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AN N-POLICY DISCRETE-TIME GEO/G/1 QUEUE WITH MODIFIED
MULTIPLE SERVER VACATIONS AND BERNOULLI FEEDBACK *

SHAOJUN LANY™ AND YINGHUI TANG?

Abstract. This paper deals with a single-server discrete-time Geo/G/1 queueing model with Bernoulli
feedback and N-policy where the server leaves for modified multiple vacations once the system becomes
empty. Applying the law of probability decomposition, the renewal theory and the probability gener-
ating function technique, we explicitly derive the transient queue length distribution as well as the
recursive expressions of the steady-state queue length distribution. Especially, some corresponding re-
sults under special cases are directly obtained. Furthermore, some numerical results are provided for
illustrative purposes. Finally, a cost optimization problem is numerically analyzed under a given cost
structure.
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1. INTRODUCTION

The research of discrete-time queueing systems have caught numerous scholars’ interest during the last few
decades. In fact, the applications of discrete-time queues can be found in many real-world situations, such as
flexible manufacturing systems, production/inventory systems and the digital computer and communication
systems. In particular, in computer and communication systems (e.g., time division multiple access (TDMA)),
the inter-arrival times of packets and their forward transmission times are the elementary units of time like bits
and bytes. These queueing activities, on a discrete-time basis, can only occur at regularly spaced epochs, which
has become a powerful incentive to the investigation of discrete-time queueing theory. In addition, discrete-
time queues are more suitable than their continuous-time counterparts for characterizing the behaviors of data
communication and computer networks, and can be used to approximate the continuous systems but not vice
versa. For details on discussion and applications in the area of discrete-time queues, we refer the reader to the
monographs by Hunter [8], Bruneel and Kim [4] and Woodward [17].

In the context of utilizing effectively the server’s idle time for different purposes (e.g., carrying out mainte-
nance for service facility or taking a break), Levy and Yechiali [18] first proposed the concept of vacation policy.
Since then, many researchers have been attracted to study queueing systems with vacations and considerable

Keywords. Discrete-time queue, N-policy, Bernoulli feedback, Modified multiple vacations, Cost optimization.
* This research is supported by the National Natural Science Foundation of China (No. 71571127).

1 School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, P.R. China.

2 School of Fundamental Education, Sichuan Normal University, Chengdu 610068, Sichuan, P.R. China
**Corresponding author: sj1an89@163. com

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAI 2019


https://doi.org/10.1051/ro/2017027
https://www.rairo-ro.org
mailto:sjlan89@163.com
http://www.edpsciences.org

368 S. LAN AND Y. TANG

research results on this topic have been achieved. Up to now, vacation queueing models have been developed
to successfully analyze the operations of various stochastic service systems and have been regarded as effective
tools in modeling and analyzing complex computer and communication networks. The assumption that when
the system becomes empty the server leaves for vacation is not only more realistic, but also provides more flex-
ibility in optimal design and control of a queueing system. A comprehensive review of vacation queues can be
found in the surveys of Doshi [5] and Ke et al. [12], and the monographs of Takagi [24] and Tian and Zhang [25].
In the recent past, remarkable contributions on discrete-time queueing systems with vacations have been made
by many authors (see e.g., Zhang and Tian [32], Tang et al. [23], Wang et al. [27], Wang [28], Goswami and
Mund [10], Laxmi and Jyothsna [20], and Gao and Wang [11]).

In the aforementioned papers, it is generally assumed that at the completion epoch of a vacation the server
either is available thereafter (single vacation policy) or takes another vacation (multiple vacations policy). The
purpose of the present study is to extend the above work by incorporating a new feature, named standby
period. When a customer who has just been served leaves an empty system, the server stays idle for some
random length of time (called standby period), instead of leaving for vacation immediately. If there are arrivals
occurring during the standby period, the server is immediately available and begins to serve the customers until
the system becomes empty again. If no customer arrives at the system at the end of the standby period, the
server starts his vacation at once. Further, if no customer is found in the system at the completion epoch of
a vacation, the server commences a new standby period. The introduction of standby period generalizes the
standard multiple vacations policy and makes it possible for the immediate availability of the server, whereas
in the classical vacation queues the server is available only when he completes his vacation.

Over the last few decades, one of the most extensive studies regarding queueing models is the optimal design
and control of the behavior of queues. The main objective of investigating controllable queueing systems is to
actualize the precise control and help system managers economize the operating cost. Among many control
policies, the most popular policy is the N-policy which was first proposed in Yadin and Naor [30]. The N-policy
states that the server is turned off whenever the system becomes empty and is turned on when the number of
waiting customers reaches the predetermined threshold value N. Queueing systems with N-policy have been well
studied by many researchers. Herndndez—Diaz and Moreno [7] studied a discrete-time queue with early setup
and Bernoulli feedback in which the system operates under N-policy. They discussed a cost optimization problem
to manage the system at a minimum cost. By the supplementary variable technique, Moreno [21] considered a
discrete-time Geo/G/1 queue with a generalized N-policy and setup-closedown times. Lim et al. [13] discussed
a GI/Geo/1 queueing model with N-policy and derived the stationary queue length distributions at various
time epochs. For more discussion and applications concerning N-policy, interested readers may refer to Luo
et al. [14], Lee and Yang [16], Wei et al. [29], Aksoy and Gupta [1], and references therein.

A queueing system with feedback phenomenon is characterized by the feature that when a customer is
dissatisfied with the current service, it may retry again and again until it has obtained a satisfactory service
before leaving the system. This kind of queues frequently arises in our day-to-day life. For instance, in multiple
access telecommunication systems, the data packet with errors at the destination will be sent repeatedly until the
data packet is successfully transmitted. The research of queueing system with Bernoulli feedback was initiated
by Takacs [26]. Atencia and Moreno [2] addressed a discrete-time GeoX /Gy /1 retrial queue with Bernoulli
feedback. Atencia et al. [3] provided an extensive analysis for a discrete-time retrial queueing system with
starting failures, Bernoulli feedback and general retrial times. More discussion for the related topic concerning
discrete-time queues with Bernoulli feedback can be referred to Liu and Gao [19], Gao and Liu [9] and Yang
et al. [31].

