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MARTINGALE SOLUTIONS OF THE STOCHASTIC 2D PRIMITIVE

EQUATIONS WITH ANISOTROPIC VISCOSITY∗

Chengfeng Sun1 , Hongjun Gao2,** , Hui Liu3 and Jie Zhang1

Abstract. The stochastic 2D primitive equations with anisotropic viscosity are studied in this paper.
The existence of the martingale solutions and pathwise uniqueness of the solutions are obtained. The
proof is based on anisotropic estimates, the compactness method, tightness criteria and the Jakubowski
version of the Skorokhod theorem for nonmetric spaces.
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1. Introduction

The primitive equations (PE) for oceanic and atmospheric dynamics are fundamental models in meteorology,
which derived from the Navier-Stokes equations assuming a hydrostatic balance for the pressure term in the
vertical direction. For more information on physical background and geophysical applications of the primitive
equations, we refer the reader to [9, 25, 46], for example.

Known results: For the deterministic primitive equations with full viscosity, i.e., the diffusion term −∆ is
defined by −∂2x − ∂2y − ∂2z , the mathematical analysis of the initial value problem has been started by Lions,
Temam and Wang [40–42], where the notions of weak and strong solutions were defined and the global existence
of weak solutions was proved, however, the uniqueness of weak solutions is still unclear. By decomposing the
velocity into barotropic and baroclinic components, a breakthrough result has been proven by Cao-Titi [8],
where the global well-posedness of strong solutions in H1 to the three dimensional primitive equations has
been obtained, see also Kobelkov [33] and Kukavica-Ziane [36]. One can see some other literatures (for instance
[21, 26, 30]-[34, 48, 49]) for the well-posed results with different space dimensions, initial data and boundary
conditions. In particular, about uniqueness of weak solutions, by introducing the notion of z-weak solution (see
[2, 47]), i.e., weak solutions with additional regularity in the vertical direction, researchers have found some
results [31, 34, 37, 44].
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In the models of geophysical flows, due to uncertainties in the physics derivations and intrinsic heat fluc-
tuations, white noise driven random term was introduced to the geophysical equations (see for instance [45]).
Research on stochastic primitive equations with full viscosity is a classical topic and has been studied extensively
in a number of literatures. For the well-posedness, regularity, random attractor and existence and regularity
of invariant measures, we refer the readers to [10]-[18, 22, 51]. For the deviation principles and small time
asymptotics of the primitive equations, see [12, 13].

Due to the presence of strong turbulent mixing in the horizontal direction in the large scale atmosphere,
the viscosity in the horizontal direction is much stronger than that in the vertical direction. As a result, it
is necessary to investigate the primitive equations with anisotropic viscosity, i.e., the diffusion term −∆ is
replaced by −ν1∂2x − ν2∂2y − ν3∂2z , where ν1, ν2, ν3 ≥ 0, and, in particular, the system that with only horizontal
viscosities, i.e., the diffusion term −∆ is replaced by −∆H , where ∆H = ν1∂

2
x + ν2∂

2
y , ν1, ν2 > 0 (see [6, 7, 38]).

Mathematically, for the primitive equations with partial viscosity, we would like to emphasis that the system
is not purely parabolic anymore. Cao et al. [6, 7] studied the 3D deterministic primitive equations with only
horizontal viscosity analytically. They tackled this problem in a periodical setting by considering a vanishing
vertical viscosity limit and obtained global strong well-posedness results for initial data with regularity near H1,
and local well-posedness for initial data in H1. Instead of considering a vanishing vertical viscosity limit, by a
direct approach which in particular avoids unnecessary boundary conditions on top and bottom, Hussein et al.
[28] studied the initial value and the time-periodic problem for the 3D deterministic primitive equations with
horizontal viscosity and obtained existence and uniqueness of local z-weak solutions for initial data in H1

zL
2
xy

and local strong solutions for initial data in H1. Furthermore, if ∂zv0 ∈ Lq for q > 2, the local z-weak solutions
extended to a global strong solution. For the case of full hyper-viscosity or only horizontal hyper-viscosity, i.e.,
the diffusion term −∆ is replaced by −∆ + ε(−∆)l or by −∆ + ε(−∆H)l, respectively, where ε > 0, l > 1, strong
convergence for ε→ 0 of hyper-viscous solutions to a weak solution of the 3D deterministic Navier-Stokes and
primitive equations, respectively, was obtained by Hussein in [27].

For the 3D deterministic primitive equations without viscosity, i.e., ν1 = ν2 = ν3 = 0, blow-up result was
obtained by Cao et al. in [5], see also Wong [52]. Ill-posedness result was obtained in Sobolev spaces by Han-
Kwan and Nguyen in [24], where the solution map was not (Hölder) continuous with respect to initial data.
Local well-posedness has been proven only for analytical data by Kukavica et al. in [35].

Stochastic 2D primitive equations with only horizontal viscosity: The primary goal of this paper is to
study the well-posedness of 2D stochastic primitive equations with horizontal viscosity driven by multiplicative
white noise. For simplicity, a period setting is considered here. We consider the domain M := (0, 1) × (−1, 0)
and denote by x ∈ (0, 1) the horizontal coordinate and by z ∈ (−1, 0) the vertical one. Let (v, w) be the velocity
with horizontal component v and vertical component w, and p be the pressure. Then the 2D stochastic primitive
equations are given by



dv + (v · ∂xv + w∂zv − ∂2xv + ∂xp)dt = fdt+ σ(t, v)dW, in M × (0, T ),
∂zp = 0, in M × (0, T ),
∂xv + ∂zw = 0, in M × (0, T ),
p periodic in x, z,
v, w periodic in x, z, even and odd, in z, respectively,
v(0) = v0, in M,

(1.1)

where σ is the random external forces, f is an external force term and W is a cylindrical Wiener process, the
definitions of which will be introduced in Section 2. As in [27], note that the vertical periodicity and parity
conditions in (1.1) correspond in to an equivalent set of equations on (0, 1) × (−1, 0) with lateral periodicity
and

∂zv|z=0 = ∂zv|z=−1 = 0, w|z=0 = w|z=−1 = 0. (1.2)
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With these boundary conditions, we suppose with no loss of generality that (see also in [19])

∫ 0

−1
fdz =

∫ 0

−1
σdz =

∫ 0

−1
vdz = 0 (1.3)

and

w(x, z, t) = −
∫ z

−1
∂xv(x, ξ, t)dξ. (1.4)

In the rest of paper, in order to focus our attention on the difficulties arising from the nonlinear term, we
ignore the external force term f . The whole process of proof shows that the existence of f does not affect our
conclusion.

