

MARTINGALE SOLUTIONS OF THE STOCHASTIC 2D PRIMITIVE EQUATIONS WITH ANISOTROPIC VISCOSITY*

CHENGFENG SUN¹, HONGJUN GAO^{2,***}, HUI LIU³ AND JIE ZHANG¹

Abstract. The stochastic 2D primitive equations with anisotropic viscosity are studied in this paper. The existence of the martingale solutions and pathwise uniqueness of the solutions are obtained. The proof is based on anisotropic estimates, the compactness method, tightness criteria and the Jakubowski version of the Skorokhod theorem for nonmetric spaces.

Mathematics Subject Classification. 35Q35, 60H15, 60H30.

Received July 3, 2021. Accepted April 19, 2022.

1. INTRODUCTION

The primitive equations (PE) for oceanic and atmospheric dynamics are fundamental models in meteorology, which derived from the Navier-Stokes equations assuming a hydrostatic balance for the pressure term in the vertical direction. For more information on physical background and geophysical applications of the primitive equations, we refer the reader to [9, 25, 46], for example.

Known results: For the deterministic primitive equations with full viscosity, *i.e.*, the diffusion term $-\Delta$ is defined by $-\partial_x^2 - \partial_y^2 - \partial_z^2$, the mathematical analysis of the initial value problem has been started by Lions, Temam and Wang [40–42], where the notions of weak and strong solutions were defined and the global existence of weak solutions was proved, however, the uniqueness of weak solutions is still unclear. By decomposing the velocity into barotropic and baroclinic components, a breakthrough result has been proven by Cao-Titi [8], where the global well-posedness of strong solutions in H^1 to the three dimensional primitive equations has been obtained, see also Kobelkov [33] and Kukavica-Ziane [36]. One can see some other literatures (for instance [21, 26, 30]-[34, 48, 49]) for the well-posed results with different space dimensions, initial data and boundary conditions. In particular, about uniqueness of weak solutions, by introducing the notion of z -weak solution (see [2, 47]), *i.e.*, weak solutions with additional regularity in the vertical direction, researchers have found some results [31, 34, 37, 44].

*Supported partially by a China NSF Grant Nos. 12171084, 11701269, 11901342, China Postdoctoral Science Foundation No. 2019M652153, the fundamental Research Funds for the Central Universities No. 2242022R10013 and the Natural Science Foundation of Shandong under Grant No. ZR2018QA002.

Keywords and phrases: Stochastic primitive equations, anisotropic viscosity, Martingale solutions.

¹ School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, PR China.

² School of Mathematics, Southeast University, Nanjing 211189, PR China.

³ School of Mathematical Sciences, Qufu Normal University, Qufu 273165, PR China.

** Corresponding author: hjgao@seu.edu.cn

In the models of geophysical flows, due to uncertainties in the physics derivations and intrinsic heat fluctuations, white noise driven random term was introduced to the geophysical equations (see for instance [45]). Research on stochastic primitive equations with full viscosity is a classical topic and has been studied extensively in a number of literatures. For the well-posedness, regularity, random attractor and existence and regularity of invariant measures, we refer the readers to [10]-[18, 22, 51]. For the deviation principles and small time asymptotics of the primitive equations, see [12, 13].

