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CENTRAL LIMIT THEOREM FOR HITTING TIMES
OF FUNCTIONALS OF MARKOV JUMP PROCESSES

CHRISTIAN PAROISSIN! AND BERNARD Y CART!

Abstract. A sample of i.i.d. continuous time Markov chains being defined, the sum over each com-
ponent of a real function of the state is considered. For this functional, a central limit theorem for the
first hitting time of a prescribed level is proved. The result extends the classical central limit theorem
for order statistics. Various reliability models are presented as examples of applications.
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1. INTRODUCTION

Models made of n-tuples of i.i.d. Markov chains appear in different domains of applications. They can
represent locations of a set of customers in a closed Jackson network [21], the current state of a parallel
MCMC algorithm [6], or a description of a coherent system in reliability [3]. We shall use here the reliability
interpretation as a support for intuition, although the applicability of our results is not restricted to that area.
In [19], the relaxation time of samples of i.i.d. Markov chains was studied and a cutoff phenomenon was shown
to occur. In [20] the hitting time of functionals of such a sample was used for detecting access to equilibrium,
thus providing stopping rules for MCMC algorithms. Our main focus here is on the behavior of those functionals
far from equilibrium.

Let X = {X(t),t > 0} be a Markov chain in continuous time, with values in a finite state space E. The
random variable X (¢) will be interpreted as the state at time ¢ of a component bound to degradations and
failures. Consider a system made of n independent such components. Its state will be described by a n-tuple
X = (X1,...,X,) where the X;’s are independent copies of X. This process is again a continuous time Markov
chain {X(t), t > 0}, with values in the product space E”. Let f be a function from E to R. In the reliability
interpretation, f(e) measures a level of degradation for a component in state e. The total degradation of
the system in state n = (1;) € E™ will be measured by the sum ), f(n;). So we shall focus on the process
Sp = {Sn(t), t > 0}, where S, (t) is the total degradation of the system at time ¢:
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It is natural to consider the instants at which S, (t) reaches a prescribed level of degradation. Let k = (k(n))
be a sequence of reals. Our main object is the failure time T,,, defined as:

T, = inf{t > 0; Sp(t) > k(n)}-

In the particular case where E = {working, failed} (binary components), and f is the indicator of a failed
component, then S, (¢) simply counts the number of failed components at time ¢, and our system is a so-called
“k-out-of-n” system [4].

Let eg = X(0) be the initial state of all components (in reliability e will be the perfect state). We shall
denote by m(t) (respectively: v(t)) the expectation (resp.: the variance) of the degradation at time ¢.

m(t) = E[f(X (1) X(0) = eo] , v(t) = Var[f(X(t)) [ X(0) = eo].

Since all components are i.i.d., the average degradation S, (t)/n converges in probability to its expectation
m(t). We shall assume that m(¢) is strictly increasing on the interval [0, 7], with 0 < 7 < 400 (the degradation
starting from the perfect state increases on average). We consider a “mean degradation level” «, such that
m(0) < a < m(7). Assume the threshold k(n) is such that:

k(n) = an + o(yv/n).
The failure time T;, has to be close to the instant at which m(t) crosses level a:
to = inf{t; m(t) = o}

Our main result is the following central limit theorem.

Theorem 1.1. Under the above hypotheses,

V(T — ta) —=— N(0,02),

n—-++oo
with:

T ()

Section 2 is devoted to the proof of Theorem 1.1. It starts with a functional central limit theorem for S,
(Prop. 2.1), which is an application of more general results by Hahn [10] and Whitt [18], and closely related
to the huge corpus of diffusion approximations (see Ethier and Kurtz [9] for a general reference). Then the
Skorohod-Dudley-Wichura representation theorem (Dudley [8] or Pollard [15]) is used both to prove that the
distributions of \/n(T,, — t,) are a tight sequence and to characterize the limit.

In Section 3 we give some examples of reliability models to which our results apply. The simplest of them
is the k-out-of-n model, with binary components having exponential failure and repair times (see Bhat [5]).
Our results also apply when the failure and repair times have phase type distributions [12,13,17], and we shall
study the case where a deterministic repair time is approximated by an Erlang distribution. In the particular
case of a k-out-of-n system with non-repairable components, the failure time 7, of the system is an order
statistic of failure times for the components. The central limit theorem for order statistics is well known (see
for instance [16]). Here it comes out as a particular case of Theorem 1.1. A model with 3 state components
studied by Pham et al. [14], will be considered next.

