

d
α
20 11.8 X1max 29 X2max 31 u10 13 u20 12

β11 0.35 β12 0.15 β21 0.10 β22 0.21 η11 0.19

η12 0.32 η21 0.23 η22 0.11 Cαu1
3.8 C

α
u1 4.8

Cαu2
2.4 C

α
u2 3.4 Cαh1

4.4 C
α
h1 5.4 Cαh2

4.81

C
α
h2 5.8 Xα

10 5.4 X
α
10 5.6 Xα

20 4.4 X
α
20 4.6

Table 2. Values of the optimal selling price, production rate, stock rate and demand rate at
the time t

t 0 10 20 30 40 50 60 70 80 90 100
Sα∗1($) 189.8 193.1 197.5 202 206.8 211.7 217 222.5 228.3 234.4 242.2

S
α
1 ($) 189.7 194.2 198.4 203.3 208.4 213.7 219.2 225 231 237.4 244.7

Sα∗2($) 178.6 181.6 184.8 187.8 190.7 193.6 196.4 199.2 201.9 204.6 206.9

S
α∗

2($) 172.9 176.7 180.4 184.1 187.7 191.3 194.8 198.2 201.6 204.9 208.3
Uα∗1 9.2 9.7 10.1 10.4 10.5 10.6 10.6 10.4 10.2 9.8 9.3

U
α∗

1 9.3 10.1 10.8 11.4 11.9 12.3 12.6 12.8 12.96 12.99 12.92
Uα∗2 9.6 9.4 9.3 9.2 9.1 8.9 8.9 8.9 8.8 8.8 8.8

U
α∗

2 9.7 9.7 9.8 9.9 10 10.1 10.3 10.4 10.6 10.8 11.1
Xα∗

1 5.4 4.2 3.2 2.3 1.6 1 0.55 0.24 0.06 0.02 0.11

X
α∗

1 5.6 4.9 4.3 3.8 3.6 3.5 3.5 3.7 4.1 4.6 5.3
Xα∗

2 4.4 4.3 4.2 4.0 3.8 3.6 3.3 3 2.6 2.2 1.7

X
α∗

2 4.6 4.9 5.2 5.4 5.6 5.7 5.8 6 6.1 6.1 6.1
Dα∗

1 17.2 16.4 15.5 14.5 13.4 12.3 10.9 9.6 8.1 6.4 4.6

D
α∗

1 21.4 20.4 19.3 18.1 16.8 15.5 14.1 12.6 11 9.3 7.4
Dα∗

2 6.2 6.7 7.1 7.5 7.9 8.4 8.8 9.3 9.8 10.3 10.9

D
α∗

2 10 10.2 10.5 10.7 11 11.3 11.7 12.1 12.6 13.1 13.7

7. Discussion

For two substitute items we have got four hands in each figures for lower and upper cases. Here Figure 1
represents the stock level and Figure 2 represents the production rate in a given time of two substitute items.
From these two figures we observe that production of the items is stock dependent. Also, here another two
figures Figues 3 and 4 are represented the demand rate and selling price in given time of the two substitute
items respectively. In this paper, we consider that the demands are dependent on selling prices and stock levels.
But from the figures Figures 1 and 4, we see that demands are more effected by selling price. Also from Figures 5
and 6 we assure that the demands are depended on own price. So for substitute items own price of each items
play as important role to control the demand. Moreover own stock has more positive effect to the demand
function with respect to the negative effect of substitute item. From the above discussion, we get that the
selling price becomes sole responsible for its demand. What matters is the selling price of any product. Lesser
the selling price more the demand of that product irrespective of stock. So the model in which the demand is
dependent both on price and stock is more realistic than any other model.
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Figure 1. Stock level verses time for
substitute items.
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Figure 2. Production verses time for
substitute item.
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Figure 3. Demand verses time for sub-
stitute items.

0 20 40 60 80 100
170

180

190

200

210

220

230

240

250

Time

P
ric

e

 

 

S
1l

S
1u

S
2l

S
2u

Figure 4. Selling price verses time for
substitute item.
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Figure 5. Selling price verses time for
substitute items when the co-efficient of
own price is given.
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Figure 6. Demand verses time for sub-
stitute items when the co-efficient of
own price is given.
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Figure 7. Stock verses time for substi-
tute items when the co-efficient of own
price is given.

8. Conclusion

A production inventory control problem for substitute item has been developed in uncertain environment in
which the demand function is dependent on selling price as well as stock level. Here it is shown that the selling
price is more effective to control the demand. Considering the state variables as fuzzy the proposed inventory
model is represented as a fuzzy differential system. To transform the system into equivalent deterministic one we
use the “e” and “g” operators which is very recent and effective technique with respect to interval mathematics.

Moreover, the proposed method can be extended for other dynamical production inventory control problem
like imperfect production problem, deteriorating production problem and other. The method (“e” and “g”) can
be used to check the stability of any imprecise dynamical model.
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