Due to the presence of strong turbulent mixing in the horizontal direction in the large scale atmosphere, the viscosity in the horizontal direction is much stronger than that in the vertical direction. As a result, it is necessary to investigate the primitive equations with anisotropic viscosity, *i.e.*, the diffusion term $-\Delta$ is replaced by $-\nu_1\partial_x^2 - \nu_2\partial_y^2 - \nu_3\partial_z^2$, where $\nu_1, \nu_2, \nu_3 \geq 0$, and, in particular, the system that with only horizontal viscosities, *i.e.*, the diffusion term $-\Delta$ is replaced by $-\Delta_H$, where $\Delta_H = \nu_1\partial_x^2 + \nu_2\partial_y^2$, $\nu_1, \nu_2 > 0$ (see [6, 7, 38]). Mathematically, for the primitive equations with partial viscosity, we would like to emphasize that the system is not purely parabolic anymore. Cao *et al.* [6, 7] studied the 3D deterministic primitive equations with only horizontal viscosity analytically. They tackled this problem in a periodical setting by considering a vanishing vertical viscosity limit and obtained global strong well-posedness results for initial data with regularity near H^1 , and local well-posedness for initial data in H^1 . Instead of considering a vanishing vertical viscosity limit, by a direct approach which in particular avoids unnecessary boundary conditions on top and bottom, Hussein *et al.* [28] studied the initial value and the time-periodic problem for the 3D deterministic primitive equations with horizontal viscosity and obtained existence and uniqueness of local z -weak solutions for initial data in $H_z^1 L_{xy}^2$ and local strong solutions for initial data in H^1 . Furthermore, if $\partial_z v_0 \in L^q$ for $q > 2$, the local z -weak solutions extended to a global strong solution. For the case of full hyper-viscosity or only horizontal hyper-viscosity, *i.e.*, the diffusion term $-\Delta$ is replaced by $-\Delta + \varepsilon(-\Delta)^l$ or by $-\Delta + \varepsilon(-\Delta_H)^l$, respectively, where $\varepsilon > 0, l > 1$, strong convergence for $\varepsilon \rightarrow 0$ of hyper-viscous solutions to a weak solution of the 3D deterministic Navier-Stokes and primitive equations, respectively, was obtained by Hussein in [27].

For the 3D deterministic primitive equations without viscosity, *i.e.*, $\nu_1 = \nu_2 = \nu_3 = 0$, blow-up result was obtained by Cao *et al.* in [5], see also Wong [52]. Ill-posedness result was obtained in Sobolev spaces by Han-Kwan and Nguyen in [24], where the solution map was not (Hölder) continuous with respect to initial data. Local well-posedness has been proven only for analytical data by Kukavica *et al.* in [35].

Stochastic 2D primitive equations with only horizontal viscosity: The primary goal of this paper is to study the well-posedness of 2D stochastic primitive equations with horizontal viscosity driven by multiplicative white noise. For simplicity, a period setting is considered here. We consider the domain $M := (0, 1) \times (-1, 0)$ and denote by $x \in (0, 1)$ the horizontal coordinate and by $z \in (-1, 0)$ the vertical one. Let (v, w) be the velocity with horizontal component v and vertical component w , and p be the pressure. Then the 2D stochastic primitive equations are given by

$$\begin{cases} dv + (v \cdot \partial_x v + w\partial_z v - \partial_x^2 v + \partial_x p)dt = fdt + \sigma(t, v)dW, & \text{in } M \times (0, T), \\ \partial_z p = 0, & \text{in } M \times (0, T), \\ \partial_x v + \partial_z w = 0, & \text{in } M \times (0, T), \\ p \text{ periodic in } x, z, & \\ v, w \text{ periodic in } x, z, \text{ even and odd,} & \text{in } z, \text{ respectively,} \\ v(0) = v_0, & \text{in } M, \end{cases} \quad (1.1)$$

where σ is the random external forces, f is an external force term and W is a cylindrical Wiener process, the definitions of which will be introduced in Section 2. As in [27], note that the vertical periodicity and parity conditions in (1.1) correspond to an equivalent set of equations on $(0, 1) \times (-1, 0)$ with lateral periodicity and

$$\partial_z v|_{z=0} = \partial_z v|_{z=-1} = 0, \quad w|_{z=0} = w|_{z=-1} = 0. \quad (1.2)$$

With these boundary conditions, we suppose with no loss of generality that (see also in [19])

$$\int_{-1}^0 f dz = \int_{-1}^0 \sigma dz = \int_{-1}^0 v dz = 0 \quad (1.3)$$

and

$$w(x, z, t) = - \int_{-1}^z \partial_x v(x, \xi, t) d\xi. \quad (1.4)$$

In the rest of paper, in order to focus our attention on the difficulties arising from the nonlinear term, we ignore the external force term f . The whole process of proof shows that the existence of f does not affect our conclusion.