2. ASYMPTOTIC RESULTS

We shall first precise some notations, then state the central limit theorem for the degradation process S,
(Prop. 2.1). Next, the proof of Theorem 1.1 will be completed.
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As explained before, the state of one component is described by a continuous time Markov chain X =
{X(t), t > 0}. Its infinitesimal generator will be denoted by A, and its transition rate from state e to state €’
by Acer. It is well known (see for instance Bhat [5], Sect. 7.7, pp. 219-224), that the distribution at time ¢ of
X (t), starting from eq, is the ep-th column of the matrix exp(‘At). It will be denoted by p(t) = (pe(t)), e € E.
(All our vectors are columns and ‘A denotes matrix transpose.)

We consider a n-tuple X = (X1,...,X,) of independent copies of X. It is a continuous time Markov chain
on E™, and its infinitesimal generator is the Kronecker sum of n copies of A ([19], pp. 92-94). We shall also need
the “counting process” N,,, defined as the number of components of X in each state of E: N,, = {N,(t), t > 0},
with:

n

Ni(t) = (Nn,e(t)), e € E and Ny c(t) = Z Le(X5(t)),
i=1
where 1, denotes the indicator function of state e. Thus N appears as the sum of n independent copies of

the Markov chain 1(X) = (1L.(X)), e € E. The expectation of 1(X(¢)) is p(t). For 0 < s <t the covariance
matrix of 1 (X (s)) with 1 (X (¢)), denoted by K (s,t), can be expressed as:

K(s,t) = diag(p(s)) exp(A(t — 5)) — p(s) p(t)- (2.1)

The degradation function f, from E to R will be identified to the vector (f(e)), e € E. The degradation at
time ¢ of one component can be written as a linear combination of 1 (X (¢)):

FX (@) = "FLX ().

Thus its expectation at time ¢ is:
m(t) = "f p(t).

For 0 < s <t the covariance function is:
Cov[f(X(s)), F(X(t)] = "fE(s,t)f.
In particular for s = ¢, the variance of the degradation at time ¢ is:
v(t) = Var[f(X(t)) | X(0) = eo] = FK(t,1)f.

It is easy to prove that the counting process N, is again a continuous time Markov chain (see [21] p. 296 for the
Jackson network interpretation of N,,). Since the X;’s are independent, the distribution of the random vector
N, (t) is multinomial with parameters n and p(t). Of course, the “total degradation” process S,(t) is a linear
combination of N, (t): S,(t) = 'f N,(t).

As sums of independent processes, S, as well as N, both satisfy functional central limit theorems. We shall
only need it for .S,,.

Proposition 2.1. For all n, let Z, = {Z,(t), t > 0} be defined by:
1
vn

The sequence of processes (Zp)nemn converges in distribution to a centered Gaussian process Z with covariance
function defined for 0 < s <t by:

Zn(t) = (Sn(t) - nm(t)). (2.2)

Cov|Z(s), Z(t)] = fK(s,1)f,

where the covariance matriz K (s,t) is given by (2.1). Moreover, Z has continuous sample paths.
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This CLT is a straightforward application of a result proved by Hahn (Cor. 3, p. 95 in [10]), using Whitt’s
tools (Sect. 1, p. 68 and Sect. 4, p. 78 in [18]).

Proposition 2.1 shows that the degradation process S should remain at distance O(y/n) from the deterministic
function nm. Our assumption is that m is strictly increasing over the interval [0, 7], where 0 < 7 < +o00. For
m(0) < o < m(7), there exists a unique instant ¢, € [0, 7] such that m(t,) = . We want to study the hitting
time of level k = k(n), where:

k(n) = an + o(yv/n).
It is defined as:
T, =inf{t > 0; S,(t) > k(n)}-
It is intuitively clear that 7T;, should be close to t,, with an error of order 1/y/n.

Let us now complete the proof of Theorem 1.1.

