
ESAIM: PS 26 (2022) 304–351 ESAIM: Probability and Statistics
https://doi.org/10.1051/ps/2022008 www.esaim-ps.org

PROBABILISTIC REPRESENTATION OF INTEGRATION BY

PARTS FORMULAE FOR SOME STOCHASTIC VOLATILITY

MODELS WITH UNBOUNDED DRIFT

Junchao Chen, Noufel Frikha* and Houzhi Li

Abstract. In this paper, we establish a probabilistic representation as well as some integration by
parts formulae for the marginal law at a given time maturity of some stochastic volatility model with
unbounded drift. Relying on a perturbation technique for Markov semigroups, our formulae are based
on a simple Markov chain evolving on a random time grid for which we develop a tailor-made Malliavin
calculus. Among other applications, an unbiased Monte Carlo path simulation method stems from our
formulas so that it can be used in order to numerically compute with optimal complexity option prices
as well as their sensitivities with respect to the initial values or Greeks in finance, namely the Delta
and Vega, for a large class of non-smooth European payoff. Numerical results are proposed to illustrate
the efficiency of the method.
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1. Introduction

In this work, we consider a two dimensional stochastic volatility model given by the solution of the following
stochastic differential equation (SDE for short) with dynamics

 St = s0 +
∫ t

0
rSs ds+

∫ t
0
σS(s, Ys)Ss dWs,

Yt = y0 +
∫ t

0
bY (s, Ys) ds+

∫ t
0
σY (s, Ys) dBs,

d〈B,W 〉t = ρdt

(1.1)

where the coefficients bY , σS , σY : R+ × R → R are smooth functions, r ∈ R, W and B are one-dimensional
standard Brownian motions with correlation factor ρ ∈ (−1, 1) both being defined on some probability space
(Ω,F ,P).

The aim of this article is to prove a probabilistic representation formula for two integration by parts (IBP)
formulae for the marginal law of the process (S, Y ) at a given time maturity T . To be more specific, for a given
starting point (s0, y0) ∈ (0,∞)×R and a given finite time horizon T > 0, we establish two Bismut-Elworthy-Li
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Université de Paris, Laboratoire de Probabilités, Statistique et Modélisation (LPSM), 75013 Paris, France.

* Corresponding author: frikha@lpsm.paris

© The authors. Published by EDP Sciences, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ps/2022008
https://www.esaim-ps.org/
https://orcid.org/0000-0001-9021-937X
mailto:frikha@lpsm.paris
https://creativecommons.org/licenses/by/4.0


PROBABILISTIC REPRESENTATION OF INTEGRATION 305

(BEL) type formulae for the two following quantities

∂s0E [h(ST , YT )] and ∂y0E [h(ST , YT )] (1.2)

where h is a real-valued possibly non-smooth payoff function defined on [0,∞)× R.
Such IBP formulae have attracted a lot of interest during the last decades both from a theoretical and a

practical point of views as they can be further analyzed to derive properties related to the transition density of
the underlying process or to develop Monte Carlo simulation algorithm among other practical applications, see
e.g. Nualart [17], Malliavin and Thalmaier [16] and the references therein. For instance, they are of major interest
for computing sensitivities, also referred as to Greeks in finance, of arbitrage price of financial derivatives which
is the keystone for hedging purpose, i.e. for protecting the value of a portfolio against some possible changes
in sources of risk. The two quantities appearing in (1.2) correspond respectively to the Delta and Vega of the
European option with payoff h(ST , YT ). For a more detailed discussion on this topic, we refer the interested
reader to Fournié et al. [7, 8] for IBP formulae related to European, Asian options and conditional expectations,
Gobet et al. [4, 11] for IBP formulae related to some barrier or lookback options. A natural and direct approach
to compute the two quantities appearing in (1.2) would be the use of the standard Malliavin calculus machinery
as developed in the series of papers by Kusuoka and Stroock [13–15] which can cope with unbounded drift and
diffusion coefficients and is compatible with the current regularity and uniform ellipticity assumptions. Another
approach would be to use localized IBP formulae as developed e.g. in Theorem 2.1 [5, 10] which allow to work
with only locally smooth coefficients. Let us importantly point out that, from a numerical point of view, the
aforementioned IBP formulae will inevitably involve a time discretization procedure of the underlying process
and Malliavin weights, thus introducing two sources of error given by a bias and a statistical error, as it is
already the case for the computation of the price E[h(ST , YT )].

Relying on a perturbation argument for the Markov semigroup generated by the couple (X,Y ), we first
establish a probabilistic representation formula for the marginal law (ST , YT ) for a fixed prescribed maturity
T > 0 based on a simple Markov chain evolving along a random time grid given by the jump times of an
independent renewal process. Such type of probabilistic representation formula was first derived in Bally and
Kohatsu-Higa [3] for the marginal law of a multi-dimensional diffusion process and of some Lévy driven SDEs
with bounded drift, diffusion and jump coefficients. Still in the case of bounded coefficients, it was then further
investigated in Labordère et al. [12], Agarwal and Gobet [1], Doumbia et al. [6] for multi-dimensional diffusion
processes and in Frikha et al. [9] for one-dimensional killed processes. The major advantage of the aforementioned
probabilistic formulae lies in the fact that an unbiased Monte Carlo simulation method directly stems from it.
Thus, it may be used to numerically compute an option price with optimal complexity since its computation
will be only affected by the statistical error. However, let us emphasize that in general the variance of the Monte
Carlo estimator tends to be large or even infinite. In order to circumvent this issue, an importance sampling
scheme based on the law of the jump times of the underlying renewal process has been proposed in Anderson
and Kohatsu-Higa [2], see also [6], in the multi-dimensional diffusion framework and in [9] for one-dimensional
killed processes.

The main novelty of our approach in comparison to the aforementioned works is that we allow the drift
coefficient bY to be possibly unbounded (with at most linear growth) as it is the case in most stochastic volatility
models (Stein-Stein, Heston, etc.). We will assume however that the diffusion coefficients aS = σ2

S and aY = σ2
Y

are bounded and uniformly elliptic so that our results do not directly apply to the aforementioned well-known
stochastic volatility models. We importantly mention that the boundedness condition on the drift coefficient has
appeared persistently in the previous contributions on unbiased Monte Carlo methods and is actually essential
since basically it allows to remove the drift in the choice of the approximation process in order to derive the
probabilistic representation formula. Importantly, a direct application of the methodology developed in [3, 9, 12]
does not work when the drift is unbounded. The key ingredient that we here develop in order to remove this
restriction consists in choosing adequatly the approximation process around which the original perturbation
argument of the Markov semigroup (X,Y ) is done by taking into account the transport of the initial condition



306 J. CHEN ET AL.

by the deterministic ordinary differential equation (ODE) having unbounded coefficient1. The approximation
process, or equivalently the underlying Markov chain on which the probabilistic representation is based, is then
obtained from the original dynamics (1.1) by freezing the coefficients bY , σS and σY along the flow of this ODE.
We stress that the previous choice is here crucial since it provides the adequate approximation process on which
some good controls on the weights involved in the probabilistic representation formulae can be established.
Roughly speaking, it allows to cancel the time singularity generated by the Malliavin IBP operators appearing
in the weights. To the best of our knowledge, this feature appears to be new in this context.

Having this probabilistic representation formula at hand together with the tailor-made Malliavin calculus
machinery for this well-chosen underlying Markov chain, in the spirit of the BEL formula established in [9]
for killed diffusion processes with bounded drift coefficient, we rely on a propagation of the spatial derivatives
forward in time then perform local IBP formulae on each time interval of the random time grid and eventually
merge them in a suitable manner in order to establish the two BEL formulae for the two quantities (1.2).
Following the ideas developed in [2], we achieve finite variance for the Monte Carlo estimators obtained from the
probabilistic representation formulas of the couple (ST , YT ) and of both IBP formulae by selecting adequately
the law of the jump times of the renewal process. We finally provide some numerical tests illustrating our
previous analysis. Let us eventually mention that for sake of simplicity in the present paper we have decided
to consider only one-dimensional processes S and Y but that some multi-dimensional generalizations of the
above formulae could be achieved without major issue at the price of additional technicalities which we believe
would be prejudicial to the understanding of the main idea. Finally, let us emphasize once again that the
main advantage of our approach compared to the standard Malliavin calculus machinery (as developed in the
aforementioned references) is that our unbiased Monte Carlo algorithm is only affected by a statistical error and
thus achieves optimal complexity at least from a theoretical point of view. Another advantage of our unbiased
Monte Carlo algorithm compared to the standard paradigm of bias-variance trade-off Monte Carlo algorithms
is that it can be used automatically to achieve a prescribed error while biased methods usually require an a
priori assessment of the bias.

The article is organized as follows. In Section 2, we introduce our assumptions on the coefficients, present
the approximation process that will be the main building block for our perturbation argument as well as the
Markov chain that will play a central role in our probabilistic representation for the marginal law of the pro-
cess (X,Y ) and for our IBP formulae. In addition, we construct the taillor-made Malliavin calculus machinery
related to the underlying Markov chain upon which both IBP formulae are made. In Section 3, relying on the
Markov chain introduced in Section 2, we establish in Theorem 3.1 the probabilistic representation formula for
the coupled (ST , YT ). In Section 4, we establish the BEL formulae for the two quantities appearing in (1.2).
The main result of this section is Theorem 4.2. As a proof of concept, some numerical results are presented in
Section 5. Clearly, we believe that one needs to study numerical issues in more details and these are left for
later studies. The proofs of Theorem 3.1 and of some other technical but important results are postponed to
the appendix of Section A.

Notations: For a fixed time T and positive integer n, we will use the following notation for time and space
variables sn = (s1, · · · , sn), xn = (x1, . . . , xn), the differentials dsn = ds1 · · · dsn, dxn = dx1 · · · dxn and also
introduce the simplex ∆n(T ) := {sn ∈ [0, T ]n : 0 ≤ s1 < · · · sn ≤ T}.

In order to deal with time-degeneracy estimates, we will often use the following space-time inequality:

∀p ≥ 0, q > 0, ∀x ∈ R, |x|pe−q|x|
2

≤ (p/(2qe))p/2. (1.3)

For two positive real numbers α and β, we define the Mittag-Leffler function z 7→ Eα,β(z) =∑∞
k=0 z

k/Γ(αk + β). For a positive integer d, we denote by C∞p (Rd) the space of real-valued functions which are

infinitely differentiable on Rd with derivatives of any order having polynomial growth.

1This dynamical system is obtained by removing the noise, that is, by setting σY ≡ 0, from the dynamics of Y in (1.1).
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2. Preliminaries: assumptions, definition of the underlying
Markov chain and related Malliavin calculus

2.1. Assumptions

Throughout the article, we work on a probability space (Ω,F ,P) which is assumed to be rich enough to
support all random variables that we will consider in what follows. Let n be a positive integer. We will work
under the following assumptions on the coefficients:

(ARn) The coefficients σS and σY are continuous and bounded on R+ × R. Moreover, for any t ≥ 0, σS(t, .)
and σY (t, .) belong to Cnb (R). For any T > 0, there exists C > 0 such that supt∈[0,T ] |b(t, x)| ≤ C(1 + |x|). For

any t ≥ 0, the drift coefficient bY (t, ) belongs to Cn−1(R) and admits derivatives of any order greater than or
equal to one which are uniformly bounded with respect to its entries. In particular, the drift coefficient bY may
be unbounded but is Lipschitz continuous in space uniformly in time on compact sets of R+. We thus define

[bY ]T = sup
t∈[0,T ], x 6=y

|b(t, x)− b(t, y)|
|x− y|

. (2.1)

(ND) There exists κ ≥ 1 such that for all (t, x) ∈ R+ × R,

κ−1 ≤ aS(t, x) ≤ κ, κ−1 ≤ aY (t, x) ≤ κ, (2.2)

where aS = σ2
S and aY = σ2

Y . Therefore, without loss of generality, we will assume that both σS and σY are
positive function.

We will say that (AR∞) is satisfied if (ARn) holds for all positive integer n. In what follows, we will typically

consider that (AR2) and (ND) are in force. We will denote by (Ss,s
′

t , Y s,yt )t∈[s,T ] the unique solution to (1.1)

starting from (s′, y) ∈ R+ × R at time s ≥ 0. When s = 0, we write (Ss
′

t , Y
y
t ) or simply (St, Yt). Apply Itô’s

lemma to Xs,x
t = ln(Ss,s

′

t ) where x = ln(s′). We get
Xs,x
t = x+

∫ t
s

(
r − 1

2aS(u, Y s,yu )
)

du+
∫ t
s
σS(u, Y s,yu ) dWu,

Y s,yt = y +
∫ t
s
bY (u, Y s,yu ) du+

∫ t
s
σY (u, Y s,yu ) dBu,

d〈B,W 〉t = ρdt.

(2.3)

Without loss of generality, we will thus work with the Markov semigroup associated to the process
(Xs,x

t , Y s,yt )t∈[s,T ], namely Ps,th(x, y) = E[h(Xs,x
t , Y s,yt )].

2.2. Choice of the approximation process

As already mentioned in the introduction, our strategy here is based on a probabilistic representation of
the marginal law, in the spirit of the unbiased simulation method introduced for multi-dimensional diffusion
processes by Bally and Kohatsu-Higa [3], see also Labordère et al. [12], Doumbia et al. [6], and investigated
from a numerical perspective by Andersson and Kohatsu-Higa [2]. We also mention the recent contribution of
one of the author with Kohatsu-Higa and Li [9] for IBP formulae for the marginal law of one-dimensional killed
diffusion processes.

However, at this stage, it is important to point out that our choice of approximation process significantly
differs from the aforementioned references. Indeed, in the previous contributions, the drift is assumed to be
bounded and basically plays no role so that one usually removes it in the dynamics of the approximation
process. In order to handle the unbounded drift term bY appearing in the dynamics of the volatility process,
one has to take into account the transport of the initial condition by the ODE obtained by removing the noise
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in the dynamics of Y . To be more specific, for given freezing parameters (τ, ξ) ∈ [0, T ] × R, we introduce the
flow

mt,τ (ξ) = ξ +

∫ t

τ

bY (s,ms,τ (ξ)) ds, t ≥ τ,

and mt,τ (ξ) = ξ if t ≤ τ . We will simplify the notation when τ = 0 and write mt(ξ) for mt,0(ξ). When there is
no ambiguity, we will often omit the dependence with respect to the initial point ξ and we only write mt,τ for
mt,τ (ξ). We now introduce the approximation process (X̄s,x,(τ,ξ), Ȳ s,x,(τ,ξ)) defined by

X̄
s,x,(τ,ξ)
t = x+

∫ t
s
(r − 1

2aS(u,mu,τ (ξ))) du+
∫ t
s
σS(u,mu,τ (ξ)) dWu,

Ȳ
s,y,(τ,ξ)
t = m

(τ,ξ)
t,s (y) +

∫ t
s
σY (u,mu,τ (ξ)) dBu,

d〈B,W 〉t = ρ dt,

(2.4)

where we denoted

m
(τ,ξ)
t,s (y) = y +

∫ t

s

bY (u,mu,τ (ξ)) du. (2.5)

Observe that from the very definition (2.5) we have the important property

m
(τ,ξ)
t,s (y)|(τ,ξ)=(s,y) = mt,s(y).

Observe that the couple (X̄
s,x,(τ,ξ)
t , Ȳ

s,y,(τ,ξ)
t )t∈[s,T ] is a Gaussian process. We will make intensive use of

the explicit form of the Markov semigroup (P̄
(τ,ξ)
s,t )t∈[s,T ] defined for any bounded measurable map h : R2 →

R by P̄
(τ,ξ)
s,t h(x, y) = E[h(X̄

s,x,(τ,ξ)
t , Ȳ

s,y,(τ,ξ)
t )]. When (τ, ξ) = (s, y), we will simplify the notations and write

(X̄s,x
t , Ȳ s,yt ) for (X̄

s,x,(s,y)
t , Ȳ

s,y,(s,y)
t ) and P̄s,th(x, y) for P̄

(s,y)
s,t h(x, y).

Lemma 2.1. Let (x, y) ∈ R2, ρ ∈ (−1, 1) and t ∈ (s,∞). Then, for any bounded and measurable map h : R2 →
R, it holds

P̄
(τ,ξ)
s,t h(x, y) =

∫
R2

h(x′, y′) p̄(τ,ξ)(s, t, x, y, x′, y′) dx′dy′, (2.6)

with

p̄(τ,ξ)(s, t, x, y, x′, y′) =
1

2πσS,t,sσY,t,s

√
1− ρ2

t,s

exp
(
− 1

2

(x′ − x− (r(t− s)− 1
2aS,t,s))

2

aS,t,s(1− ρ2
t,s)

− 1

2

(y′ −m(τ,ξ)
t,s (y))2

aY,t,s(1− ρ2
t,s)

)

× exp
( ρs,t

(1− ρ2
t,s)

(x′ − x− (r(t− s)− 1
2aS,t,s))(y

′ −m(τ,ξ)
t,s (y))

σS,t,sσY,t,s

)
,

where we introduced the notations

aS,t,s = aS,t,s(τ, ξ) := σ2
S,t,s :=

∫ t

s

aS(u,mu,τ (ξ)) du,

aY,t,s = aY,t,s(τ, ξ) := σ2
Y,t,s :=

∫ t

s

aY (u,mu,τ (ξ)) du,
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σS,Y,t,s = σS,Y,s,t(τ, ξ) :=

∫ t

s

(σSσY )(u,mu,τ (ξ)) du,

ρt,s := ρσS,Y,t,s/(σS,t,sσY,t,s).

Moreover, there exists some positive constant C := C(T, ρ, a, r, κ) such that for any t ∈ (0, T ] and any (τ, ξ) ∈
R+ × R

p̄(τ,ξ)(s, t, x, y, x′, y′) ≤ Cq̄(τ,ξ)
4κ (s, t, x, y, x′, y′), (2.7)

where, for a positive parameter c, we introduced the density function

(x′, y′) 7→ q̄(τ,ξ)
c (s, t, x, y, x′, y′) :=

1

2πc(t− s)
exp

(
− (x′ − x)2

2c(t− s)
−

(y′ −m(τ,ξ)
t,s (y))2

2c(t− s)

)
. (2.8)

When (τ, ξ) is chosen to be equal to the initial condition (s, y), we will again simplify the notations and write

p̄(s, t, x, y, x′, y′) for p̄(s,y)(s, t, x, y, x′, y′) and similarly q̄c(s, t, x, y, x
′, y′) for q̄

(s,y)
c (s, t, x, y, x′, y′).

Proof. We write

(X̄
s,x,(τ,ξ)
t , Ȳ

s,y,(τ,ξ)
t )

=
(
x+ r(t− s)− 1

2
aS,t,s +

∫ t

s

σS(u,mu,τ (ξ)) dWu,m
(τ,ξ)
t,s (y) +

∫ t

s

σY (u,mu,τ (ξ))
(
ρdWu +

√
1− ρ2dW̃u

))
,

where W̃ is a one-dimensional standard Brownian motion independent of W . We thus deduce that

(X̄
s,x,(τ,ξ)
t , Ȳ

s,y,(τ,ξ)
t ) ∼ N (µ(t, s, x, y),Σt,s) with

µ(t, s, x, y) =
(
x+ r(t− s)− 1

2
aS,t,s,m

(τ,ξ)
t,s (y)

)
and Σt,s =

(
aS,t,s ρs,tσS,Y,t,s

ρt,sσS,Y,t,s aY,t,s

)
.

The expression of the transition density then readily follows. Now, from (ND), it is readily seen that κ−1(t−
s) ≤ aS,t,s, aY,t,s ≤ κ(t− s) so that using the inequalities ab ≤ 1

2a
2 + 1

2b
2, (a− b)2 ≥ 1

2a
2− b2 and ρ2

t,s ≤ ρ2 ≤ 1,
it holds

p̄(τ,ξ)(s, t, x, y, x′, y′) =
1

2πσS,t,sσY,t,s

√
1− ρ2

t,s

exp
(
− 1

2

(x′ − x− (r(t− s)− 1
2aS,t,s))

2

aS,t,s(1− ρ2
t,s)

− 1

2

(y′ −m(τ,ξ)
t,s (y))2

aY,t,s(1− ρ2
t,s)

)

× exp
( ρt,s

1− ρ2
t,s

(x′ − x− (r(t− s)− 1
2aS,t,s))(y

′ −m(τ,ξ)
t,s (y))

σS,t,sσY,t,s

)
≤ C 1

2πκ(t− s)
exp

(
− 1

2

(x′ − x− (r(t− s)− 1
2aS,t,s))

2

aS,t,s(1− ρ2
t,s)

(1− |ρt,s|)

− 1

2

(y′ −m(τ,ξ)
t,s (y))2

aY,t,s(1− ρ2
t,s)

(1− |ρt,s|)
)

≤ C 1

2π(4κ)(t− s)
exp

(
− (4κ)−1 (x′ − x)2

2(t− s)
− (4κ)−1

(y′ −m(τ,ξ)
t,s (y))2

2(t− s)

)
=: Cq̄

(τ,ξ)
4κ (s, t, x, y, x′, y′),
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for some positive constants C := C(T, λ, ρ, r, κ).