Studies on stochastic geophysical fluid equations with anisotropic viscosity have attracted more and more attention in recent years. Especially, for the stochastic Navier-Stokes equations, by adding a term of Brinkman-Forchheimer type, Bessaih and Millet [1] established the existence and uniqueness of global weak solutions (in the PDE sense) in the whole space \mathbb{R}^3 . Liang, Zhang and Zhu [39] investigated the existence of the martingale solutions and pathwise uniqueness of the solutions in a given anisotropic Sobolev space on \mathbb{R}^2 or on the two dimensional torus \mathbb{T}^2 . Comparing with the Navier-Stokes equations, it is worth to point out that the system of primitive equations is generally harder to deal with, the nonlinear term $w\partial_z v$ is a more difficult version in contrast to the nonlinearity of the Navier-Stokes equations since $w = w(v)$ given by (1.4) involves a first order derivative. Therefore, no matter which type of viscosity is considered, how to deal with the estimates of nonlinear term is a challenge.

Returning to the study of this paper, for the stochastic primitive equations with partial viscosity, fewer works have been done. To the best of our knowledge, only the literature [50] was involved on this topic. In [50], the existence and uniqueness of pathwise solutions in H^1 to the stochastic 3D primitive equations with only horizontal viscosity and diffusivity driven by transport noise were established. Firstly, the global existence of martingale solutions was established for a modified equations with a cut-off acting on $L_z^\infty L_{xy}^4$ -norm of the solution. After a standard argument using the theorems by Prokhorov and Skorokhod, the existence of maximal solutions up to a strictly positive stopping time was established. Then, to establish uniqueness, more regular initial data was needed in the vertical direction. Finally, the global existence was established using the logarithmic Sobolev embedding and an iterated stopping time argument.

Generally, what works in 3D does not necessarily work in 2D, in this paper, we study the stochastic 2D primitive equations with horizontal viscosity. By new anisotropic estimations and compactness method differently from the above mentioned methods in [50], global existence of martingale solutions has been obtained. In the proof of the tightness argument of Galerkin schemes, an Aldous's condition (first introduced in [3]) is applied to deal with the H_{xz}^{-1} norm. On the other hand, compared to [50], where the solutions were strong in the PDE sense, the solutions considered here are z -weak meanings (in the PDE sense), moreover, to obtain the uniqueness of z -weak solutions, we don't need more regular initial value.

This paper is organized as follows: In Section 2, some basic definitions and notations are given for a periodic setting such as function spaces, assumptions and the definition of martingale solutions. In Section 3, the main results with proofs are formulated.

2. PRELIMINARIES

For $s \in [0, +\infty)$, one defines the Bessel potential spaces

$$H_{per}^s(M) = \overline{C_{per}^\infty(\overline{M})}^{\|\cdot\|_{H^s}} \quad \text{and} \quad H_{per}^{-s}(M) = (H_{per}^s(M))',$$

where $C_{per}^\infty(\overline{M})$ denotes the spaces of smooth functions which are periodic of any order (cf. [27]) in all directions on ∂M and $(\cdot)'$ denotes the dual of the corresponding space. Moreover, $H_{per}^s(M)$ can be characterized by means of Fourier series as

$$\|v\|_{H_{per}^s(M)}^2 = \sum_{k \in \mathbb{Z}^2} (1 + |k|^2)^s |\widehat{v}(k)|^2,$$

where

$$\widehat{v}(k) = \frac{1}{2} \int_M v(x, z) e^{\pi i k_1 x} e^{2\pi i k_2 z} dx dz, \quad k = (k_1, k_2) \in \mathbb{Z}^2.$$

Furthermore, we recall the anisotropic Sobolev norms,

$$\begin{aligned} \|v\|_{H_{per}^{s,s'}(M)}^2 &= \sum_{k \in \mathbb{Z}^2} (1 + |k_1|^2)^s (1 + |k_2|^2)^{s'} |\widehat{v}(k)|^2, \\ \|v\|_{\dot{H}_{per}^{s,s'}(M)}^2 &= \sum_{k \in \mathbb{Z}^2} |k_1|^{2s} (1 + |k_2|^2)^{s'} |\widehat{v}(k)|^2. \end{aligned}$$