Proof. The convergence in distribution of Z,, does not directly imply the CLT for T;,. But the Skorohod-

Dudley-Wichura representation theorem is a much stronger result (see Th. 11.7.2 of Dudley [8], or Pollard [15],

Sect. IV.3). It implies that there exist versions S} of S, and Z* of Z, and non-decreasing functions ¢, such
that for any fixed s:

SH(t) — t

lim sup Sa(t) = nm(t)

—Z%(on(t))| =0 a.s.
n—0o0 0<t<s \/ﬁ ( n( ))
and

lim sup |¢n(t) —t| =0 a.s.
n—00 ()<t<s

Since Z* has continuous paths, it is uniformly continuous on [0, s], and hence:

lim sup |Z:(t)—Z*(t)|=0 a.s.,

n—00 0<t<g

with ® 0
. Sy(t) —nm(t
Z,(t) NG
In other words, we have
Zrt)y=2Z*(t)+o(l) a.s. (2.3)

uniformly over [0, s] for any s.

We shall first use (2.3) to prove that the distributions of /n(T}, —t,) are a tight sequence. Let ¢ be a positive
constant. On the one hand, if S,,(to + ¢/v/n) > k(n), then T,, < t, + ¢/v/n. Thus:

(ta +c/v/n) > k(n)]

(ta +¢/v/n) = Vn(a = m(ta + ¢/v/n)) + o(1)]
(ta +¢/vVn) = —em/(ta) + o(1)]

Z*(ta) = —cem/(ta)] + o(1),

P/a(T, —ta) <d > PP

| \/

Sy
- Pz
= PZ;
= IF
using (2.3) and the continuity of Z*. Since m/(t,) > 0, we obtain that:

lim liminf P[v/n(T), — ta) < ] = 1. (2.4)

cC—00 NM—00

On the other hand, we have:

PlVn(Ty, —to) < —c] = IP[3t < to —c/v/n, Z:(t) > Vn(a —m(t)) + o(1)].
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But since the function m is increasing, for all ¢ < ¢, — ¢/+/n we have:

Vn(a = m(t)) = V(e —m(te — ¢/vn)) = em/(ta) + o(1).
Hence:

PlVn(T, —to) < —c] < P33t <to—c/Vn,Z:(t) > em/(ta) + o(1)]
P[3t <to,Z:(t) > cem/(ta) + o(1)]
)+ o(1)] + o(1).

N

= IPE3t<t,,Z*(t) > cm/(ta
The process Z* being a.s. bounded on any compact set and m/(t) being positive on [0, 7], we deduce that:

lim limsup Plv/n(T,, —to) < —c] = 0. (2.5)

C—00 5,00

Now (2.4) and (2.5) mean that the sequence of distributions of (v/n(T}, — t,)) is tight. Hence to conclude it is
enough to check the limit.

Using again (2.3), together with the almost sure continuity of Z* yields:

Splta+u/vn) = nm(ta +u/vn) +VnZ*(ta +u/vn) +o(vn) a.s.
= na+uynm/(to) + VnZ*(te) + o(v/n) a.s.

Therefore:
inf{u; Sy (ta +u/v/n) > k(n)} = inf{u;uy/nm/(ts) +vVnZ*(ta) + o(v/n) > 0}
Z*(ta)
S 1).
m’(ta) + 0( )
The distribution of —Z*(t,)/m’(t,) is normal with mean 0 and variance o2, hence the result. O

This proof was actually given by the referee. In the preliminary version of this article the proof of Theorem 1.1
was based on an exponential inequality for the left tail of T;,. It was much longer and less elegant.

3. RELIABILITY MODELS

As explained in [14], the notion of redundancy is central to many problems in reliability. This justifies the
introduction of models made of a large number of identical components. The most classical case is that of binary
components: each one can be either working or failed, and the function f is 0 if the component is working, and
1 otherwise. All components are supposed to be working at time ¢ = 0. The total degradation of the system
is simply the number of failed components, and the breakdown occurs when the number of failed components
passes a certain threshold k. These systems are called “k-out-of-n” (cf. for instance Barlow and Proschan [4] or
Cocozza-Thivent [7]). The application of our results to k-out-of-n systems of binary components is presented
in the first subsection. The second one will study the generalization to multi-state components.

3.1. Binary components

When f(F) = {0,1}, the degradation at time ¢ is a Bernoulli random variable. Its expectation m(¢) is the
probability for one component to be failed at time ¢, and its variance v(t) is m(t)(1 — m(t)). Recall that the
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instant at which the mean degradation m first passes level « is denoted by t,. The threshold k(n) is taken to
be an+o(y/n). Theorem 1.1 states that the asymptotic distribution of v/n(T,, —t,) is Gaussian, with variance:

In the particular case of binary components, v(t,) = a(l — «). So the knowledge of m(t) suffices to determine
the asymptotic distribution of the failure time 7;,. In reliability theory m is the “non-availability” of one
component.

