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BAYESIAN LEARNING WITH WASSERSTEIN BARYCENTERS∗

Julio Backhoff-Veraguas1, Joaquin Fontbona2,**, Gonzalo Rios3

and Felipe Tobar4

Abstract. We introduce and study a novel model-selection strategy for Bayesian learning, based
on optimal transport, along with its associated predictive posterior law: the Wasserstein popula-
tion barycenter of the posterior law over models. We first show how this estimator, termed Bayesian
Wasserstein barycenter (BWB), arises naturally in a general, parameter-free Bayesian model-selection
framework, when the considered Bayesian risk is the Wasserstein distance. Examples are given,
illustrating how the BWB extends some classic parametric and non-parametric selection strategies.
Furthermore, we also provide explicit conditions granting the existence and statistical consistency of
the BWB, and discuss some of its general and specific properties, providing insights into its advantages
compared to usual choices, such as the model average estimator. Finally, we illustrate how this esti-
mator can be computed using the stochastic gradient descent (SGD) algorithm in Wasserstein space
introduced in a companion paper, and provide a numerical example for experimental validation of the
proposed method.
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1. Introduction

Given a setM of probability distributions on some data space X , learning a model m ∈M from data points
D = (x1, . . . , xn) ∈ Xn consists in choosing, under a given criterion, an element of M that best explains D as
data sampled from it. The Bayesian paradigm provides a probabilistic approach to deal with model uncertainty
in terms of a prior distribution on models M, and also furnishes strategies to address the problem of model
selection, based on the posterior distribution on M given D. This type of estimators, usually called predictive
posterior laws, include classical Bayesian estimators such as the maximum a posteriori estimator (MAP), the
posterior mean, the Bayesian model average estimator (BMA) and generalizations thereof. Predictive posterior
estimators typically result from selection criteria consisting in optimizing some loss function, averaged with
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respect to the posterior law over models, or Bayesian risk function. We refer the reader to [23, 37] and references
therein for mathematical background on Bayesian statistics and their use in the machine learning community.

In Section 2, we will formulate the general problem of Bayesian model selection directly on the space
of probability measures (or models) on the data space, and show how this abstract framework covers both
classic finitely-parametrized settings and parameter-free model spaces, allowing us to retrieve classical selection
criteria as particular cases. An eye-opening observation that will follow from adopting this viewpoint is that
many classical predictive posteriors can be seen as instances of Fréchet means [22], or barycenters in the space
of probability measures, with respect to specific metrics or divergences between them, that play the role of
abstract loss functions defined on the model space.

Building upon this general framework, the main goals of this work are to introduce a novel Bayesian model-
selection criterion by proposing a loss function on models coming from the theory of optimal transport, and
to study some of the distinctive features of the predictive posterior law that results from it. More precisely,
let us consider observations D = (x1, . . . , xn) in a metric space (X , d) and a set of candidate models M that
generated these observations. Equipping the setM with a prior distribution Π, and denoting the corresponding
posterior distribution over M by Πn, we will define the Bayesian Wasserstein barycenter estimator (BWB) as
a minimizer m̂n

p ∈M of the “risk function”

M3 m 7→
∫
P(X )

Wp(m, m̄)pΠn(dm̄), (1.1)

where P(X ) is the set of probability measures on X , p ≥ 1 and Wp is the celebrated p-Wasserstein distance on
probability measures on X associated with d, see [45, 46].

Wasserstein barycenters were initially studied in [1] and, since then, the concept has been extensively explored
from both theoretical and practical perspectives. We refer the reader to the overview [38] for statistical applica-
tions, to the works [12, 15, 16, 41] for applications in machine learning, and to [3, 4, 10, 33] for a presentation
of recent developments and further references. As a cautionary tale, we mention that the problem of computing
Wasserstein barycenters is known to be NP-hard, see [2]. To cope with this, fast methods aiming at learning
and generating approximate Wasserstein barycenters on the basis of neural networks techniques, have also been
proposed, see e.g. [31, 32].

In Section 3 we will recall Wasserstein distances and revisit Wasserstein barycenters together with their
basic properties such as existence, uniqueness and absolute continuity. In Section 4, we will rigorously introduce
the BWB estimator m̂n

p , which will correspond to the so-called population Wasserstein barycenter [33] for the
posterior distribution on models Πn, and we will state some of its main properties. Specifically, we will show
that the BWB has less variance than the BMA and we will study its statistical consistency. In particular, we
will address the question of “posterior consistency”, or asymptotic concentration of the posteriors Πn around
the Dirac mass on a model m0 as n → ∞, whenever the data consists of i.i.d. observations following the law
m0, alongside the question of convergence of the BWB to the “true” distribution m0 of the data in that setting.
We refer the reader to [17, 23], and references therein, for detailed accounts on posterior consistency, a highly
desirable feature of a Bayesian estimation procedure, both from a semi-frequentist perspective as well as from
the “merging of opinions” point of view on Bayesian statistics (cf. [23], Chap. 6). After reviewing central notions
and tools from the framework of posterior consistency, namely the celebrated Schwartz’ theorem [44], Theorem
6.17 of [23] and the notion of Kullback-Leibler support of Π, we will provide in that section equivalent and
(verifiable) sufficient conditions for both the posterior consistency in the Wasserstein topology and the a.s.
convergence

lim
n→∞

Wp(m̂
n
p ,m0) = 0 a.s.

to hold, when m̂n
p is the BWB computed with n i.i.d. observations sampled from m0.

Additionally, Sections 1–3 present a series of examples illustrating the main concepts of our work, their
relationship to standard objects in Bayesian statistics and the applicability of our theoretical results.
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Lastly, we will show how the BWB estimator can be calculated using a novel stochastic algorithm, introduced
in the companion paper [7], to compute population Wasserstein barycenters in a general setting. This algorithm,
presented in Section 5, can be seen as an abstract stochastic gradient descent method in the Wasserstein space
and is advantageous compared to gradient or fixed-point algorithms developed in [3, 4, 48], whose application is
restricted to barycenters of model spacesM comprised of finitely-many elements only. Moreover, our algorithm
has theoretical guarantees of convergence under suitable conditions, it can be easily implemented for some
families of regular models for which optimal transport maps are explicit or easily computed (we recall one
such family in Sect. 6.1), and its convergence rate can be studied and established in some cases, see [13] for
the Gaussian setting. A comprehensive numerical experiment illustrating this method, and its natural “batch”
variants, will be presented in Section 6 and compared to (more conventional) empirical barycenter estimators.

Notation:

� We denote P(X ) the set of (Borel) probability measures on X endowed with the weak topology, and
Pac(X ) the (measurable) subset of absolutely continuous probability measures, with respect to a common
reference σ-finite measure λ on X .

� As a convention, we shall use the same notation for an element m(dx) ∈ Pac(X ) and its density m(x)
with respect to λ.

� We denote by supp(ν) the support of a measure ν and by |supp(ν)| its cardinality.
� Given Γ ∈ P(P(X )) and a measurable subset M ⊆ P(X ), we say that M is a model space for Γ if

Γ(M) = 1.
� Last, given a measurable map T : Y → Z and a measure ν on Y we denote by ν]T the image measure (or

push-forward), that is, the measure on Z given by ν]T (·) = ν(T−1(·)).

2. Bayesian learning in model space

We start by setting a general framework for Bayesian learning which covers both finitely-parametrized settings
(including hierarchical models) and parameter-free models. We consider a probability measure Π ∈ P(P(X ))
understood as a prior distribution on the model space M⊆ Pac(X ). In particular we have

Π(M) = Π(Pac(X )) = 1.

For each n ∈ N\{0}, Π canonically induces a law Π on Xn ×M, representing the joint law of a random model
m chosen according to Π and a sample

D = (x1, . . . , xn) ⊆ Xn

of i.i.d. observations drawn from it. That is,

Π(dx1, . . . ,dxn,dm) := m (dx1) · · ·m (dxn) Π(dm) = m (x1) · · ·m (xn)λ(dx1) · · ·λ(dxn)Π(dm).

Note that, in the above equation and throughout, Π(dm) denotes integration over m ∈M w.r.t. Π ∈ P(P(X )),
whereas integration over x ∈ X w.r.t. m ∈ P(X ) is denoted m(dx) = m(x)λ(dx). The law on Xn of the data
D, conditionally on a model m, is thus given by

Π(dx1, . . . ,dxn|m) := m (x1) · · ·m (xn)λ(dx1) · · ·λ(dxn), (2.1)

with density Π (x1, . . . , xn|m) = m (x1) · · ·m (xn) with respect to λ⊗n, and the marginal density of D with
respect to λ⊗n is Π (x1, . . . , xn) :=

∫
M m̄ (x1) · · · m̄ (xn) Π (dm̄).
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The posterior distribution Π(dm|x1, . . . , xn) given the data D is also an element of P(P(X )), which we
denote Πn for simplicity and which, by virtue of the Bayes rule, is given in this setting by

Πn(dm) :=
Π (x1, . . . , xn|m) Π (dm)

Π (x1, . . . , xn)
=

m (x1) · · ·m (xn) Π (dm)∫
M m̄ (x1) · · · m̄ (xn) Π (dm̄)

. (2.2)

Notice that (x1, . . . , xn) 7→ Πn = Π(·|x1, . . . , xn) defines λ⊗n a.e. a measurable function from Xn to P(P(X )).
The density Λn(m) of Πn(dm) with respect the prior Π(dm) is called the likelihood function. The fact that
Πn � Π implies that a model space M for Π is a model space for Πn too.

We call loss function a non-negative functional on models L :M×M→ R, interpreting L(m0, m̄) as the cost
of selecting model m̄ ∈M when the true model is m0 ∈M. With a loss function and the posterior distribution
over models Πn, the Bayes risk (or expected loss) RL(m̄|D) and the corresponding Bayes estimator m̂L (or
predictive posterior law) are respectively defined as follows:

RL(m̄|D) :=
∫
M L(m, m̄)Πn(dm) , (2.3)

m̂L ∈ argminm̄∈MRL(m̄|D). (2.4)

See [8] for further background on Bayes risk and statistical decision theory. A key consequence of defining
both L and Πn directly on the model space M (rather than on parameter space), is that learning according
to equations (2.3)–(2.4) does not depend on the chosen parametrization or the geometry of the parameter
space. Moreover, this point of view will allow us to define loss functions in terms of various metrics/divergences
directly on the space P(X ), and therefore to enhance the classical Bayesian estimation framework through the
use of optimal transportation distances on that space. Before further developing these ideas, we discuss how
this general framework includes model spaces which are finitely parametrized, and recall some standard choices
in that setting. We will also discuss the advantages of formulating the problem of model selection directly on
the model space, even when this space can be finitely parametrized.

2.1. Parametric setting

We say that M is finitely parametrized if there is an integer k, a measurable set Θ ⊆ Rk termed parameter
space, and a measurable function T : Θ 7→ Pac(X ), called parametrization, such that M = T (Θ). In other
words, m = T (θ) is the model corresponding to parameter θ, which is classically denoted p(·|θ) or pθ(·). In
general, T is a one-to-one function (the model space is otherwise said to be over-parametrized).

In the standard parametric Bayesian framework, a prior distribution is a probability law p ∈ P(Θ) over Θ,
typically assumed to have a (equally denoted) density p(θ) with respect to the Lebesgue measure. A function
` : Θ×Θ→ R+ is called a loss function (on parameters), whereby `(θ0, θ̄) is interpreted as the cost of choosing
parameter θ̄ when the true parameter is θ0. The parametric Bayes risk [8] of θ̄ ∈ Θ is then given by

R`(θ̄|D) =
∫

Θ
`(θ, θ̄)p(θ|x1, . . . , xn)dθ, (2.5)

where p(θ|x1, . . . , xn) is the posterior density of θ given observations x1, . . . , xn. The associated Bayes estimator

is defined as θ̂` ∈ argminθ̄∈ΘR`(θ̄|D). Hence, if the model space M is finitely parametrized, learning a model
boils down to finding the best model parameter θ ∈ Θ under a given criterion, quantified by the parametric risk
function R`(·|D). Among continuous-valued losses on the parameter space, the de facto choice is the quadratic

one `2(θ, θ̄) = ‖θ − θ̄‖2, whose associated Bayes estimator is the posterior mean θ̂`2 =
∫

Θ
θp(θ|D)dθ. For one-

dimensional parameter spaces, the absolute loss `1(θ, θ̄) = |θ − θ̄| yields the posterior median(s) estimator(s).
The 0-1 loss formally given by `0−1(θ, θ̄) = 1− δθ̄(θ), with δθ̄ the Dirac mass at θ̄, yields the risk R`0−1

(θ̄|D) =
1 − p(θ̄|D) and its corresponding Bayes estimator is the posterior mode or maximum a posteriori estimator

(MAP), θ̂`0−1 = θ̂MAP .
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The parametric case is embedded into the considered model-space setting as follows. The push-forward of
p through T defines a prior Π = p]T over the model space M in the sense discussed at the beginning of this
section. If T is one to one, a loss function ` : Θ × Θ → R+ induces a loss function L on the model space
M = T (Θ), such that L(T (θ0), T (θ̄)) = `(θ0, θ̄). More generally, any loss function L on M×M induces a
loss functional ` on Θ × Θ defined as `(θ0, θ̄) := L(T (θ0), T (θ̄)). Moreover, when the data x1, . . . , xn under
the model parameterized by θ consists of an i.i.d. sample from p(·|θ) = T (θ), one can verify that Πn given in
equation (2.2) corresponds precisely to the the push-forward through T of p(θ|x1, . . . , xn) and that R`(θ̄|D) in
equation (2.5) is given by

R`(θ̄|D) =
∫
M L(m, m̄)Πn(dm),

with Πn(dm) = Λn(m)Π(dm) associated with the prior on model space Π = p]T , and m̄ = T (θ̄).