For the sake of simplicity, we abbreviate $\|\cdot\|_{H_{per}^{s,s'}}^2$, $\|\cdot\|_{\dot{H}_{per}^{s,s'}}^2$ to $\|\cdot\|_{H^{s,s'}}^2$, $\|\cdot\|_{\dot{H}^{s,s'}}^2$, respectively. We will be working on these spaces,

$$\begin{aligned} H &:= \{v \in L^2(M) \mid \int_{-1}^0 v dz = 0\}, \\ V &:= \{v \in H_{per}^1(M) \mid \int_{-1}^0 v dz = 0\}, \\ \tilde{H}^s &:= \{v \in H_{per}^s(M) \mid \int_{-1}^0 v dz = 0\}, \\ \tilde{H}^{s,s'} &:= \{v \in H_{per}^{s,s'}(M) \mid \int_{-1}^0 v dz = 0\}. \end{aligned}$$

Note that $V \equiv \tilde{H}^1$, moreover, the scalar product (\cdot, \cdot) is denoted by

$$(u, v) = (u, v)_{L^2(M)} = \int_M u(x, z) v(x, z) dx dz.$$

We use $(\cdot, \cdot)_{H^{0,1}}$ or $(\cdot, \cdot)_{0,1}$ to denote the inner product

$$(u, v)_{H^{0,1}(M)} = \int_M (u(x, z) v(x, z) + \partial_z u(x, z) \partial_z v(x, z)) dx dz.$$

The Leray operator P_H is the orthogonal projection of $L^2(M)$ on to H . The action of this operator is given by

$$P_H v = v - \int_{-1}^0 v dz.$$

Let $e_k, k \geq 1$ be an orthonormal basis of H whose elements belong to H^2 and orthogonal in $\tilde{H}^{0,1}$ and $\tilde{H}^{1,0}$ (hence also $\tilde{H}^{1,1}$). For integers $k, l \geq 1$ with $k \neq l$, we deduce that for $i = x, z$,

$$(\partial_i^2 e_k, e_l) = -(\partial_i e_k, \partial_i e_l) = 0.$$

Therefore, $\partial_i^2 e_k$ is a constant multiple of e_k . For example, for $k = (k_1, k_2)$, the eigenfunctions and associated eigenvalues can be identified,

$$e_k(x, z) = \left\{ \sqrt{2} \sin(k_1 \pi x) \cos(k_2 \pi z) \right\}_{k_1, k_2 \geq 1}, \quad \left\{ \pi^2 (k_1^2 + k_2^2) \right\}_{k_1, k_2 \geq 1}.$$

In accordance with equality (1.4), we take

$$\mathbb{W}(v) := - \int_{-1}^z \partial_x v(x, \tilde{z}) d\tilde{z}.$$

And let

$$B(u, v) := u \partial_x v + \mathbb{W}(u) \partial_z v,$$

where $u, v \in V$ and denote $B(u, u) = B(u)$.

Define the bilinear operator $B(u, v) : V \times V \rightarrow V'$ according to

$$\langle B(u, v), w \rangle = b(u, v, w),$$

where

$$b(u, v, w) = \int_M (u \partial_x v w + \mathbb{W}(u) \partial_z v w) dM.$$

Due to boundary conditions (1.2), we have the following lemma.

Lemma 2.1 (Anisotropic estimates). *The trilinear forms b and B have the following properties. There exists a constant $C > 0$ such that*

$$\begin{aligned} |b(u, v, w)| &\leq C \left(\|u\|_{L^2}^{\frac{1}{2}} \|\partial_z u\|_{L^2}^{\frac{1}{2}} \|\partial_x v\|_{L^2} \|w\|_{L^2}^{\frac{1}{2}} \|\partial_x w\|_{L^2}^{\frac{1}{2}} \right. \\ &\quad \left. + \|\partial_x u\|_{L^2} \|\partial_z v\|_{L^2} \|w\|_{L^2}^{\frac{1}{2}} \|\partial_x w\|_{L^2}^{\frac{1}{2}} \right) \end{aligned} \quad (2.1)$$

for any $u, v, w \in V$,

$$b(u, v, v) = 0, \quad \text{for any } u, v, w \in H, \quad (2.2)$$

$$\langle B(u, u), \partial_{zz} u \rangle = 0, \quad \text{for any } u \in \tilde{H}^{0,2}. \quad (2.3)$$

