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RAPIDLY CONVERGENT STEFFENSEN-BASED METHODS
FOR UNCONSTRAINED OPTIMIZATION

Mohammad Afzalinejad1,∗

Abstract. A problem with rapidly convergent methods for unconstrained optimization like the
Newton’s method is the computational difficulties arising specially from the second derivative. In this
paper, a class of methods for solving unconstrained optimization problems is proposed which implicitly
applies approximations to derivatives. This class of methods is based on a modified Steffensen method
for finding roots of a function and attempts to make a quadratic model for the function without using
the second derivative. Two methods of this kind with non-expensive computations are proposed which
just use first derivative of the function. Derivative-free versions of these methods are also suggested for
the cases where the gradient formulas are not available or difficult to evaluate. The theory as well as
numerical examinations confirm the rapid convergence of this class of methods.
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1. Introduction

Consider the following problem
min f (x) s.t. x ∈Rn (1.1)

where f : Rn → R is a smooth function. If the derivatives of function f are available, there are plenty of
methods to solve this problem. The Newton, trust region and conjugate gradients are among the most successful
derivative-based methods for solving the above problem (for example see [2, 5]). The Newton’s method applies
the following iteration formula

xk+1 = xk −H (xk)−1g(xk),

where g(xk) and H (xk) are the gradient vector and the Hessian matrix of f at xk, respectively. This method
has quadratic convergence rate if the starting point is sufficiently close to the optimal solution and the Hessian
matrix is nonsingular at that solution. The conjugate gradient method does not need the second derivative.
Instead, it has slower super-linear convergence. The trust region method is in fact a step length selection
scheme and can be based on a linear or quadratic model. This method has global convergence properties but is
slower than the Newton’s method even using the quadratic model.

Evaluation of derivatives, especially the second derivative, is a major drawback for derivative-based methods
because in many practical situations, derivative formulas are unavailable or difficult to evaluate. In such cases,
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we can employ either the direct search methods (for a review see [4]) or the derivative–approximation techniques.
An important class of direct search methods considers a grid of points and selects a point with the minimum
function value and then applies finer grids to achieve adequate precision (for example see [1]). Other direct
search methods build a search direction using local information of function value. Unfortunately, the current
direct search methods are not capable of solving all practical problems efficiently. Their performance decreases
quickly as the size of problem increases. In practice, the best derivative-free methods for solving problem (1.1)
are ones that apply the approximation of derivatives. Furthermore, using derivative-approximation techniques
makes it possible to exploit the available improvements in derivate-based methods (For example see [8]). A
general technique for derivative approximation is finite-difference method. There is also a special technique
for implicit approximation of the second derivative in optimization. This technique updates Hessian matrix
using the rank-1 or 2 formulas. The quasi-Newton methods apply this technique to become free of the second
derivative, but the convergence rates in these methods reduce to super-linear. In recent years, great efforts have
been made to improve the convergence speed of quasi-Newton methods [3, 7, 9].

In this paper, a modified Steffensen method [6, 10, 11] is applied for approximating the Hessian matrix in
Newton’s method. The Steffensen method is an iterative approach for finding roots of a function. The use of
Steffensen technique here leads to very accurate approximation of Hessian matrix especially near a stationary
point and hence gives rapid convergence methods. Two methods of this kind are proposed. In the first method,
the Steffensen formula is embedded in another Steffensen formula and the second method is a two-point method.
In problems with a single variable, the first method has two functions evaluations per step and at least quadratic
convergence while the second method has three functions evaluations per step and cubic convergence. In problems
with several variables, the convergence of both methods are at least of second order. The strategy employed to
avoid the second derivative can be used to obtain derivative-free versions of the methods. The efficiency of the
proposed class of methods is examined on test functions for unconstrained optimization. The results show rapid
convergence of the methods as expected from the theory.

The rest of the paper is organized as follows. Section 2 describes the new methods and Section 3 discusses
some practical remarks. The results of numerical examinations are given in Section 4. Conclusions and further
directions follow in Section 5.

2. A new class of methods for unconstrained optimization

In this section, two methods for solving unconstrained optimization problems are proposed which are based
on the Steffensen method. Other methods of this kind can also be developed in a similar manner.