Studies on stochastic geophysical fluid equations with anisotropic viscosity have attracted more and more
attention in recent years. Especially, for the stochastic Navier-Stokes equations, by adding a term of Brinkman-
Forchheimer type, Bessaih and Millet [1] established the existence and uniqueness of global weak solutions (in
the PDE sense) in the whole space R3. Liang, Zhang and Zhu [39] investigated the existence of the martingale
solutions and pathwise uniqueness of the solutions in a given anisotropic Sobolev space on R2 or on the two
dimensional torus T2. Comparing with the Navier-Stokes equations, it is worth to point out that the system
of primitive equations is generally harder to deal with, the nonlinear term w∂zv is a more difficult version
in contrast to the nonlinearity of the Navier-Stokes equations since w = w(v) given by (1.4) involves a first
order derivative. Therefore, no matter which type of viscosity is considered, how to deal with the estimates of
nonlinear term is a challenge.

Returning to the study of this paper, for the stochastic primitive equations with partial viscosity, fewer
works have been done. To the best of our knowledge, only the literature [50] was involved on this topic.
In [50], the existence and uniqueness of pathwise solutions in H1 to the stochastic 3D primitive equations
with only horizontal viscosity and diffusivity driven by transport noise were established. Firstly, the global
existence of martingale solutions was established for a modified equations with a cut-off acting on L∞z L

4
xy-norm

of the solution. After a standard argument using the theorems by Prokhorov and Skorokhod, the existence of
maximal solutions up to a strictly positive stopping time was established. Then, to establish uniqueness, more
regular initial data was needed in the vertical direction. Finally, the global existence was established using the
logarithmic Sobolev embedding and an iterated stopping time argument.

Generally, what works in 3D does not necessarily work in 2D, in this paper, we study the stochastic 2D
primitive equations with horizontal viscosity. By new anisotropic estimations and compactness method differ-
ently from the above mentioned methods in [50], global existence of martingale solutions has been obtained.
In the proof of the tightness argument of Galerkin schemes, an Aldous’s condition (first introduced in [3]) is
applied to deal with the H−1xz norm. On the other hand, compared to [50], where the solutions were strong in
the PDE sense, the solutions considered here are z-weak meanings (in the PDE sense), moreover, to obtain the
uniqueness of z-weak solutions, we don’t need more regular initial value.

This paper is organized as follows: In Section 2, some basic definitions and notations are given for a periodic
setting such as function spaces, assumptions and the definition of martingale solutions. In Section 3, the main
results with proofs are formulated.

2. Preliminaries

For s ∈ [0,+∞), one defines the Bessel potential spaces

Hs
per(M) = C∞per(M)

‖·‖Hs

and H−sper(M) =
(
Hs
per(M)

)′
,
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where C∞per(M) denotes the spaces of smooth functions which are periodic of any order (cf. [27]) in all directions

on ∂M and (·)′ denotes the dual of the corresponding space. Moreover, Hs
per(M) can be characterized by means

of Fourier series as

‖v‖2Hs
per(M) =

∑
k∈Z2

(1 + |k|2)s|v̂(k)|2,

where

v̂(k) =
1

2

∫
M

v(x, z)eπik1xe2πik2zdxdz, k = (k1, k2) ∈ Z2.

Furthermore, we recall the anisotropic Sobolev norms,

‖v‖2
Hs,s

′
per (M)

=
∑
k∈Z2

(1 + |k1|2)s(1 + |k2|2)s
′

|v̂(k)|2,

‖v‖2
Ḣs,s

′
per (M)

=
∑
k∈Z2

|k1|2s(1 + |k2|2)s
′

|v̂(k)|2.

For the sake of simplicity, we abbreviate ‖ · ‖2
Hs,s

′
per

, ‖ · ‖2
Ḣs,s

′
per

to ‖ · ‖2
Hs,s

′ , ‖ · ‖2
Ḣs,s

′ , respectively. We will be

working on these spaces,

H := {v ∈ L2(M) |
∫ 0

−1
vdz = 0},

V := {v ∈ H1
per(M)|

∫ 0

−1
vdz = 0},

H̃s := {v ∈ Hs
per(M) |

∫ 0

−1
vdz = 0},

H̃s,s′ := {v ∈ Hs,s′

per (M)|
∫ 0

−1
vdz = 0}.

Note that V ≡ H̃1, moreover, the scalar product (·, ·) is denoted by

(u, v) = (u, v)L2(M) =

∫
M

u(x, z)v(x, z)dxdz.

We use (·, ·)H0,1 or (·, ·)0,1 to denote the inner product

(u, v)H0,1(M) =

∫
M

(u(x, z)v(x, z) + ∂zu(x, z)∂zv(x, z))dxdz.

The Leray operator PH is the orthogonal projection of L2(M) on to H. The action of this operator is given by

PHv = v −
∫ 0

−1
vdz.
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Let ek, k ≥ 1 be an orthonormal basis of H whose elements belong to H2 and orthogonal in H̃0,1 and H̃1,0

(hence also H̃1,1). For integers k, l ≥ 1 with k 6= l, we deduce that for i = x, z,

(∂2i ek, el) = −(∂iek, ∂iel) = 0.

Therefore, ∂2i ek is a constant multiple of ek. For example, for k = (k1, k2), the eigenfunctions and associated
eigenvalues can be identified,

ek(x, z) =
{√

2 sin(k1πx) cos(k2πz)
}
k1,k2≥1

,
{
π2(k21 + k22)

}
k1,k2≥1

.

In accordance with equality (1.4), we take

W(v) := −
∫ z

−1
∂xv(x, z̃)dz̃.

And let

B(u, v) := u∂xv + W(u)∂zv,

where u, v ∈ V and denote B(u, u) = B(u).
Define the bilinear operator B(u, v) : V × V → V ′ according to

〈B(u, v), w〉 = b(u, v, w),

where

b(u, v, w) =

∫
M

(u∂xvw + W(u)∂zvw)dM.

Due to boundary conditions (1.2), we have the following lemma.

Lemma 2.1 (Anisotropic estimates). The trilinear forms b and B have the following properties. There exists
a constant C > 0 such that

|b(u, v, w)| ≤ C
(
‖u‖

1
2

L2‖∂zu‖
1
2

L2‖∂xv‖L2‖w‖
1
2

L2‖∂xw‖
1
2

L2

+‖∂xu‖L2‖∂zv‖L2‖w‖
1
2

L2‖∂xw‖
1
2

L2

)
(2.1)

for any u, v, w ∈ V,
b(u, v, v) = 0, for any u, v, w ∈ H, (2.2)

〈B(u, u), ∂zzu〉 = 0, for any u ∈ H̃0,2. (2.3)

Proof. The properties of (2.2) and (2.3) have been obtained in [19], here, by Hölder inequality, we give the
estimate of (2.1) anisotropically.

|b(u, v, w)| ≤
∫ 1

0

(
sup

z∈[−1,0]
|u|
∫ 0

−1

(
∂xv · w

)
dz
)

dx

+

∫ 1

0

(
sup

z∈[−1,0]