The simplest expressions are obtained when the failure and repair times of each component are exponentially
distributed, with respective rates A and u. Easy computations (see for instance [5], Sect. 7.5, pp. 210-226 and
Sect. 15.6, p. 471) lead to:

m(t) = A Le—(kﬂt)t.
Adpu A+p
This function is strictly increasing over [0, +o0]. Thus one can choose 7 = +00, and Theorem 1.1 can be applied
for any « such that 0 < a < ﬁ We get:

1 a(A+p)
tog=———1log(1- 2R ).
: /\+u0g( A )

2

Thus the asymptotic variance o7 is:

9 a(l —a)

T =l )

Consider now binary components having non-exponential repair or failure times. Since they are not Markovian,
our results do not apply directly. However, any distribution can be approximated by a phase-type distribution.
There exists an extensive literature on this subject, for which important references are Neuts’ [12,13] and
Tijms’ [17] books. These techniques coming from queuing theory are often called matrix-analytic methods (see
for instance Asmussen’s book [1] and his recent survey on the subject [2]). Phase-type distributions are laws of
sojourn times in continuous time Markov chains. Their set is dense in the set of distributions with values on
R* ([12], p. 243).

Assume one has to study binary components for which the failure and repair times have phase-type distribu-
tions. For one component, one can replace each one of the two states by a set of “fictitious” states, designed so
as to make the sojourn time in all fictitious working (resp.: failed) states distributed as the prescribed failure
(resp.: repair) time. Of course the value of the degradation function f will be 0 (resp.: 1) on all fictitious
working (resp.: failed) states.

Replacing the initial distributions by phase-type approximations before applying Theorem 1.1, supposes that
the law of the failure time 7, should not change by much. We shall not formalize that intuition. We shall only
show that it can be supported by simulation experiments on a particular case.

Suppose that the repair time of a component is deterministic, equal to 1/u, whereas its failure time is
exponential with parameter \ as before. The behavior of such a binary component is a so called “alternate
renewal process”. It can be checked (see e.g. [11], pp. 311-313) that the probability of failure at time ¢ has the
following expression:

XV J J j
mt)=1-> = (t - _> e NI, (), (3.1)
=7 Iz C

Figure 1 represents m(t) together with one trajectory of the process S,,/n, for a system with n = 1000 compo-

nents, the failure and repair rates being A = 1 and g = 1. Notice that m is strictly increasing over the interval

[0; p], then decreases and oscillates towards its asymptotic value FAM
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F1GURE 1. Non-availability and simulation of a system with deterministic repair times.

TABLE 1. Maximal difference between the exact value of m and a phase-type approximation,
for a binary system with deterministic repair times.

T 10 20 30 40 50 60 70 80 90 100

Max. diff. || 0.091 | 0.069 | 0.059 | 0.053 | 0.048 | 0.044 | 0.041 | 0.039 | 0.037 | 0.035

To approximate the Dirac mass at 1/u by a phase-type distribution, it suffices to consider an Erlang distri-
bution with parameters r and ru, for r large enough. So we will consider a Markov chain X on the state space

E ={0,...,r}, having the following infinitesimal generator:
A A o ... 0
0 —rp ru :
0 oo—rp TR
T 0 e 0 —Tp
State 0 is the perfect state and states 1,...,r represent fictitious failed states. The Laplace transform of the

marginal distribution p(¢) is easily deduced from the Chapmann-Kolmogorov system. Denoting by %, the
Laplace transform of the mean degradation m, one gets:

L(s) =~ — !

S osraoa()

s+rp

(3.2)

The Laplace transform of m’ is immediately deduced from .%,,. However m and m’ do not have tractable
explicit expressions, and must be computed numerically.

As an example, we chose again A = y = 1. For r = 10,20,...,100, we computed the maximal difference
between the exact value of m (formula (3.1)), and its phase-type approximation, by numerically solving the
Chapmann-Kolmogorov system. The results are given in Table 1.
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TABLE 2. Comparison of empirical distributions of hitting times, with asymptotic distributions
on a phase type approximation.