2.3. Markov chain on random time grid

The first tool that we will employ is a renewal process N that we now introduce.

Definition 2.2. Let τ := (τn)n≥0 be a sequence of random variables such that (τn − τn−1)n≥1, with the
convention τ0 = 0, are i.i.d. with positive density function f and cumulant distribution function t 7→ F (t) =∫ t
−∞ f(s) ds and τ is independent of (Ws, Bs)0≤s≤T . Then, the renewal process N := (Nt)t≥0 with jump times
τ is defined by Nt :=

∑
n≥1 1{τn≤t}.

It is readily seen that, for any t > 0, {Nt = n} = {τn ≤ t < τn+1} and by an induction argument that we
omit, one may prove that the joint distribution of (τ1, . . . , τn) is given by

P(τ1 ∈ ds1, . . . , τn ∈ dsn) =

n−1∏
j=0

f(sj+1 − sj)1{0<s1<···<sn},

which in turn implies

E[1{Nt=n}Φ(τ1, . . . , τn)] = E[1{τn≤t<τn+1}Φ(τ1, . . . , τn)]

=

∫ ∞
t

∫
∆n(t)

Φ(s1, . . . , sn)

n∏
j=0

f(sj+1 − sj) dsn+1,

with the convention s0 = 0. Hence, by Fubini’s theorem, it holds

E[1{Nt=n}Φ(τ1, . . . , τn)] =

∫
∆n(t)

Φ(s1, . . . , sn)(1− F (t− sn))

n−1∏
j=0

f(sj+1 − sj) dsn, (2.9)

for any measurable map Φ : ∆n(t)→ R satisfying E[1{Nt=n}|Φ(τ1, . . . , τn)|] <∞.
Usual choices that we will consider are the followings.

Example 2.3. 1. If the density function f is given by f(t) = λe−λt1[0,∞)(t) for some positive parameter λ,
then N is a Poisson process with intensity λ.

2. If the density function f is given by f(t) = 1−α
τ̄1−α

1
tα1[0,τ̄ ](t) for some parameters (α, τ̄) ∈ (0, 1) × (T,∞),

then N is a renewal process with [0, τ̄ ]-valued Beta(1− α, 1) jump times.

3. More generally, if the density function f is given by f(t) = τ̄1−α−β

B(α,β)
1

t1−α(τ̄−t)1−β 1[0,τ̄ ](t) for some parameters

(α, β, τ̄) ∈ (0, 1)2 × (T,∞), then N is a renewal process with [0, τ̄ ]-valued Beta(α, β) jump times.

Given a sequence Z = (Z1
n, Z

2
n)n≥1 of i.i.d. random vector with law N (0, I2) which is independent of (W,B)

and a renewal process N independent of Z with jump times (τi)i≥0, we set ζi = τi ∧ T , with the convention
ζ0 = 0, and we consider the two-dimensional Markov chain (X̄, Ȳ ) with (X̄0, Ȳ0) = (x0, y0) at time 0 (evolving
on the random time grid (ζi)i≥0) and with dynamics for any 0 ≤ i ≤ NT X̄i+1 = X̄i +

(
r(ζi+1 − ζi)− 1

2aS,i

)
+ σS,iZ

1
i+1,

Ȳi+1 = mi + σY,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
,

(2.10)
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where we introduced the notations

aS,i := σ2
S,i := aS,ζi+1,ζi(Ȳi) =

∫ ζi+1

ζi

aS(u,mu,ζi(Ȳi)) du,

aY,i := σ2
Y,i := aY,ζi+1,ζi(Ȳi) =

∫ ζi+1

ζi

aY (u,mu,ζi(Ȳi)) du,

σS,Y,i :=

∫ ζi+1

ζi

(σSσY )(mu,ζi(Ȳi)) du,

ρi := ρζi+1,ζi(Ȳi) = ρ
σS,Y,i
σS,iσY,i

,

mi := mζi+1,ζi(Ȳi).

We will denote by σ′S,i the first derivative of y 7→ σS,i(y) evaluated at Ȳi and proceed similarly for the

quantities σ′Y,i, σ
′
S,Y,i, ρ

′
i and m′i. We define the filtration G = (Gi)i≥0 where Gi = σ(Z1

j , Z
2
j , 1 ≤ j ≤ i), for i ≥ 1

and G0 stands for the trivial σ-field. We assume that the filtration G satisfies the usual conditions. For an integer
n, we will use the notations ζn = (ζ0, . . . , ζn) and τn = (τ0, . . . , τn).

2.4. Tailor-made Malliavin calculus for the Markov chain (X̄, Ȳ )

In this section we introduce a tailor-made Malliavin calculus for the underlying Markov chain (X̄, Ȳ ) defined
by (2.10) which will be employed in order to establish our IBP formulae. Instead of using an infinite dimensional
calculus as it is usually done in the literature, see e.g. Nualart [17], the approach developed below is based on a
finite dimensional calculus for which the dimension is given by the number of jumps of the underlying renewal
process involved in the Markov chain (X̄, Ȳ ). In order to simplify the discussion, we will consider that the
coefficients aS , aY and bY are smooth w.r.t the space variable so that (AR∞) is satisfied.

Definition 2.4. Let n ∈ N. For any i ∈ {0, . . . , n}, we define the set Si,n(X̄, Ȳ ), as the space of random variables
H such that

– H = h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1), on the set {NT = n}, where we recall ζn+1 := (ζ0, . . . , ζn+1) =

(0, ζ1, . . . , ζn, T ).
– For any sn+1 ∈ ∆n+1(T ), the map h(., ., ., ., sn+1) ∈ C∞p (R4).

For a r.v. H ∈ Si,n(X̄, Ȳ ), we will often abuse the notations and write

H ≡ H(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1),

that is the same symbol H may denote the r.v. or the function in the set Si,n(X̄, Ȳ ). One can easily define the
flow derivatives for H ∈ Si,n(X̄, Ȳ ) as follows

∂X̄i+1
H = ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1),

∂Ȳi+1
H = ∂4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1),

∂X̄iH = ∂1h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1) + ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂X̄iX̄i+1,

∂ȲiH = ∂2h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1) + ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂ȲiX̄i+1 + ∂4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1)∂Ȳi Ȳi+1,

and from the dynamics (2.10)

∂X̄iX̄i+1 = 1,
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∂Ȳi Ȳi+1 = m′i + σ′Y,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
+ σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

)
, (2.11)

∂ȲiX̄i+1 = −1

2
a′S,i + σ′S,iZ

1
i+1 = −1

2
a′S,i +

σ′S,i
σS,i

(
X̄i+1 − X̄i −

(
r(ζi+1 − ζi)−

1

2
aS,i

))
. (2.12)

We now define the integral and derivative operators for H ∈ Si,n(X̄, Ȳ ), as

I(1)
i+1(H) = H

[ Z1
i+1

σS,i(1− ρ2
i )
− ρi

1− ρ2
i

ρiZ
1
i+1 +

√
1− ρ2

iZ
2
i+1

σS,i

]
−D(1)

i+1H, (2.13)

I(2)
i+1(H) = H

[ρiZ1
i+1 +

√
1− ρ2

iZ
2
i+1

σY,i(1− ρ2
i )

− ρi
1− ρ2

i

Z1
i+1

σY,i

]
−D(2)

i+1H, (2.14)

D(1)
i+1H = ∂X̄i+1

H, (2.15)

D(2)
i+1H = ∂Ȳi+1

H. (2.16)

Note that due to the above definitions and assumptions (AR)∞ and (ND), it is readily checked that I(1)
i+1(H),

I(2)
i+1(H), D(1)

i+1H and D(2)
i+1H are elements of Si,n(X̄, Ȳ ) so that we can define iterations of the above operators.

Namely, by induction, for a multi-index α = (α1, . . . , αp) of length p with αi ∈ {1, 2} and αp+1 ∈ {1, 2}, we
define

I(α,αp+1)
i+1 (H) = I(αp+1)

i+1 (I(α)
i+1(H)), D(α,αp+1)

i+1 H = D(αp+1)
i+1 (D(α)

i+1H),

with the intuitive notation (α, αp+1) = (α1, . . . , αp+1).
Throughout the article, we will use the following notation for a certain type of conditional expectation that

will be frequently employed. For any X ∈ L1(P) and any i ∈ {0, . . . , n},

Ei,n[X] = E[X|Gi, τn+1, NT = n]

where we recall that we employ the notation τn+1 = (τ0, . . . , τn+1). Having the above definitions and notations
at hand, the following duality formula is satisfied: for any non-empty multi-index α of length p, with αi ∈ {1, 2},
for any i ∈ {1, . . . , p}, p being a positive integer, it holds

Ei,n
[
D(α)
i+1f(X̄i+1, Ȳi+1)H

]
= Ei,n

[
f(X̄i+1, Ȳi+1)I(α)

i+1(H)
]
. (2.17)

In order to obtain explicit norm estimates for random variables in Si,n(X̄, Ȳ ), it is useful to define for
H ∈ Si,n(X̄, Ȳ ), i ∈ {0, . . . , n} and p ≥ 1

‖H‖pp,i,n = Ei,n[|H|p].

We will also employ a chain rule formula for the integral operators defined above.

Lemma 2.5. Let H ≡ H(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1) ∈ Si,n(X̄, Ȳ ), for some i ∈ {0, . . . , n}. The following chain

rule formulae hold for any (α1, α2) ∈ {1, 2}2

∂X̄iI
(α1)
i+1 (H) = I(α1)

i+1 (∂X̄iH), ∂X̄iI
(α1,α2)
i+1 (H) = I(α1,α2)

i+1 (∂X̄iH). (2.18)
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Moreover, one has

∂ȲiI
(1)
i+1(H) = I(1)

i+1(∂ȲiH)−
σ′S,i
σS,i
I(1)
i+1(H)− ρ′i

1− ρ2
i

σY,i
σS,i
I(2)
i+1(H), (2.19)

∂ȲiI
(2)
i+1(H) = I(2)

i+1(∂ȲiH)−
(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(2)
i+1(H), (2.20)

∂ȲiI
(1,1)
i+1 (H) = I(1,1)

i+1 (∂ȲiH)− 2
σ′S,i
σS,i
I(1,1)
i+1 (H)− ρ′i

1− ρ2
i

σY,i
σS,i

(
I(1,2)
i+1 (H) + I(2,1)

i+1 (H)
)
, (2.21)

∂ȲiI
(2,2)
i+1 (H) = I(2,2)

i+1 (∂ȲiH)− 2

(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(2,2)
i+1 (H), (2.22)

∂ȲiI
(1,2)
i+1 (H) = I(1,2)

i+1 (∂ȲiH)−
(
σ′S,i
σS,i

+
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(1,2)
i+1 (H)− ρ′i

1− ρ2
i

σY,i
σS,i
I(2,2)
i+1 (H). (2.23)

Proof. Observe that from the very definitions (2.13) and (2.14), one directly gets

∂X̄iI
(1)
i+1(1) = ∂X̄iI

(2)
i+1(1) = 0,

while, also by direct computation, we obtain

∂ȲiI
(1)
i+1(1) = −

σ′S,i
σS,i
I(1)
i+1(1)− ρ′i

1− ρ2
i

σY,i
σS,i
I(2)
i+1(1),

∂ȲiI
(2)
i+1(1) = −

(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(2)
i+1(1).

We thus deduce

∂X̄iI
(α1)
i+1 (H) = ∂X̄iHI

(α1)
i+1 (1) +H∂X̄iI

(α1)
i+1 (1)− ∂X̄iD

(α1)
i+1 H

= ∂X̄iHI
(α1)
i+1 (1)−D(α1)

i+1 (∂X̄iH)

= I(α1)
i+1 (∂X̄iH),

where we used the fact D(α1)
i+1 ∂X̄iH = ∂X̄iD

(α1)
i+1 H which easily follows by direct computation. As a consequence,

it is readily seen that

∂X̄iI
(α1,α2)
i+1 (H) = ∂X̄iI

(α2)
i+1 (I(α1)

i+1 (H)) = I(α2)
i+1 (∂X̄iI

(α1)
i+1 (H)) = I(α2)

i+1 (I(α1)
i+1 (∂X̄iH)) = I(α1,α2)

i+1 (∂X̄iH).

This concludes the proof of (2.18). The chain rule formulae (2.19), (2.20), (2.21), (2.22) and (2.23) follow
from similar arguments. Let us prove (2.19) and (2.20). The proofs of (2.21), (2.22) and (2.23) are omitted.

Observe first that in general D(α1)
i+1 ∂ȲiH 6= ∂ȲiD

(α1)
i+1 H. Indeed, by standard computations, it holds

∂ȲiD
(1)
i+1H = ∂Ȳi∂X̄i+1

h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1)

= ∂2
2,3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1) + ∂2
3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂ȲiX̄i+1 + ∂2
4,3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂Ȳi Ȳi+1,

D(1)
i+1∂ȲiH = ∂X̄i+1

∂Ȳih(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1)

= ∂X̄i+1
(∂2h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1) + ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1)∂ȲiX̄i+1 + ∂4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂Ȳi Ȳi+1)

= ∂2
3,2h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1) + ∂2
3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂ȲiX̄i+1 + ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1)∂X̄i+1

∂ȲiX̄i+1
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+ ∂2
3,4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂Ȳi Ȳi+1 + ∂4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ
n+1)∂X̄i+1

∂Ȳi Ȳi+1

= ∂ȲiD
(1)
i+1H + ∂3h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂X̄i+1
∂ȲiX̄i+1 + ∂4h(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)∂X̄i+1
∂Ȳi Ȳi+1

= ∂ȲiD
(1)
i+1H +D(1)

i+1H∂X̄i+1
∂ȲiX̄i+1 +D(2)

i+1H∂X̄i+1
∂Ȳi Ȳi+1

= ∂ȲiD
(1)
i+1H +

σ′S,i

σS,i
D(1)
i+1H +

ρ′i
1− ρ2

i

σY,i

σS,i
D(2)
i+1H,

where we used the two identities ∂X̄i+1
∂ȲiX̄i+1 =

σ′S,i
σS,i

and ∂X̄i+1
∂Ȳi Ȳi+1 =

ρ′i
1−ρ2i

σY,i
σS,i

which readily stems from

(2.11), (2.12) and the dynamics (2.10).
From (2.13) and the previous identity, we thus obtain

∂ȲiI
(1)
i+1(H) = ∂ȲiI

(1)
i+1(1)H + I(1)

i+1(1)∂ȲiH − ∂ȲiD
(1)
i+1H

= −
σ′S,i
σS,i
I(1)
i+1(1)H − ρ′i

1− ρ2
i

σY,i
σS,i
I(2)
i+1(1)H + I(1)

i+1(1)∂ȲiH −D
(1)
i+1∂ȲiH +

σ′S,i
σS,i
D(1)
i+1H

+
ρ′i

1− ρ2
i

σY,i
σS,i
D(2)
i+1H

= −
σ′S,i
σS,i

(
I(1)
i+1(1)H −D(1)

i+1H
)

+ I(1)
i+1(1)∂ȲiH −D

(1)
i+1∂ȲiH −

ρ′i
1− ρ2

i

σY,i
σS,i

(
I(2)
i+1(1)H −D(2)

i+1H
)

= I(1)
i+1(∂ȲiH)−

σ′S,i
σS,i
I(1)
i+1(H)− ρ′i

1− ρ2
i

σY,i
σS,i
I(2)
i+1(H).

Similarly, after some algebraic manipulations using (2.10) and (2.11), we get ∂Ȳi+1
∂Ȳi Ȳi+1 =

σ′Y,i
σY,i
− ρ′iρi

1−ρ2i
so that

D(2)
i+1∂ȲiH = ∂ȲiD

(2)
i+1H +D(2)

i+1H∂Ȳi+1
∂Ȳi Ȳi+1 = ∂ȲiD

(2)
i+1H +

(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
D(2)
i+1H.

Omitting some technical details, the previous identity implies

∂ȲiI
(2)
i+1(H) = I(2)

i+1(∂ȲiH)−
(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(2)
i+1(1)H +

(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
D(2)
i+1H

= I(2)
i+1(∂ȲiH)−

(
σ′Y,i
σY,i
− ρ′iρi

1− ρ2
i

)
I(2)
i+1(H).

The identities (2.21), (2.22) and (2.23) eventually follows from (2.19) and (2.20) using some simple algebraic
computations.

We conclude this section by introducing the following space of random variables which satisfy some time
regularity estimates.

Definition 2.6. Let ` ∈ Z and n ∈ N. For any i ∈ {0, . . . , n}, we define the space Mi,n(X̄, Ȳ , `/2) as the set
of finite random variables H ∈ Si,n(X̄, Ȳ ) satisfying the following time regularity estimate: for any p ≥ 1, any
c > 0 and any c′ > c, there exists some positive constant C := C(T, c, c′), T 7→ C(T, c, c′) being non-decreasing
such that for any (xi, yi, xi+1, yi+1, sn+1) ∈ R4 ×∆n+1(T ),

|H(xi, yi, xi+1, yi+1, sn+1)|pq̄c(si, si+1, xi, yi, xi+1, yi+1) (2.24)

≤ C(si+1 − si)
p`
2 q̄c′(si, si+1, xi, yi, xi+1, yi+1),
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where we recall that the density function R2 3 (xi+1, yi+1) 7→ q̄c(si, si+1, xi, yi, xi+1, yi+1) is defined in
Lemma 2.1.

We again remark that since the space Mi,n(X̄, Ȳ , `/2) is a subset of Si,n(X̄, Ȳ ), when we say that a random
variable Mi,n(X̄, Ȳ , `/2) this statement is always understood on the set {NT = n}.

Before proceeding, let us provide a simple example of some random variables that belong to the
aforementioned space. From (2.13) and the dynamics (2.10) of the Markov chain (X̄, Ȳ ), it holds

I(1)
i+1(1) =

X̄i+1 − X̄i − (r(ζi+1 − ζi)− 1
2aS,i)

aS,i(1− ρ2
i )

− ρi
1− ρ2

i

Ȳi+1 −mi

σS,iσY,i
,

I(1,1)
i+1 (1) = (I(1)

i+1(1))2 −D(1)
i+1(I(1)

i+1(1)) = (I(1)
i+1(1))2 − 1

aS,i(1− ρ2
i )
,

so that, I(1)
i+1(1) and I(1,1)

i+1 (1) belong to Si,n(X̄, Ȳ ). Moreover, under (ND), for any p ≥ 1, it holds

∣∣∣I(1)
i+1(1)(xi, yi, xi+1, yi+1, sn+1)

∣∣∣p ≤ C(1 +
|xi+1 − xi|p

(si+1 − si)p
+
|yi+1 −mi(yi)|p

(si+1 − si)p
)
,

and similarly,

∣∣∣I(1,1)
i+1 (1)(xi, yi, xi+1, yi+1, sn+1)

∣∣∣p ≤ C(1 +
1

(si+1 − si)p
+
|xi+1 − xi|2p

(si+1 − si)2p
+
|yi+1 −mi(yi)|2p

(si+1 − si)2p

)
.

Hence, from the space-time inequality (1.3), for any c > 0 and any c′ > c, it holds∣∣∣I(1)
i+1(1)(xi, yi, xi+1, yi+1, sn+1)

∣∣∣pq̄c(si, si+1, xi, yi, xi+1, yi+1) ≤ C(si+1 − si)−
p
2 q̄c′(si, si+1, xi, yi, xi+1, yi+1),

(2.25)
and∣∣∣I(1,1)

i+1 (1)(xi, yi, xi+1, yi+1, sn+1)
∣∣∣pq̄c(si, si+1, xi, yi, xi+1, yi+1) ≤ C(si+1 − si)−pq̄c′(si, si+1, xi, yi, xi+1, yi+1),

(2.26)
for some positive constant C := C(T, c, c′), T 7→ C(T, c, c′) being non-decreasing. We thus conclude that

I(1)
i+1(1) ∈Mi,n(X̄, Ȳ ,−1/2) and I(1,1)

i+1 (1) ∈Mi,n(X̄, Ȳ ,−1) for any i ∈ {0, . . . , n}.
A straightforward generalization of the above example is the following property that will be frequently used

in the sequel. We omit its proof.

Lemma 2.7. Fix n ∈ N and i ∈ {0, . . . , n}.