Example 2.1. Consider the parametric Bayesian model with parameter space Θ and sample space X both
equal to Rd and Gaussian parametrized models N (θ,Σ), with Σ ∈ Rd×d a fixed covariance matrix, and θ a
random mean with prior N (µ0,Σ0). The mean µ0 ∈ Rd and convariance matrix Σ0 are fixed hyperparameteres.
This is classically denoted:

p(x|θ) = N (x; θ,Σ) , p(θ) = p(θ|µ0,Σ0) = N (θ;µ0,Σ0).

From now on, N (y; ν,K) stands for the density of the Gaussian law N (ν,K) evaluated on the value y. Following
from the introduced notation, the parametrization T : Θ→ P(X ) is thus given by T (θ) = N (θ,Σ), the model
space is M = {N (θ,Σ) : θ ∈ Rd} and a measure m sampled from the prior Π(dm) = p]T (dm) is a Gaussian
distribution on X = Rd, with fixed covariance matrix Σ and random mean θ distributed according to N (µ0,Σ0).
In this case, if both Σ and Σ0 are nonsingular, the posterior of θ given D = (x1, . . . , xn) is

p(θ|D) = p(θ|D,µ0,Σ0) = N
(
θ; (Σ−1

0 + nΣ−1)−1(Σ−1
0 µ0 + nΣ−1x̄n), (Σ−1

0 + nΣ−1)−1
)
, (2.6)

with x̄n the sample mean of the observations D. A model m sampled from the posterior Πn(dm) given D is
thus obtained by sampling θ distributed according to p(θ|D) in equation (2.6) and then setting m = N (θ,Σ).
The posterior mean estimator of the parameter θ is therefore given by

θ̂`2 = (Σ−1
0 + nΣ−1)−1(Σ−1

0 µ0 + nΣ−1x̄n), (2.7)

and the corresponding predictive posterior model is the Gaussian law N (θ̂`2 ,Σ). Observe that, in this case, one

could equivalently obtain θ̂`2 as the mean of the predictive posterior law m̂L associated with the loss function L
on models, defined by L(m, m̄) = ‖

∫
Rd xm(dx)−

∫
Rd x m̄(dx)‖2. This illustrates the equivalence of (some) pairs

of losses in the model and parameter spaces that result on the same Bayes estimators. Additionally, observe
that Bayesian inference on the mean and the covariance matrix could be similarly formulated in terms of a

loss functions on models too, take e.g. L′(m, m̄) = L(m, m̄) + ‖Σ1/2
m −Σ

1/2
m̄ ‖2Fro with L(m, m̄) as before, Σm the

covariance matrix of a r.v. with law m and ‖ · ‖Fro the Frobenius norm on matrices.

The general model space framework applies equally to models with parameter and data spaces that might
be of different nature:

Example 2.2. Assume Θ = R+ and X = N, with p(x|λ) = e−λ λ
x

x! , x ∈ X , and p(λ) ∝ e−βλλα−1, λ ∈ Θ. In
this case, T : Θ→ P(X ) is given by T (λ) =Pois(λ), the Poisson distribution of parameter λ, and a measure m
sampled from the prior Π(dm) = p]T (dm) is a Poisson law with random parameter λ distributed according to the
Gamma(α, β) law. The latter is a conjugate prior for the Poisson distribution, and m sampled from Πn(dm),
the posterior on models given D = (x1, . . . , xn), is again a Poisson law Pois(λ), with random parameter λ
distributed according to Gamma(nx̄n + α, n+ β).
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Remark 2.3. Hierarchical models are also catered for in the proposed setting. For instance, if in Example 2.1
the hyperparameter µ0 is random with known density π0 on Rd, it can be integrated out and the prior p on
parameters becomes an infinite Gaussian mixture:

p(θ) = p(θ|Σ0) =

∫
N (θ;µ0,Σ)π0(µ0)dµ0.

The parematrization mapping T is in this case the same as before, and the corresponding prior Π(dm) =
p]T (dm) and posteriors Πn(dm) on models m ∈ P(X ) follow the same rationale as above.

As a cautionary note, the following example illustrates how defining estimators directly in terms of parameters
might result in non-intrinsic criteria for model selection.

Example 2.4. On the parameter space Θ = [0, 1] consider the priors p(dθ) = dθ and p̂(dθ) = 2θdθ, and their
associated parametrization maps T (θ) := B(θ) and T̂ := B(θ2) respectively. Here B(ξ) denotes the law of a
{0, 1}-valued Bernoulli r.v. with ξ the probability of it being equal to 1. Notice that we have Π := p]T = p̂]T̂ ,
as the law of θ2 under p̂ is uniform on Θ. Starting from the prior p, the posterior density of θ given observations
x1, . . . , xN is proportional to θSN (1− θ)N−SN , with SN = |{i ≤ N : xi = 1}|. Thus the MAP estimator for θ is
in this case θN := SN

N . On the other hand, starting from the prior p̂, the posterior density of θ is proportional to

θ2SN+1(1− θ2)N−SN and now the associated MAP estimator for θ is θ̂N :=
√

2SN+1
2N+1 . Hence T (θN ) 6= T̂ (θ̂N ) in

general (although their discrepancy vanishes in the limit as N →∞). To summarize, although the same prior
and posteriors at the level of models can arise by considering different parametrizations, the latter may easily
define very different estimated models even if we agree on the estimation method (here the MAP).

2.2. Non parametric setting: posterior average estimators

The general “learning in model space” approach relies on loss functions that compare directly distributions
(instead of their parameters), and thus allows us to define selection criteria based on intrinsic features of
the models. It also allows for a wider choice of model-selection criteria, which can account for geometric or
information-theoretic properties of the models. The next result illustrates the fact that many examples of
Bayesian estimators or predictive posterior, including the classical model average estimator, correspond to
finding an instance of Fréchet mean or barycenter [22, 48] under a suitable metric/divergence on probability
measures. See Appendix A for the proof.

Proposition 2.5. Consider on the model M = Pac(X ) the loss functions L(m, m̄) given by:

i) The L2-distance: L(m, m̄) = L2(m, m̄) := 1
2

∫
X (m(x)− m̄(x))

2
λ(dx),

ii) The squared Hellinger distance L(m, m̄) = H2(m, m̄) := 1
2

∫
X

(√
m(x)−

√
m̄(x)

)2

λ(dx).

iii) The forward Kullback-Leibler divergence: L(m, m̄) = DKL(m||m̄) :=
∫
X m(x) ln m(x)

m̄(x)λ(dx),

iv) The reverse Kullback-Leibler divergence L(m, m̄) = DRKL(m||m̄) = DKL(m̄||m) :=
∫
X m̄(x) ln m̄(x)

m(x)λ(dx).

Assume in each case that the infimum of the corresponding Bayes risk m̄ 7→ RL(m̄|D) defined in equation (2.3)
is attained with finite value in M. Then, in cases i) and iii) the corresponding Bayes estimators (2.4) coincide
with the standard Bayesian model average:

m̂BMA(x) := EΠn [m](x) =
∫
Mm(x)Πn(dm). (2.8)
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Furthermore, the Bayes estimators corresponding to the cases ii) and iv) are given by the square model average
and the exponential model average, respectively:

m̂sqr(x) =
1

Zsqr

(∫
M

√
m(x)Πn(dm)

)2

, m̂exp(x) = 1
Zexp

exp
∫
M lnm(x)Πn(dm), (2.9)

where Zsqr and Zexp denote the corresponding normalizing constants.

Example 2.6. If the posterior distribution was approximately equally concentrated on the models m0 =
N (µ0, 1) and m1 = N (µ1, 1) with µ0 6= µ1, that is, two (unimodal) Gaussian distributions with unit variance,
then the standard model average is a bimodal non-Gaussian distribution with variance strictly larger than 1.

Example 2.7. In the parametric Bayesian model discussed in Example 2.1, the Bayesian model average
estimator is the convolution of distributions on Rd:

m̂BMA(x) =

∫
Rd
N (x; θ,Σ)N

(
θ; (Σ−1

0 + nΣ−1)−1(Σ−1
0 µ0 + nΣ−1x̄n), (Σ−1

0 + nΣ−1)−1
)

dθ

=

∫
Rd
N (x− θ; 0,Σ)N

(
θ; (Σ−1

0 + nΣ−1)−1(Σ−1
0 µ0 + nΣ−1x̄n), (Σ−1

0 + nΣ−1)−1
)

dθ

=N
(
x; (Σ−1

0 + nΣ−1)−1(Σ−1
0 µ0 + nΣ−1x̄n),Σ + (Σ−1

0 + nΣ−1)−1
)
,

(2.10)

that is, a Gaussian density with mean equal to the posterior mean estimator θ̂`2—see equation (2.7)—and a
covariance matrix that is strictly larger (in the usual order on nonnegative definite symmetric matrices) than

that of the predictive posterior law N (θ̂`2 ,Σ) associated with it.

The Bayesian estimators considered Proposition 2.5, equations (2.8)–(2.9), share the following characteristic:
their values at each point x ∈ X are computed in terms of some posterior average of the values of certain
functions evaluated at x. This is due to the fact that the corresponding distances/divergences on probability
distributions are “vertical” [43]: computing the distance between distributions m and m̄ involves the integration
of vertical displacements between the graphs of their densities across their domain. An undesirable fact about
vertical averages is that they are not well suited to incorporate geometric properties into the model space (as
illustrated by Exam. 2.6). More generally, model averages might yield solutions that can be hardly interpretable
in terms of the prior and parameters, or even be intractable. This motivates us to explore the use of “horizontal”
distances between probability distributions, thus extending the concept of Bayes estimator by making use of
the geometric features of the model space. The next section presents the main ideas we will rely on to build
such Bayes estimators.

3. Wasserstein distances and Barycenters: a quick review

We shall now introduce objects analogous to those in Proposition 2.5 but suited to Wasserstein distances on
the space of probability measures. The following framework is adopted in the sequel:

Assumption 3.1. The metric space (X , d) is a separable locally-compact geodesic space endowed with a σ-finite
Borel measure λ and p ≥ 1.

By geodesic we mean that the space (X , d) is complete and any pair of points admit a mid-point with respect
to d. Next, we briefly recall some basic elements of optimal transport theory and Wasserstein distances, referring
to [45, 46] for general background.
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3.1. Optimal transport and the Wasserstein distance

Given two measures µ, υ over X we denote by Cpl(µ, υ) the set of transport plans or couplings with marginals
µ and υ, i.e., γ ∈ Cpl(µ, υ) if and only if γ ∈ P(X × X ), γ(dx,X ) = µ(dx) and γ(X ,dy) = υ(dy). Given a real
number p ≥ 1 we define the p-Wasserstein space Wp(X ) by

Wp(X ) :=
{
η ∈ P(X ) :

∫
X d(x0, x)pη(dx) <∞, some x0

}
.

The p-Wasserstein distance between measures µ and υ is given by

Wp(µ, υ) =

(
infγ∈Cpl(µ,υ)

∫
X×X

d(x, y)pγ(dx, dy)

) 1
p

. (3.1)

An optimizer of the right-hand side of equation (3.1) always exists and is called an optimal transport. The distance
Wp turns Wp(X ) into a complete metric space. If in equation (3.1) we assume that p = 2, X is the Euclidean
space, and if µ is absolutely continuous, then Brenier’s theorem ([45], Thm. 2.12(ii)) establishes the uniqueness
of a minimizer, and guarantees that it is supported on the graph of the subdifferential of a convex function. The
corresponding gradient is thus called an optimal transport map. Explicit formulae for such optimal transport
maps do exist in some cases, e.g., for generic one-dimensional distributions and multivariate Gaussians when
p = 2 (see [14]). Contrary to the distances / divergences considered in Proposition 2.5, Wasserstein distances
are horizontal [43], in the sense that they involve integrating horizontal displacements between the graphs of
probability densities.

Example 3.2. The squared 2-Wasserstein distance between multivariate Gaussian distributions m = N (θ,Σ),

and m̄ = N (θ̄, Σ̄) is given by W 2
2 (m, m̄) = ‖θ − θ̄‖2 + Tr

(
Σ + Σ̄− 2

(
Σ1/2Σ̄Σ1/2

)1/2)
—see e.g. [19, 24].

Furthermore, if Σ and Σ̄ commute, we have W 2
2 (m, m̄) = ‖θ − θ̄‖2 + ‖Σ1/2 − Σ̄1/2‖2Fro.

Example 3.3. The 1-Wasserstein distance between Poisson distributions m =Pois (λ) and m̄ = Pois (λ̄) is
|λ− λ̄|, which can be verified from the well-known expression W1(m, m̄) =

∫
|m(−∞, t]− m̄(−∞, t]|dt (valid for

general one-dimensional distributions m, m̄), and the so-called “Poisson-Gamma dual relation”: e−λ
∑n
k=0

λk

k! =∫∞
λ

tn

n! e
−tdt. When λ > λ̄, the optimal coupling between X ∼ Pois (λ) and Y ∼ Pois (λ̄) is obtained taking

X ∼ Pois (λ) and Y binomial with parameters (X, λ̄λ ) conditionally on X. Alternatively, one could consider the
coupling (X,Y ) := (Nλ, Nλ̄), where {Nt}t≥0 is a Poisson process with intensity 1.

3.2. Wasserstein barycenter

Let us now recall the Wasserstein barycenter, introduced in [1] and further studied in [28, 33, 40], among
others. Our definition slightly extends the ones in those works in that the optimization problem is posed in a
possibly strict subset of the usual one.

Definition 3.4. Let Γ ∈ P(P(X )). The p-Wasserstein risk of ν ∈ P(X ) is

Vp(ν) :=

∫
P(X )

Wp(m, ν)pΓ(dm) ≤ +∞.

Given a measurable set M⊆ P(X ), any measure m̂p ∈M which attains the quantity

inf
ν∈M

Vp(ν)

with finite value, is called a p-Wasserstein barycenter of Γ over M.
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Figure 1. Vertical interpolation (left) and horizontal interpolation (right) of two Gaussian
densities.