In this paper, we propose to investigate a discrete-time Geo/G/1 queueing system with Bernoulli feedback,
modified multiple vacations and N-policy. This model is useful to control the system queue length and reduce the
customers’ waiting time. Moreover, it can also greatly economize the switching costs of the system. To the best
of our knowledge, there is no research work on the proposed model. The main contributions of this paper are as
follows. It is the first time in the queueing literature to consider a discrete-time queue by incorporating Bernoulli
feedback, modified multiple vacations and N-policy simultaneously, which makes the model much closer to many
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FIGURE 1. Various time epochs in a late arrival system with delayed access (LAS-DA).

practical situations. Also, the analysis technique used here is different from the supplementary variable method
and embedded Markov chain technique. Using a new and direct approach, we obtain the transient solution
of the queue size distribution and the explicit recursive formulas of the stationary queue length distribution.
The explicit recursive formulas can used to calculate accurately the probabilities of queue length. Finally, in
order to save the operating cost, we develop a long-run expected cost function per unit time to discuss the cost
optimization problem.

The organization of the remaining paper is structured as follows. In Section 2, the considered mathemat-
ical model is formulated and some preliminaries are given. Section 3 is devoted to analyzing some queueing
characteristics including the transient queue length distribution, the steady-state queue length distribution, etc.
Section 4 is related to exploring the effect of some key parameters on system performance measures. Moreover,
in Section 5, we consider a cost problem for minimizing the system cost. Finally, some conclusions are given in
Section 6.

2. MODEL DESCRIPTION AND PRELIMINARIES

We consider a discrete-time Geo/G /1 queueing system with Bernoulli feedback and N-policy where the server
leaves for modified multiple vacations as soon as there is no customers in the system. Different from continuous-
time queues, all the queueing activities (e.g., arrivals and departures of customers), in discrete time queues,
are nonnegative integer-valued random variables. Assume that the time axis is segmented into equal length
intervals (called slots) and let the time axis be marked with 0,1,2,...,n,... All the arrivals and departures
only happen at boundary epochs of time slots in discrete-time regime. In view of this fact, one arrival and one
departure may take place simultaneously within a slot. So, it is necessary to stipulate the order of arrivals and
departures. Generally speaking, there are two types of discrete-time models, namely, the early arrival system
(EAS) and the late arrival system (LAS). And the late arrival system (LAS) can further be subdivided into late
arrival system with delayed access (LAS-DA) and late arrival system with immediate access (LAS-IA). More
discussion regarding these concepts can be referred to Hunter [8]. In this study, we consider the late arrival
system with delayed access (LAS-DA), that is, the arrivals take place within (n=,n), n = 0,1,2,..., and the
departures occur within (n,n™), n = 1,2,... Moreover, it is assumed that there is no arrival within (0~,0)
and no departure within (0,0%). To make it clearer, the various time epochs at which queueing events occur
are displayed in Figure 1.

The detailed mathematical model is described as follows.

(1) Arrival process: Customers arrive at the system according to a Bernoulli process with rate p(0 < p < 1), i.e.,
only one customer arrives with probability p and no customer arrives with probability 1 — p in every slot,
which ensures that the customers’ inter-arrival times {74, k > 1} are independent and identically distributed
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(ii.d.) with a geometric distribution P {7, = j} = p(1 —p)jfl7 j = 1,2,... The probability generating
function (PGF) of the number of arrivals during a random slot is then given by A (z) =1 —p+pz, |z] < 1.

(2) Service process: There is only one service station in the system and the customers are served one by one
according to the first-come-first-served (FCFS) discipline. The service times of the customers, denoted
by {xk,k > 1}, are i.i.d. discrete-time random variables and arbitrarily distributed with probability mass
function (PMF) P{xx =j} = gj, j > 1, and PGF G (z) = Z;il g;2, |z| < 1. Both the mean service
time p and the second moment E[(Xk)Q] are finite. After a customer is served, he will decide either to
leave the system forever with probability « (0 < a < 1) or join the queue again for another service with
complementary probability 1 — «, which implies that the total service number of a customer, denoted by &,
follows a geometric distribution with parameter «, i.e., P{{ =j} =a (1 — a)]_l, j>1.

(3) Modified multiple vacations and N-policy: Whenever all the customers in the system are completely served,
the server enters standby state instead of leaving for vacation immediately. The duration of standby period,
denoted by Y, is a discrete random variable with PMF P{Y = j} =y;, j = 0,1,2,... and PGF Y (2) =
Z;io y;27. If there are arrivals occurring during server standby period, the server is available and begins to
serve the customers immediately until the system becomes empty again. And the server renewedly enters
standby state. If no customer arrives at the system during standby period, the server starts his/her vacation
at once. The vacation time, designated by V, is also a discrete random variable with PMF P{V =k} =
vk, k =1,2,... and PGF V (2) = Z;’il vjz7. During a server’s vacation, if the number of customers in
the system reaches a predetermined N, the server interrupts his/her vacation and begins to provide service
for the customers at once. If there are less than N customers in the queue, he/she stays vacation state
until the vacation period ends. On return from the vacation, if he/she finds one or more customers (less
than N customers) waiting for service, he/she serves these customers immediately until the system is empty
again. Otherwise, if no customer is found in the system at the completion epoch of a vacation, the server
commences a new standby period which may be followed by another vacation.

(4) It is assumed that if there are no customers in the system at initial time n™ = 07, the server stays idle and
waits for the first arrival (this hypothesis is not only more realistic in real-world situations, but also has no
effect on the stationary queue length distribution). That is to say, after the first busy period, the system
begins to take modified multiple vacations and N-policy. Further, various random variables involved in the
system are independent of each other.

For later discussion, we first present some preliminaries as follows.

Definition 2.1. “System idle period” is the time interval that starts at the instant at which the system becomes
empty and ends at the instant when the first customer arrives. Obviously, the system idle period is the remaining
time of an arrival interval.

Let 7, (k = 1,2,...) be the kth system idle period. Thus, 7} are independent mutually and satisfy the same
geometric distribution with parameter p (i.e., P{7 = j} =p (1 — p)jfl, j > 1) due to the Markovian property
of geometric distribution.

Definition 2.2. “Server idle period” is the time interval that commences when the system is completely empty
and finishes when the server begins to serve the waiting customers.

Denote by I the server idle period. In our model, the server idle period may contain the standby period and
the vacation period.