– Let `1, `2 ∈ Z and H1 ∈Mi,n(X̄, Ȳ , `1/2), H2 ∈Mi,n(X̄, Ȳ , `2/2). Then, one has H1H2 ∈Mi,n(X̄, Ȳ , (`1 +
`2)/2).

– Let ` ∈ Z and H ∈Mi,n(X̄, Ȳ , `/2) such that D(α1)
i+1 H ∈Mi,n(X̄, Ȳ , `′/2) for some α1 ∈ {1, 2} and `′ ∈ Z.

• It holds that I(α1)
i+1 (H) ∈ Mi,n(X̄, Ȳ , ((` − 1) ∧ `′)/2) and (ζi+1 − ζi)I(α1)

i+1 (H1) ∈ Mi,n(X̄, Ȳ , ((` + 1) ∧
(`′ + 2))/2).

• Assume additionally that D(α1,α2)
i+1 H ∈Mi,n(X̄, Ȳ , `′′/2) for some `′′ ∈ Z and α2 ∈ {1, 2}. Then it holds

that I(α1,α2)
i+1 (H) ∈Mi,n(X̄, Ȳ , ((`− 2) ∧ (`′ − 1) ∧ `′′)/2).

Finally, we importantly emphasize that if H ∈ Mi,n(X̄, Ȳ , `/2) for some n ∈ N, i ∈ {0, . . . , n} and ` ∈ Z,
then, its conditional Lp(P)-moment is finite and also satisfies a time regularity estimate. More precisely, for any
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p ≥ 1, it holds

‖H‖p,i,n ≤ C(ζi+1 − ζi)`/2, (2.27)

for some positive constant C := C(T ), T 7→ C(T ) being non-decreasing. Indeed, using the fact that the sequence
Z is independent of N as well as the upper-estimate (2.7) of Lemma 2.1 and finally (2.24), one directly gets

‖H‖pp,i,n = E
[
|H(X̄i, Ȳi, X̄i+1, Ȳi+1, ζ

n+1)|p
∣∣∣X̄i, Ȳi, τ

n+1, NT = n
]

=

∫
R2

|H(X̄i, Ȳi, xi+1, yi+1, ζ
n+1)|pp̄(ζi, ζi+1, X̄i, Ȳi, xi+1, yi+1) dxi+1dyi+1

≤ C
∫
R2

|H(X̄i, Ȳi, xi+1, yi+1, ζ
n+1)|pq̄4κ(ζi, ζi+1, X̄i, Ȳi, xi+1, yi+1) dxi+1dyi+1

≤ C(ζi+1 − ζi)p`/2,

so that (2.27) directly follows. The previous conditional Lp(P)-moment estimate will be used at several places
in the sequel.

3. Probabilistic representation for the couple (ST , YT )

In this section, we establish a probabilistic representation for the marginal law (ST , YT ), or equivalently, for
the law of (XT , YT ) which is based on the Markov chain (X̄, Ȳ ) introduced in the previous section. For γ > 0,
we denote by Bγ(R2) the set of Borel measurable map h : R2 → R satisfying the following exponential growth
assumption at infinity, namely, for some positive constant C, for any (x, y) ∈ R2,

|h(x, y)| ≤ C exp(γ(|x|2 + |y|2)). (3.1)

Theorem 3.1. Let T > 0. Under assumptions (AR2) and (ND), the law of the couple (XT , YT ) given by
the unique solution to the SDE (2.3) at time T starting from (x0 = ln(s0), y0) at time 0 satisfies the following
probabilistic representation: there exists a positive constant c = c(T, bY , κ) := (8(C ′)2κT )−1, where κ and C ′ are
defined respectively in (2.2) and (B.2) such that for any 0 ≤ γ < c and any h ∈ Bγ(R2), it holds

E[h(XT , YT )] = E
[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi

]
, (3.2)

where the random variables θi ∈ Si−1,n(X̄, Ȳ ) are defined by

θi = (f(ζi − ζi−1))−1
[
I(1,1)
i (ciS)− I(1)

i (ciS) + I(2,2)
i (ciY ) + I(2)

i (biY ) + I(1,2)
i (ciY,S)

]
, 1 ≤ i ≤ NT , (3.3)

θNT+1 = (1− F (T − ζNT ))−1, (3.4)

with

ciS :=
1

2

(
aS(ζi, Ȳi)− aS(ζi,mi−1)

)
,

ciY :=
1

2

(
aY (ζi, Ȳi)− aY (ζi,mi−1)

)
,

biY := bY (ζi, Ȳi)− bY (ζi,mi−1),

ciY,S := ρ((σSσY )(ζi, Ȳi)− (σSσY )(ζi,mi−1)).
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In particular, the random variable appearing inside the expectation in the right-hand side of (3.2) is in L1(P).
Assume furthermore that N is a renewal process with Beta(α, 1) jump times. For any p ≥ 1 satisfying

p( 1
2 − α) ≤ 1 − α, for any γ such that 0 ≤ pγ < c and any h ∈ Bγ(R2), the random variable appearing inside

the expectation in the right-hand side of (3.2) admits a finite Lp(P)-moment. In particular, if α = 1/2 then for
any p ≥ 1, for any h ∈ Bγ(R2) with 0 ≤ pγ < c, the Lp(P)-moment is finite.

The proof of Theorem 3.1 is postponed to Appendix A.1.

Remark 3.2. We importantly point out that in order to device an unbiased Monte Carlo estimator from the

probabilistic representation formula (3.2), one still needs to compute integrals of the form
∫ ζi+1

ζi
h(u,mu,ζi(Ȳi)) du

for h given by aS , aY or σSσY . In general, the flow (s, x) 7→ ms,t(x) generated by the unique solution to the
ODE ṁt = bY (t,mt) is not explicit so that one has to resort to some numerical discretization scheme for ODEs.
In such situation, numerous schemes with relatively small computational cost (compared to the simulation of
the corresponding SDE) can be used. This will inevitably introduce a bias in our Monte Carlo estimator which
could be easily quantified. Let us however mention that an unbiased simulation method of the aforementioned
integrals could be introduced based on a probabilistic interpretation of the time integral as soon as the flow of
the ODE is explicit.

Remark 3.3. We also point out that our approach could be extended without additional difficulties to the case
of a multidimensional volatility process with unbounded drift. However, we do not elaborate on this aspect since
we believe that this would add an additional layer of technicality that could detract from the understanding
of the key idea which is to freeze the coefficients of the dynamics along the flow of the deterministic system
obtained by removing the noise in the original SDE satisfied by the stochastic volatility model.

Remark 3.4. In order to apply the above probabilistic representation to the marginal law (ST , YT ) and payoff
function f , one first writes f(ST , YT ) = f(exp(XT ), YT ) := h(XT , YT ). Hence, if f is a measurable function with
polynomial growth at infinity then h(., .) := f(exp(.), .) ∈ Bγ(R2) for any positive γ so that any measurable
function f with polynomial growth at infinity belong to the admissible class of payoff function for which our
probabilistic representation on (ST , YT ) holds.

4. Integration by parts formulae

In this section, we establish two IBP formulae for the law of the couple (ST , YT ). More precisely, we are
interested in providing a Bismut-Elworthy-Li formula for the two quantities

∂s0E[h(ST , YT )], ∂y0E[h(ST , YT )].

Throughout this section, we will assume that (AR3) and (ND) are in force.
Our strategy is divided into two steps as follows:

Step 1: The first step was performed with the probabilistic representation established in Theorem 3.1 for the
couple (XT , YT ) involving the two-dimensional Markov chain (X̄, Ȳ ) evolving on a time grid governed by the
jump times of the renewal process N . Introducing h(x, y) = f(ex, y) and assuming that f is of polynomial
growth at infinity, it is sufficient to consider the two quantities

∂s0E
[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi

]
, ∂y0E

[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi

]
recalling that x0 = ln(s0).

Step 2: At this stage, one might be tempted to perform a standard IBP formula as presented in Nualart [17] on
the whole time interval [0, T ]. However, such a strategy is likely to fail. The main reason is that the Skorokhod

integral of the product of weights
∏NT+1
i=1 θi will inevitably involve the Malliavin derivative of θi which will
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in turn raise some integrability issues of the resulting Malliavin weight. The key idea that we use in order
to circumvent this issue consists in performing local IBP formulae on each of the random intervals [ζi, ζi+1],
i = 0, . . . , NT , that is, by using the noise of the Markov chain on this specific time interval and then by combining
all these local IBP formulae in a suitable way.

To implement successfully our strategy, two main ingredients are needed. Our first ingredient consists in
transferring the partial derivatives ∂s0 and ∂y0 on the expectation forward in time from the first time interval
[0, ζ1] to the interval on which we perform the local IBP formula, say [ζi, ζi+1]. Our second ingredient consists
in combining these various local IBP formulae in an adequate manner. Roughly speaking, we will consider a
weighted sum of each IBP formula, the weight being precisely the length of the corresponding time interval.

4.1. The transfer of derivative formula

Lemma 4.1. Let h ∈ C1
p(R2) and n ∈ N. The maps R2 3 (x, y) 7→ Ei,n

[
h(X̄i+1, Ȳi+1)θi+1|(X̄i, Ȳi) = (x, y)

]
,

i ∈ {0, . . . , n}, belong to C1
p(R2) a.s. Moreover, the following transfer of derivative formulae hold

∂s0E0,n

[
h(X̄1, Ȳ1)θ1

]
= E0,n

[
∂X̄1

h(X̄1, Ȳ1)
θ1

s0

]
, (4.1)

while for 1 ≤ i ≤ n,

∂X̄iEi,n
[
h(X̄i+1, Ȳi+1)θi+1

]
= Ei,n

[
∂X̄i+1

h(X̄i+1, Ȳi+1)θi+1

]
. (4.2)

Similarly, the following transfer of derivative formulae hold: for any 0 ≤ i ≤ n− 1

∂ȲiEi,n
[
h(X̄i+1, Ȳi+1)θi+1

]
= Ei,n

[
∂Ȳi+1

h(X̄i+1, Ȳi+1)
−→
θ
e,Y

i+1

]
+ Ei,n

[
∂X̄i+1

h(X̄i+1, Ȳi+1)
−→
θ
e,X

i+1

]
+ Ei,n

[
h(X̄i+1, Ȳi+1)

−→
θ ci+1

]
, (4.3)

with

−→
θ e,Yi+1 = (f(ζi+1 − ζi))−1

[
I(1,1)
i+1 (di+1

S ) + I(2,2)
i+1 (di+1

Y ) + I(1)
i+1(eY,i+1

S ) + I(2)
i+1(eY,i+1

Y ) + I(1,2)
i+1 (di+1

Y,S)
]
,

−→
θ e,Xi+1 = (f(ζi+1 − ζi))−1I(1)

i+1(eX,i+1
S ),

−→
θ ci+1 = I(1)

i+1

(
∂ȲiX̄i+1θi+1 −

−→
θ e,Xi+1

)
+ ∂Ȳiθi+1

+ I(2)
i+1

(
m′iθi+1 −

−→
θ e,Yi+1 +

(
σ′Y,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
+ σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

))
θi+1

)
,

di+1
S = m′ic

i+1
S ,

di+1
Y = m′ic

i+1
Y ,

di+1
Y,S = m′ic

i+1
Y,S ,

eY,i+1
S = −m′ici+1

S + ∂Ȳic
i+1
Y,S ,

eY,i+1
Y = m′ib

i+1
Y + ∂Ȳic

i+1
Y ,

eX,i+1
S = ∂Ȳic

i+1
S .
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For i = n, one also has

∂ȲnEn,n
[
h(X̄n+1, Ȳn+1)θn+1

]
= En,n

[
∂Ȳn+1

h(X̄n+1, Ȳn+1)
−→
θ
e,Y

n+1

]
+ En,n

[
∂X̄n+1

h(X̄n+1, Ȳn+1)
−→
θ
e,X

n+1

]
+ En,n

[
h(X̄n+1, Ȳn+1)

−→
θ cn+1

]
, (4.4)

with

−→
θ
e,Y

n+1 = (1− F (T − ζn))−1
(
m′n + σ′Y,n

(
ρnZ

1
n+1 +

√
1− ρ2

nZ
2
n+1

)
+ σY,n

ρ′n√
1− ρ2

n

(√
1− ρ2

nZ
1
n+1 − ρnZ2

n+1

))
,

−→
θ
e,X

n+1 = (1− F (T − ζn))−1
(
− 1

2
a′S,n + σ′S,nZ

1
n+1

)
,

and we set
−→
θ cn+1 = 0 for notational convenience.

Finally, the weight sequences (
−→
θ e,Yi )1≤i≤n+1, (

−→
θ e,Xi )1≤i≤n+1 and (

−→
θ ci )1≤i≤n+1 defined above satisfy for

i ∈ {1, . . . , n}

f(ζi − ζi−1)
−→
θ e,Yi , f(ζi − ζi−1)

−→
θ ci ∈Mi−1,n(X̄, Ȳ ,−1/2), f(ζi − ζi−1)

−→
θ e,Xi ∈Mi−1,n(X̄, Ȳ , 0),

and (1− F (T − ζn))
−→
θ e,Yn+1 ∈Mn,n(X̄, Ȳ , 0), (1− F (T − ζn))

−→
θ e,Xn+1,∈Mn,n(X̄, Ȳ , 1/2).

The proof of Lemma 4.1 is postponed to Appendix A.2. The transfer of derivative procedure starts on the
first time interval [0, ζ1] according to formulae (4.1) and (4.3) (for i = 0). It expresses the fact that the flow
derivatives ∂s0 and ∂y0 of the conditional expectations on the left-hand side of the equations are transferred to
derivative operators ∂X̄1

and ∂Ȳ1
on the test function h appearing on the right-hand side. Remark that the first

order derivatives of h have been written ubiquitously as ∂X̄i+1
h(X̄i+1, Ȳi+1) and ∂Ȳi+1

h(X̄i+1, Ȳi+1).

Then, by the Markov property satisfied by the process (X̄, Ȳ ), the function h appearing inside the (con-
ditional) expectations on the right-hand side of (4.1) and (4.3) (for i = 0) will be given by the conditional
expectation appearing on the left-hand side of the same equations but for i = 1. The transfer of derivative
formulae for the following time intervals are obtained by induction using (4.2) and (4.3) up to the last time
interval. Doing so, we obtain various transfer of derivative formulae by transferring successively the derivative
operators through all intervals forward in time.

4.2. The integration by parts formulae

We first define the weights that will be used in our IBP formulae. For an integer n, on the set {NT = n}, for
any k ∈ {1, . . . , n+ 1} and any j ∈ {1, . . . , k}, we define

−→
θ I

(1),n+1
k :=

n+1∏
i=k+1

θi × I(1)
k (θk)×

k−1∏
i=1

θi,

−→
θ C

n+1
j :=

n+1∏
i=j+1

θi ×
−→
θ cj ×

j−1∏
i=1

−→
θ e,Yi ,

−→
θ I

(2),n+1
k :=

n+1∏
i=k+1

θi × I(2)
k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi ,

−→
θ
I(1),n+1
k
j :=

n+1∏
i=k+1

θi × I(1)
k (θk)×

k−1∏
i=j+1

θi ×
−→
θ e,Xj ×

j−1∏
i=1

−→
θ e,Yi , j = 1, . . . , k − 1,
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−→
θ
I(1),n+1
k

k :=

n+1∏
i=k+1

θi × I(1)
k (
−→
θ e,Xk )×

k−1∏
i=1

−→
θ e,Yi ,

with the convention
∏
∅ · · · = 1. Having the above definitions at hand, we are now able to state our IBP formulae.

Theorem 4.2. Let T > 0. Under assumptions (AR3) and (ND), the law of the couple (XT , YT ), given by
the unique solution to the SDE (2.3) at time T starting from (x0 = ln(s0), y0) at time 0, satisfies the following
Bismut-Elworthy-Li IBP formulae: there exists some positive constant c := c(T, bY , κ) such that for any 0 ≤
γ < c, any h ∈ Bγ(R2) and any (s0, y0) ∈ (0,∞)× R, it holds

s0T∂s0E
[
h(XT , YT )

]
= E

[
h(X̄NT+1, ȲNT+1)

NT+1∑
k=1

(ζk − ζk−1)
−→
θ I

(1),NT+1

k

]
, (4.5)

and

T∂y0E
[
h(XT , YT )

]
= E

h(X̄NT+1, ȲNT+1)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

(−→
θ C

NT+1

j +
−→
θ
I(1),NT+1

k
j

)) .
(4.6)

Moreover, if N is a renewal process with Beta(α, 1) jump times, then, for any p ≥ 1 satisfying p( 1
2 − α) ≤

1 − α, for any γ such that 0 ≤ pγ < c−1 and any h ∈ Bγ(R2), the random variables appearing inside the
expectation in the right-hand side of (4.5) and (4.6) admit a finite Lp(P)-moment. In particular, if α = 1/2
then for any p ≥ 1, for any h ∈ Bγ(R2) with 0 ≤ pγ < c, the Lp(P)-moment is finite.

Proof. We only prove the IBP formula (4.6). The proof of (4.5) follows by completely analogous (and actually
more simple) arguments and is thus omitted.

Step 1: proof of the IBP formula (4.6) for h ∈ C1
b (R2).

Let h ∈ C1
b (R2). From Theorem 3.1 and Fubini’s theorem, we write

E[h(XT , YT )] =
∑
n≥0

E
[
E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi|τn+1
]

1{NT=n}

]
, (4.7)

where we used the fact that {NT = n} = {τn+1 > T} ∩ {τn ≤ T}. In most of the arguments below, we will work
on the set {NT = n}. In order to perform our induction argument forward in time through the Markov chain
structure, we define for k ∈ {0, . . . , n} the functions

Hk(X̄k, Ȳk) := Ek,n
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi

]
= E

[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi|X̄k, Ȳk, τ
n+1, NT = n

]
.