Notice that in principle we are not assuming M to be a model space for Γ, but this will often be the case.
When the support of Γ is infinite and M =Wp(X ), this object is termed p-Wasserstein population barycenter
of Γ as introduced in [33]; see [10].

Example 3.5. Given two univariate Gaussian distributions m0 = N (µ0, σ
2
0) and m1 = N (µ1, σ

2
1), one can

verify—using the expression in Example 3.2—that the 2-Wasserstein barycenter for Γ(dm) = 1
2δm0

(dm) +
1
2δm1

(dm) is given by m̂ = N (µ0+µ1

2 , (σ0+σ1

2 )2). This should be compared to Example 2.6. Figure 1 illustrates
the corresponding vertical and a horizontal interpolations between two Gaussian densities with different means
and the same variance.

Let us introduce additional notation for the sequel and review then some basic properties of Wasser-
stein barycenters. Considering Wp(X ) with the complete metric Wp as a base Polish metric space, we define
Wp(Wp(X )) in the natural way: Γ ∈ P(Wp(X )) is an element of Wp(Wp(X )) if it is concentrated on a set of
measures with finite moments of order p, and moreover for some (and then all) m̃ ∈ Wp(X ) it satisfies∫

P(X )
Wp(m, m̃)pΓ(dm) <∞.

We endowWp(Wp(X )) with the corresponding p-Wasserstein distance, which we also denoteWp for simplicity.
Also, if Γ is concentrated on measures with finite moments of order p which have densities with respect to λ, then
we write Γ ∈ P(Wp,ac(X )) and use the notation Γ ∈ Wp(Wp,ac(X )) if, as before,

∫
P(X )

Wp(m, m̃)pΓ(dm) <∞
for some m̃.

Remark 3.6. If Γ ∈ P(P(X )) has a p-Wasserstein barycenter m̂p over M, then

∞ >

∫
P(X )

Wp(m, m̂p)
pΓ(dm) =

∫
Wp(X )

Wp(m, m̂p)
pΓ(dm),

hence Γ ∈ Wp(Wp(X )). Moreover, Γ ∈ Wp(Wp(X )) is equivalent to the corresponding model average m̄(dx) :=
EΓ [m] (dx) having a finite p-moment, since for any y ∈ X ,∫

Wp(X )
Wp(δy,m)pΓ(dm) =

∫
Wp(X )

∫
X d(y, x)pm(dx)Γ(dm) =

∫
X d(y, x)p

∫
Wp(X )

m(dx)Γ(dm).

We next state an existence result first established in Theorem 2 of [33] for the caseM =Wp. See Appendix B
for a simpler, more direct, proof.

Theorem 3.7. Suppose Assumption 3.1 holds, Γ ∈ P(P(X )), and M⊆Wp is a weakly closed set. There exists
a p-Wasserstein barycenter of Γ over M if and only if Γ ∈ Wp(Wp(X )).

Regarding uniqueness, the following general result was proven in Proposition 6 of [33] for the case X = Rq
with d the Euclidean distance and p = 2 (observe that, in that situation, the previous result applies):
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Lemma 3.8. Assume Γ ∈ W2(W2(Rq)) and that there exists a set A ⊆ W2(Rq) of measures with

µ ∈ A, B ∈ B(Rq), dim(B) ≤ q − 1 =⇒ µ(B) = 0,

and Γ(A) > 0. Then, Γ admits a unique 2-Wasserstein population barycenter over W2(Rq).

Remark 3.9. Observe that the model space M =Wp,ac(X ) is not weakly closed. Nevertheless, the existence
and uniqueness of a population barycenter over that set can still be guaranteed when p = 2, X = Rq, d is the
Euclidean distance, λ is the Lebesgue measure, and

Γ
({
m :

∥∥dm
dλ

∥∥
∞ <∞

})
> 0. (3.2)

This was proven in Theorem 6.2 of [28] for compact finite-dimensional manifolds with lower-bounded Ricci
curvature (equipped with the volume measure), but one can read-off the (non-compact but flat) Euclidean case
X = Rq from the proof therein, in order to establish the absolute continuity of a barycenter overW2(Rq), in the
setting of Lemma 3.8. If |supp(Γ)| <∞ then equation (3.2) can be relaxed to the condition Γ ({m : m� λ}) > 0,
as shown in [1] or Theorem 5.1 of [28].

The following statement, corresponding to Lemma 3.1 of [7], provides a useful description of barycenters
which generalizes a result proven in [3] when |supp(Γ)| <∞.

Lemma 3.10. Assume p = 2, X = Rq, d = Euclidean distance, λ =Lebesgue measure. Let Γ ∈ W2(W2(X )) and
Γ̃ ∈ W2(W2,ac(X )). There exists a jointly measurable function W2,ac(Rq)×W2(Rq)× Rq 3 (µ,m, x) 7→ Tmµ (x)

which is µ(dx)Γ(dm)Γ̃(dµ)-a.s. equal to the unique optimal transport map from µ to m at x. Furthermore,
letting µ̂ be a barycenter of Γ, we have

x =

∫
Tmµ̂ (x)Γ(dm), µ̂(dx)− a.s.

4. Bayesian Wasserstein barycenter and statistical properties

Building on the Wasserstein distance as a loss function on models, we arrive to the following central object
of the article:

Definition 4.1. Let us consider a prior Π ∈ P(P(X )) with model space M ⊆ Wp,ac(X ) and data D =
(x1, . . . , xn) which determines Πn as in equation (2.2). We define the p-Wasserstein Bayes risk of m̄ ∈ Wp(X )
and a Bayes Wasserstein barycenter (BWB) estimator m̂n

p over M respectively as follows:

V np (m̄|D) :=

∫
P(X )

Wp(m, m̄)pΠn(dm) , and (4.1)

m̂n
p ∈ argmin

m̄∈M
V np (m̄|D), (4.2)

if the corresponding minimum is finite.

Example 4.2. In the setting of Example 2.1, the 2-Wasserstein loss function on Gaussian models (see Exam-
ple 3.2) induces the usual quadratic loss on the mean parameters: W 2

2 (m, m̄) = `(θ, θ̄) := ‖θ− θ̄‖2. Thus, in the
notation of equation (2.5), we have

V n2 (m̄|D) = R`(θ̄|D).

This implies that, for any tuple of data point D = (x1, ..., xn) the BWB corresponds to the Gaussian distribution

N (θ̄,Σ) ∈M with mean θ̄ = θ̂`2 = (Σ−1
0 +nΣ−1)−1(Σ−1

0 µ0 +nΣ−1x̄n), that is, the posterior mean estimator of
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the mean parameter. Moreover, in this particular case the barycentric cost or optimal 2-Wasserstein Bayes risk
equals the trace of the covariance of a random vector with law given in equation (2.6), i.e., Tr((Σ−1

0 +nΣ−1)−1).
Notice that the covariance Σ of the BWB is strictly smaller than that of the corresponding BMA estimator
in equation (2.10) (in the usual order on symmetric positive semidefinite matrices). This is, in fact, a general
property of the BWB as claimed in Proposition 4.9 below.

Example 4.3. Similarly, in the parametric setting of Example 2.2, the problem of finding BWB estimators
can be written in terms of the parametric loss induced by the corresponding p-Wasserstein distance on Poisson
distributions, computed in Example 3.3. We thus deduce for p = 1 that the BWB estimator m̂n

1 corresponds,
in that setting, to the law Pois(λ1) with λ1 the median of the posterior distribution Gamma(nx̄n + α, n+ β);
for which an explicit expression is not available.

Example 4.4. Let us assume X = R and that Π(dm) is supported on continuous models m over R. Let Fm
and Qm := F−1

m denote, respectively, the cumulative distribution function and the right-continuous quantile
function of such m. The coupling (x, Tmm0

(x)), with x distributed like m0 and Tmm0
the increasing map Tmm0

(x) :=
Qm(Fm0

(x)), is known to be optimal for the p-Wasserstein distance, for any p ≥ 1 (see [45], Rem. 2.19(iv)). The
BWB m̂n = m̂p

n of the posterior Πn is also independent of p and is characterized via its quantile, as follows:

Qm̂n(·) =
∫
MQm(·)Πn(dm).

Interestingly enough, the model average m̄n :=
∫
mΠn(dm) of Πn is in turn characterized by its averaged

cumulative distribution function: Fm̄n(·) =
∫
M Fm(·)Πn(dm). See Section 5 in the companion paper [7] for

details and further discussion on one-dimensional Wasserstein barycenters, in particular, on geometric properties
they inherit from the elements m of the support of the prior/posterior.

Remark 4.5. In the sequel, unless otherwise stated, an a.s. statement about Πn is meant to hold almost surely
with respect to the marginal law m⊗n(dx1, . . . ,dxn)

∫
MΠ(dm) of a data sample of size n (sometimes called prior

predictive distribution). In particular, for Π(dm)-almost every m, such statement holds for m⊗n(dx1, . . . ,dxn)-
almost every sample (x1, . . . , xn).

Remark 4.6. We observe that Π ∈ Wp(Wp(X )) implies for each n ≥ 1 that

Πn ∈ Wp(Wp(X )) a.s.

Indeed, for fixed m̃ ∈ Wp(X ), we have (we thank an anonymous referee for pointing this out):

∞ >

∫
M
Wp(m, m̃)pΠ(dm) =

∫
Xn

∫
M
Wp(m, m̃)pm(x1) · · ·m(xn)Π(dm)λ(dx1) · · ·λ(dxn)

=

∫
Xn

∫
M
Wp(m, m̃)pΠn(dm)

∫
M
m̄ (x1) · · · m̄ (xn) Π (dm̄)λ(dx1) · · ·λ(dxn)

=

∫
Xn

[∫
M
Wp(m, m̃)pΠn(dm)

]
m̄⊗n(dx1, . . . ,dxn)

∫
M

Π(dm̄).

(4.3)

However, Π ∈ Wp(Wp(X )) is in general not enough for Πn ∈ Wp(Wp(X )) to hold a.s. for i.i.d. data points
(x1, . . . , xn) sampled from a fixed law m0, which would be the natural setting to formulate the question of
Bayesian consistency (see next subsection). Corollary 4.19 below ensures this fact for suitable given laws m0,
in the framework of Bayesian consistency. In Appendix C we further provide a sufficient condition on the prior
Π (termed integrability after updates) ensuring that Πn ∈ Wp(Wp(X )) for every possible tuple of data points
(x1, . . . , xn).
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The following statement gathers the discussion in Section 3.2 for the case Γ = Πn, as well as the main point
of Remark 4.6:

Theorem 4.7. Suppose Assumption 3.1 holds and the model space M is weakly closed. Let Π ∈ P(P(X )) be a
prior with model space M⊆Wp,ac(X ) and Πn be the corresponding posterior given the data D = (x1, . . . , xn).
The following are equivalent:

a) A p-Wasserstein barycenter estimator m̂n
p for Πn over M exists a.s.

b) Πn ∈ Wp(Wp(X )) a.s.
c) The model average m̄n(dx) = EΠn [m] (dx) has a.s. a finite p-moment.

Moreover, if Π ∈ Wp(Wp(X )), a p-Wasserstein barycenter estimator m̂n
p over M exists a.s. for every n ≥ 1.

We thus make in all the sequel the following assumption:

Assumption 4.8. Π ∈ Wp(Wp,ac(X )) and there exists a weakly closed model space M⊆Wp,ac(X ) for Π.

Since Πn � Π a.s., Assumption 4.8 together with Remark 4.6 imply that Πn ∈ Wp(Wp,ac(X )) a.s. for all n.

We will next study some basic statistical properties of the BWB estimator.

4.1. Variance reduction with respect to BMA

In this subsection, we assume that X = Rq, λ = Lebesgue measure, d = Euclidean distance and p = 2. Let
m̂ := m̂n

2 be the unique population barycenter of Πn in that case, and denote by (m,x) 7→ Tm(x) a measurable
function equal λ(dx)Π(dm) a.e. to the unique optimal transport map from m̂ to m ∈ W2(X ). As a consequence
of Lemma 3.10 we have the fixed-point property m̂ = (

∫
TmΠ(dm))(m̂). Thus, for all convex functions ϕ, non

negative or with at most quadratic growth, we have

Em̂[ϕ(x)] =
∫
X ϕ(x)m̂(dx) =

∫
X ϕ

(∫
M Tm(x)Πn(dm)

)
m̂(dx)

≤
∫
X
∫
M ϕ(Tm(x))Πn(dm)m̂(dx) =

∫
M
∫
X ϕ(Tm(x))m̂(dx)Πn(dm)

=
∫
M
∫
X ϕ(x)m(dx)Πn(dm) =

∫
X ϕ(x)

∫
Mm(dx)Πn(dm) = Em̂BMA [ϕ(x)],

where m̂BMA = EΠn [m] is the Bayesian model average in equation (2.8). We have used Jensen’s inequality and
Fubini’s theorem. This means that the BWB estimator is less spread, or smaller, in the sense of convex-order
of probability measures, than the BMA. As a consequence, we have:

Proposition 4.9. Consider p = 2, and let m̂BMA and m̂n
2 respectively denote the BMA and the BWB estima-

tors associated with Πn. Then, we have Em̂BMA [x] = Em̂n2 [x] and Em̂BMA [‖x‖2] ≥ Em̂n2 [‖x‖2]. In other words,
the BWB estimator has less variance than the BMA. Furthermore, with x̄ denoting the mean w.r.t. the BMA
or BWB, the corresponding covariances satisfy: Em̂BMA [(x − x̄)(x − x̄)t] ≥ Em̂n2 [(x − x̄)(x − x̄)t] in the usual
order for symmetric positive semidefinite matrices. The inequalities are strict unless Πn is a Dirac mass.