Definition 2.3. “Total service time” is the time length from the time when the service of a customer begins
until the time when the customer is served completely and leaves the system, which consists of the possible
multiple services caused by Bernoulli feedback.
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Let x be the total service time of a customer and §; = P {x = j} be the corresponding PMF. According to

the model assumptions, we have y = Zle Xi, where x;, ¢ > 1 and £ are independent of each other. Then,
for j > 1, we can get

5 =P (=i} =P{¥ =i} - Sal -t P{¥L =i} (2.1
k=1

From the above equation, the PGF of x is given by

E:%z-— - a?;;G(d,p|<1, (2.2)

which indicates that the mean of the total service time y is

dG (z)

dz =1
Remark 2.4. If y is regarded as the service time of a customer, the queueing system under consideration is
equal to a discrete-time Geo/G/1 queue with N-policy and modified multiple server vacations in which the
service times of customers are i.i.d. with distribution {g;, 7 > 1} and mean E[y] = £.

I

B[ = £ (23

Definition 2.5. “Server busy period” is the time interval that starts at the time point at which the server
begins to serve customers and finishes when the system becomes empty again.

Denote by b the length of the server busy period initiated with only one customer. Then, similar to the
analysis in Bruneel and Kim [4], we have Lemma as follows.

Lemma 2.6. Let B(z) = >.72, P{b=j} 27 be the PGF of b. For |z| < 1, B(z) is the root of the equation
B(z) =G ((p+ pB(2)) 2), and the mean value is given by
— <1
B ={ L =p)
o, p=1,

where p =1 —p, p = pu/a represents the traffic intensity of the model under consideration.

Let b{" be the server busy period initiated with 1(1 > 1) customers. Due to the Markovian property of
geometric distribution, b can be expressed as b = by + by + ... + b;, where by, b, ..., b; are independent
of each other and follow the same distribution as b. Thus, the PGF of b{" is given by P {6 = j} 2l =
Bi(z), 2| <1

Let L(n*) designate the number of customers in the system at time epoch nt and Q;(n*) =
P{b>n",L(nT)=j}, 7 > 1 denote the transient probability of there being j customers at epoch n* in
busy period b, where the epoch n™ = 07 is the beginning of b. According to the definition of b, we have the
boundary condition Q1 (07) =1, Q; (07) =0, j = 2,3,... Similar to the discussion in reference Wei et al. [29],
we have the following lemma.

Lemma 2.7. Let Q;r (2) =30 0Q; (nh) 2", |2| <1, j > 1 be the PGF of Q; (nt), then the recursive formulas
of Q; (2) can be expressed as

x |B(z) -G i f:( )gkz (z)]mp""m”,
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where B (z) is defined as in Lemma 2.6, gy is given by (2.1), G (pz) = Z;’il Jj (pz), (f@) = W, k>m >
L () =1and (})=0ifk<m. 3, =0ifj<i.

3. ANALYSIS OF SYSTEM QUEUE LENGTH DISTRIBUTIONS

In this section, by the law of probability decomposition and renewal theory, we first derive the PGF of the
transient queue length distribution at any epoch n™. Then, based on the transient results, the explicit formulas
for the steady-state queue length distribution are obtained.

3.1. The transient distribution of the queue length at epoch nt

Let Py (nT) = P{L(n")=4|L(0") =14} be the conditional probability that there are j customers at
epoch n under arbitrary initial state L(0T) = i(i = 0,1,...). The PGF of P;; (n") is given by P (z) =
S o P (nt) 2" 4,5 =0,1,2,.... The expressions of P;Jf (z) with respect to different i and j, will be derived
in Theorems 3.1-3.3.

Theorem 3.1. For |z| < 1, we have

F(z)B(z)[1 =V (2p) Y (2p)]

Py (2) = e A : (3.1)
Pt (2) = 1 _1225 B (2) [11:‘2((22)3/(217)}, is1, (3.2)
where
pz
F(z) :@7
A(z) =V (2p) Y (2p) + F (2) B(2) [1 = Y (2D)]
+ BN (2)Y (2p) Z P{V =u} Z Zm<]7$:1>pNﬁm—N
u=N m=N
N—-1 oo u
LD VS R (3 716 i
Proof. See Appendix A for details. |
Theorem 3.2. For|z|<1,i>1and j=1,2,...,N — 1, we have
F(2)B(2)QT (2)[1-Y (2p Y (zp)o; (2
P[;(z):F(z){Q;(zH (9599 @)L ¥ ol +Y el >}, s
‘ F()B'(2)QF (2)[1 =Y (zp Biilez_crjz
Pi(2)=Y B* ' (2) Qi (2) + (2) B" () Q7 (2) [ 1(;22; (2) Y (2p) 0 ( ), (3.4)

k=1
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where A (z) is given by Theorem 3.1, Qj (2) is determined by Lemma 2.7, and

N o u
> QN (2)B ()Y P{V=u}) 2" <x: Dpzvpm_zv
u=N m=N

k—N—j-',-l
= U r \NU—T
PN B QS P =) (1) () )
r=1k=1 u=r
- = u r \U—T
FY Y B0 @3 P =u (1) e e
r=j+1k=r—j+1 =
Z P{V—u}z (> iphd,
u=j+1
Proof. See Appendix B for details. O

Theorem 3.3. For|z|<1,i>1andj=N,N+1,..., we have

FszQ.z —Y (zp)| +Y (2p)0; (2
Pd;() (){Q+() () () ]()1[1—43(2)19)] (p)]()}’ (3.5)
FzBizQ- z —Y (zp —i—Bi’lez‘G-z
ZBkl jZk() () () ]()[11 (p()i) () (p)]()7 (36)

where A (z) is given by Theorem 3.1, Q;‘ (2) is determined by Lemma 2.7, and

N

Y QB @ Y P =u (D)
k=1 u=N m=N
N—
5>

1 r
r=1

klek i )gP{V —u) C‘) T

Proof. For j = N,N +1,...,L(n") = j indicates that epoch n™ is only located in the server busy period
with j customers in the system. Using the similar analytical technique and derivation process of the proof of
Theorem 3.1 (see Appendix A), we can complete the proof of Theorem 3.3, so we omit it here. ([

3.2. The recursive formulas for the steady-state distribution of queue length at epoch n™t

On the basis of the transient distribution of the queue length at an arbitrary epoch n™ derived in
Theorems 3.1—3.3, the recursive expressions of the steady-state queue length distribution at epoch n* will
be investigated in this subsection.