We also let Hn+1(X̄n+1, Ȳn+1) := h(X̄n+1, Ȳn+1). Note that we omit the dependence with respect to the sequence
τn+1 in the definition of the (random) maps (Hk)0≤k≤n+1. From the above definition and using (ND), (AR3),
it follows that the map Hk belongs to C1

p(R2) a.s. for any 0 ≤ k ≤ n+ 1. Moreover, from the tower property of
conditional expectation the following relation is satisfied for any k ∈ {0, . . . , n}

Hk(X̄k, Ȳk) = Ek,n[Hk+1(X̄k+1, Ȳk+1)θk+1]. (4.8)
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Now, iterating the transfer of derivative formula (4.3) in Lemma 4.1, for any k ∈ {1, . . . , n}, we obtain2

∂y0H0(X̄0, Ȳ0) = ∂y0E0,n[H1(X̄1, Ȳ1)θ1]

= E0,n[∂Ȳ1
H1(X̄1, Ȳ1)

−→
θ e,Y1 ] + E0,n[∂X̄1

H1(X̄1, Ȳ1)
−→
θ e,X1 ] + E0,n[H1(X̄1, Ȳ1)

−→
θ c1]

= · · ·

= E0,n[D(2)
k Hk(X̄k, Ȳk)

k∏
i=1

−→
θ e,Yi ] +

k∑
j=1

E0,n[Hj(X̄j , Ȳj)
−→
θ cj

j−1∏
i=1

−→
θ e,Yi ]

+

k∑
j=1

E0,n[D(1)
j Hj(X̄j , Ȳj)

−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi ]. (4.9)

Hence, by the Lebesgue differentiation theorem, we deduce

∂y0E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣ τn+1
]

= ∂y0E
[
H0(X̄0, Ȳ0)

∣∣∣τn+1
]

= E
[
∂y0H0(X̄0, Ȳ0)

∣∣∣τn+1
]

= E
[
D(2)
k Hk(X̄k, Ȳk)

k∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k∑
j=1

E
[
Hj(X̄j , Ȳj)

−→
θ cj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k∑
j=1

E
[
D(1)
j Hj(X̄j , Ȳj)

−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
. (4.10)

To further simplify the first term appearing on the right-hand side of (4.10), we use the tower property of
conditional expectation (w.r.t Ek−1,n[.]) and the integration by parts formula (2.17). For any k ∈ {1, . . . , n}, we
obtain

E
[
D(2)
k Hk(X̄k, Ȳk)

−→
θ e,Yk

∣∣∣Gk−1, τ
n+1
]

= E
[
Hk(X̄k, Ȳk)I(2)

k (
−→
θ e,Yk )

∣∣∣Gk−1, τ
n+1
]
. (4.11)

We also simplify the third term appearing on the right-hand side of (4.10), by using the transfer of derivatives
formula (4.2) up to the time interval [ζk−1, ζk]. For any j ∈ {1, . . . , k}, it holds

E
[
D(1)
j Hj(X̄j , Ȳj)

−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
D(1)
k Hk(X̄k, Ȳk)

k∏
i=j+1

θi
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
,

so that, if j ∈ {1, . . . , k − 1}, taking conditional expectation (using again Ek−1,n[.]) and then performing an IBP
formula on the last time interval [ζk−1, ζk] yield

E
[
D(1)
k Hk(X̄k, Ȳk)

k∏
i=j+1

θi
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
Hk(X̄k, Ȳk)I(1)

k (θk)

k−1∏
i=j+1

θi
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
,

(4.12)

2As before, we use the convention
∑
∅ · · · = 0,

∏
∅ · · · = 1.
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while if j = k, we obtain

E
[
D(1)
k Hk(X̄k, Ȳk)

k∏
i=j+1

θi
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
Hk(X̄k, Ȳk)I(1)

k (
−→
θ e,Xk )

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
. (4.13)

Coming back to (4.10), gathering (4.11), (4.12), (4.13) and using the definition of the maps (Hk)0≤k≤n+1,
we thus deduce

∂y0E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣ τn+1
]

= E
[
Hk(X̄k, Ȳk)I(2)

k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k∑
j=1

E
[
Hj(X̄j , Ȳj)

−→
θ cj

×
j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k−1∑
j=1

E
[
Hk(X̄k, Ȳk)I(1)

k (θk)×
k−1∏
i=j+1

θi ×
−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+ E
[
Hk(X̄k, Ȳk)I(1)

k (
−→
θ e,Xk )

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(2)
k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k∑
j=1

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=j+1

θi ×
−→
θ cj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

k−1∑
j=1

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(1)
k (θk)×

k−1∏
i=j+1

θi ×
−→
θ e,Xj

×
j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+ E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(1)
k (
−→
θ e,Xk )

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
. (4.14)

In the case k = n + 1, using the transfer of derivative formulae (4.4), (4.2) of Lemma 4.1 on the last time
interval and then performing the IBP formula (2.17), we obtain the representation

∂y0E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣ τn+1
]

= E
[
D(2)
n+1h(X̄n+1, Ȳn+1)

n+1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
j=1

E
[
Hj(X̄j , Ȳj)

−→
θ cj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
j=1

E
[
D(1)
j Hj(X̄j , Ȳj)

−→
θ e,Xj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
h(X̄n+1, Ȳn+1)I(2)

n+1(
−→
θ e,Yn+1)

n∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
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+

n+1∑
j=1

E
[
Hj(X̄j , Ȳj)

−→
θ cj

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
j=1

E
[
D(1)
n+1h(X̄n+1, Ȳn+1)

n+1∏
i=j+1

θi ×
−→
θ e,Xj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

= E
[
h(X̄n+1, Ȳn+1)I(2)

n+1(
−→
θ e,Yn+1)×

n∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
j=1

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=j+1

θi ×
−→
θ cj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n∑
j=1

E
[
h(X̄n+1, Ȳn+1)I(1)

n+1(θn+1)×
n∏

i=j+1

θi ×
−→
θ e,Xj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+ E
[
h(X̄n+1, Ȳn+1)I(1)

n+1(
−→
θ e,Xn+1)×

n∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]
, (4.15)

where, for the last term appearing in the right-hand side of the above identities, we employed the transfer of
derivative formula (4.2) up to the last time interval and then performed an IBP formula.

Now, the key point in order to establish the IBP formula (4.6) is to combine in a suitable way the identities
(4.14) and (4.15). For each k ∈ {0, . . . , n}, we multiply the above formulae by the length of the interval on which
the local IBP formula is performed, namely we multiply by ζk − ζk−1 both sides of (4.14), k = 1, . . . , n− 1, and

we multiply by T − ζn both sides of (4.15). We then sum them over all k. Recalling that
∑n+1
k=1 ζk − ζk−1 =

T − ζ0 = T , we deduce

T∂y0E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣ τn+1
]

=

n+1∑
k=1

(ζk − ζk−1)E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(2)
k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
k=1

(ζk − ζk−1)

k∑
j=1

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=j+1

θi ×
−→
θ cj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+

n+1∑
k=1

(ζk − ζk−1)
( k−1∑
j=1

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(1)
k (θk)×

k−1∏
i=j+1

θi ×
−→
θ e,Xj ×

j−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]

+ E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(1)
k (
−→
θ e,Xk )×

n∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
])

= E
[
h(X̄n+1, Ȳn+1)

n+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),n+1
k +

k∑
j=1

(−→
θ C

n+1
j +

−→
θ
I(1),n+1
k
j

))∣∣∣τn+1
]
.

We now provide a sharp upper-estimate for the above quantity. From Lemma B.2 and Lemma 4.1, it

follows that f(ζi − ζi−1)θi, f(ζi − ζi−1)
−→
θ e,Yi , f(ζi − ζi−1)

−→
θ ci ∈ Mi−1,n(X̄, Ȳ ,−1/2) and f(ζi − ζi−1)

−→
θ e,Xi ∈

Mi−1,n(X̄, Ȳ , 0) for any i ∈ {1, . . . , n}. Moreover, from the very definition of the weights θi,
−→
θ e,Xi and

−→
θ e,Yi , after

some simple but cumbersome computations that we omit (we also refer the reader to Appendix C which contains
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some expansion formulae), one has f(ζi− ζi−1)D(1)
i (θi), f(ζi− ζi−1)D(2)

i (
−→
θ e,Yi ) ∈Mi−1,n(X̄, Ȳ ,−1) and f(ζi−

ζi−1)D(1)
i (
−→
θ e,Xi ) ∈ Mi−1,n(X̄, Ȳ ,−1/2) so that from Lemma 2.7 we conclude f(ζi − ζi−1)(ζi − ζi−1)I(1)

i (θi) ∈
Mi−1,n(X̄, Ȳ , 0), f(ζi − ζi−1)(ζi − ζi−1)I(2)

i (
−→
θ e,Yi ) ∈ Mi−1,n(X̄, Ȳ , 0) and f(ζi − ζi−1)(ζi − ζi−1)I(1)

i (
−→
θ e,Xi ) ∈

Mi−1,n(X̄, Ȳ , 1/2). Hence, from the boundedness of h, the tower property of conditional expectation and (2.27),
it holds

∣∣∣(ζk − ζk−1)E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I
(2)
k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]∣∣∣

≤ Cn+1(1− F (T − ζn))−1
n∏

i=k+1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2 (f(ζk − ζk−1))−1

k−1∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2 ,

so that using the identity (2.9)

∑
n≥0

E
[ n+1∑
k=1

∣∣∣(ζk − ζk−1)E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=k+1

θi × I(2)
k (
−→
θ e,Yk )×

k−1∏
i=1

−→
θ e,Yi

∣∣∣ τn+1
]∣∣∣1{NT=n}

]

≤
∑
n≥0

Cn+1
n+1∑
k=1

E
[
(1− F (T − ζn))−1(f(ζk − ζk−1))−1

n∏
i=1,i6=k

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2 1{NT=n}

]

=
∑
n≥0

Cn+1
n+1∑
k=1

∫
∆n(T )

n∏
i=1,i6=k

(si − si−1)−1/2 dsn

≤
∑
n≥0

(n+ 1)Cn+1T (n+1)/2 Γn(1/2)

Γ(1 + n/2)
<∞.

From similar arguments that we omit, it follows

∣∣∣(ζk − ζk−1)

k∑
j=1

E
[
h(X̄n+1, Ȳn+1)

(−→
θ C

n+1
j +

−→
θ
I(1),n+1
k
j

)∣∣∣ τn+1
]∣∣∣

≤ Cn+1(ζk − ζk−1)

k∑
j=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2[1 + 1{i=k}(ζi − ζi−1)−1/2].

so that using again the identity (2.9)

∑
n≥0

E
[ n+1∑
k=1

∣∣∣(ζk − ζk−1)

k∑
j=1

E
[
h(X̄n+1, Ȳn+1)

(−→
θ
Cn+1
j +

−→
θ
I(1),n+1
k
j

)∣∣∣ τn+1
]∣∣∣1{NT=n}

]

≤
∑
n≥0

Cn+1
n+1∑
k=1

E
[
(ζk − ζk−1)

k∑
j=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2[1 + 1{i=k}(ζi − ζi−1)−1/2]1{NT=n}
]

≤
∑
n≥0

Cn+1(n+ 1)(n+ 2)T (n+1)/2 Γn(1/2)

Γ(1 + n/2)
<∞.
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The preceding estimates combined with (4.7) and the Lebesgue dominated convergence theorem allows to
conclude that y0 7→ E[h(XT , YT )] is continuously differentiable with

T∂y0E[h(XT , YT )] = T∂y0E
[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi

]
=
∑
n≥0

E
[
T∂y0E

[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣τn+1
]
1{NT=n}

]

=
∑
n≥0

E
[
E
[
h(X̄n+1, Ȳn+1)

n+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),n+1
k +

k∑
j=1

(−→
θ C

n+1
j +

−→
θ
I(1),n+1
k
j

))∣∣∣τn+1
]
1{NT=n}

]

= E
[
h(X̄NT+1, ȲNT+1)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

(−→
θ C

n+1
j +

−→
θ
I(1),NT+1

k
j

))]
,

where we used Fubini’s theorem for the last equality. This completes the proof of the IBP formula (4.6) for
h ∈ C1

b (R2).

Step 2: Extension to h ∈ Bγ(R2) for some positive γ.

We now extend the two IBP formulae that we have established in the previous step to the case of a test
function h ∈ Bγ(R2) for some sufficiently small γ > 0.

It follows from (A.10) that the random variable (XT , YT ) admits a density p(T, x0, y0, x, y) satisfying the
probabilistic representation

p(T, x0, y0, x, y) = E
[
p̄(ζNT , T, X̄NT , ȲNT , x, y)

NT+1∏
i=1

θi

]
=
∑
n≥0

E
[
E
[
p̄(ζn, T, X̄n, Ȳn, x, y)

n+1∏
i=1

θi|τn+1
]

1{NT=n}

]
.

We then proceed in a completely analogous way as in the previous step. Namely, we prove that the map
y0 7→ p(T, x0, y0, x, y) is continuously differentiable and satisfies

T∂y0p(T, x0, y0, x, y)

= E
[
p̄(ζNT , T, X̄NT , ȲNT , x, y)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

(−→
θ C

n+1
j +

−→
θ
I(1),NT+1

k
j

))]
. (4.16)

The only non-trivial point that must be justified is to provide a sharp upper-bound for the quantity

T∂y0E
[
p(ζn, T, X̄n+1, Ȳn+1, x, y)

n+1∏
i=1

θi

∣∣∣ τn+1
]

= E
[
p̄(ζn, T, X̄n+1, Ȳn+1, x, y)

n+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),n+1
k +

k∑
j=1

(−→
θ C

n+1
j +

−→
θ
I(1),n+1
k
j

))∣∣∣τn+1
]
.
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Note that since f(ζi − ζi−1)θi, f(ζi − ζi−1)
−→
θ e,Yi ∈ Mi−1,n(X̄, Ȳ ,−1/2) and f(ζk − ζk−1)(ζk −

ζk−1)I(2)
k (
−→
θ e,Yk ) ∈Mk−1,n(X̄, Ȳ , 0), for any c > 4κ, it holds

E
[
p̄(ζn, T, X̄n, Ȳn, x, y)

n+1∑
k=1

(ζk − ζk−1)
∣∣∣−→θ I(2),n+1

k

∣∣∣∣∣∣τn+1
]

≤ Cn+1

∫
(R2)n

q̄c(ζn, T, xn, yn, x, y)

n+1∑
k=1

(1− F (T − ζn))−1
n∏

i=k+1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2

× (f(ζk − ζk−1))−1
k−1∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2
n∏
i=1

q̄c(ζi−1, ζi, xi−1, yi−1, xi, yi) dxndyn

≤ Cn+1q̄c′(T, x0, y0, x, y)
n+1∑
k=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1
n∏

i=1,i6=k

(ζi − ζi−1)−1/2, (4.17)

where, for the first inequality we used the upper-estimate (2.7) and for the last inequality we used Lemma B.3
and set c′ := (C ′)2c. From similar arguments, one gets

E
[
p̄(ζn, T, X̄n, Ȳn, x, y)

n+1∑
k=1

(ζk − ζk−1)

k∑
j=1

(∣∣∣−→θ Cn+1
j

∣∣∣+
∣∣∣−→θ I(1),NT+1

k
j

∣∣∣) ∣∣∣τn+1
]

≤ Cn+1q̄c′ (T, x0, y0, x, y)

n+1∑
k=1

(ζk − ζk−1)

k∑
j=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2[1 + 1{i=k}(ζi − ζi−1)−1/2].

(4.18)

Now, from the upper-bounds (4.17) and (4.18) as well as the identity (2.9), we conclude

∑
n≥0

E
[
E
[
p̄(ζn, T, X̄n, Ȳn, x, y)

n+1∑
k=1

(ζk − ζk−1)

(∣∣∣−→θ I(2),n+1
k

∣∣∣+

k∑
j=1

(∣∣∣−→θ Cn+1
j

∣∣∣+
∣∣∣−→θ I(1),n+1

k
j

∣∣∣)) ∣∣∣τn+1
]
1{NT=n}

]

≤ q̄c(T, x0, y0, x, y)
∑
n≥0

Cn+1E
[( n+1∑

k=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1
n∏

i=1,i 6=k

(ζi − ζi−1)−1/2

+

n+1∑
k=1

(ζk − ζk−1)

k∑
j=1

(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−1/2[1 + 1{i=k}(ζi − ζi−1)−1/2]

)
1{NT=n}

]
≤ q̄c′(T, x0, y0, x, y)

∑
n≥0

Cn+1[(n+ 1) + (n+ 1)(n+ 2)/2]T (n+1)/2 Γn(1/2)

Γ(1 + n/2)

= CT 1/2q̄c′(T, x0, y0, x, y). (4.19)

From the preceding inequality and Fubini’s theorem, we thus get

∣∣∣E[p̄(ζNT , T, X̄NT , ȲNT , x, y)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

(−→
θ C

NT+1

j +
−→
θ
I(1),NT+1

k
j

))]∣∣∣
≤ CT 1/2q̄c′(T, x0, y0, x, y), (4.20)
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for some positive constant C := C(T ) such that T 7→ C(T ) is non-decreasing. Hence, combining (4.16) with
Lebesgue’s differentiation theorem

T∂y0E[h(XT , YT )]

=

∫
R2

h(x, y)T∂y0p(T, x0, y0, x, y) dxdy

=

∫
R2

h(x, y)E
[
p̄(T − ζNT , X̄NT , ȲNT , x, y)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

(−→
θ C

NT+1
j +

−→
θ
I(1),NT+1

k
j

))]
dxdy,

for any h ∈ C1
b (R2). A monotone class argument allows to conclude that the preceding identity is still valid for

any bounded and measurable map h defined over R2 and a standard approximation argument allows to extend
it to h ∈ Bγ(R2) for any 0 ≤ γ < (2c′T )−1 = (2(C ′)2cT )−1, for any c > 4κ. We eventually conclude from the
preceding identity, (4.20) combined with Fubini’s theorem that

T∂y0E[h(XT , YT )] = E
[
h(X̄NT+1, ȲNT+1)

NT+1∑
k=1

(ζk − ζk−1)
(−→
θ I

(2),NT+1

k +

k∑
j=1

(−→
θ C

NT+1

j +
−→
θ
I(1),NT+1

k
j

))]
,

for any h ∈ Bγ(R2) such that 0 ≤ γ < (2(C ′)2cT )−1.

Step 3: Lp(P)-moments for a renewal process with Beta jump times.

From the above formula, the proof of the Lp(P)-moment estimate when N is a renewal process with Beta
jump times follows by similar arguments as those employed at step 3 of the proof of Theorem 3.1. We omit the
remaining technical details.

5. Numerical results

In this section, as a proof of concept, we provide some simple numerical results for the unbiased Monte Carlo
algorithm that stems from the probabilistic representation formula established in Theorem 3.1 and the Bismut-
Elworthy-Li formulae of Theorem 4.2 for the couple (ST , YT ) that allows to compute the Delta and the Vega
related to the option price of the vanilla option with payoff h(ST ). As already mentioned in the introduction,
we believe that one needs to study numerical issues and to compare our algorithm with other existing methods
to compute Greeks in more details. However, this is beyond the scope of the current paper and is left to future
research.

We here consider the unique strong solution associated to the SDE (1.1) for three different models correspond-
ing to three different diffusion coefficient function σS and two different options, namely Call and digital Call
options with maturity T and strike K, with payoff functions h(x, y) = (exp(x)−K)+ and h(x, y) = 1{exp(x)≥K}
respectively. For these three models, the drift function of the volatility process is defined by bY (x) = λY (µ− x)
and we fix the parameters as follows: T = 0.5, r = 0.03, K = 1.5, x0 = ln(s0) = 0.4, Y0 = 0.2, σY (.) ≡ σY = 0.2,
λY = 0.5, µ = 0.3 and ρ = 0.6. We also consider two type of renewal process N : a Poisson process with intensity
parameter λ = 0.5 and a renewal process with Beta(1− α, 1) jump times with parameters α = 0.5 and τ̄ = 2.
A crude Monte Carlo estimator gives that E[NT ] = 1.25 for Exponential sampling (which is inline with the
theoretical value 1 + λT ) and E[NT ] = 1.79 for Beta sampling.

The total time for the computation of the price, Delta and Vega are about 8 seconds for the Monte Carlo
method with Euler scheme and about 10 seconds for the unbiased Monte Carlo method with Exponential and
Beta sampling. Generally speaking, we observe that the variance of the unbiased Monte Carlo estimators is
larger than the variance of the Monte Carlo estimator with Euler-Maruyama discretization scheme. This should
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not come as a big surprise since this fact is reminiscent of unbiased Monte Carlo methods. However, the Monte
Carlo method with Euler scheme is also affected by its inherent bias.

5.1. Black-Scholes model

We first consider the simple (toy) example corresponding to the Black-Scholes dynamics

dSt = rSt dt+ σSSt dWt, dYt = bY (Yt) dt+ σY (Yt)dBt, d〈B,W 〉t = ρdt, ρ ∈ (−1, 1).

with constant diffusion coefficient function σS(.) ≡ σS > 0. The law of (ST , YT ) can be computed explicitly so
that analytical formulas are available for the price, Delta and Vega. Note that the discount factor e−rT has been
added in our probabilistic representation formula for comparison purposes. In this example, we importantly
remark that the dynamics of the Euler scheme writes

 X̄i+1 = X̄i +
(
r − 1

2aS,i

)
(ζi+1 − ζi) + σS,i

√
ζi+1 − ζiZ1

i+1,

Ȳi+1 = mi + σY,i
√
ζi+1 − ζi

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
,

(5.1)

with mi = mζi+1−ζi(Ȳi) = µ + (Ȳi − µ)e−λ(ζi+1−ζi). Also, the weights (θi)1≤i≤NT+1 in the probabilistic
representation (3.2) of Theorem 3.1 greatly simplifies, namely

θi = (f(ζi − ζi−1))−1I(2)
i (biY ), 1 ≤ i ≤ NT , and θNT+1 = (1− F (T − ζNT ))−1.

We perform M1 = 2.56 × 107 for the unbiased Monte Carlo method with Exponential sampling and
M1 = 1.79 × 107 in the case of Beta sampling to approximate the price as well as the two Greeks so that
the (average) computational cost (up to a constant multiplicative factor) is given by E[NT ]×M1 = 3.2× 107 in
both cases. We compare them with the corresponding values obtained using the standard Monte Carlo method
combined with an Euler-Maruyama approximation scheme for the dynamics (1.1) with M2 = 160000 Monte
Carlo simulations paths and mesh size δ = T/n where n = 200. Its computational complexity (up to a constant
multiplicative factor) is given by n ×M2 = 3.2 × 107. Hence, both Monte Carlo estimators have comparable
computational complexity though their computational time are slightly different in practical implementation.
The Delta and Vega are obtained using the Monte Carlo finite difference approach combined with the Euler-
Maruyama discretization scheme, that is, denoting by EnM2

(s0, y0) the Monte Carlo estimator associated to the
Euler-Maruyama scheme, we compute (EnM2

(s0 + ε, y0)−EnM2
(s0, y0))/ε and (EnM2

(s0, y0 + ε)−EnM2
(s0, y0))/ε

respectively with ε = 10−2. The numerical results for the three different quantities are summarized in Tables 1–3
respectively. The first column provides the value of the parameter σS . The second column stands for the value
of the price, Delta or Vega obtained by the corresponding Black-Scholes formula. The third, fourth and fifth
columns correspond to the value obtained by the Monte Carlo estimator using Euler-Maruyama discretization
scheme together with its half-width 95% confidence interval and its empirical variance. The sixth, seventh and
eighth (resp. the ninth, tenth and eleventh) columns provide the estimated value with its halfwidth 95% confi-
dence interval and empirical variance by our method in the case of Exponential sampling (resp. Beta sampling).
Note that though the variance of the Monte Carlo estimator in the case of Exponential sampling may explode,
we compute it for sake of completeness. Indeed, in our numerical experiences, we observed that the variance of
the Monte Carlo estimator in the Exponential sampling case slightly increases with respect to M1. Nevertheless,
we observe a good behaviour of the unbiased estimators for all three quantities and for all the values of the
parameter σS .
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Table 1. Comparison between the unbiased Monte Carlo estimation and the Monte Carlo
Euler-Maruyama scheme for the price of a Call option in the Black-Scholes model for different
values of σS .