( ∫ z

−1
∂xudz̃

) ∫ 0

−1

(
∂zv · w

)
dz
)

dx
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≤ C

∫ 1

0

(∫ 0

−1
|u|2dz

) 1
4
(∫ 0

−1
|∂zu|2dz

) 1
4
(∫ 0

−1
|∂xv|2dz

) 1
2
(∫ 0

−1
|w|2dz

) 1
2

dx

+C

∫ 1

0

(∫ 0

−1
|∂xu|2dz ·

∫ 0

−1
|∂zv|2dz ·

∫ 0

−1
|w|2dz

) 1
2

dx

≤ C sup
x∈[0,1]

(∫ 0

−1
|w|2dz

) 1
2 ‖∂xv‖L2‖u‖

1
2

L2‖∂zu‖
1
2

L2

+C sup
x∈[0,1]

(∫ 0

−1
|w|2dz

) 1
2 ‖∂xu‖L2‖∂zv‖L2

≤ C
(
‖u‖

1
2

L2‖∂zu‖
1
2

L2‖∂xv‖L2‖w‖
1
2

L2‖∂xw‖
1
2

L2

+‖∂xu‖L2‖∂zv‖L2‖w‖
1
2

L2‖∂xw‖
1
2

L2

)
,

where we make use of the boundary conditions and get the following estimates,

sup
z∈[−1,0]

|u|2 = sup
z∈[−1,0]

∫ z

−1
∂z(u

2)dz = 2 sup
z∈[−1,0]

∫ z

−1
u · ∂zudz

≤ C
(∫ 0

−1
|u|2dz

) 1
2
(∫ 0

−1
|∂zu|2dz

) 1
2

,

and

sup
x∈[0,1]

(∫ 0

−1
|w|2dz

)
= sup

x∈[0,1]

(∫ x

0

∂x

∫ 0

−1
|w|2dzdx

)
≤ 2‖w‖L2‖∂xw‖L2 .

This completes the proof. �

Let (W (t), t ≥ 0) be a Y -cylindrical Wiener process on a stochastic basis (Ω,F , P ), where Y is a separable
Hilbert space. Let L2(Y,U) denote the Hilbert-Schmit norms from Y to U. For a Polish space V, let B(V) denote
its Borel σ-algebra and P(V) denote all the probability measures on (V,B(V)). Let σ be a measurable mapping
from ([0, T ]× H̃1,1,B([0, T ]× H̃1,1)) to (L2(Y, H̃1,1),B(L2(Y, H̃1,1))). Then we introduce martingale solutions.
Set

F (v) := −B(v) + ∂2xv.

Definition 2.2 (Martingale solution.). We say that a probability measure

P ∈ P(C([0, T ];H−1))

is called a martingale solution of (1.1) with initial value v0 if
(M1) P (v(0) = v0, v ∈ L∞(0, T ; H̃0,1) ∩ L2(0, T ; H̃1,1)) = 1, and

P{v ∈ C([0, T ], H−1) :

∫ T

0

‖F (v(s))‖H−1ds+

∫ T

0

‖σ(s, v(s))‖2L2(Y,H)ds < +∞} = 1.
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(M2) For every ψ ∈ C∞per(M) with
∫ 0

−1 ψdz = 0, the process

Mψ(t, v) = 〈v(t), ψ〉 −
∫ t

0

〈F (v(s)), ψ〉ds

is a continuous square integrable Ft−martingale with respect to P , whose quadratic variation process is∫ t
0
‖σ∗(s, v(s))(ψ)‖2Y ds, where the asterisk denotes the adjoint operator of σ(s, ṽ(s)).
(M3) We have

EP ( sup
t∈[0,T ]

‖v(t)‖2L2 +

∫ T

0

‖v(t)‖2H1,0dt) ≤ CT (1 + ‖v0‖2L2).

Hypothesis 2.3 (Conditions). We assume that the diffusion coefficient σ is a measurable mapping from
([0, T ]× H̃1,1,B([0, T ]× H̃1,1)) to (L2(Y, H̃1,1),B(L2(Y, H̃1,1))) and satisfies the following conditions.

(i) Growth condition
There exist nonnegative constants K ′i,Ki and K̃i(i = 0, 1 or 2) such that for every t ∈ [0, T ] and v ∈ H̃1,1,

‖σ(t, v)‖2L2(Y,H−1) ≤ K ′0 +K ′1‖v‖2L2 , (2.4)

‖σ(t, v)‖2L2(Y,H) ≤ K0 +K1‖v‖2L2 +K2‖∂xv‖2L2 , (2.5)

‖σ(t, v)‖2L2(Y,H0,1) ≤ K̃0 + K̃1‖v‖2H1,1 . (2.6)

(ii) Lipschitz condition
There exists a constant L1 such that for t ∈ [0, T ] and u, v ∈ H̃1,0,

‖σ(t, u)− σ(t, v)‖2L2(Y,H) ≤ L1‖∂x(u− v)‖2L2 . (2.7)

3. Main results

In this section, we state two theorems about the well-posedness of equation (1.1), which will be proved in
the following subsections.

Theorem 3.1. Assume that v0 is a random variable in H̃0,1 and suppose that σ satisfies Hypothesis 2.3 with
K2 <

2
11 and K̃1 <

2
7 . Then (1.1) has a global martingale solution.

Theorem 3.2. (Pathwise uniqueness). Assume that v0 is a random variable in H̃0,1. Suppose that σ satisfies
Hypothesis 2.3 with K2 <

2
11 , K̃1 <

2
7 and L1 < 1. If v1, v2 are two weak solutions on the same stochastic basis

(Ω,F , P ). Then we have v1 = v2 P − a.s..

3.1. Galerkin approximation and a priori estimates

Let Hn = span(e1, . . . , en) and Pn(resp. P̃n, Pn) denote the orthogonal projection from H (resp.H̃0,1, H̃1)
to Hn. As in [39], we have

Pnv = P̃nv, for v ∈ H̃0,1.

Furthermore, for u ∈ Hn, we have ∂2zu ∈ Hn and for any v ∈ H̃0,1,

(Pnv, u) = (v, u) and (∂zPnv, ∂zu) = −(Pnv, ∂
2
zu) = −(v, ∂2zu) = (∂zv, ∂zu).
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Hence, given v ∈ H̃0,1, we have

(Pnv, u)0,1 = (v, u)0,1, for any u ∈ Hn.

This proves that Pn and P̃n coincide on H̃0,1. Similarly, we can prove Pn, P̃n, and Pn coincide on H̃1.
We consider the following stochastic ordinary differential equations on Hn,

vn(0) = Pnv0

and for t ∈ [0, T ], u ∈ Hn

d(vn(t), u) = 〈PnF (vn(t)), u〉dt+ 〈Pnσ(t, vn(t))dWn(t), u〉. (3.1)

Then for k = 1, . . . , n, t ∈ [0, T ], we have

d(vn(t), ek) = 〈PnF (vn(t)), ek〉dt+ 〈Pnσ(t, vn(t))dWn(t), ek〉.