Theorem 3.4. Let p;r = lim P{L(n%) =73}, j =0,1,2,... be the steady-state queue length distribution of

our queueing system. We have

(i) Ifp=pu/a>1, thenp =0, j=0,1,2,...
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ii) For p = pu/a < 1, the steady-state queue length distribution {pF,j >0} at epoch nt exists and forms a
P Iz J
probability distribution. The recursive expressions are given by

W == Ty oA (37)
pf=p(1—p) i Ifi(fz] ?{XNY_@;; % j=1,2,...,N -1, (3.8)
b =p(i-p PP vy (39

where

I S DTS (T_‘l )pfpmm

r=1u=r

Qj = étﬁ) Z Z gk( )pj—lpn—j+1

n=j—1k=n+1

1-G ZZ( ) m’fMH,j:Lz,...,

+ZQ] l 1k=
m= m

oj = Z Q- N+kZP{VU}Z< > Npm=N

k=N—j+1

Y0, r+kZP{V—u}()

r=1k=1

+ Z > Q- r+kZP{V—u}<) -
r=j+1k=r—j+1

+ Z P{V—u}Z( )pﬂpk ij=1,2,...,N—1,
u=j+1

0; = ZQj—zwk Z P{V=u} )" (Z B Dprm_N

k=1 u=N m=N

N—-1 r

= UN pu—r
+3 Qj—r+kZP{V—U}(T>pP , j=N,N+1,...
r=1 k=1 u=r

Proof. In discrete-time environment we have pj = lim (1-2) PJ (2) (see Jury [6]). Applying Lemma 2.6,
z—1-

Theorems 3.1—3.3 and L’Hospital’s rule, the formulas (3.7)—(3.9) of Theorem 3.4 can be derived. It is noted
that the L’Hospital’s rule used by lir{{ (1—-=%) Piy (2) can yield E[b] in the denominator, and from Lemma 2.6,

we know that E[b] = co under p > 1, which leads to p;r =0,7=0,1,2,... Furthermore, by manipulating direct
calculations, the formula ZJO.OZO pj' =1 holds, i.e., {pj',j =0,1,2,.. } is a probability distribution. (|
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Theorem 3.5. Let 11T (z) = Z;’;Opjzj, |z| < 1 be the PGF of the stationary queue size distribution
{p;r,j =0, 1,27...} at epoch n™. For p=pp/a <1 and |z| < 1, we have

1t ()= 1= (1 =2)Cptp)
YT R T Y PV =u) % ()
x et o | (310)

1+Y (p)(Ay —1)
The mean steady-state queue length, denoted by E [L*], is given by

2

E[L"‘]:p-i-ﬁE[)z( —1)]
Y (p) Z Z P{V =u} Z (mr_l)PH_lﬁm_T_l
’ - - v (3.11)

1+Y (p) (Anv - 1)

MS

where X denotes the total service time, E[x (x —1)] = Y. j(j — 1)P{x =3}, An is given by Theorem 3.4.

7j=1

Proof. Utilizing the formulas of p;r given in Theorem 3.4 and noticing that
CE|1-G (a0
{é(z)\Jr;\) fz}’

>0

the expression (3.10) can be obtained by manipulating some algebraic simplification on ITT (2) = Z;io p;rzj
Meanwhile, (3.11) can be derived by E[LT] = L [IIF (2)] |.=;. O

Corollary 3.6. In a discrete-time Geo/G /1 with Bernoulli feedback, N -policy and modified multiple vacations,
the steady-state queue size Lt consists of two independent random variables: LT = Lg + Ld+. LO+ 1s the steady-
state queue length of the Geo/G/1 queue with Bernoulli feedback and the corresponding PGF is ((1 — p)(1 —
z)é(zp—i—ﬁ))/(é(zp +p)—2). L;L is the additional queue size caused by N -policy and modified multiple vacations,
and the probability distribution of L;l" 1s given by

1-V(p)

Plta=0t= 1+Y (p)(Ay = 1)’ (3.12)
Y (p) §+ P{V =u} Zu:Jrl (mr—l)p'r#»lﬁmfrf]
+ _ _ u=r+1 m=r
At 1+Y () (Ay — 1) :
r=1,2,...,N—1. (3.13)

Proof. From (3.10), the steady-state queue length is composed of two independent parts, and the PGF of Lji'
is given by

L Y@+Y () T 7 S PV=u 5 (i
15 ()= e mere | (3.14)

1+Y (p)(An —1)
Hence the PMF of additional queue size L&" can be derived by P {L; = r} =41. (f;« [Hj (z)] |.=0- a

Tl
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Remark 3.7. (Special cases) In this remark, we consider some special cases of our model by taking specific
values for the parameters.

(1) When P{¢ =1} = 1(i.e., « = 1) and P{Y =0} = 1, our model is equivalent to a discrete-time Geo/G/1
queue with N-policy and regular multiple vacations. For p = pu < 1 and |z| < 1, we have

N—-1 ) w
z" =u m—1\ _r+4+1-m—r—1
(=P (1=2)Glp+p) = Y P{V=ul ¥ (" |

u=r+1 m=r—+1

G(zp+p)—2 An

It (z) =

(2) When N =1 and P{Y =0} = 1, the model investigated in this paper becomes a discrete-time Geo/G/1
queue with Bernoulli feedback. For p = pu/a < 1 and |z| < 1, we have

U+(Z): (1—[)2(1—Z)G<]5—|—zp)’
G({p+zp)—=z

which is in accordance with the corresponding result in Luo et al. [15].
(3) When P{V = oo} = 1, the considered model reduces to a discrete-time Geo/G/1 queueing system with
Bernoulli feedback and modified N-policy. For p = pu/a < 1 and |z| < 1, we obtain

It (= =P 0-9C@E+zp) 1-24Y(0)(—2Y)
G(p+2p)— = 1-2)[1+ O -1Y (p)]

(4) When N — oo, @ =1 and P{Y =0} = 1, our model is equal to a discrete-time Geo/G/1 queueing system
with regular multiple vacations. For p = pu < 1 and |z| < 1, we obtain

(1-p)(1—=2)G(P+2p) 1-V(p+ zp)

+(5) = .
" (=) Ghrw -z  pEVIA-2)

which matches with the corresponding result in Takagi [22].

4. NUMERICAL RESULTS

In this section, some numerical examples are carried out to illustrate the validity and practicality of the
expressions derived in previous sections and to qualitatively describe the behavior of the queueing system under
investigation. All the notations used in subsequent discussion are the same as those defined in the previous
sections. Meanwhile, all the computations are implemented in the software of MATLAB and the data are given
in five decimal places. Of course, the values of all the parameters are chosen so as to satisfy the stability condition
p = Ap/a < 1. For simplicity, we assume that the service time x, server vacation time V and the length of
standby period Y follow the geometric distributions with parameters 3, 8 and 7, respectively.