σS
B-S

formula
Euler Scheme Exponential sampling Beta sampling

Price Half-width Variance Price Half-width Variance Price Half-width Variance

0.25 0.111804 0.111853 0.000860286 0.0308244 0.112196 0.000124112 0.102648 0.112199 0.000154064 0.110598
0.3 0.132621 0.132808 0.0010515 0.0460493 0.133193 0.000152038 0.15404 0.133036 0.000187336 0.163524
0.4 0.174152 0.173559 0.00144315 0.0867423 0.174754 0.000208983 0.291037 0.174711 0.000257441 0.308813
0.6 0.256572 0.255388 0.00235625 0.231233 0.257287 0.000334903 0.747423 0.256978 0.0004127 0.793617

Table 2. Comparison between the unbiased Monte Carlo estimation and the Monte Carlo
Euler-Maruyama scheme for the Delta of a Call option in the Black-Scholes model for different
values of σS .

σS
B-S

formula
Euler Scheme Exponential sampling Beta sampling

Delta Half-width Variance Delta Half-width Variance Delta Half-width Variance

0.25 0.556589 0.55675 0.00280539 0.327789 0.554992 0.000895101 5.33915 0.555192 0.00114054 6.0612
0.3 0.560018 0.560534 0.00290622 0.351775 0.558285 0.000923515 5.6835 0.557974 0.00116621 6.33719
0.4 0.569512 0.570228 0.00311011 0.402864 0.567568 0.000978965 6.38649 0.567091 0.00123 7.04938
0.6 0.592743 0.590041 0.00358714 0.535925 0.589 0.0010899 7.91588 0.587681 0.00137469 8.80548

Table 3. Comparison between the unbiased Monte Carlo estimation for the Vega of a Call
option in the Black-Scholes model for different values of σS .

σS
B-S

formula
Exponential sampling Beta sampling

Vega Half-width Variance Vega Half-width Variance

0.25 0 0.000690222 0.00115103 8.82877 −0.000559242 0.00128448 7.68766
0.3 0 0.00182175 0.00137953 12.6821 0.000500579 0.00156401 11.3978
0.4 0 −0.00163321 0.00189888 24.0283 −0.000817515 0.00215655 21.6701
0.6 0 −0.000830748 0.00300346 60.1136 −0.001055 0.00340386 53.9862

5.2. A Stein-Stein type model

In this second example, we consider a Stein-Stein type model where the diffusion coefficient function for the
spot price is an affine function, namely σS(x) = σ1x + σ2 where σ1 and σ2 are two positive constants. Note
carefully that σS is not uniformly elliptic and bounded so that (AR) and (ND) are not satisfied. However,
we heuristically choose σ1 and σ2 so that σS(Yt) is bounded and strictly positive with high probability. Also,
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Table 4. Comparison between the unbiased Monte Carlo estimation for the price of a Call
option in the Stein-Stein type model for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Price Half-width Variance Price Half-width Variance Price Half-width Variance

0.1 0.15 0.0788438 0.000591655 0.0145796 0.0785159 0.000184533 0.226921 0.0787702 0.000127826 0.076134
0.2 0.25 0.129 0.0010556 0.0464096 0.129024 0.000391611 1.02197 0.128967 0.000238248 0.264483
0.3 0.4 0.200983 0.00179584 0.13432 0.200121 0.000570515 2.16901 0.200039 0.000388453 0.703103
0.4 0.5 0.250972 0.00240492 0.240884 0.249897 0.000762565 3.87509 0.249507 0.000539937 1.3584

Table 5. Comparison between the unbiased Monte Carlo estimation for the Delta of a Call
option in the Stein-Stein type model for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Delta Half-width Variance Delta Half-width Variance Delta Half-width Variance

0.1 0.15 0.547988 0.00265342 0.293238 0.538724 0.00165166 18.179 0.539677 0.00137889 8.85936
0.2 0.25 0.54942 0.00289865 0.349943 0.539137 0.00211916 29.9265 0.538131 0.00152902 10.8935
0.3 0.4 0.566344 0.00328048 0.448211 0.556553 0.00254168 43.0495 0.556605 0.00162791 12.3481
0.4 0.5 0.580157 0.00359471 0.53819 0.567956 0.0026141 45.5377 0.567737 0.00184814 15.9151

Table 6. Comparison between the unbiased Monte Carlo estimation for the Vega of a Call
option in the Stein-Stein type model for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Vega Half-width Variance Vega Half-width Variance Vega Half-width Variance

0.1 0.15 0.0369128 0.000309236 0.0039828 0.0325922 0.00150912 15.1766 0.0349527 0.00104028 5.04243
0.2 0.25 0.0733673 0.000689904 0.0198237 0.0671736 0.00333565 74.1462 0.0680856 0.00190913 16.9829
0.3 0.4 0.109991 0.00121245 0.0612259 0.0990781 0.004919 161.243 0.0954942 0.00311339 45.1655
0.4 0.5 0.145413 0.0018251 0.138734 0.129808 0.00689955 317.226 0.122975 0.00443729 91.7436

analytical expressions for the coefficients are available, namely

aS,i =

∫ ζi+1−ζi

0

[
σ1

(
µ+ (Ȳi − µ)e−λY s

)
+ σ2

]2
ds,

= (σ1µ+ σ2)2(ζi+1 − ζi) + σ2
1(Ȳi − µ)2 1− e−2λY (ζi+1−ζi)

2λY
+ 2σ1(σ1µ+ σ2)(Ȳi − µ)

1− e−λY (ζi+1−ζi)

λY
,

a′S,i = σ2
1(Ȳi − µ)

1− e−2λY (ζi+1−ζi)

λY
+ 2σ1(σ1µ+ σ2)

1− e−λY (ζi+1−ζi)

λY
,

ρi = ρ

∫ ζi+1−ζi
0

[
α
(
µ+ (Ȳi − µ)e−λs

)
+ C

]
ds

σS,i
√
ζi+1 − ζi

= ρ
α(Ȳi − µ)(1− e−λ(ζi+1−ζi))/λ+ (σ1µ+ σ2)(ζi+1 − ζi)

σS,i
√
ζi+1 − ζi

,

ρ′i = ρ
σS,i

(
σ1(1− e−λY (ζi+1−ζi))/λY

)
− σ′S,i

(
σ1(Ȳi − µ)(1− e−λY (ζi+1−ζi))/λY + (σ1µ+ σ2)(ζi+1 − ζi)

)
aS,i
√
ζi+1 − ζi

.
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Table 7. Comparison between the unbiased Monte Carlo estimation for the price of a digital
Call option in the Stein-Stein type model for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Price Half-width Variance Price Half-width Variance Price Half-width Variance

0 0.3 0.468101 0.00241055 0.242013 0.468695 0.000363387 0.879968 0.46889 0.000466078 1.01218
0.1 0.15 0.490844 0.00241351 0.242608 0.48959 0.000706916 3.33015 0.489924 0.000534225 1.32981
0.2 0.25 0.458089 0.00240761 0.241423 0.458472 0.000780893 4.0636 0.458395 0.000536405 1.34069
0.3 0.4 0.430371 0.00239421 0.238744 0.428881 0.000840943 4.71261 0.429222 0.000513132 1.22687
0.4 0.5 0.410102 0.00237947 0.235813 0.409966 0.000737924 3.6287 0.409407 0.000510215 1.21296

Table 8. Comparison between the unbiased Monte Carlo estimation for the Delta of a digital
Call option in the Stein-Stein type model for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Delta Half-width Variance Delta Half-width Variance Delta Half-width Variance

0 0.3 1.23092 0.0306499 39.126 1.2445 0.00157472 16.5247 1.24456 0.00199696 18.5815
0.1 0.15 2.20347 0.0403758 67.8968 2.17998 0.0049492 163.229 2.18349 0.00400828 74.8611
0.2 0.25 1.27673 0.0311925 40.5237 1.27004 0.00456344 138.776 1.27093 0.00239161 26.6516
0.3 0.4 0.79344 0.0247765 25.5675 0.793619 0.0023143 35.6918 0.792876 0.00144989 9.79521
0.4 0.5 0.617625 0.0219193 20.0107 0.623268 0.00168461 18.9116 0.622453 0.00115744 6.24217

The parameters for the unbiased Monte Carlo method and the Monte Carlo method combined with an Euler-
Maruyama approximation scheme are chosen as in the first example. The numerical results related to the price,
Delta and Vega are provided in Tables 4–6 respectively for the Call option and in Tables 7–9 for the digital Call
option. In spite of the fact that the main assumptions are not satisfied, we again observe a good performance
of the unbiased estimators for all three quantities and for all the values of the parameters σ1, σ2, except for the
computation of the Vega of a Call option for large values of σ1 and σ2.

5.3. A model with a periodic diffusion coefficient function

In our last example, the volatility of spot price takes the following form σS(x) = σ1 cos(x) + σ2 where σ1

and σ2 are two positive constants such that σ2 − σ1 > 0 in order to ensure that (ND) is satisfied. Here, the
coefficients appearing in the dynamics (2.10) write

aS,i =

∫ ζi+1−ζi

0

[
σ1 cos

(
µ+ (Ȳi − µ)e−λY s

)
+ σ2

]2
ds,

a′S,i = −2α

∫ ζi+1−ζi

0

e−λY s sin
(
µ+ (Ȳi − µ)e−λY s

)[
σ1 cos

(
µ+ (Ȳi − µ)e−λY s

)
+ σ2

]
ds,

ρi = ρ

∫ ζi+1−ζi
0

[
σ1 cos

(
µ+ (Ȳi − µ)e−λY s

)
+ σ2

]
ds

σS,i
√
ζi+1 − ζi

,

ρ′i = −ρ
σ1σS,i

∫ ζi+1−ζi
0

e−λY s sin
(
µ+ (Ȳi − µ)e−λY s

)
ds+ σ′S,i

∫ ζi+1−ζi
0

[
σ1 cos

(
µ+ (Ȳi − µ)e−λY s

)
+ σ2

]
ds

aS,i
√
ζi+1 − ζi
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Table 9. Comparison between the unbiased Monte Carlo estimation for the Vega of a digital
Call option in the Stein-Stein type model for different values of the parameters σ1 and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Vega Half-width Variance Vega Half-width Variance Vega Half-width Variance

0 0.3 0 0 0 −0.000131092 0.00343628 78.6873 0.000348826 0.00401465 75.0995
0.1 0.15 −0.0369417 0.0147786 9.09656 −0.0279754 0.00583723 227.061 −0.0278411 0.00446809 93.0219
0.2 0.25 −0.0292455 0.0138245 7.95983 −0.0324527 0.00764528 389.506 −0.0368005 0.00445648 92.539
0.3 0.4 −0.0415594 0.015675 10.2334 −0.0437127 0.00764653 389.633 −0.0405366 0.0042496 84.1467
0.4 0.5 −0.0538733 0.0178463 13.2649 −0.0526566 0.00643334 275.8048 −0.0546736 0.00423566 83.5954

Table 10. Comparison between the unbiased Monte Carlo estimation for the price of a Call
option in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1 and
σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Price Half-width Variance Price Half-width Variance Price Half-width Variance

0.1 0.15 0.110563 0.000847678 0.0299274 0.111364 0.000124637 0.10352 0.111372 0.000153086 0.109198
0.2 0.25 0.193444 0.00164016 0.112042 0.193513 0.000243912 0.396457 0.193538 0.000291832 0.396832
0.3 0.4 0.294835 0.00281222 0.329386 0.295101 0.000416276 1.15476 0.295277 0.000496958 1.15075
0.4 0.5 0.372503 0.0039339 0.644546 0.373974 0.000648198 2.79991 0.374822 0.000693144 2.23866

Table 11. Comparison between the unbiased Monte Carlo estimation for the Delta of a Call
option in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1 and
σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Delta Half-width Variance Delta Half-width Variance Delta Half-width Variance

0.1 0.15 0.556212 0.00279964 0.326447 0.558216 0.000913553 5.56155 0.558105 0.00114048 6.06062
0.2 0.25 0.576577 0.00321369 0.430147 0.573738 0.00101499 6.86522 0.574758 0.00125848 7.37962
0.3 0.4 0.608348 0.0038355 0.612705 0.60132 0.00118321 9.32936 0.601943 0.00145509 9.86555
0.4 0.5 0.629084 0.00444972 0.824655 0.623976 0.00135463 12.2284 0.625204 0.001653 12.7317

and no analytical expressions are available. However, a simple numerical integration method can be employed
for the computation of the above integrals. We here use Simpson’s 3/8 rule which for a real-valued C4([0, T ])
function g writes as follows

∀t ∈ [0, T ],

∫ t

0

g(s)ds ≈ t

8

(
g(0) + 3g

(
t

3

)
+ 3g

(
2t

3

)
+ g(t)

)

with an error given by g(4)(t′)T 5/6480 for some t′ ∈ [0, T ].
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Table 12. Comparison between the unbiased Monte Carlo estimation for the Vega of a Call
option in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1 and
σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Vega Half-width Variance Vega Half-width Variance Vega Half-width Variance

0.1 0.15 −0.00775169 9.12481e−05 0.000346781 −0.00651665 0.00112781 8.47614 −0.00739643 0.00128018 7.63629
0.2 0.25 −0.0156966 0.000218523 0.00198885 −0.0142195 0.00220569 32.4202 −0.015778 0.00245716 28.1324
0.3 0.4 −0.0233796 0.000412417 0.00708403 −0.0174822 0.00373758 93.0911 −0.0179794 0.00413541 79.6854
0.4 0.5 −0.0307742 0.000670215 0.0187084 −0.0311582 0.00565561 213.151 −0.0304437 0.0042962 153.747

Table 13. Comparison between the unbiased Monte Carlo estimation for the price of a digital
Call option in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1

and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Price Half-width Variance Price Half-width Variance Price Half-width Variance

0 0.3 0.466531 0.00241015 0.241934 0.468532 0.000363404 0.880049 0.468702 0.000466623 1.01455
0.1 0.15 0.481467 0.00241291 0.242488 0.481189 0.000371395 0.91918 0.481203 0.000469696 1.02795
0.2 0.25 0.442993 0.00240127 0.240155 0.445142 0.000368266 0.903758 0.445054 0.000456271 0.970033
0.3 0.4 0.406075 0.00237603 0.235133 0.407653 0.000357256 0.850523 0.407567 0.000441207 0.907039
0.4 0.5 0.377704 0.00234699 0.22942 0.380003 0.000346223 0.798802 0.380009 0.000429336 0.858886

Table 14. Comparison between the unbiased Monte Carlo estimation for the Delta of a digital
Call option in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1

and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Delta Half-width Variance Delta Half-width Variance Delta Half-width Variance

0 0.3 1.23339 0.0306795 39.2017 1.24309 0.00156929 16.411 1.24507 0.0019971 18.5841
0.1 0.15 1.51796 0.0338824 47.8142 1.51053 0.00193524 24.9572 1.51051 0.00242614 27.4265
0.2 0.25 0.816965 0.0251319 26.3063 0.834766 0.00107561 7.70968 0.834635 0.00132928 8.23333
0.3 0.4 0.52951 0.0203232 17.2025 0.527783 0.000676488 3.04964 0.527829 0.000838507 3.27608
0.4 0.5 0.389601 0.0174702 12.7117 0.403047 0.000518279 1.79001 0.403017 0.0006438 1.93127

The parameters of the unbiased Monte Carlo method and the Monte Carlo Euler-Maruyama scheme remain
unchanged. The numerical results related to the price, Delta and Vega are provided in Tables 10–12 respectively
for the Call option and in Tables 13–15 for the digital Call option. Here again, the unbiased estimators perform
very well for all range of values of the parameters.
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Table 15. Comparison between the unbiased Monte Carlo estimation for the Vega of a digital
Call option in the model with σS(x) = σ1 cos(x) + σ2 for different values of the parameters σ1

and σ2.

σ1 σ2
Euler Scheme Exponential sampling Beta sampling

Vega Half-width Variance Vega Half-width Variance Vega Half-width Variance

0 0.3 0 0 0 0.000525633 0.00341519 77.7246 –0.00121724 0.00401747 75.2048
0.1 0.15 0.0107747 0.00798181 2.65345 0.00924064 0.00351717 82.4356 0.00920282 0.00407047 77.2024
0.2 0.25 0.0138531 0.00905046 3.41153 0.0129711 0.00349226 81.2719 0.0125995 0.00391887 71.5586
0.3 0.4 0.0123139 0.00853288 3.03249 0.0117377 0.00336349 75.389 0.0119138 0.00375579 65.7269
0.4 0.5 0.0153924 0.00953999 3.79057 0.0170944 0.00319472 68.0131 0.0168796 0.00363443 61.548

Appendix A. Proof of Theorem 3.1 and Lemma 4.1

The strategy to establish a probabilistic representation formula for the couple (XT , YT ) follows similar lines to
the one implemented in [2, 3, 6, 9, 12]. The central argument indeed consists in a perturbation argument of the
Markov semigroup associated to the original process (Xt, Yt)t≥0 around the one generated by an approximation
process (X̄t, Ȳt)t≥0. As previously mentioned, the main difference here with respect to the aforementioned
references lies exactly in the choice of this approximation process around which this perturbation argument is
performed. Though it is still Gaussian, as in [2, 3, 6, 12], it is here crucial to take into account the transport of
the initial condition by the ODE, see Section 2.2 for its definition. This leads in turn to a specification of the
weights (θi)1≤i≤NT+1, see (3.3)–(3.4), that is different from the previous works. The main difficulty then consists
in proving that the conditional L1(P)-moment of the weights θi are of the correct order, that is, they do not
lead to a non-integrable time singularity as hinted in the estimate (2.24) (with p = 1) of Definition 2.6. Roughly
speaking, these weights are given by Malliavin IBP operators of order 1 or 2 applied to the difference of the
coefficients appearing in the dynamics of (Xt, Yt)t≥0 and (X̄t, Ȳt)t≥0. As discussed right after the Definition 2.6,

the Malliavin IBP operator I(1,1)
i+1 (1) ∈Mi,n(X̄, Ȳ ,−1) so that it generates a non-integrable time singularity of

order one and the same conclusion holds true for I(2,2)
i+1 (1) and I(1,2)

i+1 (1). However, the coefficients ciS , c
i
Y , b

i
Y , c

i
Y,S

appearing inside these Malliavin IBP operators, which write as the difference of the coefficients evaluated along
the dynamics (2.10) between two consecutive times, allow to remove this time singularity. This is where the
transport of the initial condition by the ODE appearing in the second component of (2.10) plays a key role
since it allows precisely to remove part of this time singularity. We refer the reader to the technical Lemma B.2
for a rigorous proof of this claim.

A.1 Proof of Theorem 3.1

The proof is divided into three steps. In the first part, we establish the probabilistic representation for a
bounded and continuous function h. We then provide the extension to measurable maps satisfying the growth
condition 3.1. We eventually conclude by establishing the Lp-moments when the jump times are distributed
according to the Beta law.

Denote by Ls and L̄(τ,ξ)
s the infinitesimal generators of (Ps,t)t≥s and (P̄

(τ,ξ)
s,t )t≥s respectively given by

Lsf(x, y) = (r − 1

2
aS(s, y))∂xf(x, y) +

1

2
aS(s, y)∂2

xf(x, y) + bY (s, y)∂yf(x, y)

+
1

2
aY (s, y)∂2

yf(x, y) + ρ(σSσY )(s, y)∂2
x,yf(x, y),
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L̄(τ,ξ)
s f(x, y) = (r − 1

2
aS(s,ms,τ (ξ)))∂xf(x, y) +

1

2
aS(s,ms,τ (ξ))∂2

xf(x, y) + bY (s,ms,τ (ξ))∂yf(x, y)

+
1

2
aY (s,ms,τ (ξ))∂2

yf(x, y) + ρ(σSσY )(s,ms,τ (ξ))∂2
x,yf(x, y),

for any f ∈ C2
b (R2).