Proof. Given the previous discussion, the equality of means is obtained by taking ϕ(x) and −ϕ(x) equal to
each coordinate of x and the inequality of variances by taking ϕ(x) = ‖x‖2. The inequality for the covariances
follows by taking ϕ(x) = (yt(x− x̄))2 for arbitrary y ∈ Rd.

For the last claim, we just need to make explicit the corresponding equality case of Jensen’s inequality as
used in the preceding discussion. Since ‖x‖2 is strictly convex, the equality of second moments implies that
m̂n

2 (dx) a.e. x, that Tm(x) is Πm(dm) a.s. constant. This entails that the map T := Tm does not depend on m
and that for Πm(dm) a.e. m, it holds that m = T (m̂n

2 ). The equality case for the covariances is reduced to the
previous one considering their traces using also the equality of means.
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4.2. Convergence to the true model and Bayesian consistency

A natural question in Bayesian statistics is whether a given predictive posterior estimator is consistent (see
[17, 23, 44]). In short, this means the convergence of the predictive posterior law, in some specified sense, towards
the true model m0, as we observe more and more i.i.d. data sampled from m0. We are specifically interested
in the question of whether the BWB estimator converges to the model m0 and, more precisely, on conditions
which guarantee that

Wp(m̂
n
p ,m0)→ 0, m

(∞)
0 a.s. (4.4)

as n → ∞, where m̂n
p is for each n a BWB over a model space M. Here and in the sequel, m

(∞)
0 denotes the

product law of the infinite sample {xn}n of i.i.d. data distributed according to m0. We will see that this question
is linked to the notion of consistency (cf. [23], Def. 6.1) of the prior, introduced next:

Definition 4.10. The prior Π is said to be consistent at m0 in the weak topology (resp. p-Wasserstein topology)
if for each open neighbourhood U of m0 in the weak topology of P(X ) (resp. p-Wasserstein topology ofWp(X )),

one has Πn(U c)→ 0 , m
(∞)
0 − a.s.

Remark 4.11. We notice that in the literature of Bayesian consistency, see e.g. [23, 44], Π satisfying the

above property (in either topology) would be called “strongly consistent” at m0 in allusion to the m
(∞)
0 -a.s.

convergences, whereas the term “weakly consistent” would be used when those convergences hold in probability.
Since we will be only dealing with the almost sure notion, in order to avoid possible confusions with topological
concepts, the adverb “strongly” is omitted throughout when referring to consistency of the prior, while the
adverb “weakly” only refers to the weak topology on probability measures.

The celebrated Schwartz theorem [44] provides sufficient conditions for consistency w.r.t. a given topology,
see also Chapter 6 of [23] for a modern treatment. A key ingredient is the notion of Kullback-Leibler support:

Definition 4.12. A measure m0 is an element the Kullback-Leibler support of Π, denoted

m0 ∈ KL (Π) ,

if Π (m : DKL (m0||m) < ε) > 0 for every ε > 0, with DKL (m0||m) the reverse Kullback-Leibler entropy defined
as
∫

log m0

m (x)m0(dx) if m0 � m and as +∞ otherwise.

Remark 4.13. The statistical model is interpreted as being “correct” or well specified, if the data distribution
m0 is an element of supp(Π), the support of Π w.r.t. the weak topology, see [9, 23, 26, 29, 30]. The condition
m0 ∈ KL (Π) is stronger. Indeed, by the Csiszar-Pinsker inequality and the fact that the dual bounded-Lipschitz
distance (metrizing the weak topology in P(X )) is majorized by the total variation distance, one can check that
KL (Π) ⊆ supp(Π). In particular, one has KL (Π) ⊆M for any weakly closed model spaceM for Π. (The reader
may consult the mentioned works for the misspecified framework too).

Remark 4.14. If m0 ∈ KL (Π), then m0(dx)� m(dx)
∫
MΠ(dm), the marginal law of one data point x in the

Bayesian model defined by Π. Indeed, for any measurable set A ⊆ X such that
∫
M
∫
A
m(dx)Π(dm) = 0 we have

Π (m : m0 � m,m(A) = 0) = Π (m : m0 � m) ≥ Π (m : DKL (m0||m) < +∞) > 0. This will be useful later.

We recall (see Theorem 6.17 and Example 6.20 in [23]) the following result which concerns the weak topology:

Theorem 4.15. Assume (only) that (X , d) is Polish endowed with a σ-finite Borel measure λ, that Π ∈ Pac(X )
and that m0 ∈ KL (Π). Then, Π is consistent at m0 in the weak topology.

We now state a general result relating consistency of Π at m0 in the p-Wasserstein topology and the conver-
gence (4.4) (or consistency of the predictive posterior m̂n

p ), with other asymptotic properties of the posterior
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laws in the Wasserstein setting. Recall that the notation Wp throughout stands for the Wasserstein distance
both in Wp(X ) and Wp(Wp(X )).

Theorem 4.16. Suppose Assumptions 3.1 and 4.8 hold, that m0 ∈M, and that

Πn ∈ Wp(Wp(X )), m⊗n0 − a.s. for all n ≥ 1. (4.5)

The following are equivalent:

a) Wp(Πn, δm0
)→ 0, m

(∞)
0 -a.s. as n→∞.

b) m
(∞)
0 -a.s. as n→∞, we have Wp(m̂

n
p ,m0)→ 0 and the barycentric cost (or optimal p-Wasserstein Bayes

risk or)
∫
MWp(m, m̂

n
p )p Πn(dm) goes to 0.

c) Π is consistent at m0 in the p-Wasserstein topology and the p-moment of the BMA estimator (2.8) converge

m
(∞)
0 -a.s. to that of m0 as n→∞, i.e. for some (and then all) x0 ∈ X we have∫

X d(x, x0)pm̂n
BMA(dx) =

∫
M
∫
X d(x, x0)pm(dx)Πn(dm)→

∫
X d(x, x0)pm0(dx) ,m

(∞)
0 a.s. (4.6)

d) Π is consistent at m0 in the weak topology and for some (and then all) x0 ∈ X we have∫
M

∣∣∣∣∫
X
d(x, x0)pm(dx)−

∫
X
d(x, x0)pm0(dx)

∣∣∣∣Πn(dm)→ 0, m
(∞)
0 -a.s. (4.7)

Proof. By minimality of a barycenter over M,∫
M
Wp(m, m̂

n
p )p Πn(dm) ≤

∫
M
Wp(m,m0)p Πn(dm) = Wp(Πn, δm0

)p.

Thus, for some c > 0 depending only on p,

Wp(m0, m̂
n
p )p ≤ c

∫
MWp(m, m̂

n
p )p Πn(dm) + c

∫
MWp(m,m0)p Πn(dm) (4.8)

≤ 2cWp(Πn, δm0)p (4.9)

proving that a) ⇒ b). The converse b) ⇒ a) follows from∫
M
Wp(m,m0)p Πn(dm) ≤ c

∫
M
Wp(m, m̂

n
p )p Πn(dm) + cWp(m̂

n
p ,m0)p.

Let us now show that a) ⇒ c). The convergence Wp(Πn, δm0
)→ 0 implies (by the Portmanteau theorem) that

lim supn→∞Πn(F ) ≤ δm0
(F ) for all closed sets F of Wp(X ). Taking F = U c with U a neighborhood of m0

yields the consistency of Π at m0 in the p-Wasserstein topology. Moreover it implies that for each m̃ ∈ Wp(X ),∫
M
W p
p (m, m̃)Πn(dm)→

∫
M
W p
p (m, m̃)δm0

(dm) = W p
p (m0, m̃) ,m

(∞)
0 -a.s.

as n→∞. Choosing m̃ = δx0 , we have W p
p (m, m̃) =

∫
X d(x, x0)pm(dx) for any m, from where (4.6) follows.

We next prove that c)⇒ a). The spaceWp(X ) being Polish, there is countable basis U of open neighborhoods

of m0 such that m
(∞)
0 -a.s., Πn(U c)→ 0 for all U ∈ U . Thus, if G ⊆ Wp(X ) is any open set such that m0 ∈ G,

for some U ∈ U we have U ⊆ G and therefore lim infn→∞Πn(G) ≥ lim infn→∞Πn(U) = 1− limn→∞Πn(U c) =

1 = δm0
(G), m

(∞)
0 -a.s. This implies, by the Portmanteau theorem, that the sequence (Πn)n weakly converges to

δm0 , m
(∞)
0 -a.s., as probability measures on the metric space Wp(X ). As in the previous (converse) implication,
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we obtain from (4.6) the convergence of some moments of order p of Πn, to the corresponding moment of δm0
,

m
(∞)
0 -a.s. This plus the weak convergence just established imply that Wp(Πn, δm0)→ 0 m

(∞)
0 -a.s.

We have thus established that a), b) and c) are equivalent. Notice now that the function

m 7→ Φ(m) :=

∣∣∣∣∫
X

(
d(x, x0)p −

∫
X
d(y, x0)pm0(dy)

)
m(dx)

∣∣∣∣ , (4.10)

is continuous on Wp(X ), since x 7→ d(x, x0)p −
∫
X d(y, x0)pm0(dy) is continuous with polynomial growth of

order p on X . Moreover, |Φ(m)| ≤
∫
X d(y, x0)pm0(dy) +W p

p (m, δx0), that is, Φ has polynomial growth of order

at most p on Wp(X ). Therefore, if a) or equivalently c) holds, we have m
(∞)
0 -a.s. that∫

M
Φ(m)Πn(dm)→

∫
M

Φ(m)δm0
(dm) = Φ(m0) = 0

which is tantamount to (4.7). Moreover if c) holds, consistency of Π at m0 in the weak topology is obvious. This
shows that c) ⇒ d).

Last, if d) holds, we deduce with Markov’s inequality that, for each rational ε > 0,

Πn

{
m ∈M :

∣∣∣∣∫
X
d(x, x0)pm(dx)−

∫
X
d(x, x0)pm0(dx)

∣∣∣∣ ≥ ε}→ 0 ,m
(∞)
0 a.s. (4.11)

as n → ∞. This, together with the consistency of Π at m0 w.r.t. weak topology, is equivalent to having that
consistency w.r.t. the p-Wasserstein topology. Moreover, we have∣∣∣∣∫

X
d(x, x0)pm̂n

BMA(dx)−
∫
X
d(x, x0)pm0(dx)

∣∣∣∣ ≤ ∫
M

∣∣∣∣∫
X
d(x, x0)pm(dx)−

∫
X
d(x, x0)pm0(dx)

∣∣∣∣Πn(dm)

and so the convergence (4.7) implies the convergence (4.6). This and the previous show that d) implies c),
concluding the proof.

Remark 4.17. The convergence (4.11) for each ε > 0 is exactly what one must add to consistency at m0 of
Π in the weak topology to obtain such consistency in the p-Wasserstein topology. However, the latter is only

equivalent to the m
(∞)
0 -a.s. weak convergence of Πn to δm0 as measures on the metric space Wp(X ) as n→∞,

which is not enough to grant the m
(∞)
0 -a.s. convergence in Wp(Wp(X )) of Πn to δm0 . Similarly, consistency

at m0 of Π in the p-Wasserstein topology cannot in general be obtained by adding only the convergence of
moments 4.6 to the consistency at m0 of Π in the weak topology. Of course, if the space X is bounded, weak
and p-Wasserstein topologies on it coincide, and consistency of Π at m0 in the weak topology implies in that
case the convergence (4.7) (since the function Φ in the previous proof is in that case continuous and bounded).
Hence, in that case, all the equivalent properties in Theorem 4.16 are satisfied. The same is true if Π(dm)-a.e.
m is supported on a fixed bounded (weakly) closed set Y ⊆ X (just replace X by Y).

An immediate consequence of the proof of Theorem 4.16 (cf. the estimate (4.8)) is the following bound, which
can be used to obtain quantitative estimates for the average rate of convergence of the BWB, if the posterior
and the Wasserstein distance between models are explicit enough:

Corollary 4.18. Under the assumptions of Theorem 4.16, for some constant cp > 0 we have

E
(
Wp(m0, m̂

n
p )p
)
≤ cpE (Wp(Πn, δm0)p) .
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The following result gathers sufficient conditions for consistency at m0 of Π in the p-Wasserstein topology
and convergence of the BWB.

Corollary 4.19. Suppose Assumptions 3.1 and 4.8 hold, and moreover that m0 ∈ KL (Π). Then Π is consistent
at m0 in the weak topology and condition (4.5) holds. If moreover either condition (i) or (ii) below hold, then

Π is consistent at m0 in the p-Wasserstein topology and Wp(m̂
n
p ,m0)→ 0, m

(∞)
0 -a.s. as n→∞:

(i) the convergence (4.7) holds;

(ii) for some q > p, m
(∞)
0 -a.s. the q moments of the BMA estimator are bounded uniformly in n.

Proof. In view of Theorem 4.15, to prove the first claim we just need to prove that (4.5) holds. To that end, let us
first check that, whenever m0 ∈ KL (Π), we have m⊗n0 (dx1, . . . ,dxn) � m⊗n(dx1, . . . ,dxn)

∫
MΠ(dm). If A ⊆

Xn measurable is such that
∫
A
m⊗n(dx1, . . . ,dxn)

∫
MΠ(dm) = 0, then for Π(dm)-a.e. m and every xi ∈ X , i =

2, .., n, one has m({x ∈ X : (x, x2, ..., xn) ∈ A}) = 0, from which we get m0({x ∈ X : (x, x2, ..., xn) ∈ A}) = 0 by
Remark 4.14, hence m⊗n0 (A) = 0. We conclude noting that the set A := {(x1, . . . , xn) ∈ Xn : Πn /∈ Wp(Wp(X ))}
has null m⊗n(dx1, . . . ,dxn)

∫
MΠ(dm)- measure, by Remark 4.6.