2.1. Method A: Several use of the Steffensen method

At first, a derivation of the method for functions of a single variable is presented and then the method is
extended to the general n-variable case. Suppose that g is a real-valued function of a single variable and g ∈ C3.
Consider the following modified Steffensen method for solving g(x) = 0 [10].

xk+1 = xk −
αkg

2(xk)
g (xk + αkg (xk))− g(xk)

= xk −
g(xk)

g(xk+αkg(xk))−g(xk)
αkg(xk)

k = 0, 1, 2, . . . (2.1)

where αk = 1 reduces the above formula to the classical Steffensen’s method. Determining an appropriate value
for αk can improve the asymptotic convergence rate of the method. Suppose that x∗ is a simple root of g. The
error εk = xk − x∗ in approximating x∗ by xk can be estimated as follows.

(xk+1 − x∗) = (xk − x∗)−
g ((xk − x∗) + x∗)

g((xk−x∗)+x∗+αkg((xk−x∗)+x∗))−g((xk−x∗)+x∗)
αkg((xk−x∗)+x∗)
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Therefore, noting that g (x∗) = 0, we have

εk+1= εk −
g′ (x∗) εk + 1

2g
′′ (x∗) ε2k +O(ε3k)

g′(x∗+εk)αkg(x∗+εk)+ 1
2 g
′′(x∗+εk)α2

kg
2(x∗+εk)+O(α3

kg
3(x∗+εk))

αkg(x∗+εk)

Simplifying the above formula leads to the following error estimation (refer to [10], Thm. 2.1, for the details).

εk+1 =
1
2g
′′ (x∗) (1 + αkg

′ (x∗))ε2k +O(ε3k)
g′(x∗) +O(εk)

Obviously, if αk is chosen as −1
g′ (x∗)

, the convergence rate is at least of third order. It can be shown that

the local convergence rate is still of third order if αk is chosen as −1
g′ (xk)

. (See [10] for details regarding local
convergence properties of the method described by (2.1)). If g′ is adequately approximated (like what is done
in the denominator of right term in (2.1)), a derivative-free method for root-finding is achieved. These findings
suggest the following iteration formula for solving the problem g (x) = 0.

xk+1 = xk −
g (xk)
lk+1

k = 0, 1, 2, . . . ,

lk+1 =−
g
(
xk − 1

lk
g (xk)

)
− g (xk)

1
lk
g (xk)

k = 0, 1, 2, . . . , (2.2)

where l0 is g
′
(x0) or an approximation for that. Note that, the above strategy for avoiding calculation of the

derivatives leads to a reduction in local convergence rate. The number of function evaluations in each iteration
of the method is just 2. Now assume that g (x) = f ′ (x) and consider the above method employed for solving
min {f(x)|x ∈ R}. In this case, some considerations are needed to provide the descent property of the method.
These considerations are presented in Section 3.

If the first derivative of f , i.e., g is also unavailable, the approximation lk+1 for g′(x) can be applied this
time tof ′(x). For example, g(xk) can be estimated as follows:

g(xk) ≈
f
(
xk − g(xk−1)

lk

)
− f(xk)

− g(xk−1)
lk

where lk is available from (2.2) and does not need to be calculated. Now, the following extension of the method
is proposed to handle the general n-dimensional case. Suppose that f : Rn → R is a smooth function and
g (x) = ∇f(x). In this case, g(x) = 0 is a homogenous system of nonlinear equations. Let Lk denote an
approximation for the Hessian matrix by the above technique. Therefore the iteration formula is

xk+1 = xk − L−1
k+1g (xk) k = 0, 1, 2, . . . , (2.3)

where L0 is the Hessian matrix of f at x0 or an approximation for that. The entries of matrix Lk+1 denoted by
lk+1
ij , can be expressed as

lk+1
ij = −

gi

(
xk − (L−1

k g (xk))
j
ej
)
− gi (xk)

(L−1
k g (xk))

j

i = 1, . . . , n, j = 1, . . . , n (2.4)

In the above formula g is the gradient vector, gi is the ith component of g, (L−1
k g (xk))

j
is the jth component

of L−1
k g (xk) and ej is the jth unit vector. The following theorem guarantees the quadratic convergence rate of

the method.
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Theorem 2.1. Suppose that f ∈ C3 and xk is sufficiently close to x∗ for some k’s where x∗ is a simple root
of g, i.e., H (x∗) is nonsingular. If Lk is nonsingular for each k and the sequence {

∥∥L−1
k

∥∥ is bounded then the
iteration formula (2.3) converges to x∗ at least at second order.