Step 1: Probabilistic representation for a bounded and continuous map h

We establish a first order expansion of the Markov semigroup Ps,t around P̄s,t. We apply Itô’s rule to

the map [s, t] × R2 3 (u, x, y) 7→ Pu,th(x, y) ∈ C1,2
b ([s, t] × R2) for h ∈ C∞b (R2), observing that ∂sPs,th(x, y) =

−LsPs,th(x, y). We obtain

h(X̄
s,x,(τ,ξ)
t , Ȳ

s,y,(τ,ξ)
t ) = Ps,th(x, y) +

∫ t

s

(
∂uPu,th(X̄

s,x,(τ,ξ)
u , Ȳ

s,y,(τ,ξ)
u ) + L̄uPs,th(X̄

s,x,(τ,ξ)
u , Ȳ

s,y,(τ,ξ)
u )

)
du+ Mt

= Ps,th(x, y) +

∫ t

s

(L̄(τ,ξ)
u − Lu)Ps,th(X̄s,x

u , Ȳ s,yu ) du+Mt,

where M := (Mt)t≥s is a square integrable martingale. We then take expectation in the previous expression,
take (τ, ξ) = (s, y) and make use of Fubini’s theorem so that

Ps,T h(x, y)

= P̄s,T h(x, y) +

∫ T

s

E[(Lu − L̄u)Pu,T h(X̄s,x
u , Ȳ s,yu )] du

= E[h(X̄s,x
T , Ȳ s,yT )] +

∫ T

s

E
[1

2
(aS(u, Ȳ s,yu )− aS(u,mu,s(y)))[∂2

xPu,T h(X̄s,x
u , Ȳ s,yu )− ∂xPu,T h(X̄s,x

u , Ȳ s,yu )]
]

du

+

∫ T

s

E
[1

2
(aY (u, Ȳ s,yu )− aY (u,mu,s(y)))∂2

yPu,T h(X̄s,x
u , Ȳ s,yu ) + (bY (u, Ȳ s,yu )− bY (u,mu,s(y)))∂yPu,T h(X̄s,x

u , Ȳ s,yu )
]

du

+

∫ T

s

E
[
ρ((σSσY )(u, Ȳ s,xu )− (σSσY )(u,mu,s(y)))∂2

x,yPu,T h(X̄s,x
u , Ȳ s,yu )

]
du. (A.1)

We now take s = 0 in the previous first order expansion and express it using the Markov chain
(X̄i, Ȳi)0≤i≤NT+1 and the renewal process N . From the previous identity, the definition of θNT+1 in (3.4) and
the identity (2.9), we directly obtain

PT h(x0, y0) = E[h(X̄NT+1, ȲNT+1)θNT+11{NT=0}]

+ E
[
((1− F (T − ζ1))f(ζ1))−11{NT=1}

[
1

2
(aS(ζ1, Ȳ1)− aS(ζ1,m0))D(1,1)

1 Pζ1,T h(X̄1, Ȳ1)

−
1

2
(aS(ζ1, Ȳ1)− aS(ζ1,m0))D(1)

1 Pζ1,T h(X̄1, Ȳ1) +
1

2
(aY (ζ1, Ȳ1)− aY (ζ1,m0))D(2,2)

1 Pζ1,T h(X̄1, Ȳ1)

+(bY (ζ1, Ȳ1)− bY (ζ1,m0))D(2)
1 Pζ1,T h(X̄1, Ȳ1) + ρ((σSσY )(ζ1, Ȳ1)− (σSσY )(ζ1,m0))D(1,2)

1 Pζ1,T h(X̄1, Ȳ1)
]]

= E[h(X̄NT+1, ȲNT+1)θNT+11{NT=0}] + E
[
((1− F (T − ζ1))f(ζ1))−11{NT=1}

[
c1SD

(1,1)
1 Pζ1,T h(X̄1, Ȳ1)

− c1SD
(1)
1 Pζ1,T h(X̄1, Ȳ1) + c1Y D

(2,2)
1 Pζ1,T h(X̄1, Ȳ1) + b1Y D

(2)
1 Pζ1,T h(X̄1, Ȳ1) + c1S,Y D

(1,2)
1 Pζ1,T h(X̄1, Ȳ1)

]]
. (A.2)

Next, we apply the IBP formula (2.17) with respect to the random vector (X̄1, Ȳ1) in the above expression.
In order to do that rigorously, one first has to take the conditional expectation E0,1[.] in the second term of the
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above equality. We thus obtain

E0,1

[
c1SD

(1,1)
1 Pζ1,Th(X̄1, Ȳ1)− c1SD

(1)
1 Pζ1,Th(X̄1, Ȳ1) + c1Y D

(2,2)
1 Pζ1,Th(X̄1, Ȳ1) + b1Y D

(2)
1 Pζ1,Th(X̄1, Ȳ1)

+ c1S,Y D
(1,2)
1 Pζ1,Th(X̄1, Ȳ1)

]
= E0,1

[[
I(1,1)

1 (c1S)− I(1)
1 (c1S) + I(2,2)

1 (c1Y ) + I(2)
1 (b1Y ) + I(1,2)

1 (c1S,Y )
]
Pζ1,Th(X̄1, Ȳ1)

]
.

(A.3)

From Lemma B.2 and the estimate (2.27), we get

E0,1

[∣∣∣[I(1,1)
1 (c1S)− I(1)

1 (c1S) + I(2,2)
1 (c1Y ) + I(2)

1 (b1Y ) + I(1,2)
1 (c1S,Y )

]∣∣∣∣∣∣Pζ1,Th(X̄1, Ȳ1)
∣∣∣] ≤ CT |h|∞ζ−1/2

1 , (A.4)

for some positive constant CT such that T 7→ CT is non-decreasing. The previous estimate yields an integrable
time singularity. Indeed, from the previous estimate and (2.9), one directly gets

E
[
((1− F (T − ζ1))f(ζ1))−11{NT=1}

∣∣∣E0,1

[[
I(1,1)

1 (c1S)− I(1)
1 (c1S) + I(2,2)

1 (c1Y ) + I(2)
1 (b1Y ) + I(1,2)

1 (c1S,Y )
]
Pζ1,Th(X̄1, Ȳ1)

]∣∣∣]
≤ CE[((1− F (T − ζ1))f(ζ1))−1ζ

−1/2
1 1{NT=1}]

= C

∫ T

0

s
−1/2
1 ds1 <∞.

Coming back to (A.2) and using (A.3), we thus derive

PTh(x0, y0) = E[h(X̄NT+1, ȲNT+1)θNT+11{NT=0}]

+ E
[
((1− F (T − ζ1))f(ζ1))−11{NT=1}

×
[
I(1,1)

1 (c1S)− I(1)
1 (c1S) + I(2,2)

1 (c1Y ) + I(2)
1 (b1Y ) + I(1,2)

1 (c1S,Y )
]
Pζ1,Th(X̄1, Ȳ1)

]
= E[h(X̄NT+1, ȲNT+1)θNT+11{NT=0}] + E

[
Pζ1,Th(X̄1, Ȳ1)θ2θ11{NT=1}

]
. (A.5)

Our aim now is to iterate the above first order expansion. We prove by induction the following formula: for
any positive integer n, one has

PTh(x0, y0) =
n−1∑
j=0

E

[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi1{NT=j}

]
+ E

[
Pζn,Th(X̄n, Ȳn)

n+1∏
i=1

θi1{NT=n}

]
. (A.6)

The case n = 1 corresponds to (A.5). We thus assume that (A.6) holds at step n. We expand the last term
appearing in the right-hand side of the previous equality using again (A.1), by then applying Lemma B.1 and
by finally performing IBPs as before.

To be more specific, using the notations introduced in Section 2.2, from (A.1) and a change of variable, for
any (deterministic) ζ ∈ [0, T ], one has

Pζ,T h(x, y)

= E[h(X̄ζ,x
T , Ȳ ζ,yT )]

+

∫ T

ζ

E
[1

2
(aS(u, Ȳ ζ,yu )− aS(u,mu,ζ(y)))[∂2

xPu,T h(X̄ζ,x
u , Ȳ ζ,yu )− ∂xPu,T h(X̄ζ,x

u , Ȳ ζ,yu )]
]

du

+

∫ T

ζ

E
[1

2
(aY (u, Ȳ ζ,yu )− aY (u,mu,ζ(y)))∂2

yPu,T h(X̄ζ,x
s , Ȳ ζ,ys ) + (bY (u, Ȳ ζ,yu )− bY (u,mu,ζ(y)))∂yPu,T h(X̄ζ,x

u , Ȳ ζ,yu )
]

du
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+

∫ T

ζ

E
[
ρ((σSσY )(u, Ȳ ζ,yu )− (σSσY )(u,mu,ζ(y)))∂2

x,yPu,T h(X̄ζ,x
u , Ȳ ζ,yu )

]
du.

We take ζ = ζn, (x, y) = (X̄NT , ȲNT ) in the previous equality, then multiply it by
∏n+1
i=1 θi1{NT=n} and finally

take expectation. We obtain

E
[
Pζn,Th(X̄n, Ȳn)

n+1∏
i=1

θi1{NT=n}

]
= E

[
h(X̄ζn,X̄n

T , Ȳ ζn,ȲnT )

n+1∏
i=1

θi1{NT=n}

]
+ E

[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

1

2
(aS(u, Ȳ ζn,Ȳnu )− aS(u,mu,ζn(Ȳn)))[∂2

xPu,Th(X̄ζn,X̄n
u , Ȳ ζn,Ȳnu )− ∂xPu,Th(X̄ζn,X̄n

u , Ȳ ζn,Ȳnu )] du
]

+ E
[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

1

2
(aY (u, Ȳ ζn,Ȳnu )− aY (u,mu,ζn(Ȳn)))∂2

yPu,Th(X̄ζn,X̄n
u , Ȳ ζn,Ȳnu ) du

]
+ E

[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

(bY (u, Ȳ ζn,Ȳnu )− bY (u,mu,ζn(Ȳn)))∂yPu,Th(X̄ζn,X̄n
u , Ȳ ζn,Ȳnu ) du

]
+ E

[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

ρ((σSσY )(u, Ȳ ζn,Ȳnu )− (σSσY )(u,mu,ζn(Ȳn)))∂2
x,yPu,Th(X̄ζn,X̄n

u , Ȳ ζn,Ȳnu ) du
]
. (A.7)

Now, from the very definition of the Markov chain (X̄i, Ȳi)0≤i≤NT+1 and of the weight sequence (θi)1≤i≤NT+1

of Theorem 3.1, the first term of the above equality can be written as

E
[
h(X̄ζn,X̄n

T , Ȳ ζn,ȲnT )

n+1∏
i=1

θi1{NT=n}

]
= E

[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi1{NT=n}

]
. (A.8)

We now look at the second, third, fourth and fifth terms. Let us deal with the third and fourth terms. The
others are treated in a similar manner and we will omit some technical details. We first take its conditional
expectation w.r.t {ζ1 = t1, . . . , ζn = tn, NT = n} and introduce the measurable function

G(t1, . . . , tn, u, T ) := E
[ n+1∏
i=1

θi

[1

2
(aY (u, Ȳ ζn,Ȳnu )− aY (u,mu,ζn(Ȳn)))∂2

yPu,Th(X̄ζn,X̄n
u , Ȳ ζn,Ȳnu )

+ (bY (u, Ȳ ζn,Ȳnu )− bY (u,mu,ζn(Ȳn)))∂yPu,Th(X̄ζn,X̄n
u , Ȳ ζn,Ȳnu )

]∣∣∣ζ1 = t1, . . . , ζn = tn, NT = n
]
,

which satisfies

|G(t1, . . . , tn, u, T )| ≤ CE
[ n+1∏
i=1

|θi|
(

1 + |
∫ u

tn

σY (s,ms,tn) dBs|
)∣∣∣ζ1 = t1, . . . , ζn = tn, NT = n

]
≤ CE

[ n+1∏
i=1

|θi||ζ1 = t1, . . . , ζn = tn, NT = n
]
,

where we used the boundedness of aY , the Lipschitz regularity of bY , the inequalities sup0≤t≤T |∂`yPth|∞ ≤ C for

` = 1, 2 and, for the last inequality, the inequality E[|
∫ u
tn
σY (s,ms,tn) dBs||Gn, ζ1 = t1, . . . , ζn = tn, NT = n] ≤



338 J. CHEN ET AL.

C|σY |∞(u− tn)1/2 ≤ CT 1/2. Recall now that P(NT = n, ζ1 ∈ dt1, . . . , ζn ∈ dtn) = (1−F (T − tn))
∏n−1
j=0 f(tj+1−

tj)dt1, . . . ,dtn on the set ∆n(T ) so that from Lemma B.2 and the estimate (2.27), we obtain

E
[ ∫ T

ζn

|G(ζ1, . . . , ζn, u, T )|1{NT=n}du
]
≤ C

∫ T

tn

∫
∆n(T )

(T − tn)

n∏
i=1

(ti − ti−1)−1/2dt1 · · · dtndtn+1 <∞.

Hence, by Lemma B.1, it holds

E
[
1{NT=n}

n+1∏
i=1

θi

∫ T

ζn

[
1

2
(aY (s, Ȳ ζn,Ȳns )− aY (s,ms,ζn(Ȳn)))∂2

yPs,Th(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )

+ (bY (s, Ȳ ζn,Ȳns )− bY (s,ms,ζn(Ȳn)))∂yPs,Th(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )

]
ds
]

= E
[
1{NT=n}

∫ T

ζn

G(ζ1, . . . , ζn, s, T ) ds
]

= E
[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1
[

1

2
(aY (ζn+1, Ȳn+1)− aY (ζn+1,mn))D(2,2)

n+1 Pζn+1,Th(X̄n+1, Ȳn+1)

+ (bY (ζn+1, Ȳn+1)− bY (ζn+1,mn))D(2)
n+1Pζn+1,Th(X̄n+1, Ȳn+1)

]
1{NT=n+1}

]
.

Finally, we take the conditional expectation En,n+1[.] inside the above expectation and then employ the IBP
formula (2.17), two times w.r.t. the diffusion coefficient and one time w.r.t the drift coefficient as done before.
We obtain

E
[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1
[1

2
(aY (ζn+1, Ȳn+1)− aY (ζn+1,mn))D(2,2)

n+1 Pζn+1,Th(X̄n+1, Ȳn+1)

+ (bY (ζn+1, Ȳn+1)− bY (ζn+1,mn))D(2)
n+1Pζn+1,Th(X̄n+1, Ȳn+1)

]
1{NT=n+1}

]
= E

[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1[I(2,2)
n+1 (cn+1

Y ) + I(2)
n+1(bn+1

Y )]Pζn+1,Th(X̄n+1, Ȳn+1)1{NT=n+1}

]
.

In a completely analogous manner, we derive

E
[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

1

2
(aS(s, Ȳ ζn,Ȳns )− aS(s,ms,ζn(Ȳn)))[∂2

xPs,Th(X̄ζn,X̄n
s , Ȳ ζn,Ȳns )− ∂xPs,Th(X̄ζn,X̄n

s , Ȳ ζn,Ȳns )] ds
]

= E
[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1[I(1,1)
n+1 (cn+1

S )− I(1)
n+1(cn+1

S )]Pζn+1,Th(X̄n+1, Ȳn+1)1{NT=n+1}

]
,

and

E
[ n+1∏
i=1

θi1{NT=n}

∫ T

ζn

ρ((σSσY )(s, Ȳ ζn,Ȳns )− (σSσY )(s,ms,ζn(Ȳn)))∂2
x,yPs,Th(X̄ζn,X̄n

s , Ȳ ζn,Ȳns ) ds
]

= E
[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1I(1,2)
n+1 (cn+1

Y,S )Pζn+1,Th(X̄n+1, Ȳn+1)1{NT=n+1}

]
.
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Summing the three previous identities, we obtain that the sum of the second, third, fourth and fifth term in
the right-hand side of (A.7) is equal to

E
[ n∏
i=1

θi(1− F (T − ζn+1))−1(f(ζn+1 − ζn))−1

×
[
I(1,1)
n+1 (an+1

S )− I(1)
n+1(cn+1

S ) + I(2,2)
n+1 (cn+1

Y ) + I(2)
n+1(bn+1

Y ) + I(1,2)
n+1 (cn+1

Y,S )
]
Pζn+1,Th(X̄n+1, Ȳn+1)1{NT=n+1}

]
= E

[ n+2∏
i=1

θiPζn+1,Th(X̄n+1, Ȳn+1)1{NT=n+1}

]
,

where we used the very definitions (3.3) and (3.4) of the weights (θi)1≤i≤NT+1 on the set {NT = n+ 1}. This
concludes the proof of (A.6) at step n+ 1.

To conclude it remains to prove the absolute convergence of the first sum and the convergence to zero of the
last term in (A.6). These two results follow directly from the boundedness of h and the general estimates on
the product of weights established in Lemma B.2.

Indeed, from Lemma B.2, the estimate (2.27), the tower property of conditional expectation and the identity
(2.9), we obtain

E
[ ∣∣h(X̄NT+1, ȲNT+1)

∣∣NT+1∏
i=1

|θi|1{NT=j}

]
≤ Cj |h|∞E

[
(1− F (T − ζj))−1

j∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2 1{NT=j}

]

= Cj |h|∞
∫

∆j(T )

j∏
i=1

(si − si−1)−
1
2 dsj

= Cj |h|∞T
j
2

(Γ(1/2))j

Γ(1 + j/2)
,

which in turn yields

n−1∑
j=0

E
[ ∣∣h(X̄NT+1, ȲNT+1)

∣∣NT+1∏
i=1

|θi|1{NT=j}

]
≤ |h|∞

∑
n≥0

(CT 1/2)n

Γ(1 + n/2)
= |h|∞E1/2,1(CT 1/2),

so that the series converge absolutely. Similarly,

∣∣∣E[Pζn,Th(X̄n, Ȳn)

n+1∏
i=1

θi1{NT=n}

]∣∣∣ ≤ Cn|h|∞T n
2

Γn(1/2)

Γ(1 + n/2)
,

so that the remainder indeed vanishes as n goes to infinity. We thus conclude

PTh(x0, y0) =
∑
n≥0

E
[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi1{NT=n}

]
= E

[
h(X̄NT+1, ȲNT+1)

NT+1∏
i=1

θi

]
, (A.9)

for any h ∈ C2
b (R2). We eventually extend the above representation formula to any bounded and continuous

function h using a standard approximation argument. The remaining technical details are omitted.

Step 2: Extension to measurable maps satisfying the growth assumption (3.1)
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We first extend the previous result to any bounded and measurable h. This follows from a monotone class
argument that we now detail.