Given the previous and part d) of Theorem 4.16, the convergence (4.7) immediately implies that Π is consistent

at m0 in the p-Wasserstein topology and that Wp(m̂
n
p ,m0)→ 0 m

(∞)
0 -a.s. as n→∞. To conclude the proof it

is enough to show that the m
(∞)
0 -a.s. uniform boundedness of the q moments of the BMA estimator for some

q > p, implies, under the given assumptions, that said convergence (4.7) holds. Consider to that end the function
Φ defined by (4.10) in the proof of Theorem 4.16. For each ε > 0 we have∫

M
Φ(m)Πn(dm) ≤ ε+

∫
M∩{Φ(m)≥ε}

Φ(m)Πn(dm)

≤ ε+

(∫
M

Φ(m)q/pΠn(dm)

)p/q
(Πn(m : Φ(m) ≥ ε))1−p/q

The assumption on the q-moments of the BWA estimators imply that supn
∫
M Φ(m)q/pΠn(dm) <∞, m

(∞)
0 -a.s.,

following from applying Jensen’s inequality to the convex function s 7→ |s|q/p on R and the integral w.r.t. m(dx)

defining Φ(m). Since ε > 0 is arbitrary, it just remains to ensure that Πn(m : Φ(m) ≥ ε)→ 0m
(∞)
0 -a.s. as n→∞

(that is, the convergence (4.11) holds). The elementary relations t = t ∧R + (t−R)+ and (t−R)+ ≤ t1{t>R}
for all t, R ≥ 0 yield the bound

Πn(m : Φ(m) ≥ ε) ≤Πn

(
m :

∣∣∣∣∫
X
R ∧ d(x, x0)pm(dx)−

∫
X
R ∧ d(x, x0)pm0(dx)

∣∣∣∣ ≥ ε/2)
+ Πn

(
m :

∫
{x∈X :d(x,x0)p>R}

d(x, x0)p [m(dx) +m0(dx)] ≥ ε/2

)
,

where the first term on the r.h.s. goes m
(∞)
0 -a.s. to 0 as n→∞, since x 7→ R∧ d(x, x0)p is a bounded continuous

function and Π is consistent at m0 in the weak topology. The second term on the r.h.s. is bounded by

2

ε

[
sup
n∈N

∫
M

∫
X

1{d(x,x0)p>R}d(x, x0)pm(dx)Πn(dm) +

∫
X

1{d(x,x0)p>R}d(x, x0)pm0(dx)

]
.

For each ε > 0, this expression can be made arbitrarily small by taking R large enough, since m0 ∈ Wp(X )
and because the uniform boundedness of the q-moments of the BWA estimators implies their p-moments are

uniformly integrable. We conclude that Πn(m : Φ(m) ≥ ε)→ 0 m
(∞)
0 -a.s. as n→∞ as desired.
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Example 4.20. Given Gaussian distributions m0 = N (θ0,Σ) and m = N (θ,Σ) on X = Rd, one can check that
DKL (m0||m) = 1

2 (θ−θ0)tΣ−1(θ−θ0) and hence that KL (Π) = supp(Π) in the parametric Bayesian model dealt
with in Examples 2.1 and 4.2. Therefore, by Theorem 4.15, Π in those examples is consistent w.r.t. the weak
topology at m0 = N (θ0,Σ) for any θ0 ∈ Rd. Moreover, the prior Π is easily seen to be in W2(W2(Rd)), hence
Lemma 4.19 ensures that Πn ∈ W2(W2(Rd)),m⊗n0 -a.s. for all n ≥ 1. This fact alternatively follows from the
existence of a 2-Wasserstein barycenter for Πn for any data points D, verified in this case. To verify consistency
of Π in the 2-Wasserstein topology at any m0 as well as convergence of the BWB, let us compute W 2

2 (Πn, δm0)

and apply directly Theorem 4.16. Denoting by θ a r.v. with law N
(
θ̂`2 , (Σ

−1
0 + nΣ−1)−1

)
, we find

W 2
2 (Πn, δm0) =

∫
M
W 2

2 (m,m0)Πn(dm)

=Eθ(‖θ − θ0‖2)

= ‖θ0 − θ̂`2‖2 + Eθ(‖θ̂`2 − θ‖2)

=W 2
2 (m̂n

2 ,m0) +

∫
M
W 2

2 (m, m̂n
2 )Πn(dm),

with Eθ(‖θ̂`2 − θ‖2) =
∫
MW 2

2 (m, m̂n
2 )Πn(dm) = tr((Σ−1

0 + nΣ−1)−1)→ 0 as n→∞ and

‖θ0 − θ̂`2‖2 = W 2
2 (m̂n

2 ,m0) = ‖(Σ−1
0 + nΣ−1)−1(Σ−1

0 µ0 + nΣ−1x̄n)− θ0‖2

which m
(∞)
0 a.s. goes to 0 as n→∞ by the Law of Large Numbers, whenever the data (xn)n≥1 consists of an i.i.d.

sample from the true model m0. Notice that the identity W 2
2 (Πn, δm0) = W 2

2 (m̂n
2 ,m0) +

∫
MW 2

2 (m, m̂n
2 )Πn(dm)

found in this case, can be seen as a bias-variance type decomposition for the posterior law Πn onW2(X ). In this
case, one can readily see that E(W 2

2 (m̂n
2 ,m0)) ≤ C/n.

Example 4.21. Although the BWB estimator m̂n
1 in the Poisson parametric Bayesian model of Example 2.2

is not explicit (see Exam. 4.3), we can still apply Theorem 4.16 a) to prove that it converges to the true model
generating the data. Indeed, if m0 =Pois(λ0), using the expression for the 1-Wasserstein distance between
Poisson laws computed in Example 3.3 we see that

W1(Πn, δm0
) =

∫
W1(m,m0)Πn(dm) = E|λ− λ0| ≤ E(|λ− λ0|2)1/2,

with λ a r.v. with law Gamma(nx̄n + α, n + β). An elementary computation using the Gamma distribution’s
mean and variance shows, in this case, that

E(|λ− λ0|2) =
nx̄n + α

(n+ β)2
+

[
nx̄n + α

n+ β
− λ0

]2

,

which goes to zero m
(∞)
0 a.s. as n→∞, whenever the data (xn)n≥1 is an i.i.d. sample from the true model m0.

We deduce with Corollary 4.19 that E(W1(m0, m̂
n
1 )) ≤ C/

√
n.

As noticed earlier, consistency of Π at m0 w.r.t. the p-Wasserstein topology is not enough to grant that

Wp(Πn, δm0
) → 0 m

(∞)
0 − a.s.. But we will see next that this is true under a boundednees condition on the

support of Π. Recall that supp(Π) is said to be bounded in Wp(X ) if

diam(Π) := sup
m,m̄∈supp(Π)

Wp(m, m̄) <∞.
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A typical example is the finitely parametrized case with compact parameter space Θ and continuous parametriza-
tion mapping T : Θ→Wp(X ). More generally, diam(Π) <∞ amounts to Π being supported on a set of models
with centered p-moments bounded by a constant. In particular, X and the support of every m ∈ supp(Π) may
be unbounded, and still supp(Π) be bounded. We have

Lemma 4.22. If Π is consistent at m0 in the p-Wasserstein topology and supp(Π) is bounded in Wp(X ), then

Wp(Πn, δm0
)→ 0 m

(∞)
0 − a.s. as n→∞.

Proof. Let ε > 0 and B = {m : Wp(m,m0) < ε}, then

Wp(Πn, δm0
)p =

∫
MWp(m,m0)p Πn(dm)

=
∫
B
Wp(m,m0)p Πn(dm) +

∫
Bc
Wp(m,m0)p Πn(dm)

≤ εp +
∫
Bc
Wp(m,m0)p Πn(dm).

Since ε > 0 is arbitrary, we only need to check that the second term in the last line goes m
(∞)
0 -a.s. to zero as

n→∞. By consistency we have Πn(Bc)→ 0 ,m
(∞)
0 -a.s. as n→∞, and since supp(Πn) ⊆ supp(Π), we conclude

that ∫
Bc
Wp(m,m0)p Πn(dm) ≤ diam(Π)pΠn(Bc)→ 0, m

(∞)
0 − a.s.

Remark 4.23. Π consistent at m0 in the weak topology and supp(Π) bounded in Wp(X ) is in general not
enough to obtain the conclusion of Lemma 4.22. To see this, write

Wp(Πn, δm0
)p =

∫
Bw

Wp(m,m0)p Πn(dm) +

∫
Bcw

Wp(m,m0)p Πn(dm), (4.12)

where Bw is a fixed small weak neighborhood of m0 (e.g. one can use the bounded Lipschitz distance to build

Bw). As in the proof of Lemma 4.22, the second term in the r.h.s. of (4.12) goes m
(∞)
0 -a.s. to zero as n→∞ in

this case too. However there is no reason why the term
∫
Bw

Wp(m,m0)p Πn(dm) should be small. The reason

is that for the functional m 7→ Ψ(m) := Wp(m,m0)p, even if bounded on M := supp(Π), there is no reason
why Ψ|Bw∩M should be small (no matter how small Bw may be). Indeed, the statement “Ψ|Bw∩M is small
if Bw is small” would mean mathematically that the weak and the p-Wasserstein topologies coincide on M
locally around m0, but this is not true in general, even if M is bounded1. This should not be confused with
the fact that, if M equiped with the p-Wasserstein topology and metric is bounded, then on Wp(M) weak
and p-Wasserstein convergence coincide. Consistency at m0 of Π in the weak topology, on the other hand,

is equivalent to Πn → δm0
, m

(∞)
0 -a.s. in the weak topology of Wp(M), when M is equipped with the weak

topology. This does not imply Πn → δm0
, m

(∞)
0 -a.s. in the weak topology ofWp(M), whenM is equipped with

the p-Wasserstein topology, and hence provides another point of view as to why the l.h.s. of (4.12) does not go
to zero without stronger assumptions.

The next result based on Schwartz theorem provides a (rather strong) condition ensuring that the equivalent
properties in Theorem 4.16 hold. Unfortunately, we have not been able to prove such a result under more general
assumptions.

1For instance, for X = R and p = 1 we have that M := {mn := n−1
n
δ0 + 1

n
δn}n∈N ∪ {δ0} is 1-Wasserstein bounded, and yet

mn → δ0 weakly but not in 1-Wasserstein topology.
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Theorem 4.24. Under Assumptions 3.1 and 4.8, suppose moreover that m0 ∈ KL(Π) and that, for some
λ0 > 0 and x0 ∈ X , one has

sup
m∈supp(Π)

∫
X e

λ0d
p(x,x0)m(dx) < +∞.

Then, Π is consistent at m0 in the p-Wasserstein topology. Moreover, we have Wp(Πn, δm0
)→ 0, m

(∞)
0 -a.s. and

the BWB estimator is consistent in the sense that

Wp(m̂
n
p ,m0)→ 0, m

(∞)
0 − a.s.

Before proving Theorem 4.24 some remarks on its assumptions and proof are in order.

Remark 4.25. The uniform control assumed on p-exponential moments implies, by Jensen’s inequality, that
sup

m∈supp(Π)

W p
p (m, δx0

) = sup
m∈supp(Π)

∫
X d

p(x, x0)m(dx) < +∞. By triangle inequality, this in turn implies that

supp(Π) is bounded.

Remark 4.26. The general picture of Bayesian consistency (including the misspecified case) parallels in several
aspects Sanov’s large deviations theorem (see e.g. the Bayesian Sanov Theorem ([26], Thm. 2.1) and references
therein), and it similarly relies on exponential controls of (posterior) integrals. The proof of Theorem 4.24 follows
the argument of Example 6.20 in [23], where Theorem 4.15 above is obtained by combining Schwartz’ theorem
([23], Thm. 6.17) with Hoeffding’s concentration inequality, to get uniform exponential controls of the posterior
mass of complements of weak neighborhoods of m0, which are defined in terms of bounded random variables. A
p-exponential moment control is what is needed to derive such concentration inequalities for unbounded random
variables (e.g. moments), defining neighborhoods in the Wasserstein topology. Notice that finite p-exponential
moments are also required for Sanov’s theorem to hold in the p-Wasserstein topology [47]. The uniform bound
on exponential moments appears however too strong an assumption (it does not hold e.g. in the setting of
Example 4.20). The question of relaxing that condition is left for future work.

Remark 4.27. In the misspecified framework dealt with in [9, 23, 26, 29, 30], and paralleling results applicable
to the weak topology in those works, we expect m̂n

p → argminm∈MDKL (m0||m) w.r.t. Wp to hold, under
suitable assumptions.

Proof of Theorem 4.24. First we show that if U is any Wp(X )-neighbourhood of m0 then m
(∞)
0 -a.s. we have

lim infn Πn(U) ≥ 1. According to Schwartz Theorem in the extended form ([23], Thm. 6.17), under the assump-
tion that m0 ∈ KL(Π), it is enough to find for each such U a sequence of measurable functions or “tests”
ϕn : Xn → [0, 1] such that

1. ϕn(x1, . . . , xn)→ 0, m
(∞)
0 − a.s, and

2. lim supn
1
n log

(∫
Uc
m⊗n(1− ϕn)Π(dm)

)
< 0.

First we will construct tests {ϕn}n that satisfy Point 1 and Point 2 above, over an appropriate subbase of
neighbourhoods U , to finally extend those properties to general neighborhoods.

Recall that µk → µ in Wp(X ) iff for all continuous functions ψ on X with |ψ(x)| ≤ K(1 + dp(x, x0)) for some
K ∈ R+ it holds that

∫
X ψ(x)µn(dx)→

∫
X ψ(x)µ(dx); see [46]. Given such ψ and ε > 0 we define the open sets

Uψ,ε :=
{
m :

∫
X ψ(x)m(dx) <

∫
X ψ(x)m0(dx) + ε

}
,

which form a sub-base for the p-Wasserstein neighborhood system at the distribution m0. We can assume that
K = 1 by otherwise considering Uψ/K,ε/K instead. Given a neighborhood U := Uψ,ε of m0 as above, we define
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the test functions

ϕn(x1, . . . , xn) =

{
1 if 1

n

∑n
i=1 ψ(xi) >

∫
X ψ(x)m0(dx) + ε

2 ,
0 otherwise.