Proof. The properties of (2.2) and (2.3) have been obtained in [19], here, by Hölder inequality, we give the estimate of (2.1) anisotropically.

$$\begin{aligned} |b(u, v, w)| &\leq \int_0^1 \left(\sup_{z \in [-1, 0]} |u| \int_{-1}^0 (\partial_x v \cdot w) dz \right) dx \\ &\quad + \int_0^1 \left(\sup_{z \in [-1, 0]} \left(\int_{-1}^z \partial_x u d\tilde{z} \right) \int_{-1}^0 (\partial_z v \cdot w) dz \right) dx \end{aligned}$$

$$\begin{aligned}
&\leq C \int_0^1 \left(\int_{-1}^0 |u|^2 dz \right)^{\frac{1}{4}} \left(\int_{-1}^0 |\partial_z u|^2 dz \right)^{\frac{1}{4}} \left(\int_{-1}^0 |\partial_x v|^2 dz \right)^{\frac{1}{2}} \left(\int_{-1}^0 |w|^2 dz \right)^{\frac{1}{2}} dx \\
&\quad + C \int_0^1 \left(\int_{-1}^0 |\partial_x u|^2 dz \cdot \int_{-1}^0 |\partial_z v|^2 dz \cdot \int_{-1}^0 |w|^2 dz \right)^{\frac{1}{2}} dx \\
&\leq C \sup_{x \in [0,1]} \left(\int_{-1}^0 |w|^2 dz \right)^{\frac{1}{2}} \|\partial_x v\|_{L^2} \|u\|_{L^2}^{\frac{1}{2}} \|\partial_z u\|_{L^2}^{\frac{1}{2}} \\
&\quad + C \sup_{x \in [0,1]} \left(\int_{-1}^0 |w|^2 dz \right)^{\frac{1}{2}} \|\partial_x u\|_{L^2} \|\partial_z v\|_{L^2} \\
&\leq C \left(\|u\|_{L^2}^{\frac{1}{2}} \|\partial_z u\|_{L^2}^{\frac{1}{2}} \|\partial_x v\|_{L^2} \|w\|_{L^2}^{\frac{1}{2}} \|\partial_x w\|_{L^2}^{\frac{1}{2}} \right. \\
&\quad \left. + \|\partial_x u\|_{L^2} \|\partial_z v\|_{L^2} \|w\|_{L^2}^{\frac{1}{2}} \|\partial_x w\|_{L^2}^{\frac{1}{2}} \right),
\end{aligned}$$

where we make use of the boundary conditions and get the following estimates,

$$\begin{aligned}
\sup_{z \in [-1,0]} |u|^2 &= \sup_{z \in [-1,0]} \int_{-1}^z \partial_z(u^2) dz = 2 \sup_{z \in [-1,0]} \int_{-1}^z u \cdot \partial_z u dz \\
&\leq C \left(\int_{-1}^0 |u|^2 dz \right)^{\frac{1}{2}} \left(\int_{-1}^0 |\partial_z u|^2 dz \right)^{\frac{1}{2}},
\end{aligned}$$

and

$$\begin{aligned}
\sup_{x \in [0,1]} \left(\int_{-1}^0 |w|^2 dz \right) &= \sup_{x \in [0,1]} \left(\int_0^x \partial_x \int_{-1}^0 |w|^2 dz dx \right) \\
&\leq 2 \|w\|_{L^2} \|\partial_x w\|_{L^2}.
\end{aligned}$$