Proof. Subtracting x∗ from both sides of (2.3) gives

xk+1 − x∗ = xk − x∗ − L−1
k+1g (xk) k = 0, 1, 2, . . .

Using εk = xk − x∗ to denote the error vector in xk we have

Lk+1εk+1 =Lk+1εk − g(x∗+εk)

=Lk+1εk−g (x∗)−H (x∗) εk+O
(
‖εk‖2

)
= (Lk+1 −H (x∗)) εk+O

(
‖εk‖2

)
(2.5)

where H (x∗) is the Hessian matrix of f at x∗. The element (ij) of matrix (Lk+1 −H (x∗)) is

(Lk+1 −H (x∗))ij =
gi

(
xk −

(
L−1
k g (xk)

)
j
ej
)
− gi(xk)

−
(
L−1
k g (xk)

)
j

−∂gi(x
∗)

∂xj

Using Taylor theorem for gi about x = xk we get

(Lk+1 −H (x∗))ij =
gi (xk)−∇gi (xk)t

[(
L−1
k g (xk)

)
j
ej
]

+O(
(
L−1
k g (xk)

)2
j
)− gi(xk)

−
(
L−1
k g (xk)

)
j

−∂gi(x
∗)

∂xj

=∇gi (xk) ej +O
(∣∣∣(L−1

k g (xk)
)
j

∣∣∣)− ∂gi(x∗)
∂xj

=
∂gi(x∗+εk)

∂xj
+O (‖g (xk)‖)− ∂gi(x∗)

∂xj

=O (‖εk‖) +O (‖g (x∗+εk)‖)
=O (‖εk‖) +O (‖εk‖)
=O (‖εk‖)

Therefore, from (2.5) we derive Lk+1εk+1 = O
(
‖εk‖2

)
or εk+1= O(‖εk‖2). Assuming that xk is sufficiently

close to x∗, this result also proves the convergence of the method. �

The proposed method is well-defined if the Hessian matrix H (x∗) is positive definite and satisfies a Lipschitz
condition ‖H (x)−H(y)‖ 6 λ ‖x− y‖ in a neighborhood of x∗. By continuity of g, ‖g (x)‖ is small in a
neighborhood of x∗. Hence if xk is sufficiently close to x∗ and Lk is a good approximation for H (xk−1) then∥∥L−1

k

∥∥ is bounded and Lk+1 would be a better approximation for the Hessian matrix. Note that, the error
of using Lk+1 as a difference approximation for H (xk) is of O

(∥∥L−1
k g(xk)

∥∥). This implies that εk+16 εk and
‖g (xk+1)‖6 ‖g (xk)‖. By induction, we have εk → 0, g (xk) → 0 and Lk → H (x∗) and therefore the method
is well defined under these conditions.

If the gradient of function is also unavailable, the above method can easily be extended to a non-derivative
method. It should be noted that in this case, the convergence order is generally lower. The above technique
for derivative approximation (Eqs. (2.2) and (2.4)) can also be employed to build a model for the trust region
methods.



RAPIDLY CONVERGENT STEFFENSEN-BASED METHODS FOR UNCONSTRAINED OPTIMIZATION 661

2.2. Method B: A two-point Steffensen-based method

Another way of avoiding the computation of second derivatives is employing a two-point method [11]. At first,
consider the single variable case and suppose that f ∈ C3 is a real function of a single variable and g (x) = f ′(x).
The following two-point method is proposed:

xk+1 = xk −
g (xk) (xk − yk)
g (xk)− g (yk)

k = 0, 1, . . .

yk = xk −
g2 (xk)

g (xk + g (xk))− g (xk)
k = 0, 1, . . .