Note that since it is in finite dimensions, there exists a constant C(n) such that ‖v‖H2 ≤ C(n)‖v‖L2 for
v ∈ Hn. Hence by Theorem 3.1.1 in [43], there exists a unique global solution vn(t) to (3.1). Moreover, v ∈
C(R+,Hn), P− a.s..

Lemma 3.3. We have the following energy estimates under the hypothesis of Theorem 3.1,

E( sup
t∈[0,T ]

‖vn(t)‖2L2) + E

∫ T

0

‖vn(t)‖2H1,0dt ≤ C(K0,K1,K2, T )(1 + E‖v0‖2L2).

Proof. By Itô formula, we have

‖vn(t)‖2L2 = ‖Pnv0‖2L2 + 2

∫ t

0

〈σ(s, vn(s))dWn(s), vn(s)〉

− 2

∫ t

0

‖∂xvn(s)‖2L2ds+

∫ t

0

‖Pnσ(s, vn(s))‖2L2(Y,H)ds. (3.2)

The growth condition implies that∫ t

0

‖Pnσ(s, vn(s))‖2L2(Y,H)ds ≤
∫ t

0

[K0 +K1‖vn(t)‖2L2 +K2‖∂xvn(t)‖2L2 ]ds. (3.3)

The Burkholder-Davis-Gundy inequality and the Young inequality as well as the growth condition imply that,

E(sup
s≤t
|2
∫ s

0

(Pnσ(r, vn(r))dWn(r), vn(r))|)

≤ 4E{
∫ t

0

‖Pnσ(r, vn)(r)‖2L2(Y,H)‖vn(r)‖2L2dr} 1
2

≤ βE(sup
s≤t
‖vn(s)‖2L2) +

4

β
E

∫ t

0

[K0 +K1‖vn(s)‖2L2 +K2‖∂xvn(t)‖2L2 ]ds, (3.4)

since K2 <
2
11 , we can choose 0 < β < 1 such that ( 4

β + 1)K2 − 2 < 0.
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By (3.2)–(3.4) and dropping some negative terms, we deduce

(1− β)E sup
s∈[0,t]

‖vn(s)‖2L2 ≤ E‖v(0)‖2L2 + CK0T + CE

∫ t

0

K1‖vn(s)‖2L2ds.

Gronwall’s lemma implies that

E( sup
t∈[0,T ]

‖vn(t)‖2L2) ≤ C, (3.5)

where C is a constant depending on K0,K1,K2, T but not n.
Inserting (3.5) back to (3.2)–(3.4) yields

E( sup
t∈[0,T ]

‖vn(t)‖2L2) + E

∫ t

0

‖vn(t)‖2H1,0ds ≤ C(K0,K1,K2, T )(1 + E‖v0‖2L2).

This completes the proof. �
However, we also need the L4(Ω) uniform estimates of vn.

Lemma 3.4. We have the following uniform estimates under the hypothesis of Theorem 3.1,

E( sup
t∈[0,T ]

‖vn(t)‖4L2) + E

∫ T

0

‖vn(t)‖2L2‖vn(t)‖2H1,0dt ≤ C(K0,K1,K2, T )(1 + E‖v0‖4L2).

Proof. Applying once more the Itô formula to the square of ‖ · ‖2L2 , we obtain

‖vn(t)‖4L2 = ‖Pnv0‖4L2 − 4

∫ t

0

‖∂xvn(s)‖2L2‖vn(s)‖2L2ds

+ I1 + I2 + I3, (3.6)

where

I1 = 4

∫ t

0

〈σ(s, vn(s))dWn(s), vn(s)〉‖vn(s)‖2L2 ,

I2 = 2

∫ t

0

‖Pnσ(s, vn(s))‖2L2(Y,H)‖vn(s)‖2L2ds,

I3 = 4

∫ t

0

‖(Pnσ(s, vn(s)))∗(vn)‖2Y ds.

The growth condition implies that

I2(t) + I3(t) ≤ 6

∫ t

0

(K0 +K1‖vn(s)‖2L2 +K2‖∂xvn(t)‖2L2)‖vn(s)‖2L2ds. (3.7)

The Burkholder-Davis-Gundy inequality, the growth condition and the Young inequality imply that

E(sup
s≤t

I1(s)) ≤ 8E{
∫ t

0

‖σ(r, vn(r))‖2L2(Y,H)‖vn(r)‖6L2dr} 1
2
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≤ γE(sup
s≤t
‖vn(s)‖4L2)

+
16

γ
E

∫ t

0

(K0 +K1‖vn(s)‖2L2 +K2‖∂xvn(t)‖2L2)‖vn(s)‖2L2ds, (3.8)

since K2 <
2
11 , we can choose 0 < γ < 1, such that 6K2 + 16

γ K2 − 4 < 0.

Thus, combining (3.7)–(3.8) and dropping some negative terms on the right of the inequality, we have:

(
1

2
− γ)E( sup

t∈[0,T ]

‖vn(t)‖4L2) ≤ E‖v(0)‖4L2 + E

∫ t

0

C1‖vn(s)‖4L2 + C2‖vn(s)‖2L2ds,

since we have obtained E(supt∈[0,T ] ‖vn(t)‖2L2) ≤ C, the Gronwall’s inequality yields

E( sup
t∈[0,T ]

‖vn(t)‖4L2) <∞.

We complete the proof. �

Lemma 3.5. We have the following uniform estimates under the hypothesis of Theorem 3.1,

E sup
t∈[0,T ]

‖vn(t)‖2H0,1 + E

∫ T

0

‖vn(t)‖2H1,1dt ≤ C(K̃0, K̃1, T )(1 + E‖v0‖2H0,1). (3.9)

Proof. Using again the Itô formula to ‖vn(t)‖2H0,1 , we obtain

‖vn(t)‖2H0,1 + 2

∫ t

0

‖vn(t)‖2H1,1ds = ‖Pnv(0)‖2H0,1 +

2∑
j=1

Jj(t), (3.10)

where

J1(t) = 2

∫ t

0

(σ(s, vn(s))dWn(s), vn(s))H0,1 ,

J2(t) =

∫ t

0

‖Pnσ(s, vn(s))‖2L2(Y,H0,1)ds.

The growth condition implies that

J2(t) ≤
∫ t

0

K̃0 + K̃1‖vn(s)‖2H1,1ds, (3.11)

and

E(sup
s≤t
|2
∫ s

0

(σ(r, vn(r))dWn(r), vn(r))H0,1 |)

≤ 6E{
∫ s

0

‖Pnσ(r, vn)(r)‖2L2(Y,H0,1)‖vn(r)‖2H0,1dr} 1
2

≤ β̃E(sup
s≤t

(‖vn(s)‖2H0,1) +
6

β̃
E

∫ t

0

[K̃0 + K̃1‖vn(s)‖2H1,1 ]ds. (3.12)
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Since K̃1 <
2
7 , we can choose 0 < β̃ < 1 such that ( 6

β̃
+ 1)K̃1 − 2 < 0. By (3.10)–(3.12) and dropping some

negative terms, we deduce

(1− β̃)E sup
s∈[0,t]

‖vn(s)‖2H0,1 ≤ E‖v(0)‖2H0,1 + CK0T +
1

2
E

∫ t

0

‖vn‖2H0,1ds.