4.1. Computation of the steady-state queue length

Based on the recursive solutions provided by Theorem 3.4, we can compute the steady-state queue length at
time epochs n. The numerical results are displayed in the form of a table (see Tab. 1). Here the default system
parameters for the numerical results shown in Table 1 are set as p = 0.15, 8 = 0.45, « = 0.5, n = 0.3, § = 0.2
and N =T7.
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TABLE 1. The steady-state queue length distribution at epochs n™.

j p} j 24 j Py

0 0.26343 11 0.00238 22 0.00001
1 0.25042 12 0.00145 23 0.00001
2 0.17638 13 0.00088 24 0.00000
3 0.11627 14 0.00054 25 0.00000
4 0.07407 15 0.00033 26 0.00000
5 0.04630 16 0.00020 27 0.00000
6 0.02862 17 0.00012 28 0.00000
7 0.01745 18 0.00007 29 0.00000
8 0.01061 19 0.00004 30 0.00000
9 0.00645 20 0.00003 31 0.00000
10 0.00392 21 0.00002 mean 2.03199

4.2. Sensitivity analysis of operating characteristics

We first investigate the sensitivity of the expected additional queue size E [L:H to the changes of N and 6.
From Theorem 3.5, the expected length of additional queue size can be explicitly expressed as

_ = = N
) ]
n+pq |0\ 0 0 + pb 0

Bl = —— -G ]

In (4.1), setting p = 0.3, 8 = 0.45, a = 0.5 and n = 0.3, the effect of N on E [Lji' for different values of
0 is plotted in Figure 2. It is observed from Figure 2 that for a fixed value of 6, E [L d] increases initially as
N increases but finally it keep unchangeable with further increment of N. This is due to the fact that as the
threshold value N gradually increases, it plays a smaller role under the modified multiple vacations and N-policy.
When the threshold N is large enough, the mean additional queue length E [Lﬂ is completely determined by
the server’s vacation time V', that is to say, the queueing system behaves as pure multiple vacations queue.
Furthermore, it can be also seen from Figure 2 that the E [L(ﬂ shows a decreasing trend with the value of 6
getting larger. The reason is that the length of the vacation time V is being shortened with the growth of 6,
and therefore the customers who just come to the system have a greater chance to be served, which matches
with our practical scenario.

We now analyze the impact of system parameters on the mean steady-state queue length E[L*] and the
probability that the system is empty par.

Figure 3 depicts the impact of o on E[L*] and par for different values of §. We set default parameters for
Figure 3 as p = 0.05, 8 = 0.45, n = 0.3 and N = 7. It is observed from Figure 3a that the average system
size E[L*] decreases monotonously for increasing values of « for any 6. This is because as « increases, the
probability that the customer who has just been served leaves the system also becomes larger, which leads to
the decrease of system queue length. Furthermore, as expected, for a fixed a, E [L™] shows a trend of decrease
with the increase of vacation rate 6. In Figure 3b, the reverse trend is displayed for pa' . That is, for a fixed 6, the
probability that the system is empty pg increases monotonously when « increases. The reason is that the larger
the probability « is, the greater the probability that the served customer leaves the system is, which indicates
the probability that the system becomes empty is larger. Also, po+ is an increasing function of 0 for a fixed «,
which is in accordance with our expectation.

(4.1)
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FIGURE 2. The effect of N on E [L]] for different values of 6.
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FIGURE 3. The effect of o on (a) E[LT] (b) pg for different values of 6.

The effect of arrival rate p on E[LT] and pJ for different values of 7 is plotted in Figure 4. We set default
parameters for Figure 4 as § = 0.65, « = 0.5, § = 0.1 and N = 5. It can be seen from Figures 4a and 4b
that E[LT] increases with the increment of p while pér decreases as p increases. This is intuitively true because
increasing p implies that the probability that an arrival occurs in a time slot becomes larger, which can obviously
lead to the growth of the system queue length and the decrease of the probability that the system being empty.
Similarly, for a fixed value of p, as 7 increases, E [L*] increases but pj decreases.

The above numerical analysis not only demonstrates the validity of our analytical results, but also can provide
significant insight to the concerned system designers or decision makers so as to reduce the congestion problem
encountered in practical scenarios, such as manufacturing systems, computer systems and telecommunication
network.

5. COST OPTIMIZATION PROBLEM

In practice, the operating cost of system is closely connected with the system benefit and system design-
ers/managers are interested in minimizing system operating cost of per unit time. For the sake of demonstrating
the applicability of the results obtained in the previous discussion, a cost optimization analysis is carried out
from an economic point of view. We establish an expected operating cost function per unit time for the queueing
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FIGURE 4. The effect of p on (a) E[L*] (b) p{ for different values of 7.

model investigated in this paper, in which NV is decision variable. Then, a numerical example is provided to find
the optimum threshold value N, say N*, to minimize the long-run expected cost per unit time.

To do this, we first discuss the expected length of the busy cycle period C. The busy cycle period consists of
a server idle period and an adjacent server busy period. Let B be a server busy period selected randomly, Q5 be
the number of customers in the system at the beginning of the server busy period B. It is noticed from the model
assumptions that the number of the customers at the beginning of a server busy period may be 1,2,..., N.
Therefore, we have

_ 1_Y() 1
P{Qs =1 = v Vp Z)mm ,
P{Qp=j}= 17V(1p) Zvr ;)pjpr i j=23,...,N—1,
P{Qs=N} = ZZUT()MH

JNT”]

Using the three formulas above, the mean of Q5 is given by

Y (p) (An — 1)
;kP{QB*k}* ~V®Y (p)

where Ay is determined by Theorem 3.4.
The mean of the server busy period B, with the help of Lemma 2.6, is

E[B]|=E[)]-E[Qp] = p(lp_ PR : J{f‘(f)(;ﬁiv(;)l),

Since the inter-arrival times during server idle period follow independent and identical geometric distribution
with parameter p, the expected length of the server idle period is obtained as

EQs] _ 1+Y (5)(Ay 1),
P PI-V®Y ()

p <Ll (5.1)

B[I] = (5.2)
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TABLE 2. The average cost per unit time for different values of N.