Let us first consider h ∈ Cb(R2). From Fubini’s theorem, it holds

E
[
h(X̄n+1, Ȳn+1)

n+1∏
i=1

θi

∣∣∣NT = n, ζn+1
]

=

∫
R2

h(x, y)E
[
p̄(ζn, T, X̄n, Ȳn, x, y)

n+1∏
i=1

θi(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ
n+1)

∣∣∣NT = n, ζn+1
]

dxdy,

which can be justified as follows. From the upper-bound estimate (2.7), Lemma B.2 and Lemma B.3, it holds

∣∣∣E[p̄(ζn, T, X̄n, Ȳn, x, y)

n+1∏
i=1

θi(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ
n+1)

∣∣∣NT = n, ζn+1
]∣∣∣

≤ (1− F (T − ζn))−1

∫
(R2)n

p̄(ζn, T, xn, yn, x, y)

n∏
i=1

|θi(xi−1, yi−1, xi, yi, ζ
n+1)|p̄(ζi−1, ζi, xi−1, yi−1, xi, yi) dxndyn

≤ (CT )n+1(1− F (T − ζn))−1

∫
(R2)n

q̄c(ζn, T, xn, yn, x, y)

n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2

× q̄c(ζi−1, ζi, xi−1, yi−1, xi, yi) dxndyn

≤ (CT )n+1(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
1
2 q̄c′(T, x0, y0, x, y),

where we recall that c′ := (C ′)2c for any c > 4κ, recalling that C ′ is defined in (B.2). Hence, from (A.9)

and again Fubini’s theorem, justified by the previous estimate and the fact that E
[
(CT )NT+1(1 − F (T −

ζNT ))−1
∏NT
i=1(f(ζi − ζi−1))−1(ζi − ζi−1)−

1
2

]
<∞, one has

PTh(x0, y0) =

∫
R2

h(x, y)E
[
p̄(ζNT , T, X̄NT , ȲNT , x, y)

NT+1∏
i=1

θi

]
dxdy, (A.10)

for any h ∈ Cb(R2). Moreover, from the previous computations, the following upper-bound holds

∣∣∣E[p̄(T − ζNT , X̄NT , ȲNT , x, y)

NT+1∏
i=1

θi
]∣∣∣

=
∣∣∣∑
n≥0

∫
∆n(T )

E
[
p̄(sn, T, X̄n, Ȳn, x, y)

n+1∏
i=1

θi

∣∣∣NT = n, ζn+1 = (0, s1, . . . , sn, T )
]

(1− F (T − sn))
n∏
i=1

f(si − si−1) dsn

∣∣∣
≤
(∑
n≥0

∫
∆n(T )

(CT )n+1
n∏
i=1

(si − si−1)−
1
2 dsn

)
q̄c(T, x0, y0, x, y)

= CE1/2,1(CT 1/2)q̄c′(T, x0, y0, x, y). (A.11)

It now follows from (A.10) and a monotone class argument that the probabilistic representation formula
(3.2) as well as (A.10) are valid for any real-valued bounded and measurable map h defined over R2. Since
(A.10) is valid for any bounded and measurable h, a density function, denoted by (x, y) 7→ pT (x0, y0, x, y), can
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be associated to the semigroup PT . Namely, PTh(x0, y0) =
∫
R2 h(x, y) pT (x0, y0, x, y) dxdy for any bounded and

measurable h defined on R2. Moreover, it holds

pT (x0, y0, x, y) = E
[
p̄(ζNT , T, X̄NT , ȲNT , x, y)

NT+1∏
i=1

θi

]
,

with

pT (x0, y0, x, y) ≤ CE1/2,1(CT 1/2)q̄c′(T, x0, y0, x, y),

recalling (A.11).
The extension to any measurable map h satisfying the growth assumption |h(x, y)| ≤ C exp(γ(|x|2 + |y|2)) for

any 0 ≤ γ < (2(C ′)2cT )−1, where c is any constant strictly greater than 4κ, now follows from the above integral
representation combined with a standard approximation argument. Indeed, let’s consider such a function h and
introduce hK(x, y) := −K ∨ h(x, y) ∧K, for K ≥ 0. Since

∫
R2 exp(γ(|x|2 + |y|2)) q̄c′(T, x0, y0, x, y) dxdy < ∞,

the dominated convergence theorem guarantees that

PTh(x0, y0) = lim
K↑∞

PThK(x0, y0) =

∫
R2

h(x, y)E
[
p̄(ζNT , T, X̄NT , ȲNT , x, y)

NT+1∏
i=1

θi

]
dxdy,

so that the probabilistic representation formula (3.2) is valid for any h ∈ Bγ(R2). In particular, the random
variable appearing inside the expectation in the right-hand side of (3.2) is integrable.

Step 3: Finite Lp(P)-moment for the probabilistic representation

If N is a renewal process with Beta(α, 1) jump times then f(si − si−1) = 1−α
τ̄1−α

1
(si−si−1)α1[0,τ̄ ](si − si−1) and

1− F (T − sn) = 1−
(
T−sn
τ̄

)1−α
≥ 1− (Tτ̄ )1−α, similarly to step 2, by Fubini’s theorem, we get

E
[
|h(X̄n+1, Ȳn+1)|p

n+1∏
i=1

|θi|p
∣∣∣NT = n, ζn+1

]
=

∫
R2

|h(x, y)|p E
[
p̄(ζn, T, X̄n, Ȳn, x, y)

n+1∏
i=1

|θi(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ
n+1)|p

∣∣∣NT = n, ζn+1
]

dxdy.

The above formula is justified by Lemma B.2 and Lemma B.3 which yield

E
[
p̄(ζn, T, X̄n, Ȳn, x, y)

n+1∏
i=1

|θi(X̄i−1, Ȳi−1, X̄i, Ȳi, ζ
n)|p

∣∣∣NT = n, ζn+1
]

≤ C(1− F (T − ζn))−1

∫
(R2)n

p̄(ζn, T, xn, yn, x, y)
n∏
i=1

|θi(xi−1, yi−1, xi, yi, ζ
n+1)|pp̄(ζi−1, ζi, xi−1, yi−1, xi, yi) dxndyn

≤ Cn+1(1− F (T − ζn))−1

∫
(R2)n

q̄c(ζn, T, xn, yn, x, y)

×
n∏
i=1

(f(ζi − ζi−1))−p(ζi − ζi−1)−
p
2 q̄c(ζi−1, ζi, xi−1, yi−1, xi, yi) dxndyn
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≤ Cn+1(1− F (T − ζn))−1
n∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
p
2

+αp−αq̄c′(T, x0, y0, x, y),

where we recall that c′ := (C ′)2c for any c > 4κ. Now, using the fact that E
[
CNT+1(1 − F (T −

ζNT ))−1
∏NT
i=1(f(ζi − ζi−1))−1(ζi − ζi−1)−

p
2 +αp−α

]
< ∞ as soon as p( 1

2 − α) < 1 − α and that h ∈ Bγ(R2),

from the previous computation, we obtain

E[|h(X̄NT+1, ȲNT+1)|p
NT+1∏
i=1

|θi|p]

=

+∞∑
i=0

E
[
E
[
|h(X̄n+1, Ȳn+1)|p

n+1∏
i=1

|θi|p
∣∣∣NT , ζn+1

]
1NT=n

]
≤ E

[
CNT+1(1− F (T − ζNT ))−1

NT∏
i=1

(f(ζi − ζi−1))−1(ζi − ζi−1)−
p
2 +αp+α

]∫
R2

eγp(|x|
2+|y|2)q̄c′(T, x0, y0, x, y) dxdy.

To conclude the proof, it suffices to note that the above space integral is finite as soon as 0 ≤ γp <
(2(C ′)2cT )−1 for any c > 4κ.

A.2 Proof of Lemma 4.1

Since h ∈ C1
p(R2) and Ei,n

[
|X̄i+1|q + |Ȳi+1|q

]
< ∞ a.s., for any q ≥ 1, under (AR), one may differentiate

under the (conditional) expectation and deduce that (x, y) 7→ Ei,n
[
h(X̄i+1, Ȳi+1)θi+1|(X̄i, Ȳi) = (x, y)

]
∈ C1

p(R2)

for any i ∈ {0, . . . , n} a.s. The rest of the proof is divided into three parts.

Step 1: proofs of (4.1) and (4.2)

The transfer of derivatives formulae (4.1) and (4.2) are easily obtained by differentiating under expectation
(which is allowed by the polynomial growth at infinity of h) noting from the definition of the Markov chain X̄ that
∂s0X̄1 = ∂s0 ln(s0) = 1

s0
and ∂X̄ih(X̄i+1, Ȳi+1) = ∂X̄i+1

h(X̄i+1, Ȳi+1)∂X̄iX̄i+1 = ∂X̄i+1
h(X̄i+1, Ȳi+1). Observe as

well that from (2.18), the fact that ∂X̄ic
i+1
S = ∂X̄ic

i+1
Y = ∂X̄ib

i+1
Y = ∂X̄ic

i+1
Y,S = ∂X̄iI

(1)
i+1(1) = ∂X̄iI

(2)
i+1(1) = 0 and

the very definition of the random variables (θi)1≤i≤n+1, one has ∂X̄iθi+1 = 0. This gives the identities (4.1) and
(4.2).

Step 2: proofs of (4.3) and (4.4)

The proofs of (4.3) and (4.4) are more involved. Let us prove (4.3). We proceed by considering the difference
between the term appearing on the left-hand side and the first two terms appearing on the right-hand side of
(4.3). On the one hand, using the IBP formula (2.17) and (2.11), we get

∂ȲiEi,n
[
h(X̄i+1, Ȳi+1)θi+1

]
= Ei,n

[
∂X̄i+1

h(X̄i+1, Ȳi+1)∂ȲiX̄i+1θi+1

]
+ Ei,n

[
∂Ȳi+1

h(X̄i+1, Ȳi+1)∂Ȳi Ȳi+1θi+1

]
+ Ei,n

[
h(X̄i+1, Ȳi+1)∂Ȳiθi+1

]
= Ei,n

[
h(X̄i+1, Ȳi+1)

[
I(1)
i+1(∂ȲiX̄i+1θi+1) + I(2)

i+1(m′iθi+1)
]]

+ Ei,n
[
h(X̄i+1, Ȳi+1)I(2)

i+1

(
σ′Y,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
θi+1

)]
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+ Ei,n
[
h(X̄i+1, Ȳi+1)I(2)

i+1

(
σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

)
θi+1

)]
+ Ei,n

[
h(X̄i+1, Ȳi+1)∂Ȳiθi+1

]
.

On the other hand, again from the IBP formula (2.17), we obtain

Ei,n
[
∂X̄i+1

h(X̄i+1, Ȳi+1)
−→
θ e,Xi+1

]
+ Ei,n

[
∂Ȳi+1

h(X̄i+1, Ȳi+1)
−→
θ e,Yi+1

]
+ Ei,n

[
h(X̄i+1, Ȳi+1)

−→
θ ci+1

]
= Ei,n

[
h(X̄i+1, Ȳi+1)

[
I(1)
i+1(
−→
θ e,Xi+1) + I(2)

i+1(
−→
θ e,Yi+1) +

−→
θ ci+1

]]
.

Combining the two previous identities, we see that the difference

∂ȲiEi,n
[
h(X̄i+1, Ȳi+1)θi+1

]
−
(
Ei,n

[
∂X̄i+1

h(X̄i+1, Ȳi+1)
−→
θ e,Xi+1

]
+ Ei,n

[
∂Ȳi+1

h(X̄i+1, Ȳi+1)
−→
θ e,Yi+1

]
+ Ei,n

[
h(X̄i+1, Ȳi+1)

−→
θ ci+1

])
can be written as

Ei,n
[
h(X̄i+1, Ȳi+1)I(2)

i+1

(
m′iθi+1 −

−→
θ e,Yi+1

)]
+ Ei,n

[
h(X̄i+1, Ȳi+1)∂Ȳiθi+1

]
− Ei,n

[
h(X̄i+1, Ȳi+1)I(1)

i+1(
−→
θ e,Xi+1)

]
+ Ei,n

[
h(X̄i+1, Ȳi+1)I(1)

i+1(∂ȲiX̄i+1θi+1)
]

+ Ei,n
[
h(X̄i+1, Ȳi+1)I(2)

i+1

(
σ′Y,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
θi+1

)]
+ Ei,n

[
h(X̄i+1, Ȳi+1)I(2)

i+1

(
σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

)
θi+1

)]
(A.12)

− Ei,n
[
h(X̄i+1, Ȳi+1)

−→
θ ci+1

]
.

Before proceeding, we provide the explicit expression for the quantity ∂Ȳiθi+1. Using the chain rule formula
of Lemma 2.5, after some standard but cumbersome computations, we obtain

∂Ȳiθi+1 = (f(ζi+1 − ζi))−1
[
I(1,1)
i+1 (∂Ȳic

i+1
S )− I(1)

i+1(∂Ȳic
i+1
S ) + I(2,2)

i+1 (∂Ȳic
i+1
Y ) + I(2)

i+1(∂Ȳib
i+1
Y ) + I(1,2)

i+1 (∂Ȳic
i+1
Y,S)

−
(σ′S,i
σS,i

(
2I(1,1)
i+1 (ci+1

S )− I(1)
i+1(ci+1

S ) + I(1,2)
i+1 (ci+1

Y,S)
)

+
(σ′Y,i
σY,i

− ρ′iρi
1− ρ2

i

)(
2I(2,2)
i+1 (ci+1

Y ) + I(2)
i+1(bi+1

Y ) + I(1,2)
i+1 (ci+1

Y,S)
))

− ρ′i
1− ρ2

i

σY,i
σS,i

(
I(1,2)
i+1 (ci+1

S ) + I(2,1)
i+1 (ci+1

S )− I(2)
i+1(ci+1

S ) + I(2,2)
i+1 (ci+1

Y,S)
)]
.

Also, after some simple algebraic simplifications using the definitions of
−→
θ e,Yi+1 and

−→
θ e,Xi+1 in (4.3), one obtains

I(2)
i+1

(
m′iθi+1 −

−→
θ e,Yi+1

)
= −(f(ζi+1 − ζi))−1

[
I(2,2)
i+1

(
∂Ȳic

i+1
Y

)
+ I(1,2)

i+1

(
∂Ȳic

i+1
Y,S

)]
and

I(1)
i+1(
−→
θ e,Xi+1) = (f(ζi+1 − ζi))−1I(1,1)

i+1

(
∂Ȳic

i+1
S

)
.

Combining the three previous identities and gathering similar terms, we obtain

I(2)
i+1

(
m′iθi+1 −

−→
θ e,Yi+1

)
+ ∂Ȳiθi+1 − I(1)

i+1(
−→
θ e,Xi+1) = (f(ζi+1 − ζi))−1

[
− I(1)

i+1(∂Ȳic
i+1
S ) + I(2)

i+1(∂Ȳib
i+1
Y )
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−
(σ′S,i
σS,i

(
2I(1,1)
i+1 (ci+1

S )− I(1)
i+1(ci+1

S ) + I(1,2)
i+1 (ci+1

Y,S)
)

+
(σ′Y,i
σY,i

− ρ′iρi
1− ρ2

i

)(
2I(2,2)
i+1 (ci+1

Y ) + I(2)
i+1(bi+1

Y ) + I(1,2)
i+1 (ci+1

Y,S)
))

(A.13)

− ρ′i
1− ρ2

i

σY,i
σS,i

(
I(1,2)
i+1 (ci+1

S ) + I(2,1)
i+1 (ci+1

S )− I(2)
i+1(ci+1

S ) + I(2,2)
i+1 (ci+1

Y,S)
)]
.

The previous identity will be used in the next step of the proof. Coming back to (A.12) and using the

definition of the weight
−→
θ ci+1 allows to conclude the proof of the identity (4.3).

Step 3: The weight sequences (
−→
θ e,Yi )1≤i≤n+1, (

−→
θ e,Xi )1≤i≤n+1 and (

−→
θ ci )1≤i≤n+1 and the related spaces

Mi,n(X̄, Ȳ , `/2), ` ∈ Z.

In this last step, we prove the last statement of Lemma 4.1 concerning the weight sequences (
−→
θ e,Yi )1≤i≤n+1,

(
−→
θ e,Xi )1≤i≤n+1 and (

−→
θ ci )1≤i≤n+1.

Following similar lines of reasonings as those used in the proof of Lemma B.2, namely using the fact that

di+1
S , di+1

Y , di+1
Y,S , e

Y,i+1
S , eY,i+1

Y ∈ Mi,n(X̄, Ȳ , 1/2) and D(1)
i+1d

i+1
S , D(1,1)

i+1 d
i+1
S , D(2)

i+1d
i+1
Y , D(2,2)

i+1 d
i+1
Y , D(1)

i+1d
i+1
Y,S ,

D(2)
i+1d

i+1
Y,S , D(1,2)

i+1 d
i+1
Y,S , D(1)

i+1e
Y,i+1
S , D(2)

i+1e
Y,i+1
Y ∈Mi,n(X̄, Ȳ , 0) as well as Lemma 2.7, we conclude

f(ζi+1 − ζi)
−→
θ e,Yi+1 ∈Mi,n(X̄, Ȳ ,−1/2), i ∈ {0, . . . , n− 1} .

Note also that

eX,i+1
S = ∂Ȳic

i+1
S

=
1

2
(a′S(Ȳi+1)∂Ȳi Ȳi+1 − a′S(mi)m

′
i)

=
1

2
(a′S(Ȳi+1)− a′S(mi))∂Ȳi Ȳi+1 +

1

2
a′S(mi)(∂Ȳi Ȳi+1 −m′i)

so that, using on the one hand the Lipschitz regularity of a′S and on the other hand (2.11), from similar
arguments as those used in the proof of Lemma B.2, we conclude that

1

2
(a′S(Ȳi+1)− a′S(mi))∂Ȳi Ȳi+1,

1

2
a′S(mi)(∂Ȳi Ȳi+1 −m′i) ∈Mi,n(X̄, Ȳ , 1/2)

which in turn implies that eX,i+1
S ∈Mi,n(X̄, Ȳ , 1/2). Moreover, standard computations that we omit show that

D(1)
i+1e

X,i+1
S ∈Mi,n(X̄, Ȳ , 0) so that by Lemma 2.7 we deduce

f(ζi+1 − ζi)
−→
θ e,Xi+1 ∈Mi,n(X̄, Ȳ , 0).

We now prove that f(ζi+1 − ζi)
−→
θ ci+1 ∈Mi,n(X̄, Ȳ ,−1/2) for any i ∈ {0, . . . , n− 1}. We use the decomposition

f(ζi+1 − ζi)
−→
θ ci+1 = f(ζi+1 − ζi)

(
I(2)
i+1

(
m′iθi+1 −

−→
θ e,Yi+1

)
+ ∂Ȳiθi+1 − I

(1)
i+1(
−→
θ e,Xi+1)

)
+ I(1)

i+1

(
∂ȲiX̄i+1f(ζi+1 − ζi)θi+1

)
+ I(2)

i+1

((
σ′Y,i

(
ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
+ σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ

2
i+1

))
f(ζi+1 − ζi)θi+1

)
.
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We first prove that f(ζi+1 − ζi)
(
I(2)
i+1

(
m′iθi+1 −

−→
θ e,Yi+1

)
+ ∂Ȳiθi+1 − I(1)

i+1(
−→
θ e,Xi+1)

)
∈ Mi,n(X̄, Ȳ ,−1/2). We

investigate each term appearing on the right-hand side of (A.13).
In particular, we first use the fact that ci+1

S , ci+1
Y , bi+1

Y , ci+1
Y,S ∂Ȳic

i+1
S , ∂Ȳib

i+1
Y ∈ Mi,n(X̄, Ȳ , 1/2) and the fact

that when one applies the differential operators D(α1)
i+1 , D

(α1,α2)
i+1 to these elements the resulting random vari-

ables belong to Mi,n(X̄, Ȳ , 0) for any (α1, α2) ∈ {1, 2}2. From Lemma 2.7, we thus conclude that the elements

I(1,1)
i+1 (ci+1

S ), I(1,2)
i+1 (ci+1

S ), I(2,1)
i+1 (ci+1

S ), I(2,2)
i+1 (ci+1

Y ), I(1,2)
i+1 (ci+1

Y,S), I(2,2)
i+1 (ci+1

Y,S) belong to Mi,n(X̄, Ȳ ,−1/2) and that

I(1)
i+1(ci+1

S ), I(2)
i+1(bi+1

Y ), I(1)
i+1(∂Ȳic

i+1
S ), I(2)

i+1(∂Ȳib
i+1
Y ) belong to Mi,n(X̄, Ȳ , 0). Moreover, using (ND), one gets

that there exists C > 0 such that for any i ∈ {0, . . . , n− 1}, |σ′S,i/σS,i| + |σ′Y,i/σY,i| + |σY,i/σS,i| + |ρ′i/(1 −
ρ2
i )|+ |ρ′iρi/(1−ρ2

i )| ≤ C. We thus conclude that f(ζi+1− ζi)
(
I(2)
i+1

(
m′iθi+1−

−→
θ e,Yi+1

)
+∂Ȳiθi+1−I(1)

i+1(
−→
θ e,Xi+1)

)
∈

Mi,n(X̄, Ȳ ,−1/2).