This completes the proof. \square

Let $(W(t), t \geq 0)$ be a Y -cylindrical Wiener process on a stochastic basis (Ω, \mathcal{F}, P) , where Y is a separable Hilbert space. Let $\mathcal{L}_2(Y, \mathbb{U})$ denote the Hilbert-Schmit norms from Y to \mathbb{U} . For a Polish space \mathbb{V} , let $\mathcal{B}(\mathbb{V})$ denote its Borel σ -algebra and $\mathcal{P}(\mathbb{V})$ denote all the probability measures on $(\mathbb{V}, \mathcal{B}(\mathbb{V}))$. Let σ be a measurable mapping from $([0, T] \times \tilde{H}^{1,1}, \mathcal{B}([0, T] \times \tilde{H}^{1,1}))$ to $(\mathcal{L}_2(Y, \tilde{H}^{1,1}), \mathcal{B}(\mathcal{L}_2(Y, \tilde{H}^{1,1})))$. Then we introduce martingale solutions. Set

$$F(v) := -B(v) + \partial_x^2 v.$$

Definition 2.2 (Martingale solution.). We say that a probability measure

$$P \in \mathcal{P}(C([0, T]; H^{-1}))$$

is called a martingale solution of (1.1) with initial value v_0 if

(M1) $P(v(0) = v_0, v \in L^\infty(0, T; \tilde{H}^{0,1}) \cap L^2(0, T; \tilde{H}^{1,1})) = 1$, and

$$P\{v \in C([0, T], H^{-1}) : \int_0^T \|F(v(s))\|_{H^{-1}} ds + \int_0^T \|\sigma(s, v(s))\|_{\mathcal{L}_2(Y, H)}^2 ds < +\infty\} = 1.$$

(M2) For every $\psi \in C_{per}^\infty(\overline{M})$ with $\int_{-1}^0 \psi dz = 0$, the process

$$M_\psi(t, v) = \langle v(t), \psi \rangle - \int_0^t \langle F(v(s)), \psi \rangle ds$$

is a continuous square integrable \mathcal{F}_t -martingale with respect to P , whose quadratic variation process is $\int_0^t \|\sigma^*(s, v(s))(\psi)\|_Y^2 ds$, where the asterisk denotes the adjoint operator of $\sigma(s, \tilde{v}(s))$.

(M3) We have

$$E^P \left(\sup_{t \in [0, T]} \|v(t)\|_{L^2}^2 + \int_0^T \|v(t)\|_{H^{1,0}}^2 dt \right) \leq C_T (1 + \|v_0\|_{L^2}^2).$$

Hypothesis 2.3 (Conditions). We assume that the diffusion coefficient σ is a measurable mapping from $([0, T] \times \tilde{H}^{1,1}, \mathcal{B}([0, T] \times \tilde{H}^{1,1}))$ to $(\mathcal{L}_2(Y, \tilde{H}^{1,1}), \mathcal{B}(\mathcal{L}_2(Y, \tilde{H}^{1,1})))$ and satisfies the following conditions.

(i) **Growth condition**

There exist nonnegative constants K'_i, K_i and $\tilde{K}_i (i = 0, 1 \text{ or } 2)$ such that for every $t \in [0, T]$ and $v \in \tilde{H}^{1,1}$,

$$\|\sigma(t, v)\|_{\mathcal{L}_2(Y, H^{-1})}^2 \leq K'_0 + K'_1 \|v\|_{L^2}^2, \quad (2.4)$$

$$\|\sigma(t, v)\|_{\mathcal{L}_2(Y, H)}^2 \leq K_0 + K_1 \|v\|_{L^2}^2 + K_2 \|\partial_x v\|_{L^2}^2, \quad (2.5)$$

$$\|\sigma(t, v)\|_{\mathcal{L}_2(Y, H^{0,1})}^2 \leq \tilde{K}_0 + \tilde{K}_1 \|v\|_{H^{1,1}}^2. \quad (2.6)$$

(ii) **Lipschitz condition**

There exists a constant L_1 such that for $t \in [0, T]$ and $u, v \in \tilde{H}^{1,0}$,

$$\|\sigma(t, u) - \sigma(t, v)\|_{\mathcal{L}_2(Y, H)}^2 \leq L_1 \|\partial_x(u - v)\|_{L^2}^2. \quad (2.7)$$

3. MAIN RESULTS

In this section, we state two theorems about the well-posedness of equation (1.1), which will be proved in the following subsections.