Gronwall’s lemma implies that

E( sup
t∈[0,T ]

‖vn(t)‖2H0,1) ≤ C, (3.13)

which complete the proof.
�

Lemma 3.6. We have the following uniform estimates under the hypothesis of Theorem 3.1,

E sup
t∈[0,T ]

‖vn(t)‖4H0,1 + E

∫ T

0

‖vn(t)‖2H1,1‖vn(t)‖2H0,1dt ≤ C(K̃0, K̃1, T )(1 + E‖v0‖4H0,1). (3.14)

Proof. Using again the Itô formula to ‖vn(t)‖4H0,1 , we obtain

‖vn(t)‖4H0,1 + 4

∫ t

0

‖vn(t)‖2H1,1‖vn(t)‖2H0,1ds = ‖Pnv(0)‖4H0,1 +

3∑
j=1

Tj(t). (3.15)

where

T1(t) = 4

∫ t

0

(σ(s, vn(s))dWn(s), vn(s))H0,1‖vn(t)‖2H0,1 ,

T2(t) = 2

∫ t

0

‖Pnσ(s, vn(s))‖2L2(Y,H0,1)‖vn(t)‖2H0,1ds,

T3(t) = 4

∫ t

0

‖(Pnσ(s, vn(s)))∗(vn)‖2Y ds.

The growth condition implies that

T2(t) + T3(t) ≤ 2

∫ t

0

[K̃0 + K̃1‖vn(s)‖2H1,1 ]‖vn(t)‖2H0,1ds

≤ 2K̃0

∫ t

0

‖vn(s)‖2H0,1ds+ 2K̃1

∫ t

0

‖vn(s)‖2H1,1‖vn(s)‖2H0,1ds. (3.16)

Similar, we have

E(sup
s≤t
|2
∫ s

0

(σ(r, vn(r))dWn(r), vn(r))H0,1‖vn(t)‖2H0,1 |)

≤ 12E{
∫ s

0

‖Pnσ(r, vn)(r)‖6L2(Y,H0,1)‖vn(r)‖2H0,1dr} 1
2

≤ β̃E(sup
s≤t

(‖vn(s)‖4H0,1) +
12

β̃
K̃0E

∫ t

0

‖vn‖2H0,1ds
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+
12

β̃
K̃1E

∫ t

0

‖vn‖2H1,1‖vn‖2H0,1ds. (3.17)

Since K̃1 <
2
7 , we can choose 0 < β̃ < 1 such that ( 12

β̃
+ 2)K̃1 − 4 < 0. By (3.16)–(3.17) and dropping some

negative terms, we deduce

(1− β̃)E sup
s∈[0,t]

‖vn(s)‖4H0,1 ≤ E‖v(0)‖4H0,1 +
1

2
E

∫ t

0

‖vn‖4H0,1ds.

Gronwall’s lemma implies that

E( sup
t∈[0,T ]

‖vn(t)‖4H0,1) ≤ C. (3.18)

�

3.2. Tightness of the family of laws for the Galerkin solutions

In this section, we will prove the tightness of the family of laws for the Galerkin solutions. Before we proceed
further, we recall the following definition and theorem which we can refer to [3].

Let (S, %) be a separable and complete metric space.

Definition 3.7. A sequence (Xn)n≥1 satisfies the Aldous’s condition [A] iff for any ε, η > 0, there exists δ > 0
such that for every sequence (τn)n≥1 of Ft -stopping times with τn ≤ T , we have

sup
n∈N

sup
θ∈[0,δ]

P(%(Xn(τn + θ), Xn(τn)) ≥ η) ≤ ε.

Theorem 3.8 (see [3]). Assume that (Xn) satisfies Aldous’s condition [A]. Let Pn be the law of Xn on
C([0, T ],S), n ∈ N. Then for every ε there exists a subset Aε ⊂ C([0, T ],S) such that

sup
n∈N

Pn(Aε) ≥ 1− ε

and

lim
δ→0

sup
u∈Aε

sup
s,t∈[0,T ],|t−s|≤δ

%(u(t), u(s)) = 0.

We now state and prove the following crucial result.

Lemma 3.9. The family (vn)n∈N satisfies the Aldous’s condition [A] in S = H−1.

Proof. For any sequence (τn)n∈N of Ft -stopping times with τn ∈ [0, T ], we have

‖vn(τn + θ) − vn(τn)‖H−1

= ‖
∫ τn+θ

τn

(∂2xvn(s) + PnB(vn, vn))ds+

∫ τn+θ

τn

Pnσ(s, vn(s))dW‖H−1

≤ ‖I(1)n ‖H−1 + ‖I(2)n ‖H−1 + ‖I(3)n ‖H−1 . (3.19)
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Using Lemma 3.3, the definition of ‖ · ‖H−1 and the Hölder inequality, we infer that

E‖I(1)n ‖H−1 = E

∫ τn+θ

τn

‖∂2xvn(s)‖H−1ds

≤ CE

∫ τn+θ

τn

sup
‖ϕ‖H1<1

|〈∂2xvn(s), ϕ〉|ds

≤ θ
1
2 (E

∫ τn+θ

τn

‖vn(s)‖2H1,0dt)
1
2

≤ Cθ
1
2 .

By Lemma 3.4, Lemma 3.6 and (2.1), we have

E

∫ T

0

‖PnB(vn(t))‖2H−1dt ≤ E

∫ T

0

sup
‖ψ‖H1<1

|b(vn, ψ, vn)|2dt

≤ E

∫ T

0

(
‖vn‖2L2‖∂zvn‖L2‖∂xvn‖L2

+‖vn‖L2‖∂xvn‖3L2

)
dt

≤ C
(
E

∫ T

0

‖vn‖2L2‖∂zvn‖2L2dt+ E

∫ T

0

‖vn‖2L2‖∂xvn‖2L2dt

+E

∫ T

0

‖∂xvn‖2L2dt+ E

∫ T

0

‖vn‖4L2dt
)

≤ C
(
E sup
t∈[0,T ]

‖vn‖4L2 + E sup
t∈[0,T ]

‖∂zvn‖4L2

+E

∫ T

0

‖∂xvn‖2L2dt+ E

∫ T

0

‖vn‖2L2‖∂xvn‖2L2dt
)

<∞,

such that

E‖I(2)n ‖H−1 = E

∫ τn+θ

τn

‖B(vn(s), vn(s))‖H−1ds

≤ CE

∫ τn+θ

τn

sup
‖ϕ‖H1<1

|〈B(vn(s)), ϕ〉|ds

≤ E(

∫ τn+θ

τn

‖B(vn(s))‖2H−1ds)
1
2 (

∫ τn+θ

τn

‖ϕ‖2H1
ds)

1
2

≤ θ
1
2 (E

∫ τn+θ

τn

‖B(vn(s))‖2H−1ds)
1
2

≤ Cθ
1
2 .