(2.6)

where x0 is the initial guess. The number of function evaluations in each iteration of the above method is 3.
If xk is sufficiently close to x∗ for some k, the sequence has at least third order convergence. To show this, let
εk = xk − x∗ and ε′k = yk − x∗ be error terms in iteration k. First, note that the second equation in (2.6) is
identical to equation (2.1) if αk is fixed to 1 in (2.1). Therefore from the discussion in Section 2.1 we obtain

ε′k =
1
2g
′′ (x∗) (1 + g′ (x∗))ε2k +O(ε3k)

g′(x∗) +O(εk)

and hence ε′k = O(ε2k). Second from the first equation in (2.6) we have

εk+1 = εk −
g (x∗ + εk) (xk − yk)

g′ (yk) (xk−yk) + 1
2g
′′ (yk) (xk−yk)2 +O

(
(xk − yk)3

)
= εk −

g′ (x∗) εk + 1
2g
′′ (x∗) ε2k +O

(
ε3k
)

g′ (yk) + 1
2g
′′ (yk) (xk − yk) +O

(
(xk − yk)2

) (2.7)

The denominator in the last expression can be simplified as

g′ (x∗ + ε′k) +
1
2
g′′ (x∗ + ε′k) (εk − ε′k) +O

(
(εk − ε′k)2

)
= g′ (x∗) + g′′ (x∗) ε′k +

1
2
g′′ (x∗) (εk − ε′k) +O(max

{
ε2k, ε

′2
k

}
)

Replacing the above in (2.7) gives

εk+1 =
g′ (x∗) εk + g′′ (x∗) εkε′k + 1

2g
′′ (x∗)

(
ε2k − εkε′k

)
− g′ (x∗) εk − 1

2g
′′ (x∗) ε2k +O

(
ε3k
)

g′ (x∗) +O (max {εk, ε′k})

=
1
2g
′′ (x∗) εkε′k +O

(
ε3k
)

g′ (x∗) +O (max {εk, ε′k})

which proves that εk+1 = O(ε3k) because ε′k = O(ε2k).
Now, consider the case where f : Rn → R is a real function of n variables. Assume that f is a smooth function

and g (x) = ∇f(x). The iteration formulas in (2.6) can be extended as follows.xk+1 = xk −B−1
k+1g (xk) k = 0, 1, 2, . . . ,

yk = xk −W−1
k+1g (xk) k = 0, 1, 2, . . . ,

(2.8)
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where entries of matrices Bk+1 and Wk+1 denoted by bk+1
ij and wk+1

ij , respectively, can be expressed as follows.

bk+1
ij =

gi

(
xk + (yk − xk)jej

)
− gi (xk)

(yk − xk)j
i = 1, . . . , n, j = 1, . . . , n

wk+1
ij =

gi (xk + gj(xk)ej)− gi (xk)
gj (xk)

i = 1, . . . , n, j = 1, . . . , n (2.9)

Note that (yk − xk)j denotes jth component of vector yk − xk and ej is the jth unit vector. The following
theorem shows that the convergence of {xk} is at least of second order.

Theorem 2.2. Suppose that f ∈ C3 and xk is sufficiently close to x∗ for some k’s where x∗ is a simple root
of g. If Bk and Wk are nonsingular for each k and the sequences

{∥∥B−1
k

∥∥} and
{∥∥W−1

k

∥∥} are bounded then
the sequence {xk} generated by (2.8) converges to x∗ at least at a quadratic rate.

Proof. Subtracting x∗ from both sides of the first system of equations in (2.8) gives

xk+1 − x∗ = xk − x∗ −B−1
k+1g (xk) k = 0, 1, 2, . . .

Using εk = xk − x∗ to denote the error vector in xk we have

Bk+1εk+1 =Bk+1εk − g(x∗+εk)

=Bk+1εk−g (x∗)−H (x∗) εk+O
(
‖εk‖2

)
= (Bk+1 −H (x∗)) εk+O

(
‖εk‖2

)
(2.10)

The element (ij) of matrix (Bk+1 −H (x∗)) is as follows.

(Bk+1 −H (x∗))ij =
gi

(
xk + (yk − xk)j ej

)
− gi(xk)

(yk − xk)j
−∂gi(x

∗)
∂xj

=
(yk − xk)j ∇gi (xk)tej +O((yk − xk)2j )

(yk − xk)j
−∂gi (x∗)

∂xj

=O (‖εk‖) +O( (yk − xk)j)

Form the second system of equations in (2.8) we have

yk − xk = −W−1
k+1g (xk) = −W−1

k+1g (x∗+εk) = −W−1
k+1

(
H (x∗) εk + O

(
‖εk‖2

))
.