Theorem 3.1. *Assume that v_0 is a random variable in $\tilde{H}^{0,1}$ and suppose that σ satisfies Hypothesis 2.3 with $K_2 < \frac{2}{11}$ and $\tilde{K}_1 < \frac{2}{7}$. Then (1.1) has a global martingale solution.*

Theorem 3.2. *(Pathwise uniqueness). Assume that v_0 is a random variable in $\tilde{H}^{0,1}$. Suppose that σ satisfies Hypothesis 2.3 with $K_2 < \frac{2}{11}, \tilde{K}_1 < \frac{2}{7}$ and $L_1 < 1$. If v_1, v_2 are two weak solutions on the same stochastic basis (Ω, \mathcal{F}, P) . Then we have $v_1 = v_2 P-a.s..$*

3.1. Galerkin approximation and a priori estimates

Let $\mathcal{H}_n = \text{span}(e_1, \dots, e_n)$ and P_n (resp. $\tilde{P}_n, \overline{P}_n$) denote the orthogonal projection from H (resp. $\tilde{H}^{0,1}, \tilde{H}^1$) to \mathcal{H}_n . As in [39], we have

$$P_n v = \tilde{P}_n v, \quad \text{for } v \in \tilde{H}^{0,1}.$$

Furthermore, for $u \in \mathcal{H}_n$, we have $\partial_z^2 u \in \mathcal{H}_n$ and for any $v \in \tilde{H}^{0,1}$,

$$(P_n v, u) = (v, u) \quad \text{and} \quad (\partial_z P_n v, \partial_z u) = -(P_n v, \partial_z^2 u) = -(v, \partial_z^2 u) = (\partial_z v, \partial_z u).$$

Hence, given $v \in \tilde{H}^{0,1}$, we have

$$(P_n v, u)_{0,1} = (v, u)_{0,1}, \quad \text{for any } u \in \mathcal{H}_n.$$

This proves that P_n and \tilde{P}_n coincide on $\tilde{H}^{0,1}$. Similarly, we can prove P_n , \tilde{P}_n , and \bar{P}_n coincide on \tilde{H}^1 .

We consider the following stochastic ordinary differential equations on \mathcal{H}_n ,

$$v_n(0) = P_n v_0$$

and for $t \in [0, T]$, $u \in \mathcal{H}_n$

$$d(v_n(t), u) = \langle P_n F(v_n(t)), u \rangle dt + \langle P_n \sigma(t, v_n(t)) dW_n(t), u \rangle. \quad (3.1)$$

Then for $k = 1, \dots, n$, $t \in [0, T]$, we have

$$d(v_n(t), e_k) = \langle P_n F(v_n(t)), e_k \rangle dt + \langle P_n \sigma(t, v_n(t)) dW_n(t), e_k \rangle.$$

Note that since it is in finite dimensions, there exists a constant $C(n)$ such that $\|v\|_{H^2} \leq C(n) \|v\|_{L^2}$ for $v \in \mathcal{H}_n$. Hence by Theorem 3.1.1 in [43], there exists a unique global solution $v_n(t)$ to (3.1). Moreover, $v \in C(\mathbb{R}^+, \mathcal{H}_n)$, $\mathbb{P} - a.s.$

Lemma 3.3. *We have the following energy estimates under the hypothesis of Theorem 3.1,*

$$E\left(\sup_{t \in [0, T]} \|v_n(t)\|_{L^2}^2\right) + E \int_0^T \|v_n(t)\|_{H^{1,0}}^2 dt \leq C(K_0, K_1, K_2, T)(1 + E\|v_0\|_{L^2}^2).$$

Proof. By Itô formula, we have

$$\begin{aligned} \|v_n(t)\|_{L^2}^2 &= \|P_n v_0\|_{L^2}^2 + 2 \int_0^t \langle \sigma(s, v_n(s)) dW_n(s), v_n(s) \rangle \\ &\quad - 2 \int_0^t \|\partial_x v_n(s)\|_{L^2}^2 ds + \int_0^t \|P_n \sigma(s, v_n(s))\|_{\mathcal{L}_2(Y, H)}^2 ds. \end{aligned} \quad (3.2)$$