C(N) N
155.00000 8 150.24239 15 151.77267 22 151.81720 29 151.81816
142.75000 9 15083548 16 151.79156 23 151.81762 30  151.81817

N C(N) N C(N) N C(N) N C(N)
1
2
3 142.07469 10 151.21468 17 151.80269 24 151.81786 31 151.81818
4
5
6
7

144.02233 11 151.45209 18 151.80920 25 151.81800 32 151.81818
146.21953 12 151.59832 19 151.81299 26 151.81808 33 151.81818
148.02396 13 151.68724 20 151.81519 27 151.81812 34 151.81818
149.34066 14 151.74075 21 151.81646 28 151.81815 35 151.81818

From (5.1) and (5.2), the expected length of the busy cycle period, denoted by E (C), can be expressed as

1 1+Y(p(Av—1)

BCI=EBI+El = T —vev e

p<1. (5.3)

We now begin to study the cost optimization problem. Let us define the cost structure as follows.

Cp, = cost per unit time for each customer present in the system (this cost originates from the customer’s
sojourn time that consists of the waiting time and the total service time).

Cs = fixed setup cost per unit time for per busy cycle (this cost is due to the switch-over between server
busy period and server idle period).

Utilizing the definitions of each cost element listed above and the corresponding system performance measures
obtained previously, the long-run expected cost function per unit time, denoted by C (N), is given by

C(N)=E[L*] Ch+ ==Cs

E[C]
p(1—p) 1=V ()Y () 2 o
1+Y (p)(Ay —1) Cs+ P+mE[><(X—1)}
Y )721 uz,:-HP{V_u} Z (mgl)pr+1ﬁn_r_1
i 1+Y(p )(AN—l) ]Oh’ p<L (5.4)

We can see from (5.4) that the cost function is extremely complex and non-linear, which poses a hard task to
achieve the analytic results for the optimum value of N. Therefore, we will search the optimum value N* for
cost function C (N) through numerical experience.

Example 5.1. In this example, it is assumed that the service time x, server vacation time V and the duration
of standby period Y are governed by the geometric distributions with parameters § = 0.75, § = 0.2 and
n = 0.4, respectively. The default values of other system parameters and cost elements are taken as p = 0.3,
a = 0.8, C, = 50, Cy; = 800. Since N is a discrete variable, the optimal value N* can be found by utilizing
direct substitution of successive values of N into the profit function (5.4) until the minimum value is attained.
Substituting these parameters into (5.4) and developing MATLAB program, the numerical results of the long-run
expected cost per unit time under different threshold value IV are displayed in the Table 2 and Figure 5.

It is observed from Table 2 and Figure 5 that the long-run expected operating cost C'(3) = 142.07469 is the
minimum value, i.e., the optimum threshold value of N is N* = 3.
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FIGURE 5. The plot of C(N) against N.

6. CONCLUSIONS

The present investigation analyzed a discrete-time Geo/G/1 queueing model with Bernoulli feedback, mod-
ified multiple vacations and N-policy. Employing the law of probability decomposition, renewal theory, and
probability generating function method, the analytical expressions for the transient and the steady-state queue
length distribution were derived. It is remarkable that the explicit recursion formulas for the steady-state queue
length distribution (given by Thm. 3.4) are computationally tractable to handle the congestion problems in
real-life situations. Furthermore, some numerical examples were provided to study the effect of some key pa-
rameters on the operating characteristics of the system. Finally, we established a cost structure to investigate
a cost optimization problem.

The analysis results of this paper can provide a potentially practical application for practitioners in telecom-
munication systems, queueing networks, flexible manufacturing systems, inventory problems and so forth.
For further research, one can extend this model by incorporating more complex scenarios like discrete-time
Markovian arrival process (DMAP) of customers, unreliable server and multi-optional services.

APPENDIX A. PROOF OF THEOREM 3.1

Proof. Let Sy = Zle Vi+Y), I = Zle 7, k=1,2,...and Sy = lp = 0, where V; and Y; denote the ¢th
vacation period and standby period, respectively. It is noted that Py (n™) indicates that there are no customers
in the queue at epoch n™ under initial state L (07) = 0, i.e., epoch n' is located in the system idle period.
Based on the previous model assumptions, the beginning and ending epochs of the server busy period are
renewal points. Using renewal theory and the law of total probability decomposition, we obtain

Poo(n+):P{0§n+<’?1}+P{ﬁ+b1§n+<’/:1+bl+7~'2}

+ZP{7~'1 + b1+ 7o §n+,5k71 <7y < Sk71+Yk7L(n+) :0}
k=1

+> P{A+bi+7<n, S 1+ Y <7 < Sk, L(nt) =0}, (A1)
k=1

where 7, and by, k > 1 represent the kth system idle period and server busy period, respectively.
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The first term of (A.1) means that epoch nt is located in the first system idle period, which is equal to

P{o<n®<#}= Y P{r=t}= Y pp''=p" (A.2)
t=n-+1 t=n-+1

The second term of (A.1) is the probability that epoch n' is located in the second system idle period, so we
have

P{7~'1—|-b1§n+<7~'1—|-b1+7~'2}:ZP{7~'1+b1:t} Z P{%sz}

t=2 j=n—t+1
=Y P{A+b =t} (A.3)
t=2

The third term of (A.1) indicates that the time epoch n™ is located after the second system idle period and
the first arrival occurs during the kth server standby period. Under such scenario, the server is immediately

available and begins to serve the customers until the system becomes empty. Thus, the third term of (A.1) is
equivalent to

S P{fi+bi+7<nT, S <2< Spo1+ Vi, L(nt) =0}
k=1

n—t

ZE:P{%1+b1:t}ZP{%2:m}P10 ((n—t—m)+>

P{Sp—1 <m < Sp—1+ Y3}
k=1

X ( i P{Sk_1=w} — i P{Sy 1+ Yy = w}> . (A.4)

w=2k—2 w=2k—1

I
M

X

n

P{7~'1 +b1 = t} z_: P{i’g = m}PIO ((n—t—m)+>
2 m=1

In the fourth term of (A.1), the restrictions “F; + by + 7o < nt” and “Sp_1 + Yy < T2 < Si” implies that the
epoch n™ is located after the second system idle period and the first arrival occurs in the kth server vacation
period. So some other potential customers may arrive in the system during this server vacation period. From our
model description, the number of arrivals during this server vacation period is either N or r (1 <r < N —1).
Hence, the fourth term of equation (A.1) can be further expressed as