By Burkholder-Davis-Gundy inequality and (2.4), we have

E‖I(3)n ‖H−1 = E
∥∥∥ ∫ τn+θ

τn

σ(s, vn(s))dW
∥∥∥
H−1
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≤
(
E
∥∥∥ ∫ τn+θ

τn

σ(s, vn(s))dW
∥∥∥2
H−1

) 1
2

≤ C
(
E

∫ τn+θ

τn

‖σ(s, vn(s))‖2L2(Y,H−1)ds
) 1

2

≤ Cθ
1
2 .

Collecting these estimates altogether and plugging them in (3.19), we obtain that there exists a constant C > 0
such that for any δ ∈ (0,∞),

sup
n∈N

E sup
θ∈[0,δ]

‖vn(t+ θ)− vn(t)‖H−1 ≤ Cδ. (3.20)

By Chebyshev’s inequality, for any ε > 0 and ϑ > 0

sup
n∈N

sup
θ∈[0,δ]

P({‖vn(t+ θ)− vn(t)‖H−1 ≥ ϑ}) ≤ 1

ϑ
E‖vn(t+ θ)− vn(t)‖H−1 ≤ C

ϑ
δ.

Choosing δ in such a way that δ < C−1ϑε, we infer that

sup
n∈N

sup
θ∈[0,δ]

P(‖vn(t+ θ)− vn(t)‖H−1 ≥ ϑ) < ε,

from which we easily infer that (vn)n∈N satisfies the condition [A] in H−1. �
In the next lemma we will prove that the family of laws of (vn)n∈N, denoted by P̂n is tightness.

Lemma 3.10. Under the hypothesis of Theorem 3.1, P̂n is tight in the space

X = C([0, T ];H−1) ∩ L2([0, T ];H) ∩ L2
w([0, T ];H1,1) ∩ L∞w∗([0, T ];H0,1),

where L2
w([0, T ];H1,1) denotes L2([0, T ];H1,1) with the weak topology and L∞w∗([0, T ];H0,1) denotes

L∞([0, T ];H0,1) with the weak star topology.

Proof. In order to get the tightness of P̂n, we should prove that there exists a compact subset Kε of X such
that

sup
n∈N

P̂n(Kε) ≥ 1− ε. (3.21)

By the Chebyshev inequality and Lemma 3.3, Lemma 3.5, we infer that for any n ∈ N and any r1, r2 > 0,

P
(

sup
s∈[0,T ]

‖vn‖2H0,1 > r1

)
≤
E(sups∈[0,T ] ‖vn‖2H0,1)

r
≤ C1

r1
,

P
(
‖vn‖L2([0,T ];H1,1) > r2

)
≤
E(‖vn‖2L2([0,T ];H1,1))

r22
≤ C2

r22
.

Let R1, R2 be such that C1

R1
≤ ε

3 and C2

R2
2
≤ ε

3 , we denote

B1 := {v ∈ X : sup
s∈[0,T ]

‖v‖2H0,1 ≤ R1},
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B2 := {v ∈ X : ‖v‖L2([0,T ];H1,1) ≤ R2}.

Then

sup
n∈N

P
(

sup
s∈[0,T ]

‖vn‖2H0,1 > R1

)
≤ ε

3
, (3.22)

sup
n∈N

P
(
‖vn‖L2([0,T ];H1,1) > R2

)
≤ ε

3
. (3.23)

By Theorem 3.8, there exists a subset A ε
3
⊂ C([0, T ], H−1) such that

P(A ε
3
) ≥ 1− ε

3
(3.24)

and

lim
δ→0

sup
vn∈A ε

3

sup
s,t∈[0,T ],|t−s|≤δ

‖vn(t)− vn(s)‖H−1 = 0. (3.25)

It is sufficient to define Kε as the closure of the set B1 ∩B2 ∩A ε
3

in X , and by (3.22),(3.23) and (3.24), we can
obtain (3.21).

By the definition, Kε is uniformly bounded hence relatively compact in L2
w([0, T ];H1,1) and L∞w∗([0, T ];H0,1).

Since L2 could be embedded compactly in H−1, as n,m→∞, we have∫ t

0

‖vn − vm‖2L2dt ≤
∫ t

0

‖vn − vm‖H1‖vn − vm‖H−1dt

≤ CR2,T sup
t∈[0,T ]

‖vn − vm‖2H−1

→ 0. (3.26)

By (3.25), argument analogously to the proof of the classical Arzelá-Ascoli Theorem, we can obtain that vn ∈ A ε
3

is compact in C([0, T ], H−1). To sum up, we conclude that Kε is a compact subset of X . The proof is thus
completed. �

We will use the following Jakubowski’s version of the Skorokhod theorem in the form given by Brzezniak and
Ondrejat [4], see also [29].

Theorem 3.11. Let Y be a topological space such that there exists a sequence fm of continuous functions
fm : Y → R that separates points of Y. Let us denote by S the σ -algebra generated by the maps fm. Then

(j1) every compact subset of Y is metrizable;
(j2) if (µm) is tight sequence of probability measures on (Y,S), then there exists a subsequence (mk), a

probability space (Ω,F , P ) with Y -valued Borel measurable variables ξk, ξ such that µmk
is the law of ξk and ξk

converges to ξ almost surely on Ω. Moreover, the law of ξ is a Radon measure.

As in [39], we can obtain that on each space appearing in the definition of X there exists a countable set
of continuous real-valued functions separating points. Then all the conditions of the above Skorokhod theorem
are satisfied. By Theorem 3.2, there exists another probability space (Ω̃, F̃ , P̃) and a subsequence P̂nk

as well
as random variables ṽnk

in the space (Ω̃, F̃ , P̃), such that

(i) ṽnk
has the law P̂nk

,

(ii) P̂nk
converges weakly to some P̂ ,

(iii) ṽnk
→ ṽ in X P̃− a.s. and ṽ has the law P̂ ∈ P(C([0, T ];H−1)).
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Remark 3.12. since ṽnk
has the same law as vnk

, we immediately have

EP̃( sup
t∈[0,T ]

‖ṽ(t)‖2L2) + EP̃
∫ T

0

‖ṽ(t)‖2H1,0dt ≤ C(1 + EP̃‖v0‖2L2),

EP̂ ( sup
t∈[0,T ]

‖v(t)‖2L2) + EP̂
∫ T

0

‖v(t)‖2H1,0dt ≤ C(1 + EP̂ ‖v0‖2L2). (3.27)

Remark 3.13. Similarly, for L4(Ω) estimates, we have

EP̃( sup
t∈[0,T ]

‖ṽ(t)‖4L2) + EP̃
∫ T

0

‖ṽ(t)‖2L2‖ṽ(t)‖2H1,0dt ≤ C(1 + EP̃‖v0‖4L2),

EP̂ ( sup
t∈[0,T ]

‖v(t)‖4L2) + EP̂
∫ T

0

‖v(t)‖2L2‖v(t)‖2H1,0dt ≤ C(1 + EP̂ ‖v0‖4L2). (3.28)

3.3. Pass to the limit and the proof of main theorems

Let us denote the subsequence (ṽnk
) again by (ṽn) and pass the limit as n→∞.