By the law of large numbers, m
(∞)
0 − a.s : ϕn(x1, . . . , xn) → 0, so Point 1 is verified. Point 2 is trivial if

r := Π(U c) = 0, so we assume from now on that r > 0. Thanks to the exponential moments control assumed
on supp(Π), for Π(dm) a.e. m the random variable Z = 1 + dp(X,x0) with X ∼ m has a moment-generating
function Lm(t) which is finite for all t ∈ [0, λ0], namely

Lm(t) := E
[
etZ
]

= et
∫
X e

tdp(x,x0)m(dx) < +∞.

We thus have the bounds ∫
X
|ψ(x)|km(dx) ≤ E

[
Zk
]
≤ k!Lm(t)t−k, ∀λ0 ≥ t > 0,

for all k ∈ N. Therefore, we may apply Bernstein’s inequality in the form of Corollary 2.10 in [36] to the random
variables {−ψ(xi)}i under the measure m(∞) on XN, obtaining for any α < 0 that

m(∞)
(∑n

i=1

[
ψ(xi)−

∫
X ψ(x)m(dx)

]
≤ α

)
≤ e−

α2

2(v−cα) ,

with v := 2nLm(t)t−2, c := t−1, and 0 < t ≤ λ0. Going back to the tests ϕn and using the definition of U c we
deduce that

∫
Uc
m⊗n(1− ϕn)Π(dm) =

∫
Uc
m⊗n

(
1
n

∑n
i=1 ψ(xi) ≤

∫
X ψ(x)m0(dx) + ε

2

)
Π(dm)

≤
∫
Uc
m⊗n

(
1
n

∑n
i=1 ψ(xi) ≤

∫
X ψ(x)m(dx)− ε

2

)
Π(dm)

=
∫
Uc
m⊗n

(∑n
i=1

[
ψ(xi)−

∫
X ψ(x)m(dx)

]
≤ −nε2

)
Π(dm)

≤
∫
Uc

exp
{
−nε

2

2
t2

8Lm(t)+tε

}
Π(dm)

≤ r exp
{
−nε

2

2
t2

8 supm∈supp(Π) Lm(t)+tε

}
.

Thanks to the uniform control of exponential moments on the support, we conclude as desired that

lim supn
1
n log

(∫
Uc
m⊗n(1− ϕn)Π(dm)

)
≤ − t2ε2

16 supm∈supp(Π) Lm(t)+2tε < 0.

Now, a general neighborhood U contains a finite intersection of, say, N ∈ N elements of the sub-base, i.e.⋂N
i=1 Uψi,εi ⊆ U , so

∫
Uc
m⊗n(1− ϕn)Π(dm) ≤

∑N
i=1

∫
Ucψi,εi

m⊗n(1− ϕn)Π(dm).

Therefore we can conclude as in the sub-base case that Point 2 is verified. All in all, we have established that
Π is p-Wasserstein consistent at m0. Thanks to Lemma 4.22 and the boundedness of supp(Π) (see Rem. 4.25)
the last two claims are immediate.
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5. BWB calculation through descent algorithms in Wasserstein
space

In this section we review some of the available methods to compute Wasserstein barycenters, and then
explain how they can be used to calculate the BWB estimator. We will first survey the method proposed
by Álvarez-Esteban, Barrio, Cuesta-Albertos and Matrán in Theorem 3.6 of [3] and by Zemel and Panaretos
in Theorem 3 and Corollary 2 of [48], applicable in the setting where the probability distribution Γ on the
model space has finite support. This method is interpreted in [48] as a gradient descent in the Wasserstein
space. We will then discuss the main aspects of the stochastic gradient descent in Wasserstein space (SGDW),
introduced in our companion paper [7], building also upon the gradient descent idea. The latter method allows
moreover the computation of population barycenters for a distribution Γ on the model space, using a streaming
of random probability distributions sampled from it. In particular, we will recall the conditions established in [7]
which ensure its convergence. The reader is referred to [16, 18, 34, 41] for alternative approaches to computing
Wasserstein barycenters.

The two discussed methods can be easily implemented when explicit analytical expressions for optimal trans-
port maps between distributions in the model space are available (see [7] or Section 6 for some examples).
Moreover, in that case these methods can easily be coupled with sampling procedures (MCMC or others) for
the posterior distribution Πn in order to compute the BWB. We will see that the computation of the BWB
through the SGDW has several advantageous features. In particular, when expressions for optimal transport
maps are known, it can be done at nearly the same cost as the posterior sampling.

From now on we specialize Assumption 3.1, and make the following set of assumptions:

Assumption 5.1. p = 2, X = Rq, d = Euclidean metric, λ = Lebesgue measure. Furthermore, Γ ∈
W2(Wp,ac(Rq)) and there is a model space M⊆Wp,ac(Rq) for Γ which is weakly closed.

The following concept will be central in the “gradient-type” algorithms we consider:

Definition 5.2. We say that µ ∈ W2,ac(Rq) is a Karcher mean of Γ ∈ W2(W2,ac(Rq)) if

µ
({
x : x =

∫
W2(Rq) T

m
µ (x)Γ(dm)

})
= 1.

Remark 5.3. It is known that any 2-Wasserstein barycenter is a Karcher mean (c.f. [48]). However, the class of
Karcher means is in general a strictly larger one, see [3]. For conditions ensuring uniqueness of Karcher means,
see [38, 48] for the case when the support of Γ is finite and [10] for the case of an infinite support. In one
dimension, the uniqueness of Karcher means holds without further assumptions. See [7] for a deeper discussion.

5.1. Gradient descent on Wasserstein space

Consider Γ ∈ W2(Wp,ac(Rq)) finitely supported: for some mi ∈ Wp,ac(Rq), i = 1, . . . , L ∈ N, we have

Γ =
∑
i≤L λiδmi .

Following [3] and [48], we define an operator over Wp,ac(X ) by

G(m) :=
(∑L

i=1 λiT
mi
m

)
(m). (5.1)

Starting from µ0 ∈ Wp,ac(X ) one can then define the sequence

µn+1 := G(µn), for n ≥ 0. (5.2)
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The next result proven in Theorem 3.6 of [3] and independently in Theorem 3 and Corollary 2 of [48], establishes
the convergence of the above sequence to a fixed-point of G, which is nothing other than a Karcher mean for Γ:

Proposition 5.4. The sequence {µn}n≥0 in equation (5.2) is tight and every weakly convergent subsequence
of {µn}n≥0 converges in W2 to an absolutely continuous measure in W2(Rq) which is a Karcher mean of Γ.
If some mi has a bounded density, and if there exists a unique Karcher mean m̂, then m̂ is the Wasserstein
barycenter of Γ and W2(µn, m̂)→ 0.

Panaretos and Zemel ([48], Thm. 1) discovered that the sequence (5.2) can indeed be interpreted as a gradient
descent (GD) scheme with respect to the Riemannian-like structure of the Wasserstein space W2(Rq). In fact,
the functional on W2(Rq) given by

F (m) := 1
2

∑L
i=1 λiW

2
2 (mi,m)

has a Frechet derivative at each point m ∈ W2,ac(Rq), given by

F ′(m) = −
∑L
i=1 λi(T

mi
m − I) = I −

∑L
i=1 λiT

mi
m ∈ L2(m),

where I is the identity map in Rq. This means that for each such m, one has

F (m̂)− F (m)−
∫
Rq 〈F

′(m)(x), T m̂m (x)− x〉m(dx)

W2(m̂,m)
−→ 0, (5.3)

when W2(m̂,m) goes to zero, by virtue of Corollary 10.2.7 in [5]. It follows from Brenier’s theorem ([45], Thm.
2.12(ii)) that m̂ is a fixed point of G defined in equation (5.1) if and only if F ′(m̂) = 0. The gradient descent
sequence in Wasserstein space (GDW) with step γ starting from µ0 ∈ W2,ac(Rq) is defined by (c.f. [48])

µn+1 := Gγ(µn), for n ≥ 0, where

Gγ(m) := [I + γF ′(m)] (m) =
[
(1− γ)I + γ

∑L
i=1 λiT

mi
m

]
(m) =

[
I + γ

∑L
i=1 λi(T

mi
m − I)

]
(m),

and it coincides with the sequence in equation (5.2) if γ = 1. These ideas serve as inspiration for the stochastic
gradient descent iteration in the next part.

5.2. Stochastic gradient descent for population barycenters

We recall next the stochastic gradient descent sequence introduced in the companion paper [7], where the
reader is referred to for details. Additionally to the assumptions in the previous part, we will also make use of
an extra one introduced in [7]:

Assumption 5.5. Γ has a W2-compact model space KΓ ⊆ W2,ac(Rq). Moreover this set is geodesically convex:
for every µ, ν ∈ KΓ and t ∈ [0, 1], ((1− t)I + tT νµ )(µ) ∈ KΓ, with I the identity operator.

In particular, under these assumptions, for each ν ∈ W2(Rq) and Γ(dm) a.e. m, there is a unique optimal
transport map T νm from m to ν and, by Proposition 6 of [33], the 2-Wasserstein population barycenter is
unique. We notice that, although strong at first sight, assumption 5.5 can be guaranteed in suitable parametric
situations (e.g., Gaussian, or even the location scatter setting recalled in Sect. 6.1), or under moment and
density constraints on the measures in KΓ (e.g., under uniform bounds on their moments of order 2 + ε and
their Boltzmann entropy, which are geodesically convex functionals, see [5]).
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Definition 5.6. Let µ0 ∈ KΓ, mk
iid∼ Γ, and γk > 0 for k ≥ 0. We define the stochastic gradient descent in

Wasserstein space sequence (SGDW) by

µk+1 :=
[
(1− γk)I + γkT

mk
µk

]
(µk) , for k ≥ 0. (5.4)

The sequence is a.s. well-defined, as one can show by induction that µk ∈ W2,ac(Rq) a.s. thanks to Assump-
tion 5.5. The rationale for definition 5.4 is similar to that of Section 5.1, though now we wish to emphasize the
population case: If we call now

F (µ) := 1
2

∫
W2(Rq)W

2
2 (µ,m)Γ(dm) (5.5)

the functional minimized by a 2-Wasserstein barycenter, then we (formally at least) expect

F ′(µ)(x) =−
∫
W2(Rq)(T

m
µ − I))Γ(dm)(x). (5.6)

Hence, (I − Tmµ ) with m ∼ Γ, is an unbiased estimator of F ′(µ). This immediately suggests the stochastic
descent sequence (5.4) introduced in [7], drawing inspiration from the classic SGD ideas [42].

Clearly µ is a Karcher mean for Γ iff ‖F ′(µ)‖L2(µ) = 0. Just like for the GD sequence, the SGD sequence
is typically expected to converge to stationary points, or Karcher means in the present setting, rather than to
minimisers. Next theorem provides sufficient conditions for the SGDW sequence to a.s. converge to a Wasserstein
barycenter, and is the main result of [7]. The following assumption on the steps γk, standard in the framework
of SGD methods, is needed: ∑∞

k=1 γ
2
k <∞ and

∑∞
k=1 γk =∞. (5.7)

Theorem 5.7. Suppose Assumptions 5.1 and 5.5, as well as conditions (5.7) hold. Furthermore, suppose that
Γ admits a unique Karcher mean. Then, the SGD sequence {µk}k in equation (5.4) is a.s. convergent to the
unique 2-Wasserstein barycenter µ̂ of Γ. Moreover, we have µ̂ ∈ KΓ.

5.3. Batch stochastic gradient descent on Wasserstein space

We briefly recall how the variance of the SGDW sequence can be reduced by using batches:

Definition 5.8. Let µ0 ∈ KΓ, mi
k

iid∼ Γ, and γk > 0 for k ≥ 0 and i = 1, . . . , Sk. The batch stochastic gradient
descent (BSGD) sequence is given by

µk+1 :=
[
(1− γk)I + γk

1
Sk

∑Sk
i=1 T

mik
µk

]
(µk). (5.8)

The following two results, extracted from [7], justify the above definition: The first result states that this
sequence is still converging, while the second one states that batches help reducing noise:

Proposition 5.9. Under the assumptions of Theorem 5.7 the BSGD sequence {µt}t≥0 in equation (5.8)
converges a.s. to the 2-Wasserstein barycenter of Γ.

Proposition 5.10. The batch estimator for F ′(µ) of batch size S, given by − 1
S

∑S
i=1(Tmiµ − I), has integrated

variance

V[− 1
S

∑S
i=1(Tmiµ − I)] :=

∫
Var(mi)∼Π⊗S

[
1
S

∑S
i=1(Tmiµ (x)− x)

]
µ(dx) = O( 1

S ),
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i.e. V[− 1
S

∑S
i=1(Tmiµ − I)] decreasing linearly in the batch size.

5.4. Computation of the BWB

It is immediate to deduce a simple methodology based on the SGDW algorithm, to compute the BWB
estimator for general (finitely or infinitely supported) posterior laws Πn ∈ W2(W2,ac(Rq)).

We make the practical assumption that we are capable of generating independent models mi from the
posteriors Πn (in the parametric setting, this can be done through efficient Markov Chain Monte Carlo (MCMC)
techniques [6, 11, 25] or transport sampling procedures [20, 27, 35, 39]). On the theoretical side, we assume
conditions 5.1 and 5.5 are satisfied by Γ = Π, the prior law on models, implying the posterior Πn a.s. satisfies
those conditions for all n too.

The proposed method can be sketched as follows:

1. Given a prior on models Π and data x1, . . . , xn, sample µ
(n)
0 ∼ Πn and set k = 0.

2. Sample m
(n)
k independent from µ

(n)
0 ,m

(n)
0 , . . . ,m

(n)
k−1

3. Set

µ
(n)
k+1 :=

[
(1− γk)I + γkT

m
(n)
k

µ
(n)
k

]
(µ

(n)
k ) , for k ≥ 0.