It thus suffices to prove I(1)
i+1

(
∂ȲiX̄i+1f(ζi+1 − ζi)θi+1

)
, I(2)

i+1

(
σ′Y,i(ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1)f(ζi+1 − ζi)θi+1

)
and I(2)

i+1

(
σY,i

ρ′i√
1−ρ2i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

))
f(ζi+1 − ζi)θi+1

)
belong to Mi,n(X̄, Ȳ ,−1/2). In order to do

this, we remark that

∂ȲiX̄i+1 = −1

2
a′S,i + σ′S,iZ

1
i+1 ∈Mi,n(X̄, Ȳ , 1/2),

D(1)
i+1(∂ȲiX̄i+1) =

σ′S,i
σS,i

∈Mi,n(X̄, Ȳ , 0),

σ′Y,i(ρiZ
1
i+1 +

√
1− ρ2

iZ
2
i+1) ∈Mi,n(X̄, Ȳ , 1/2),

D(2)
i+1

(
σ′Y,i(ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1

)
=
σ′Y,i
σY,i

∈Mi,n(X̄, Ȳ , 0),

σY,i
ρ′i√

1− ρ2
i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

)
∈Mi,n(X̄, Ȳ , 1/2),

D(2)
i+1

(
σY,i

ρ′i√
1− ρ2

i

(√
1− ρ2

iZ
1
i+1 − ρiZ2

i+1

))
= − ρiρ

′
i

1− ρ2
i

∈Mi,n(X̄, Ȳ , 0)

and from Lemma B.2, f(ζi+1 − ζi)θi+1 ∈ Mi,n(X̄, Ȳ ,−1/2). From Lemma 2.7, it follows that

f(ζi+1−ζi)θi+1∂ȲiX̄i+1, f(ζi+1−ζi)θi+1σ
′
Y,i(ρZ

1
i+1 +

√
1− ρ2Z2

i+1), f(ζi+1−ζi)θi+1σY,i
ρ′i√
1−ρ2i

(√
1− ρ2

iZ
1
i+1−

ρiZ
2
i+1

)
∈ Mi,n(X̄, Ȳ , 0). Now following similar computations as those employed in the proof of Lemma

B.2 and omitting some technical details we obtain D(α)
i+1(f(ζi+1 − ζi)θi+1) ∈ Mi,n(X̄, Ȳ ,−1) so that

from the chain rule formula and Lemma 2.7, the random variables D(α)
i+1(f(ζi+1 − ζi)θi+1∂ȲiX̄i+1),

D(α)
i+1(σ′Y,i(ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1)f(ζi+1−ζi)θi+1) andD(α)

i+1(σY,i
ρ′i√
1−ρ2i

(
√

1− ρ2
iZ

1
i+1−ρiZ2

i+1)f(ζi+1−ζi)θi+1)

belong to Mi,n(X̄, Ȳ ,−1/2). From Lemma 2.7, we thus conclude that I(1)
i+1

(
∂ȲiX̄i+1f(ζi+1 − ζi)θi+1

)
,

I(2)
i+1

(
σ′Y,i(ρiZ

1
i+1 +

√
1− ρ2

iZ
2
i+1)f(ζi+1 − ζi)θi+1

)
and I(2)

i+1

(
σY,i

ρ′i√
1−ρ2i

(
√

1− ρ2
iZ

1
i+1 − ρiZ

2
i+1)f(ζi+1 −

ζi)θi+1

)
belong to Mi,n(X̄, Ȳ ,−1/2). From the preceding arguments, we eventually deduce that f(ζi+1 −

ζi)
−→
θ ci+1 ∈Mi,n(X̄, Ȳ ,−1/2) for any i ∈ {0, . . . , n− 1}.
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Finally, from the very definition of the weights on the last time interval
−→
θ e,Yn+1 and

−→
θ e,Xn+1 one directly gets

that

(1− F (T − ζn))
−→
θ e,Yn+1 = m′n + σ′Y,n

(
ρnZ

1
n+1 +

√
1− ρ2

nZ
2
n+1

)
+ σY,n

ρ′n√
1− ρ2

n

(√
1− ρ2

nZ
1
n+1 − ρnZ2

n+1

)
belongs to Mn,n(X̄, Ȳ , 0) and that

(1− F (T − ζn))
−→
θ e,Xn+1 = −1

2
a′S,n + σ′S,nZ

1
n+1

belongs to Mn,n(X̄, Ȳ , 1/2). The proof is now complete.

Appendix B. Some technical results

B.1 Emergence of jumps in the renewal process N

The next result is used in the proof of the probabilistic representation in Theorem 3.1 to express that
time integrals add jumps to the renewal process N . In what follows, N is a renewal process in the sense of
Definition 2.2.

Lemma B.1. Let n ∈ N and G : {(t1, . . . , tn+2) : 0 < t1 < · · · < tn+1 < tn+2 := T} → R be a measurable

function such that E
[ ∫ T

ζn
|G(ζ1, . . . , ζn, s, T )|1{NT=n}ds

]
<∞. Then, it holds

E
[ ∫ T

ζn

G(ζ1, . . . , ζn, s, T )1{NT=n}ds
]

= E
[
G(ζ1, . . . , ζn, ζn+1, T )(1− F (T − ζn+1))−1(1− F (T − ζn))(f(ζn+1 − ζn))−11{NT=n+1}

]
.

Proof. The proof follows by rewriting the above expectations using (2.9). We rewrite the expectation on the
right-hand side in integral form. By Fubini’s theorem, we obtain

E
[
G(ζ1, . . . , ζn, ζn+1, T )(1− F (T − ζn+1))−1(1− F (T − ζn))(f(ζn+1 − ζn))−11{NT=n+1}

]
=

∫
∆n+1(T )

G(s1, . . . , sn+1, T )(1− F (T − sn+1))−1(1− F (T − sn))(f(sn+1 − sn))−1

× (1− F (T − sn+1))

n∏
j=0

f(sj+1 − sj) dsn+1

=

∫
∆n(T )

∫ T

sn

G(s1, . . . , sn+1, T ) dsn+1 (1− F (T − sn))

n−1∏
j=0

f(sj+1 − sj) dsn.

This completes the proof.

Lemma B.2. Let n ∈ N. On the set {NT = n}, the sequence of weights (θi)1≤i≤n+1 defined by (3.3) and (3.4)
satisfy:

∀i ∈ {1, . . . , n} , f(ζi − ζi−1)θi ∈Mi−1,n(X̄, Ȳ ,−1/2), (1− F (T − ζn))θn+1 ∈Mn,n(X̄, Ȳ , 0). (B.1)



PROBABILISTIC REPRESENTATION OF INTEGRATION 347

Proof. We investigate each term appearing in the definition of f(ζi− ζi−1)θi ∈ Si−1,n(X̄, Ȳ ), recalling (3.3) and
(3.4), and seek to apply Lemma 2.7. From the Lipschitz property of aS and the space-time inequality (1.3), the
map (xi−1, yi−1, xi, yi, sn+1) 7→ ciS(xi−1, yi−1, xi, yi, sn+1) satisfies for any c > 0 and any c′ > c

ciS(xi−1, yi−1, xi, yi, sn+1)|pq̄c(si − si−1, xi−1, yi−1, xi, yi) ≤ C|yi −mi−1(yi−1)|pq̄c(si − si−1, xi−1, yi−1, xi, yi)

≤ C(si − si−1)p/2q̄c′(si − si−1, xi−1, yi−1, xi, yi),

so that, the random variables ciS ∈ Mi−1,n(X̄, Ȳ , 1/2), for any i ∈ {1, . . . , n+ 1}. Moreover, since ciS does not
depend on X̄i and ∂X̄i Ȳi = 0, one has

D(1)
i ciS = D(1,1)

i ciS = 0.

From Lemma 2.7, we thus conclude

I(1)
i (ciS) ∈Mi−1,n(X̄, Ȳ , 0) and I(1,1)

i (ciS) ∈Mi−1,n(X̄, Ȳ ,−1/2), i ∈ {1, . . . , n} .

In a completely analogous manner, omitting some technical details, we derive

I(2)
i (biY ) ∈Mi−1,n(X̄, Ȳ , 0), and I(1,2)

i (ciY,S), I(2,2)
i (ciY ) ∈Mi−1,n(X̄, Ȳ ,−1/2).

Hence, we obtain f(ζi − ζi−1)θi ∈ Mi−1,n(X̄, Ȳ ,−1/2), for any i ∈ {1, . . . , n}. We finally observe that (1 −
F (T − ζn))θn+1 = 1 ∈Mn,n(X̄, Ȳ , 0). The proof is now complete.

Lemma B.3. Let T > 0 and n a positive integer. For any sn = (s1, . . . , sn) ∈ ∆n(T ), any (x, y) ∈ R2 and any
positive constant c there exist two positive constants C and C ′ := C ′(T ) ≥ 1 such that the transition density
(t, x, y) 7→ q̄c(t, x0, y0, x, y) defined by (2.8) satisfies the following semigroup property:∫

(R2)n
q̄c(sn, T, xn, yn, x, y)× q̄c(sn−1, sn, xn−1, yn−1, xn, yn)× · · · × q̄c(0, s1, x0, y0, x1, y1) dxndyn

≤ Cnq̄c′(T, x0, y0, x, y),

where c′ := (C ′)2c.

Proof. The dx1 · · · dxn integrals are treated using the standard semigroup property of Gaussian kernels so that
from the very definition of q̄c, it directly follows∫

(R2)n
q̄c(sn, T, xn, yn, x, y)× q̄c(sn−1, sn, xn−1, yn−1, xn, yn)× · · · × q̄c(0, s1, x0, y0, x1, y1) dxndyn

=
1√

2πcT
e−

(x−x0)2

2cT

∫
Rn

1√
2πc(T − sn)

e−
(y−mT,sn (yn))2

2c(T−sn) × · · · × 1√
2πcs1

e−
(y1−ms1 (y0))2

2cs1 dyn.

We now provide an upper-bound for the integral appearing in the right-hand side of the above identity.
We perform the change of variables y1 = ms1(z1), y2 = ms2(z2), . . . , yn = msn(zn). Observe that since bY
admits a bounded first order derivative, the determinants of the Jacobians Js1(z1) := m′s1(z1), . . . , Jsn(zn) =
m′sn(zn) are uniformly bounded for any (s1, . . . , sn) ∈ ∆n(T ). Remark also that from the semigroup property
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msi+1−si(msi(zi)) = msi+1
(zi), for 1 ≤ i ≤ n with the convention sn+1 = T . Hence, for some positive constants

C and c′ > c that may change from line to line, we get

1√
2πcT

e−
(x−x0)2

2cT

∫
Rn

1√
2πc(T − sn)

e−
(y−mT,sn (yn))2

2c(T−sn) × · · · × 1√
2πcs1

e−
(y1−ms1 (y0))2

2cs1 dyn

≤ Cn 1√
2πcT

e−
(x−x0)2

2cT

∫
Rn

1√
2πc(T − sn)

e−
(y−mT (zn))2

2c(T−sn) × · · · × 1√
2πcs1

e−
(ms1 (z1)−ms1 (y0))2

2cs1 dzn

≤ Cn 1√
2πcT

e−
(x−x0)2

2cT

∫
Rn

1√
2πc(T − sn)

e−(C′)−1 (m
−1
T

(y)−zn)2

2c(T−sn) × · · · × 1√
2πcs1

e−(C′)−1 (z1−y0)2

2cs1 dzn

= Cn
1

2πcT
√
C ′
e−

(x−x0)2

2cT e−
(m
−1
T

(y)−y0)2

2cC′T

≤ Cnq̄c′(T, x0, y0, x, y),

for c′ := c(C ′)2, where we first used the bi-Lipschitz property of the flow R+ ×R 3 (s, x) 7→ ms(x), namely, for
any T > 0, any t ∈ [0, T ] and any x, z ∈ R

(C ′)−1|x− z| ≤ |mt(x)−mt(z)| ≤ C ′|x− z|, C ′ := exp([bY ]TT ), (B.2)

recalling that [bY ]T is defined by (2.1), then the semigroup property satisfied by Gaussian kernels and again the
bi-Lipschitz property of the flow. This completes the proof.

Appendix C. Some useful formulas

We here provide some useful formulas in order to device the unbiased Monte Carlo algorithms based on
Theorem 3.1 and Theorem 4.2. Their proofs follow from standard computations as those used in Section 2.4
and are omitted.

The following formulae are required in order to compute the weights (θi)1≤i≤NT appearing in the identity
(3.2). Note that in our examples since aY (.) is constant, one has ciY (.) ≡ 0 for i ∈ {1, . . . , NT }. Hence, for
i ∈ {1, . . . , NT }, one has:

I(1)
i (ciS) = ciSI

(1)
i (1),

I(1,1)
i (ciS) = ciS((I(1)

i (1))2 −D(1)
i I

(1)
i (1)),

I(2)
i (biY ) = biY I

(2)
i (1)− b′Y (Ȳi),

I(1,2)
i (ciY,S) = I(2)

i (ciY,SI
(1)
i (1)) = ciY,SI

(1)
i (1)I(2)

i (1)− I(1)
i (1)D(2)

i (ciY,S)− ciY,SD
(2)
i I

(1)
i (1).

The following formulae are needed in order to compute the weights for the Delta appearing in the identity
(4.5), for i ∈ {1, . . . , NT } one has:

D(1)
i (I(1,1)

i (ciS)) = 2ciSI
(1)
i (1)D(1)

i I
(1)
i (1),

D(1)
i (I(1)

i (ciS)) = ciSD
(1)
i I

(1)
i (1),

D(1)
i (I(2)

i (biY )) = biYD
(1)
i I

(2)
i (1),

D(1)
i (I(1,2)

i (ciY,S)) = ciY,SD
(1)
i I

(1)
i (1)I(2)

i (1) + ciY,SD
(1)
i I

(2)
i (1)I(1)

i (1)−D(1)
i I

(1)
i (1)D(2)

i (ciY,S),

D(1)
i θi = (f(ζi − ζi−1))−1

[
D(1)
i I

(1,1)
i (ciS)−D(1)

i I
(1)
i (ciS) +D(1)

i I
(2)
i (biY ) +D(1)

i I
(1,2)
i (ciY,S)

]
,

I(1)
k (θk) = I(1)

k (1)θk −D(1)
k θk, k ≤ NT ,
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I(1)
NT+1(θNT+1) = θNT+1I(1)

NT+1(1)−D(1)
NT+1θNT+1 = θNT+1I(1)

NT+1(1).

The following formulae are required for the computation of the weights for the Vega appearing in the identity
(4.6), for i ∈ {1, . . . , NT } it holds:

I(1,1)
i+1 (di+1

S ) = m′iI
(1,1)
i+1 (ci+1

S ),

I(1)
i+1(eY,i+1

S ) = −m′iI
(1)
i+1(ci+1

S ) +D(2)
i (ci+1

Y,S)I(1)
i+1(1)−D(1)

i+1D
(2)
i (ci+1

Y,S),

I(2)
i+1(eY,i+1

Y ) = m′iI
(2)
i+1(bi+1

Y ),

I(1,2)
i+1 (di+1

Y,S) = m′iI
(1,2)
i+1 (ci+1

Y,S),

I(1)
i+1(eX,i+1

S ) = eX,i+1
S I(1)

i+1(1)−D(1)
i+1e

X,i+1
S = D(2)

i (ci+1
S )I(1)

i+1(1)−D(1)
i+1D

(2)
i (ci+1

S ),

D(2)
i (I(1,1)

i (ciS)) = D(2)
i (ciS)(I(1)

i (1))2 + 2ciSI
(1)
i (1)D(2)

i I
(1)
i (1)−D(2)

i (ciS)D(1)
i I

(1)
i (1),

D(2)
i (I(1)

i (ciS)) = D(2)
i (ciS)I(1)

i (1) + ciSD
(2)
i I

(1)
i (1),

D(2)
i (I(2)

i (biY )) = b′Y (Ȳi)I(2)
i (1) + biYD

(2)
i I

(2)
i (1)− b′′Y (Ȳi),

D(2)
i (I(1,2)

i (ciY,S)) = D(2)
i (ciY,S)I(1)

i (1)I(2)
i (1) + ciY,SD

(2)
i I

(2)
i (1)I(1)

i (1) + ciY,SI
(2)
i (1)D(2)

i I
(1)
i (1)

− I(1)
i (1)D(2,2)

i (ciY,S)− 2D(2)
i (ciY,S)D(2)

i I
(1)
i (1),

D(2)
i−1(I(1,1)

i (ciS)) = D(2)
i−1(ciS)(I(1)

i (1))2 + 2ciSI
(1)
i (1)D(2)

i−1I
(1)
i (1)

−D(2)
i−1(ciS)D(1)

i I
(1)
i (1)− ciSD

(2)
i−1(D(1)

i I
(1)
i (1)),

D(2)
i−1(I(1)

i (ciS)) = D(2)
i−1(ciS)I(1)

i (1) + ciSD
(2)
i−1I

(1)
i (1),

D(2)
i−1(I(2)

i (biY )) = biYD
(2)
i−1I

(2)
i (1) + I(2)

i (1)(b′Y (Ȳi)∂Ȳi−1
Ȳi − b′Y (mi−1)m′i−1)− b′′Y (Ȳi)∂Ȳi−1

Ȳi,

D(2)
i−1(I(1,2)

i (ciY,S)) = D(2)
i−1(ciY,S)I(1)

i (1)I(2)
i (1) + ciY,S(I(2)

i (1)D(2)
i−1I

(1)
i (1) + I(1)

i (1)D(2)
i−1I

(2)
i (1))

− I(1)
i (1)D(2)

i−1(D(2)
i (ciY,S))−D(2)

i−1(I(1)
i (1))D(2)

i (ciY,S)− ciY,SD
(2)
i−1D

(2)
i I

(1)
i (1)

−D(2)
i−1(ciY,S)D(2)

i I
(1)
i (1).

D(2)
i θi =(f(ζi − ζi−1))−1

[
D(2)
i (I(1,1)

i (ciS))−D(2)
i (I(1)

i (ciS)) +D(2)
i (I(2)

i (biY )) +D(2)
i (I(1,2)

i (ciY,S))
]
,

D(2)
i−1θi =(f(ζi − ζi−1))−1

[
D(2)
i−1(I(1,1)

i (ciS))−D(2)
i−1(I(1)

i (ciS)) +D(2)
i−1(I(2)

i (biY )) +D(2)
i−1(I(1,2)

i (ciY,S))
]
,

−→
θ e,Yi = m′i−1θi + (f(ζi − ζi−1))−1(I(1)

i (1)D(2)
i−1(ciY,S)−D(1)

i D
(2)
i−1(ciY,S)),

D(2)
i

−→
θ e,Yi = m′i−1D

(2)
i θi + (f(ζi − ζi−1))−1

[
D(2)
i (D(2)

i−1(ciY,S))I(1)
i (1)

+D(2)
i−1(ciY,S)D(2)

i I
(1)
i (1)−D(2)

i D
(1)
i D

(2)
i−1(ciY,S)

]
,

I(2)
i (
−→
θ e,Yi ) =

−→
θ e,Yi I

(2)
i (1)−D(2)

i

−→
θ e,Yi ,

I(2)
i (m′i−1θi −

−→
θ e,Yi ) = −(f(ζi − ζi−1))−1I(1,2)

i (D(2)
i−1(ciY,S))

= −(f(ζi − ζi−1))−1
(
D(2)
i−1(ciY,S)I(1)

i (1)I(2)
i (1)− I(1)

i (1)D(2)
i D

(2)
i−1(ciY,S)

−D(2)
i−1(ciY,S)D(1)

i I
(2)
i (1)−D(1)

i D
(2)
i−1(ciY,S)I(2)

i (1) +D(2)
i D

(1)
i D

(2)
i−1(ciY,S)

)
,

−→
θ e,Xi = (f(ζi − ζi−1))−1I(1)

i (eX,iS ) = (f(ζi − ζi−1))−1(I(1)
i (1)D(2)

i−1(ciS)−D(1)
i D

(2)
i−1(ciS)),

D(1)
i

−→
θ e,Xi = (f(ζi − ζi−1))−1eX,iS D

(1)
i I

(1)
i (1),

I(1)
i (
−→
θ e,Xi ) =

−→
θ e,Xi I

(1)
i (1)−D(1)

i

−→
θ e,Xi ,
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I(1)
i (θiD(2)

i−1X̄i) = (θiI(1)
i (1)−D(1)

i θi)D(2)
i−1X̄i −D

(1)
i (D(2)

i−1X̄i)θi,

I(2)
i

(
(
√

1− ρ2
i−1Z

1
i−ρi−1Z

2
i )θi

)
=
(√

1− ρ2
i−1Z

1
i − ρi−1Z

2
i

)
(I(2)
i (1)θi −D(2)

i θi) +
ρi−1θi

σY,i−1

√
1− ρ2

i−1

,

−→
θ ci =I(2)

i (m′i−1θi −
−→
θ e,Yi ) + σY,i−1

ρ′i−1√
1− ρ2

i−1

I(2)
i

(
(
√

1− ρ2
i−1Z

1
i − ρi−1Z

2
i )θi

)
+ I(1)

i (θiD(2)
i−1X̄i)− I

(1)
i (
−→
θ e,Xi ) +D(2)

i−1θi,

−→
θ e,YNT+1 =θNT+1 =

(
m′NT + σY,NT

ρ′NT√
1− ρ2

NT

(
√

1− ρ2
NT
Z1
NT+1 − ρNTZ

2
NT+1)

)
,

−→
θ e,XNT+1 =θNT+1 =

(
− 1

2
a′S,NT + σ′S,NTZ

1
NT+1

)
,

−→
θ cNT+1 =0,

I(2)
NT+1(

−→
θ e,YNT+1) =

−→
θ e,YNT+1I

(2)
NT+1(1)−D(2)

NT+1

−→
θ e,YNT+1 =

−→
θ e,YNT+1I

(2)
NT+1(1) + θNT+1

ρ′NT ρNT
1− ρ2

NT

,

I(2)
NT+1(

−→
θ e,XNT+1) =

−→
θ e,XNT+1I

(2)
NT+1(1)−D(2)

NT+1

−→
θ e,XNT+1 =

−→
θ e,XNT+1I

(2)
NT+1(1)− θNT+1

σ′S,NT
σS,NT

.
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