Proof of Theorem 3.1. Let us prove P̂ satisfies (M1), (M2) and (M3).
For (M1), noting that vn(0)→ v0 in H, we have

P̂ (v(0) = v0) = P̃(ṽ(0) = v0) = lim
n→∞

P̃(ṽn(0) = Pnv0) = 1,

P̂{v ∈ C([0, T ], H−1) :

∫ T

0

‖F (v(s))‖H−1ds+

∫ T

0

‖σ(s, v(s))‖2L2(Y,H)ds < +∞}

= P̃{ṽ ∈ C([0, T ], H−1) :

∫ T

0

‖F (ṽ(s))‖H−1ds+

∫ T

0

‖σ(s, ṽ(s))‖2L2(Y,H)ds < +∞}.

Since

ṽn → ṽ in X P̃− a.s.,
ṽ ∈ L2([0, T ], H1,1) ∩ L∞([0, T ], H0,1) P̃− a.s.,

thus by the growth condition of σ, we have∫ T

0

‖σ(s, ṽ(s))‖2L2(Y,H)ds ≤
∫ T

0

(K0 +K1‖ṽ‖2L2 +K2‖∂xṽ‖2L2)ds <∞, P̃− a.s.

Similar as (3.19), we obtain
∫ T
0
‖F (ṽ(s))‖H−1ds < +∞, P̃− a.s.. Thus (M1) is satisfied. Then we prove (M2).

The following key lemma should be given.

Lemma 3.14. For all s, t ∈ [0, T ] such that s ≤ t and all ψ ∈ C∞per(M),

(a) lim
n→∞

(ṽn(t), Pnψ)H0,1 = (ṽ(t), ψ)H0,1 , P̃− a.s.

(b) lim
n→∞

∫ t

s

〈∂xxṽn(σ), Pnψ〉dσ =

∫ t

s

〈∂xxṽ(σ), ψ〉dσ, P̃− a.s.
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(c) lim
n→∞

∫ t

s

〈B(ṽn(σ)), Pnψ〉dσ =

∫ t

s

〈B(ṽ(σ)), ψ〉dσ, P̃− a.s.

Proof. Let us fix s, t ∈ [0, T ], s ≤ t and ψ ∈ C∞per(M). We know that

ṽn → ṽ in X , P̃− a.s.. (3.29)

Thus ṽn → ṽ in Lw∗([0, T ];H0,1), P̃-a.s., and Pnψ → ψ in H1, we infer that assertion (a) holds.
Let us move to (b). Since ṽn → ṽ in L2

w(0, T ;H1,1), P̃ -a.s., and Pnψ → ψ in H1, we infer that P̃-a.s.,∫ t

s

〈∂xxṽn(σ), Pnψ〉dσ =

∫ t

s

〈∂xṽn(σ), Pn∂xψ))dσ →
∫ t

s

〈∂xṽ(σ), ∂xψ〉dσ

=

∫ t

s

〈∂xxṽ(σ), ψ〉dσ, as n→∞.

We will prove now assertion (c). The proof is easily get if we are able to show that∫ t

s

〈B(ṽn)−B(ṽ), ψ〉dσ → 0, as n→∞. (3.30)

For this purpose, by (3.26), we obtain the strong convergence of (ṽn)n in L2([0, T ], L2). This implies that in
L1([0, T ], L1), we have the following weak convergence (see Rem. 3.15).

ṽn · ∂xṽn ⇀ ṽ · ∂xṽ, (3.31)

W(ṽn) · ∂z ṽn ⇀ W(ṽ) · ∂z ṽ, (3.32)

and by (3.31)–(3.32), it yields that∫ t

s

〈B(ṽn)−B(ṽ), ψ〉dσ

=

∫ t

s

〈ṽn · ∂xṽn − ṽ · ∂xṽ, ψ〉dσ

+

∫ t

s

〈W(ṽn) · ∂z ṽn −W(ṽ) · ∂z ṽ, ψ〉dσ

→ 0, as n→∞. (3.33)

Then we have ∫ t

s

〈B(ṽn, ṽn), Pnψ〉dσ

=

∫ t

s

〈B(ṽn, ṽn), Pnψ − ψ〉dσ +

∫ t

s

〈B(ṽn, ṽn), ψ〉dσ

= S1(n) + S2(n).

Since

|S1(n)| ≤
∫ t

s

‖B(ṽn, ṽn)‖H−1dσ · ‖Pnψ − ψ‖H1 . (3.34)
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By (3.30) and (3.34), we infer that

lim
n→∞

∫ t

s

〈B(ṽn(σ)), Pnψ〉dσ = lim
n→∞

(S1(n) + S2(n)) =

∫ t

s

〈B(ṽ(σ)), ψ〉dσ, P̃− a.s..

This completes the proof of the lemma. �
By Lemma 3.14, we have

∫ T

0

〈F (ṽn(s)), Pnψ〉ds→
∫ T

0

F (ṽ(s)), ψ〉ds, P̃− a.s., (3.35)

with (3.35) in hand, using a similar method as in [20, 39], (M2) holds.
(M3) is satisfied by (3.27).
Thus we complete the proof of Theorem 3.1. �

Remark 3.15. The proofs of (3.31)–(3.32) are similar. Let’s take (3.32) as an example. By the boundary
conditions and integrating by parts in x or z, we get

|
∫ t

0

〈W(ṽn) · ∂z ṽn −W(ṽ) · ∂z ṽ, ψ〉ds|

= |
∫ t

0

〈W(ṽn) · ∂z(ṽn − ṽ), ψ〉+ 〈(W(ṽn)−W(ṽ)) · ∂z ṽ, ψ〉ds|

=

∫ t

0

|〈∂zW(ṽn) · (ṽn − ṽ), ψ〉|ds+

∫ t

0

|〈W(ṽn) · (ṽn − ṽ), ∂zψ〉|ds

+

∫ t

0

|〈
∫ z

−1
(ṽn − ṽ)dz · ∂xz ṽ, ψ〉|ds+

∫ t

0

|〈
∫ z

−1
(ṽn − ṽ)dz · ∂z ṽ, ∂xψ〉|ds

≤ C
(
‖ṽn‖L2([0,T ],H1,0)‖ṽn − ṽ‖L2([0,T ],L2)‖ψ‖L∞

+‖W(ṽn)‖L2([0,T ],L2)‖ṽn − ṽ‖L2([0,T ],L2)‖∂zψ‖L∞

+
∥∥∥ ∫ z

−1
(ṽn − ṽ)dz

∥∥∥
L2([0,T ],L2)