4. Increase k by 1 and go to (2).

The algorithm can be run until k ∈ N large enough such that the squared 2-Wasserstein distance

W 2
2 (µ

(n)
k+1, µ

(n)
k ) = γ2

k

∫
Rq
|x− Tm

(n)
k

µ
(n)
k

(x)|2dµ
(n)
k (x)

between µ
(n)
k+1 and µ

(n)
k is repeatedly smaller than some given positive threshold.

Moreover, under the assumptions of Theorem 4.24, Π is consistent in the W2-topology at the law m0 of the

data x1, . . . , x0 and then, for some (random) large enough n, k ∈ N and given ε > 0 one has W2(µ
(n)
k ,m0) ≤

W2(µ
(n)
k , m̂n

2 ) + W2(m̂n
2 ,m0) ≤ ε, where m̂n

2 is the BWB. Notice that, besides the sequential generation of a

finite i.i.d. sequence µ
(n)
0 ,m

(n)
0 , . . . ,m

(n)
k ∼ Πn, at each step k + 1 one only needs to compose a new transport

map

[
(1− γk)I + γkT

m
(n)
k

µ
(n)
k

]
with the transport map pushing forward µ

(n)
0 to µ

(n)
k , cumulatively constructed in

the previous iterations. If an expression for each map T
m

(n)
k

µ
(n)
k

is available, this can easily be done (and stored),

specifying (only) the values of the lastly computed map on a pre-fixed grid.

The batch version SGWD can be implemented in a similar way to compute the BWB estimator.

Remark 5.11. An alternative, natural approach would be to sample, for given n a fixed number k of realizations

mi
iid∼ Πn, i = 1, . . . , k, and compute, using the GDW algorithm, the Wasserstein barycenter m̂

(n,k)
2 of the

(finitely supported) empirical measure

Π
(k)
n := 1

k

∑k
i=1 δmi ∈ W2(W2,ac(Rq),

or 2-Wasserstein empirical barycenter of Πn (see [10]). Indeed, by Varadarajan’s theorem, conditionally on Πn,

a.s. Π
(k)
n converges weakly as k →∞ to Πn, and in the W2 metric as soon as Πn ∈ W2(W2,ac(Rq)). Since under

our assumptions Πn a.s. has a unique 2-Wasserstein barycenter m̂n
2 and, by Theorem 3 of [33], m̂

(n,k)
2 converges
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with respect to W2 a.s. as k →∞ to it, we also get through this approach that

W2(m̂
(n,k)
2 ,m0) ≤W2(m̂

(n,k)
2 , m̂n

2 ) +W2(m̂n
2 ,m0) ≤ ε

for some (random) large enough n, k ∈ N. The clear disadvantage of this method is computational: besides
generating k samples of Πn, we need to additionally run a possibly large number of GDW steps to approximate

m̂
(n,k)
2 , and we need to evaluate at each step k new transport maps (instead of one, for the SGDW). Moreover, if

additional k′ new samples from Πn become available, we need to run the whole scheme again to take advantage
of this new information. On the contrary, the online nature of the SGDW method allows one to refine the
already computed estimator by only performing k′ new steps of the algorithm.

6. Numerical experiments

Before presenting the experimental validation of the proposed methods we give a brief presentation of the
scatter-location family of distributions. Our experiments consider this family because the optimal transport
maps between two laws in the scatter-location family can be described explicitly. This property facilitates the
numerical computation/approximation of barycenters, as the various iterative algorithms described so far take
a more amenable form. See [7] for further examples.

6.1. Location-Scatter family

We follow the setting of [4]: Given a fixed distribution m̃ ∈ W2,ac(Rq), referred to as generator, the associated
location-scatter family is given by

F(m̃) := {L(Ax̃+ b) | A ∈Mq×q
+ , b ∈ Rq, x̃ ∼ m̃},

where Mq×q
+ is the set of symmetric positive definite matrices of size q × q. Without loss of generality we can

assume that m̃ has zero mean and identity covariance. Note that F(m̃) is the multivariate normal family if m̃
is the standard multivariate normal distribution.

The optimal map between two members m1 = L(A1x̃+ b1) and m2 = L(A2x̃+ b2) of F(m̃) is explicit, given
by Tm2

m1
(x) = A(x − b1) + b2 where A = A−1

1 (A1A
2
2A1)1/2A−1

1 ∈ Mq×q
+ . This family of optimal maps contains

the identity and is closed under convex combination.
If Γ is supported on F(m̃), then its 2-Wasserstein barycenter m̂ belongs to F(m̃). In fact, call its mean b̂

and its covariance matrix Σ̂. Since the optimal map from m̂ to m is Tmm̂ (x) = Amm̂(x − b̂) + bm, where Amm̂ =

Σ̂−1/2(Σ̂1/2ΣmΣ̂1/2)1/2Σ̂−1/2, and we know that
∫
Tmm̂ (x)Γ(dm) = x, m̂-almost surely, then we must have that∫

Amm̂Γ(dm) = I, since clearly b̂ =
∫
bmΓ(dm), and as a consequence Σ̂ =

∫
(Σ̂1/2ΣmΣ̂1/2)1/2Γ(dm).

A stochastic gradient descent iteration, starting from a distribution µ = L(A0x̃ + b0), sampling some m =
L(Amx̃ + bm) ∼ Γ, and with step γ, produces the measure ν = T γ,m0 (µ) := ((1 − γ)I + γTmµ )(µ). If x̃ has a

multivariate distribution F̃ (x), then µ has distribution F0(x) = F̃ (A−1
0 (x − b0)) with mean b0 and covariance

Σ0 = A2
0. We have that T γ,m0 (x) = ((1−γ)I+γAmµ )(x−b0)+γbm+(1−γ)b0 with Amµ := A−1

0 (A0A
2
mA0)1/2A−1

0 .
Then ν has distribution

F1(x) = F0([T γ.m0 ]−1(x)) = F̃ ([(1− γ)A0 + γAmµ A0]−1(x− γbm − (1− γ)b0)),

with mean b1 = (1− γ)b0 + γbm and covariance

Σ1 = A2
1 = [(1− γ)A0 + γA−1

0 (A0A
2
mA0)1/2][(1− γ)A0 + γ(A0A

2
mA0)1/2A−1

0 ]

= A−1
0 [(1− γ)A2

0 + γ(A0A
2
mA0)1/2][(1− γ)A2

0 + γ(A0A
2
mA0)1/2]A−1

0

= A−1
0 [(1− γ)A2

0 + γ(A0A
2
mA0)1/2]2A−1

0 .
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Figure 2. Samples from the univariate (diagonal) and bivariate (off-diagonal) marginals for
6 coordinates from the generator distribution m̃. The diagonal and lower triangular plots are
smoothed histograms, whereas the upper-diagonal ones are collections of samples.

The batch stochastic gradient descent iteration is characterized by

b1 = (1− γ)b0 + γ
S

∑S
i=1 bmi

A2
1 = A−1

0 [(1− γ)A2
0 + γ

S

∑S
i=1(A0A

2
miA0)1/2]2A−1

0 .

6.2. Experiment

We considered a model within a location-scatter family (LS), with generator m̃ on R15 with independent
coordinates, as follows:

� coordinates 1–5 are standard Normal distributions
� coordinates 6–10 are standard Laplace distributions, and
� coordinates 11–15 are standard Student’s t-distributions (3 degrees of freedom).

Figure 2 shows samples (uni- and bi-variate marginals) from coordinates {1, 2, 6, 7, 11, 12} of m̃.
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Figure 3. True model m0: covariance matrix (left), and univariate and bivariate marginals
for dimensions 1, 8 and 15 (right). Notice that some coordinates are positively or negatively
correlated, and some may even be close to uncorrelated.

In this LS family, we chose the true model m0 with location vector b ∈ R15 defined as bi = i − 1 for

i = 1, . . . , 15, and scatter matrix A = Σ1/2 with Σi,j = K
((

i−1
14

)1.1
,
(
j−1
14

)1.1)
for i, j = 1, . . . , 152, with the

covariance (kernel) function K(i, j) = εδij +σ cos (ω(i− j)). Given the parameters ε, σ and ω, the so constructed
covariance matrix will be denoted Σε,σ,ω. We chose the parameters ε = 0.01, σ = 1 and ω = 5.652 ≈ 1.8π for
m0. Thus, under the true model m0 the coordinates can be negatively/positively correlated and there is also a
coordinate-independent noise component due to the Kronecker delta δij . Figure 3 shows the covariance matrix
and three coordinates of the true model m0.

The model prior Π is the push-forward induced by a prior over the mean vector b and the parameters of the
covariance Σε,σ,ω, chosen independently according to:

p(b,Σε,σ,ω) = N (b|0, I) Exp(ε|20) Exp(σ|1) Exp(ω−1|15), (6.1)

where Exp(·|λ) is a exponential density with rate λ. Given n samples from the true model m0 (also referred
to as observations or data points), k samples are produced from the posterior measure Πn using Markov chain
Monte Carlo (MCMC).

The numerical analysis presented in what follows focuses on the behavior of the BWB as a function of both
the number of samples k and the number of data points n.

6.2.1. Numerical consistency of the empirical posterior

We first validate the empirical measure Π
(k)
n as a consistent sample version of the true posterior under the

W2 distance, that is, we check that W2(Π
(k)
n , δm0) → W2(Πn, δm0) for large k. We estimate W2(Π

(k)
n , δm0) 10

times for each combination of the (number of) observations n and samples k in the following sets

� k ∈ {1, 5, 10, 20, 50, 100, 200, 500, 1000}

2We chose
(

j−1
14

)1.1
for j = 1, . . . , 15 because this defines a non-uniform grid over [0, 1].
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Figure 4. Wasserstein distance between the empirical measure Π
(k)
n and δm0 in logarithmic

scale for different number of observations n (color coded) and samples k (x-axis). For each pair

(n, k), 10 estimates of W2(Π
(k)
n , δm0

) are shown.

Table 1. Standard deviation of W 2
2 (Π

(k)
n , δm0

), using 10 simulations, for different values of
observations n and samples k.

n \ k 1 5 10 20 50 100 200 500 1000
10 1.2506 0.8681 0.5880 0.9690 0.2354 0.3440 0.1253 0.1330 0.0972
20 1.5168 0.5691 0.3524 0.3182 0.1850 0.1841 0.1049 0.0811 0.0509
50 0.3479 0.0948 0.1275 0.0572 0.0623 0.0229 0.0157 0.0085 0.0092
100 0.2003 0.1092 0.0712 0.0469 0.0431 0.0254 0.0087 0.0079 0.0084
200 0.0749 0.1249 0.0717 0.0533 0.0393 0.0101 0.0092 0.0109 0.0072
500 0.0478 0.0285 0.0093 0.0086 0.0053 0.0056 0.0045 0.0023 0.0022
1000 0.0299 0.0113 0.0113 0.0064 0.0067 0.0036 0.0016 0.0012 0.0007
2000 0.0145 0.0071 0.0040 0.0031 0.0027 0.0019 0.0014 0.0011 0.0006
5000 0.0072 0.0031 0.0015 0.0018 0.0010 0.0007 0.0004 0.0005 0.0002
10000 0.0038 0.0020 0.0005 0.0005 0.0004 0.0004 0.0002 0.0002 0.0001

� n ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}.

Figure 4 shows the 10 estimates of W2(Π
(k)
n , δm0) for different values of k (in the x-axis) and of n (color coded).

Notice how the estimates become more concentrated for larger k and that the Wasserstein distance between

the empirical measure Π
(k)
n and the true model m0 decreases for larger n. Additionally, Table 1 shows that the

standard deviation of the 10 estimates of W2(Π
(k)
n , δm0) decreases as either n or k increases.
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Figure 5. W2 distance between the empirical barycenters m̂
(n,k)
2 and the true model m0 in

logarithmic scale for different number of observations n (color coded) and samples k (x-axis).

For each pair (n, k), 10 estimates of W2(m̂
(n,k)
2 ,m0) are shown.

6.2.2. Wasserstein distance between the empirical barycenter and the true model

For each empirical posterior Π
(k)
n , we computed the empirical Wasserstein barycenter m̂

(n,k)
2 as suggested

in Remark 5.11. Thus, we used the iterative GDW procedure in equation (5.2), namely the (deterministic)
gradient descent method, and repeated this calculation 10 times. As a stopping criterion for gradient descent,
we considered the relative variation of the W2 cost; the computation was terminated when this cost fell below
10−4. Figure 5 shows the W2 distances between the so computed barycenters and the true model, while Table 2
shows the average distance for each pair (n, k). Notice that, in general, both the average and standard deviation
of the barycenters decrease as either n or k increases, yet for large values (e.g., n = 2000, 5000) numerical issues
appear.

6.2.3. Distance between the empirical barycenter and the Bayesian model average

We then compared the empirical Wasserstein barycenters m̂
(n,k)
2 to the standard Bayesian model averages,

denoted here m̄(n,k), in terms of their distance to the true model m0, for n = 1000 observations. To that end,
we estimated the W2 distances via empirical approximations with 1000 samples for each model based on [21].
We simulated this procedure 10 times for k ∈ {10, 20, 50, 100, 200, 500, 1000}. Figure 6 shows the sample average
and variance of the W2 distances of the Wasserstein barycenters and Bayesian model averages. The empirical
barycenter is seen to be closer to the true model than the model average, regardless of the number of MCMC
samples k.