SOP{F 4 b+ 7 <0t Sk + Yy < B < S, L (n*) =0}
k=1

= ZP {Fi+bi+R+iva <nt Sio1+Ye <R, o+ Inv—1 < Si, L (nt) =0}
k=1

=

-1

+Z P{fi+b1+ S, <nT, 81+ Y <R <Skft+lo1 <S8, <®”+l,L(n")=0}, (AD)
k=1 r=1

where the first term and the second term in (A.5) indicate N customers and r (1 < r < N — 1) customers
arrive at the system during server vacation period, respectively. Since the ending point of server vacation is the
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beginning epoch of a new server busy period, which is a renewal point, the fourth term of equation (A.1l) is

finally given by

ZP{ﬁ-f—bl + Ty Sn"',Sk,l—i—Yk < Ty SSk,L(n+) 20}

k=1
n—t—w
:ZZP{Tl+b1—t}ZP{Sk 1+ Y =w}p” Y P{f+lya=h}
k=1 t=2 w=2k—1 h=N
xP{szh}PNo((n—t—w—h) )
co N—1 n n—t—w
-I-Z P{7'1+b1—t} Z P{Sk_1+ Yy =w} Z P{V, = u}
k=1 r=1 t= w=2k—1

u —r
X <T)prﬁ“+w Py ((n —t—w— u)+) .

(A.6)

Substituting equations (A.2)—(A.4) and (A.6) into (A.1), multiplying (A.1) by 2" and summing over n, it

finally leads to

L FEBE) | FPEBEI-Y e

AR L-V(nyp)
F(2) B(2)Y (2p) -
TVERY () {ZP{V—“}mZNz P {7+ In_1 = m}
N-1

x P (2) + Z P{V =u} (?) (zp)" (2p)""" P (z)} .

For i > 1, similar to the analysis of Py (n™), we can get
P (n*) =P {b <nt < b 47} + P o0 + 7 <t L (n*) = 0}

L) g et e L0 LS p s —m
Zp{b t}p +;;P{b t}mz::lP{
((

—1 t=

X Piol(n—t—m )( ZP{Sk_1:w}— ZP{Sk—1+Yk:U}}>
w=2k—-2 w=2k—1
oo n n—t n—t—w
+ZZP{b<1>=t} ZP{Sk_l‘FYk:w}ﬁw ZP{%l—‘rlN_l:h}
k=1 t=i w=2k—1 h=N
x P {Vi, > h} Po ((n—t—w h) )
oo N—-1 n n—t—w
DB HIEENIS EIERER SIS s IR
k=1 r=1 t=1 w=2k—1

(A7)

(A.8)
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Multiplying (A.8) by z™ and summing over n, it gives

_ Bi(2) | F(2)B'(2)[1-Y (2p)]
P (2) = 1—Zﬁ+ 1=V (2p)Y (2p) i (%)

B'(2)Y (2p m
+17V(p) {ZP{V—U}ZZ P{7f +Iny_1=m}

m=N

N—-1 oo
x Py Z S (v =u () Gor (T R )}. (4.9)

Solving equations (A.7) and (A.9) leads to the expressions of Py}, (2) and P;} (z) provided in Theorem 3.1. O

APPENDIX B. PROOF OF THEOREM 3.2

Proof. For j = 1,2,...,N — 1, there are j customers in the system at epoch n* if and only if time epoch
nt is located in the server busy period or server vacation period with j customers. Using similar probabilistic
argument as in the proof of Theorem 3.1, it makes

Py; (n Zp{ﬁ =11Q; ((n—1)")

+3 S PR b=t} ZP{%2 = m}Py; ((n—t—m)+)
k=1

t=2 m=1
x( Z P{Sk_1 =w}— Z P{Sk—1+ka}>
w=2k—2 w=2k—1
o n n—t
+ZZP{7~'1+61:L‘} Z P{Sk—1+ Yy =w}
k=1t=2 w=2k—1

> n n—t
+ZZP{7-1 + b1 =t} Z P{Sy1+Y, =w}p"
k=11t=2 w=2k—1
n—t—w
X P {72+ In-1=h}P{Vi = h} P ((n =t —w—h)")
h=N
oo N-1 n n—t
+2 P{fi+bi=t} > P{S1+Y=uw}
k=1 r=1 t=2 weTh—1
n—t—w
X P {Vk = u} (:f) Tpu+w rP ((n —t—w— u)-i-) 7 (Bl)
u=1

where Q;((n —t)*) =P{b> (n— )" L((n —t)") = j}.
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Analogously, for ¢ > 1, we obtain
_7n)+)

:Z Z P{b1—|—b2+...+bk_1=m}Q3 z+k((

k=1m=k—1

+ iip {bm = t} nz_‘j P {7 =m}P; ((n —t— m)+)
k=1 t=i m=1
( Emz P{Sk-1=w} - i P {Si_1 +Y; :w}>

w=2k—2 w=2k—1
n—t

}}:Iw&4+m:w}

+Y )P {b<i> =t 2

k=1 t=i
—t—
XP{Vpy>n—t—w} (n i w)lﬂn =

n—t

+>3°p {b<i> _ t} 3 P{Sh1+ Vi = w)p”
k=1 t=i w=2k—1
n—t—w
x 30 P{R+inoa =h}P{Viz h} Py (n—t—w—h)")
h=N
n—t

Z P{Sk—1+ Y, =w}

co N—1 n
+Y > z:P{b“> :t}
k=1 r=1 t=1i w=2k—1
n—t—w
X Z P{Vi =u} ( )prp'“““’ "P,; ((n—t— —u)+) :

u=1

Multiplying (B.1) and (B.2) by 2™ and adding over n from 0 to oo, it gives
1-Y (2p

2 z z
Py () =F () Qf () + T S
F()()Y@m - " e
v >Y<zp>u§+lp{v* }Z (5)re
() (2) Y (2p) m
V) Y () {ZP{VU}ZZ P{% +Iy_1 =m}
N—-1 o
xPy; (2) + ZP{V—u}< )(zp) (zp)“_’“Pﬁ;(Z)}
r=1 u=r
AﬂdB%dD—Y%@HHHQ

X:B"C L(2) Qi () + 1-V(2p)Y (2p)
N X v (e

+1—V

385

(B.2)



386

S. LAN AND Y. TANG

BOYE [y i
+1_V(215)Y(z]5) MZ;VP{V_ }mz—;v P{fa+Iny_1=m}

N—-1 oo

<P+ X P = (M) G e TR o) (B.4)

r=1 u=r

Solving equations (B.3) and (B.4) for P0+j (z) and PJ (%), we can obtain the desired formulas (3.3) and (3.4). O

(1]
2]
(3]
(4]
(5]
[6]
(7]
(8]
(9]
(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]

(18]
19]

20]
21]
(22]
23]
[24]

[25]
[26]

REFERENCES

H.K. Aksoy and S.M. Gupta, Near optimal buffer allocation in remanufacturing systems with N-policy. Comput. Industrial
Eng. 59 (2010) 496-508.