« to o K.-S. stat. | p-value

0.05 || 0.051 | 0.053 0.920 0.366
0.10 || 0.105 | 0.111 1.004 0.266
0.15 ] 0.163 | 0.176 0.829 0.497
0.20 || 0.223 | 0.25 0.827 0.501
0.25 | 0.288 | 0.333 0.773 0.589
0.30 || 0.357 | 0.428 0.792 0.557
0.35 | 0.431 | 0.538 1.003 0.267
0.40 || 0.511 | 0.666 0.681 0.743
0.45 || 0.598 | 0.818 0.957 0.318
0.50 || 0.693 | 1.000 0.703 0.706

However, the maximal difference corresponds to the sharp peak of m(t) and the approximation is notably
better for smaller values of t. From then on, we fixed » = 100 and n = 500, and considered the levels
k(n) = |an], for &« = 0.05,0.1,...,0.5. For those «’s, the exact values of ¢, agreed with those of the phase-type
approximation up to the fourth decimal. For each value of a, the mean hitting time ¢, and the variance o2
were numerically computed for the phase-type approximation. Then we simulated 100 independent trajectories
of the system with deterministic repair times, and recorded for each one the hitting time T, of the different
levels k(n). For each value of «, the empirical distribution of T;, was compared with the asymptotic normal
distribution given in Theorem 1.1, by computing the p-value of the Kolmogorov-Smirnov test. The results are
given in Table 2. With any usual risk, the goodness-of-fit hypothesis is accepted in all cases. Notice that since
hitting times were computed along the same trajectories, their values for different a’s are not independent.

Let us now consider binary, but non repairable components. Let G denote the distribution function of the
failure time, and g its density. In order to apply Theorem 1.1, one can assume that this distribution is phase-
type. The degradation function is the probability of failure at time ¢, i.e. m(t) = G(t). It is strictly increasing,
from 0 to 1. For each « such that 0 < o < 1, the mean hitting time ¢, is the a-th quantile of the failure time:
to = G7(). The asymptotic variance is now:

2 ol —a)
0L = ——"="
(G @)?
But if the components are not repairable, the time at which the k-th of them fails is the k-th order statistic of
a sample of i.i.d. failure times, with distribution function G. So in this particular case, our result amounts to
the well known central limit theorem for order statistics (e.g. Reiss [16], Sect. 4.1, pp. 108-109).

3.2. Markovian multi-state components

Our results also apply to multi-state components. The different states of one component correspond to
performance levels and describe its progressive degradation. As an example, we will consider an extension of
a model studied by Pham et al. in [14] where the cardinality of the state space is 3. The three states are
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FIGURE 2. Transition diagram of a three-state component.

0 (perfect), 1 (deteriorated) and 2 (failed). A perfect component can either deteriorate or directly fail. A
deteriorated component can either fail or be repaired. A failed component is restored to perfect state. The
transition diagram is that of Figure 2. The infinitesimal generator is the following

—(A1+ A2) A1 A2
A = H1 —(1+A3)  As
2 0 —p2

The matrix exp(At) can be explicitly computed, but the expressions are somewhat lengthy. Simpler formulas
are obtained for \; = Ay = A3 = \. For the probabilities of the different states starting from 0 at time ¢ = 0,
one gets:

po(t) p2(A + ) ARA 1 —p2)  nep L Al — p2) o Obp)t
’ @A+ )N+ p2) @A+ p) A+ i — ) N+ p2) (A + o1 — pa2)
2
(D) = Abt __ ARt mmp)  ear A o)t
A+ p) A+ p2) (A + ) (A + p1 — p2) (A + p2) (A + g1 — p2)
p2(t) = A A O,

Atz A+ pe

In Pham et al. [14], a failed component is not repaired (us = 0), so state 2 is absorbing. Their system is
supposed to be failed as soon as k out of n components are in state 2. With our notations, this corresponds
to f(0) = f(1) =0, and f(2) = 1. The mean degradation is m(t) = pa(t). The mean hitting time ¢, and the
asymptotic variance o2 can also be explicitly computed. The expressions are similar to those of the binary case.

For a < ﬁ:
log (1 — 7(1()\ + MQ))

to = —

A+ o A

and:
9 a(l —a)
oo = .
C (A ald+p2))?
Consider now a variant of this model which takes into account the difference between a perfect and a degraded
component. We can choose the function f as follows: f(0) =0, f(1) = 1, and f(2) = 1. The mean degradation
becomes m(t) = %pl (t) + p2(t) which may no longer be increasing for all ¢, depending on the value of po. For
suitable values of «, t, can be computed at least numerically, and Theorem 1.1 can be applied.
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