BAYESIAN LEARNING WITH WASSERSTEIN BARYCENTERS 465

Table 2. Sample average of W 2
2 (m̂

(n,k)
2 ,m0), using 10 simulations, for different values of

observations n and samples k.

n / k 10 20 50 100 200 500 1000 2000
10 2.1294 2.0139 2.0384 1.9396 1.9608 1.9411 1.9699 1.9548
20 1.4382 1.4498 1.4826 1.4973 1.4785 1.4953 1.4955 1.4914
50 0.2455 0.2759 0.2639 0.2468 0.2499 0.2483 0.2443 0.2454
100 0.1211 0.1387 0.1509 0.1458 0.1379 0.1328 0.1318 0.1349
200 0.1116 0.0922 0.0859 0.0817 0.0777 0.0824 0.0820 0.0819
500 0.0094 0.0077 0.0043 0.0047 0.0041 0.0038 0.0037 0.0039
1000 0.0068 0.0039 0.0031 0.0025 0.0023 0.0022 0.0021 0.0021
2000 0.0072 0.0066 0.0063 0.0062 0.0063 0.0060 0.0062 0.0062
5000 0.0037 0.0037 0.0028 0.0029 0.0031 0.0031 0.0028 0.0030
10000 0.0023 0.0017 0.0017 0.0015 0.0016 0.0017 0.0016 0.0017

Figure 6. Averages (bars) and standard deviations (vertical lines) of W 2
2 (m̂

(k)
n ,m0) denoted

as wb in orange, and W 2
2 (m̄

(k)
n ,m0) denoted as ma in blue, for n = 1000 and different numbers

of samples k. We considered 10 simulations for each k.

6.2.4. Computation of the Wasserstein barycenter with batch-SGDW

Lastly, we compared the empirical barycenters m̂
(m,k)
2 to the barycenter obtained by the batch SGDW method

in equation (5.8) with different batch sizes. Here, we shall denote the latter by m̂
(n,t,s)
2 with n the number of

observations, t the steps of the algorithm, and s the batch size. Fig. 7 shows the evolution of the W 2
2 distance

between the stochastic gradient descent sequences and the true model m0 for n ∈ {10, 20, 50, 100, 200, 500, 1000}
observations and batches of sizes s ∈ {1, 15}, with step-size γt = 1

t for t = 1, . . . , 200. Notice from Fig. 7 that
the larger the batch, the more concentrated the trajectories of m̂n,s become. Additionally, Table 3 summarizes
the means of the distance W 2

2 to the true model m0, using the sequences after t = 100 against the empirical
estimator using all the simulations with k ≥ 100. Finally, Table 4 shows the standard deviation of the distance
W 2

2 to the true model m0, which can be seen to decrease as the batch size grows. Critically, we observe that
for batch sizes s ≥ 5 the stochastic estimation was better than its empirical counterpart, i.e., it had smaller
variance with similar (or even smaller) bias. This is noteworthy given the fact that computing our Wasserstein
barycenter estimator via the batch stochastic gradient descent method is computationally less demanding than
computing it via the empirical method.
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Figure 7. Evolution of the W 2
2 cost for 10 realizations of the SGDW sequence comput-

ing the BWB and their mean (blue), versus an empirical barycenter estimator (red), for
n = 10, 20, 50, 100, 200, 500, 1000 and batches sizes s = 1, 15.
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Table 3. Means of W 2
2 of the stochastic gradient estimations (using the sequences with t ≥ 100)

and that of the empirical estimator (using the simulations with k ≥ 100), across different
combinations of observations n and batch size s.

n / s 1 2 5 10 15 20 empirical
10 2.0421 2.0091 1.9549 1.9721 1.9732 1.9712 1.9532
20 1.4819 1.4868 1.5100 1.4852 1.4840 1.4891 1.4916
50 0.2406 0.2512 0.2465 0.2427 0.2444 0.2460 0.2469
100 0.1340 0.1392 0.1340 0.1349 0.1334 0.1338 0.1366
200 0.0843 0.0811 0.0819 0.0807 0.0820 0.0819 0.0811
500 0.0044 0.0042 0.0039 0.0039 0.0041 0.0040 0.0041

Table 4. Std. deviations of W 2
2 of the stochastic gradient estimations (using the sequences

with t ≥ 100) and that of empirical estimator (using the simulations with k ≥ 100), across
different combinations of observations n and batch size s.

n / s 1 2 5 10 15 20 empirical
10 0.1836 0.1071 0.0526 0.0474 0.0397 0.0232 0.0916
20 0.0751 0.0565 0.0553 0.0189 0.0253 0.0186 0.0790
50 0.0210 0.0174 0.0072 0.0084 0.0050 0.0039 0.0138
100 0.0102 0.0076 0.0049 0.0048 0.0035 0.0023 0.0112
200 0.0074 0.0045 0.0021 0.0035 0.0013 0.0017 0.0047
500 0.0016 0.0007 0.0005 0.0004 0.0004 0.0004 0.0009
1000 0.0005 0.0006 0.0004 0.0004 0.0003 0.0003 0.0005

6.2.5. Conclusion

Based on this illustrative numerical example, we can conclude:

� the empirical posterior constructed using MCMC is consistent under the W2 distance and therefore it can
be relied upon to compute Wasserstein barycenters,

� the empirical Wasserstein barycenter estimator tends to converge faster (and with lower variance) to the
true model than the empirical Bayesian model average,

� computing the population Wasserstein barycenter estimator via batch stochastic gradient descent is
promising as an alternative to computing the empirical barycenter (i.e., to applying the deterministic
gradient descent method to a finitely-sampled posterior).
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Appendix A. Bayes estimators as generalized model averages

We prove here Proposition 2.5. For notational simplicity we omit the subscripts of estimators and normalizing
constants.

i) Squared L2-distance: By Fubini’s theorem, minimizing RL(m̄|D) in this case amounts to minimize

m̄ 7→ 1

2

∫
X

{∫
M

(m(x)− m̄(x))
2

Πn(dm)

}
λ(dx),
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over the set of densities. But the optimal value cannot be better than if we minimize pointwise the term m̄(x)
inside the curly brackets, obtaining the candidate

m̂BMA(x) =

∫
M
m(x)Πn(dm) = E[m](x).

As this pointwise minimizer is already a probability density, we conclude.

ii) Squared Hellinger distance: Writing

H2(m, m̄) = 1
2

∫
X

(√
m(x)−

√
m̄(x)

)2

λ(dx) = 1−
∫
X

√
m(x)m̄(x)λ(dx),

we see that optimizing the asociated Bayes risk amounts to maximizing over m̄ ∈ L1(X , λ) the concave functional
m̄ 7→

∫
X

√
m̄(x)f(x)λ(dx) with

√
y = −∞ for y < 0 and f(x) =

∫
M

√
m(x)Πn(dm), under the constraint∫

X m̄(x)λ(dx) = 1. Notice by the Cauchy-Schwarz inequality that this functional is finite if (and only if) m̄ ≥ 0,
λ-a.e. Hence, introducing γ a real Lagrange multiplier for the constraint, we need to find a critical point m̄ ≥ 0
of the concave functional

m̄ 7→
∫
X

√
m̄(x)f(x)λ(dx) + γ

(∫
X
m̄(x)λ(dx)− 1

)
,

which must thus be a maximum. Again, as in i), we cannot do better in this case than if we maximize for each
x ∈ X the concave functional y 7→ √yf(x) + γy over y ≥ 0. Finding for each x the critical point y in terms of γ
and integrating then w.r.t. λ(dx) to get rid of γ, we find the extremum of RH2(m̄|D) is attained when m̄ equals
the Bayesian square model average:

m̂(x) = 1
Z

(∫
M

√
m(x)Πn(dm)

)2

with

Z =
∫
X

(∫
M

√
m(x)Πn(dm)

)2

λ(dx).

iii) Forward Kullback-Leibler divergence: the loss function L(m, m̄) is now

DKL(m||m̄) =
∫
X m(x) ln m(x)

m̄(x)λ(dx),

and so the associated Bayes risk can be written as

RDKL(m̄|D) =
∫
M
∫
X m(x) ln m(x)

m̄(x)λ(dx)Πn(dm)

=
∫
X
∫
Mm(x) lnm(x)Πn(dm)λ(dx)−

∫
X
∫
Mm(x)Πn(dm) ln m̄(x)λ(dx)

= C −
∫
X E[m](x) ln m̄(x)λ(dx).

Introducing the Boltzmann entropy of E[m] and adjusting the constant C we get that

RDKL(m̄|D) = C ′ +
∫
X E[m](x) lnE[m](x)λ(dx)−

∫
X E[m](x) ln m̄(x)λ(dx)

= C ′ +DKL(E[m]||m̄),

so the optimizer of RDKL(m̄|D) is the Bayesian model average.
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iv) Reverse Kullback-Leibler divergence: since DRKL(m||m̄) = DKL(m̄||m), we have

RDRKL(m̄|D) =
∫
M
∫
X m̄(x) ln m̄(x)

m(x)λ(dx)Πn(dm)

=
∫
X m̄(x) ln m̄(x)λ(dx)−

∫
X m̄(x)

∫
M lnm(x)Πn(dm)λ(dx)

=
∫
X m̄(x) ln m̄(x)λ(dx)−

∫
X m̄(x) ln expE[lnm(x)]λ(dx)

=
∫
X m̄(x) ln m̄(x)

expE[lnm(x)]λ(dx).

Denote by Z the normalization constant so that 1
Z

∫
X expE[lnm](x)λ(dx) = 1. Then,

RDRKL(m̄|D) + lnZ =
∫
X m̄(x) ln m̄(x)

expE[lnm(x)]λ(dx) +
∫
X m̄(x) lnZλ(dx)

=
∫
X m̄(x) ln m̄(x)

1
Z expE[lnm(x)]

λ(dx)

= DRKL

(
1
Z expE[lnm(x)]||m̄

)
.

Therefore, the extremum of RDRKL(m̄|D) is attained when the last expression vanishes, in other words when
m̄ is the Bayesian exponential model average given by

m̂(x) = 1
Z exp

∫
M lnm(x)Πn(dm).

Appendix B. Wasserstein barycenters

Proof of Theorem 3.7. Assume Γ ∈ Wp(Wp(X )). Then BV := infν∈M Vp(ν) is finite. Now, let {νn} ⊆ M be
such that ∫

Wp(X )
Wp(νn,m)pΓ(dm)↘ BV as n→∞.

For n large enough we have

Wp

(
νn ,

∫
Wp(X )

mΓ(dm)
)p
≤
∫
Wp(X )

Wp(νn , m)pΓ(dm) ≤ BV + 1 =: K,

by convexity of optimal transport costs. From this we derive that (for every x)

supn
∫
X d(x, y)pνn(dy) <∞.

By Markov inequality this shows, for each ε > 0, that there is ` large enough such that supn νn({y ∈ X :
d(x, y) > `}) ≤ ε. As explained in [33], the assumptions on X imply that {y ∈ X : d(x, y) ≤ `} is compact
(Hopf-Rinow theorem), and so we deduce the tightness of {νn}. By Prokhorov theorem, up to selection of a
subsequence, there exists ν ∈M which is its weak limit. By Fatou’s lemma:

BV = lim
∫
Wp(νn,m)pΓ(dm) ≥

∫
lim inf Wp(νn,m)pΓ(dm) ≥

∫
Wp(ν,m)pΓ(dm),

hence ν is a p-Wasserstein barycenter. For the converse implication, see Remark 3.6.
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Appendix C. A condition for existence of barycenters of
Bayesian posteriors

We last provide a general condition on the prior Π ensuring that, for given p ≥ 1,

Πn ∈ Wp(Wp(X )) for all possible data points (x1, . . . , xn) ∈ Xn and all n.

Definition C.1. We say that Π ∈ P(P(X )) is p-integrable after updates if it satisfies the conditions

1. For all x ∈ X , ` > 1: ∫
Mm(x)`Π(dm) <∞.

2. For some y ∈ X and ε > 0: ∫
M
(∫
X d(y, z)pm(dz)

)1+ε
Π(dm) <∞.

Remark C.2. Condition (2) above can be intuitively denoted as Π ∈ Wp+(Wp(X )). Of course, one has
Wp+(Wp(X )) ⊆ Wp(Wp(X )).

Remark C.3. If Π ∈ P(Wp,ac(X )) has finite support, then Conditions (1) and (2) are satisfied. On the other
hand, if Π is supported on a scatter-location family (see Section 6.1) containing one element with a bounded
density and a finite p-moment, then Conditions (1) and (2) are fulfilled if for example supp(Π) is tight. Conditions
(1) and (2) are also satisfied in Example 4.2.

Lemma C.4. Suppose that Π is p-integrable after updates. Then, for each x ∈ X , the measure

Π̃(dm) := m(x)Π(dm)∫
M m̄(x)Π(dm̄)

,

is also p-integrable after updates.

Proof. We verify Property (1) first. Let ` > 1 and x̄ ∈ X given. Then

∫
Mm(x̄)`m(x)Π(dm) ≤

(∫
Mm(x)sΠ(dm)

)1/s (∫
Mm(x̄)t`Π(dm)

)1/t
,

with s, t conjugate Hölder exponents. This is finite since Π fulfils Property (1).
We now establish Property (2). Let y ∈ X , ε > 0. Then∫

M
(∫
X d(y, z)pm(dz)

)1+ε
m(x)Π(dm)

≤
(∫
Mm(x)sΠ(dm)

)1/s (∫
M
(∫
X d(y, z)pm(dz)

)(1+ε)t
Π(dm)

)1/t

.

The first term in the r.h.s. is finite by Property (1). The second term in the r.h.s. is finite by Property (2), if
we take ε small enough and t close enough to 1. We conclude.

Lemma C.5. Suppose that Π is p-integrable after updates. Then for all n ∈ N and (x1, . . . , xn) ∈ Xn, the
posterior Πn is also p-integrable after updates.

Proof. By Lemma C.4, we obtain that Π1 is integrable after updates. By induction, suppose Πn−1 has this
property. Then as

Πn(dm) = m(xn)Πn−1(dm)∫
M m̄(xn)Πn−1(dm̄)

,
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we likewise conclude that Πn is p-integrable after updates.
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