I. Atencia and P. Moreno, Discrete-time Geo™ /G /1 retrial queue with Bernoulli feedback. Comput. Math. Appl. 47 (2004)
1273-1294.

I. Atencia, I. Fortes and S. Sanchez, A discrete-time retrial queueing system with starting failures, Bernoulli feedback and
general retrial times. Comput. Industrial Eng. 57 (2009) 1291-1299.

H. Bruneel and B.G. Kim, Discrete-Time Models for Communication Systems Including ATM. Kluwer Academic Publishers,
Boston (1993).

B.T. Doshi, Queueing systems with vacation — a survey. Queueing Syst. 1 (1986) 29-66.

E.I. Jury, Theory and Application of the Z-Transform Method, John Wiley and Sons, New York (1964).

A.G. Herndndez—Diaz and P. Moreno, A discrete-time single-server queueing system with an N-policy, an early setup and a
generalization of the bernoulli feedback. Math. Comput. Modell. 49 (2009) 977-990.

J.J. Hunter, Mathematical Techniques of Applied Probability, Vol. 2. Discrete Time Models: Techniques and Applications.
Academic Press, New York (1983).

S. Gao and Z. Liu, A repairable GeoX /G/1 retrial queue with Bernoulli feedback and impatient customers. Acta Math. Appl.
Sinica. English Series 30 (2014) 205-222.

V. Goswami and G.B. Mund, Analysis of discrete-time queues with batch renewal input and multiple vacations. J. Syst. Sci.
Compl. 25 (2012) 486-503.

S. Gao and J. Wang, On a discrete-time GIX /Geo/1/N —G queue with randomized working vacations and at most J vacations,
J. Industrial Manag. Optimiz. 11 (2015) 779-806.

J.C. Ke, C.H. Wu and Z.G. Zhang, Recent developments in vacation queueing models: a short survey. Inter. J. Oper. Res. 7
(2010) 3-8.

D.E. Lim, D.H. Lee, W.S. Yang and K.C. Chae, Analysis of the GI/Geo/1 queue with N-policy. Appl. Math. Model. 37 (2013)
4643-4652.

C. Luo, Y. Tang, W. Li and K. Xiang, The recursive solution of queue length for Geo/G/1 queue with N-policy. J. Syst. Sci.
Complezity 25 (2012) 293-302.

C. Luo, Y. Tang and C. Li, Transient queue size distribution solution of Geom/G/1 queue with feedback-a recursive method.
J. Syst. Sci. Complexity 22 (2009) 303—-312.

D.H. Lee and W.S. Yang, The N-policy of a discrete time Geo/G/1 queue with disasters and its application to wireless sensor
networks. Appl. Math. Model. 37 (2013) 9722-9731.

M.E. Woodward, Communication and Computer Networks: Modelling with Discrete-Time Queues. IEEE Comput. Soci. Press,
Los Alamitos, California (1994).

Y. Levy and U. Yechiali, Utilization of idle time in an M/G/1 queueing system. Manag. Sci. 22 (1975) 202-211.

Z. Liu and S. Gao, Discrete-time Geol,Geog(/Gl,Gg/l retrial queue with two classes of customers and feedback. Math.
Comput. Modell. 53 (2011) 1208-1220.

P.V. Laxmi and K. Jyothsna, Finite buffer GI/Geo/1 batch servicing queue with multiple working vacations. RAIRO: OR 48
(2014) 521-543.

P. Moreno, Analysis of a Geo/G/1 queueing system with a generalized N-policy and setup-closedown times. Quality Technology
Quantitative Management 5 (2008) 111-128.

H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, Vol. 3, Discrete-time Systems. North-Holland,
Amsterdam (1993).

Y. Tang, X. Yun and S. Huang, Discrete-time GeoX /G/1 queue with unreliable server and multiple adaptive delayed vacations.
J. Comput. Appl. Math. 220 (2008) 439-455.

H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, Vol. 1, Vacation and Priority Systems, Part I. North-
Holland, Amsterdam (1991).

N. Tian and Z.G. Zhang, Vacation Queueing Models — Theory and Applications, Springer, NewYork (2006).

L. Takacs, A single-server queue with feedback. Bell System Technical Journal 42 (1963) 509-519.



AN N-POLICY DISCRETE-TIME QUEUE WITH MODIFIED MULTIPLE SERVER VACATIONS 387

[27] T.Y. Wang, J.C. Ke and F.M. Chang, On the discrete-time Geo/G/1 queue with randomized vacations and at most J vacations.
Appl. Math. Modell. 35 (2011) 2297-2308.

[28] J. Wang, Discrete-time Geo/G/1 retrial queues with general retrial time and Bernoulli vacation. J. Syst. Sci. Compl. 25 (2012)
504-513.

[29] Y. Wei, M. Yu, Y. Tang and J. Gu, Queue size distribution and capacity optimum design for N-policy Geo()‘l’)‘2’>‘3>/G/l
queue with setup time and variable input rate. Math. Comput. Model. 57 (2013) 1559-1571.

[30] M. Yadin and P. Naor, Queueing systems with a removable service station. Operat. Res. Quarterly 14 (1963) 393—405.

[31] D.Y. Yang, J.C. Ke and C.H. Wu, The multi-server retrial system with Bernoulli feedback and starting failures. Inter. J.
Comput. Math. 92 (2015) 954-969.

[32] Z.G. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations. Queueing Syst. 38 (2001) 419-429.



	Introduction
	Model description and preliminaries
	Analysis of system queue length distributions
	The transient distribution of the queue length at epoch n+
	The recursive formulas for the steady-state distribution of queue length at epoch n+

	Numerical results
	Computation of the steady-state queue length
	Sensitivity analysis of operating characteristics 

	Cost optimization problem
	Conclusions 
	Appendix A. Proof of Theorem 3.1
	Appendix B. Proof of Theorem 3.2
	References