‖ṽ‖L2([0,T ],H1,1)‖ψ‖L∞

+
∥∥∥ ∫ z

−1
(ṽn − ṽ)dz

∥∥∥
L2([0,T ],L2)

‖ṽ‖L2([0,T ],H0,1)‖∂xψ‖L∞
)

≤ C‖ṽn − ṽ‖L2([0,T ],L2)

(
‖ṽn‖L2([0,T ],H1,0) + ‖ṽ‖L2([0,T ],H1,1) + ‖ṽ‖L2([0,T ],H0,1)

)
→ 0, as n→∞,

where

‖W(ṽn)‖L2([0,T ],L2) =

∫ 1

0

∫ 0

−1

∣∣∣ ∫ z

−1
∂xṽndz

∣∣∣2dzdx

≤ C

∫ 1

0

∫ 0

−1

∣∣∣∂xṽn∣∣∣2dzdx

≤ C‖ṽn‖L2([0,T ],H1,0),
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and

∥∥∥ ∫ z

−1
(ṽn − ṽ)dz

∥∥∥
L2([0,T ],L2)

=

∫ 1

0

∫ 0

−1

∣∣∣ ∫ z

−1
(ṽn − ṽ)dz

∣∣∣2dzdx

≤ C

∫ 1

0

∫ 0

−1

∣∣∣(ṽn − ṽ)
∣∣∣2dzdx

≤ C‖ṽn − ṽ‖L2([0,T ],L2).

�
Finally let us turn to the proof of the pathwise uniqueness. To this end, we need the following lemma.

Lemma 3.16. Assume that u, v ∈ H̃1,1, we have

〈F (u)− F (v), u− v〉+
1

2
‖∂x(u− v)‖2L2 ≤ C‖u− v‖2L2(1 + ‖∂xv‖2L2 + ‖∂xzv‖2L2 + ‖∂zv‖4L2).

Proof. Set Φ = u− v. We deduce

〈F (u)− F (v),Φ〉 = −〈∂xx(u− v),Φ〉 − 〈B(u)−B(v),Φ〉
≡ I1 + I2.

Integrating by parts, using a similar method as in Lemma 2.1, Hölder inequality and Young inequality imply

I1 = −‖∂x(u− v)‖2L2 ,

I2 = b(u− v, v, u− v)

≤
∫ 1

0

(
sup

z∈[−1,0]
|∂xv|

∫ 0

−1

[
(u− v) · (u− v)

]
dz
)

dx

+

∫ 1

0

(
sup

z∈[−1,0]

( ∫ z

−1
∂x(u− v)dz̃

) ∫ 0

−1

(
∂zv · (u− v)

)
dz
)

dx

≤ ‖u− v‖L2‖∂xv‖
1
2

L2‖∂xzv‖
1
2

L2‖u− v‖
1
2

L2‖∂x(u− v)‖
1
2

L2

+‖∂x(u− v)‖L2‖∂zv‖L2‖u− v‖
1
2

L2‖∂x(u− v)‖
1
2

L2

≤ 1

2
‖∂x(u− v)‖2L2 + C‖u− v‖2L2(‖∂xv‖

2
3

L2 · ‖∂xzv‖
2
3

L2 + ‖∂zv‖4L2)

≤ 1

2
‖∂x(u− v)‖2L2 + C‖u− v‖2L2(1 + ‖∂xv‖2L2 + ‖∂xzv‖2L2 + ‖∂zv‖4L2).

Combining I1 and I2, we end the proof. �
Proof of Theorem 3.2. Set

ũ := v1 − v2, w̃u := w1 − w2.

Then ũ satisfies the following equation

dũ = −
(
∂xxũ+

(
B(v1(t))−B(v2(t))

))
dt+ [σ(v1(t))− σ(v2(t))]dW (t). (3.36)



262 C. SUN ET AL.

Let

r(t) = C

∫ t

0

(1 + ‖∂xv2‖2L2 + ‖∂xzv2‖2L2 + ‖∂zv2‖4L2)ds, t ∈ [0, T ],

by the Itô formula for the term e−r(t)‖ũ‖2L, we get

e−r(t)‖ũ(t)‖2L2

≤
∫ t

0

e−r(s)
(
− r′(s)‖ũ(s)‖2L2 − 2‖∂xũ(s)‖2L2

−2〈B(v1(s))−B(v2(s)), ũ(s)〉
)

ds

+

∫ t

0

e−r(s)‖σ(v1(s))− σ(v2(s))‖2L2(Y,H)ds

+2

∫ t

0

e−r(s)〈σ(v1(s))− σ(v2(s)), ũ(s)dW (s)〉. (3.37)

Due to Lemma 3.16, we have

2|〈B(v1(s))−B(v2(s)), ũ(s)〉| ≤ ‖∂xũ(s)‖2L2

+C‖ũ‖2L2(1 + ‖∂xv2‖2L2 + ‖∂xzv2‖2L2 + ‖∂zv2‖4L2).

By (2.7), hence we have

e−r(t)‖ũ(t)‖2L2 ≤ ‖ũ(0)‖2L2 + (−1 + L1)

∫ t

0

e−r(s)‖∂xũ(s)‖2ds

+2

∫ t

0

e−r(s)〈σ(v1(s))− σ(v2(s)), ũ(s)dW (s)〉.

Taking expectation on both sides, by the martingales have zero averages, for L1 < 1, we have

E
[
e−r(t)‖ũ(t)‖2L2 + (1− L1)

∫ t

0

e−r(s)‖∂xũ(s)‖2ds
]
≤ E‖ũ(0)‖2L2 = 0.

Thus we obtain the uniqueness of the solution. �
With martingale solutions and pathwise uniqueness of the solutions in hand, we obtain the existence of the

pathwise solutions (meaning that the solutions are defined on the prescribed probability space) to this system
by the infinite-dimensional-space extension of the Yamada-Watanabe theorem (see [23]).

Acknowledgements. We thank the reviewer for the helpful comments.

References
[1] H. Bessaih and A. Millet, On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity. J. Math. Anal. Appl.

462 (2018) 915–956.
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[46] J. Pedlosky, Geophysical Fluid Dynamics. Springer-Verlag, New York (1987).
[47] M. Petcu, On the backward uniqueness of the primitive equations. J. Math. Pures Appl. 87 (2007) 275-289.

[48] M. Petcu, R. Temam and D. Wirosoetisno, Existence and regularity results for the primitive equations in two space dimensions.
Comm. Pure Appl. Anal. 3 (2004) 115-131.

[49] M. Petcu, R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics. Handbook of Numerical
Analysis 14 (2009) 577-750.

[50] M. Saal and J. Slavk, Stochastic primitive equations with horizontal viscosity and diffusivity. Preprint arXiv:2109.14568 (2021).

[51] C. Sun and H. Gao, Well-posedness for the stochastic 2D primitive equations with Lévy noise. Science China Math. 56 (2013)
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