Therefore Bk+1 − H (x∗) = O (‖εk‖) and hence from (2.10) Bk+1εk+1 = O(‖εk‖2), which means εk+1 =
O(‖εk‖2). �

The conditions under which matrices Bk and Wk are nonsingular and the above method is well defined, are
similar to method A.

3. Some practical remarks

Every numerical approach requires some considerations to be successful in practice. The methods discussed
in Section 2 are variants of Newton’s method and therefore the conditions for the new methods are quite similar
to Newton’s method. In the following, we suggest some important remarks and modifications.
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(1) Since the components of g (xk) could be large where xk is distant from the solution x∗, the derivatives
approximation in formulas (2.2), (2.4), (2.6) and (2.9) could be inexact. Using an appropriate multiplier for
g (xk) in these formulas is suggested. For example, a sequence of constants ϑk’s such that 0 < ϑk < 1 and
ϑk → 1 can be chosen. Another possible strategy here is using a global-convergent method like the steepest
descent method at the first stage to reach the vicinity of x∗ and then performing one of the proposed rapid
convergent methods.

(2) To have symmetry for matrices Lk, Bk and Wk we can add them to their transposes and divide the result
by 2. For example, the transformation for Lk is Lnewk = 1

2 (Lk+Ltk). Another strategy is to avoid calculating
upper (or lower) diagonal elements to reduce the computational efforts.

(3) Applying the Cholesky factorization for Lk+1 in (2.3) can be advantageous. Firstly, the Cholesky factor-
ization can simplify solving Lky = g (xk) for y. Secondly, the positive definiteness of the matrix Lk can be
checked. If Lk is positive definite, the descent property and therefore the convergence of the method to a
minimum point is guaranteed. If it is found that Lk is not positive definite, we can modify Lk (for example,
by adding positive values to the diagonal elements) to make it positive definite. This also guarantees the
non-singularity of Lk. The same strategy can be adopted for Bk+1 and Wk+1 in (2.8).

(4) Performing a line search in each step is another modification. This can add the global convergence property
to the proposed methods.

4. Numerical examination

To test the efficiency of the proposed methods, some of well-known test functions for unconstrained opti-
mization are used. These functions have various behaviors like highly oscillating, flattening far from minimum,
having badly conditioned Hessian matrix and so on. No line search or trust region approaches are used in the
employed algorithms. The termination criterion ‖g(xk)‖610−7 is considered and if the method is derivative-free,
an approximation of g(xk) is applied instead. The list of selected test functions is as follows.

(1) f(x) = cos(x)+(x−2)2,
(2) f (x) =x4−8.5x3−31.0625x2−7.5x+45,
(3) f(x) = ((x+ 2)2)(x+4)(x+ 5)(x+ 8)(x− 16),
(4) f (x) =ex−3x2,
(5) f (x1, x2) = x4

1 + x1x2 + (1 + x2)2,
(6) Freudenstein & Roth’s function:

f (x1, x2) =
1

2
(

(x1−x2 (2−x2 (5−x2))−13)2 + (x1−x2 (14−x2 (1+x2))−29)2
)

(7) Levy’s function:

f(x1x2) = sin
(
π

(
1 +

x1 − 1
4

))
+

(((
1 +

x1 − 1
4

)
− 1
)2
(

1 + 10
(
π

(
1 +

x1 − 1
4

)
+ 1
)2
))

+
((

1 +
x2 − 1

4

)
− 1
)2
(

1 + 10
(

sin
(

2π
(

1 +
x2 − 1

4

)))2
)

(8) Shubert’s function:

f (x1, x2) =
(∑5

i=1
i cos ((i+ 1)x1 + i)

)(∑5

i=1
i cos ((i+ 1)x2 + i)

)
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(9) Rastrigin’s function:
f (x1, . . . , xn) = 10n+

∑n

i=1
(x2
i − 10 cos (2πxi))

(10) Schwefel’s function:
f (x1, . . . , xn) =

∑n

i=1
−xi sin

(√
|xi|
)

(11) Zakharov’s function:

f (x1, x2, x3, x4, x5) =
∑n

i=1
x2
i +

(∑n

i=1

i

2
x2
i

)2

+
(∑n

i=1

i

2
x2
i

)4

(12) Rosenbrock’s function:
f (x1, . . . , xn) =

∑n−1
i=1

(
100

(
x2
i − xi+1

)2 + (xi − 1)2
)

(13) Griewangk’s function:
f (x1, . . . , xn) = 1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
(14) Easom’s function:

f (x1, . . . , x2k) =
(
−
∏2k
i=1 cos (xi)

)
exp

(∑2k
i=1− (xi − π)2

)
, kεN

(15) Sum of different powers:
f (x1, . . . , xn) =

∑n
i=1 |xi|

i+1

(16) Langermann’s function: f(x1x2) =
∑m
i=1 ci exp

(
− (x1−ai)

2

π − (x2−bi)
2

π

)
cos(π (x1 − ai)2 + π (x2 − bi)2)

(m, ai, bi and ci are arbitrary constants.)
(17) Drop wave function:

f (x1, x2) = −
1+cos

(
12
√

x2
1+x2

2

)

0.5(x2
1+x2

2)+2

(18) Trid’s function:
f (x1, . . . , xn) =

∑n

i=1
(xi − 1)2 −

∑n

i=2
xixi−1

(19) Goldstein−Price’s function:

f (x1, x2) = (1 + (x1 + x2 + 1)2
(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)
)

× (30 + (2x1 − 3x2)2
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)
)

(20) Styblinski−Tang’s function:

f (x1, . . . , xn) =
1
2

∑n

i=1

(
x4
i − 16x2

i + 5xi
)
.

First, we employed formulas (2.3) and (2.4) and the exact values of first derivative. To study the theoretical
results, none of the remarks stated in Section 3 are applied. Table 1 demonstrates the results for 10 test functions.
In this table, n is the size of the problem and #Itr denotes the number of iterations required by the method to
satisfy the termination criterion. Error values for the sequence generated by the algorithm as well as the values of
gradients have been reported in this table. As can be seen from the results, the reduction in error values are very
rapid and the convergence is at least of second order in problems that satisfy the conditions of Theorem 1. The
number of required iterations are small except for Rosenbrock’s function which has badly-conditioned second
derivative near to its minimum.

Second, both the first and second derivatives are approximated in the algorithm. A controlling multiplier ϑk
for g (xk) is considered as noted in remark (1) of Section 3. The matrix Lk is also modified in some problems
by adding constant positive values to the diagonal entries (see remark (3) of Sect. 3). This helps the resulted
matrix to be invertible and possibly positive definite. Note that, this action reduces the convergence speed.
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Table 1. Analysis of the algorithm (second-derivative-free version): Error values of the first 9
terms in the sequence generated by the algorithm.

x x
g g g g g g g g g

Table 2. The numerical results of derivative-free version of the proposed method.
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Table 2 summarizes the results. The number of iterations are small in most cases but they are slightly more
than the number of iterations required by the second-derivative-free version of the algorithm that applies exact
first derivatives. In some test functions like problems #5 and #11, however, the convergence speed in derivative-
free method is observed to be more than the second-derivative-free method by the help of strategies stated in
Section 3.

5. Conclusion

In this paper, a class of Steffensen-based methods for solving unconstrained optimization problems has been
proposed. Two methods of this class have been introduced. The first method has 2 function evaluations per
step and at least quadratic convergence for functions of a single variable. This method has also quadratic
convergence for functions of several variables. The second method is a two-point method and has 3 function
evaluations per step and third order convergence for problems with a single variable. The convergence rate
of this method for solving problems with several variables is at least quadratic. Both methods are free from
second derivatives. The strategy employed in these methods is similar to Newton method for unconstrained
optimization but derivatives of functions f are approximated adequately using a rapid Steffensen technique.
This Steffensen technique can be applied to approximate the first derivatives as well to obtain derivative-free
methods. The theoretical and computational results show that the new methods have rapid convergence without
performing expensive computations.

Based on the proposed approximation technique, modifications for other optimization methods like the con-
jugate gradient and the trust region methods can be considered for further research.
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