The growth condition implies that

$$\int_0^t \|P_n \sigma(s, v_n(s))\|_{\mathcal{L}_2(Y, H)}^2 ds \leq \int_0^t [K_0 + K_1 \|v_n(t)\|_{L^2}^2 + K_2 \|\partial_x v_n(t)\|_{L^2}^2] ds. \quad (3.3)$$

The Burkholder-Davis-Gundy inequality and the Young inequality as well as the growth condition imply that,

$$\begin{aligned} &E\left(\sup_{s \leq t} \left| 2 \int_0^s (P_n \sigma(r, v_n(r)) dW_n(r), v_n(r)) \right| \right) \\ &\leq 4E\left\{ \int_0^t \|P_n \sigma(r, v_n(r))\|_{\mathcal{L}_2(Y, H)}^2 \|v_n(r)\|_{L^2}^2 dr \right\}^{\frac{1}{2}} \\ &\leq \beta E\left(\sup_{s \leq t} \|v_n(s)\|_{L^2}^2\right) + \frac{4}{\beta} E \int_0^t [K_0 + K_1 \|v_n(s)\|_{L^2}^2 + K_2 \|\partial_x v_n(s)\|_{L^2}^2] ds, \end{aligned} \quad (3.4)$$

since $K_2 < \frac{2}{11}$, we can choose $0 < \beta < 1$ such that $(\frac{4}{\beta} + 1)K_2 - 2 < 0$.

By (3.2)–(3.4) and dropping some negative terms, we deduce

$$(1 - \beta)E \sup_{s \in [0, t]} \|v_n(s)\|_{L^2}^2 \leq E\|v(0)\|_{L^2}^2 + CK_0T + CE \int_0^t K_1 \|v_n(s)\|_{L^2}^2 ds.$$

Gronwall's lemma implies that

$$E(\sup_{t \in [0, T]} \|v_n(t)\|_{L^2}^2) \leq C, \quad (3.5)$$

where C is a constant depending on K_0, K_1, K_2, T but not n .

Inserting (3.5) back to (3.2)–(3.4) yields

$$E(\sup_{t \in [0, T]} \|v_n(t)\|_{L^2}^2) + E \int_0^t \|v_n(t)\|_{H^{1,0}}^2 ds \leq C(K_0, K_1, K_2, T)(1 + E\|v_0\|_{L^2}^2).$$

This completes the proof. \square

However, we also need the $L^4(\Omega)$ uniform estimates of v_n .

Lemma 3.4. *We have the following uniform estimates under the hypothesis of Theorem 3.1,*

$$E(\sup_{t \in [0, T]} \|v_n(t)\|_{L^2}^4) + E \int_0^T \|v_n(t)\|_{L^2}^2 \|v_n(t)\|_{H^{1,0}}^2 dt \leq C(K_0, K_1, K_2, T)(1 + E\|v_0\|_{L^2}^4).$$

Proof. Applying once more the Itô formula to the square of $\|\cdot\|_{L^2}^2$, we obtain

$$\begin{aligned} \|v_n(t)\|_{L^2}^4 &= \|P_n v_0\|_{L^2}^4 - 4 \int_0^t \|\partial_x v_n(s)\|_{L^2}^2 \|v_n(s)\|_{L^2}^2 ds \\ &\quad + I_1 + I_2 + I_3, \end{aligned} \quad (3.6)$$

where

$$\begin{aligned} I_1 &= 4 \int_0^t \langle \sigma(s, v_n(s)) dW_n(s), v_n(s) \rangle \|v_n(s)\|_{L^2}^2, \\ I_2 &= 2 \int_0^t \|P_n \sigma(s, v_n(s))\|_{\mathcal{L}_2(Y, H)}^2 \|v_n(s)\|_{L^2}^2 ds, \\ I_3 &= 4 \int_0^t \|(P_n \sigma(s, v_n(s)))^*(v_n)\|_Y^2 ds. \end{aligned}$$

The growth condition implies that

$$I_2(t) + I_3(t) \leq 6 \int_0^t (K_0 + K_1 \|v_n(s)\|_{L^2}^2 + K_2 \|\partial_x v_n(s)\|_{L^2}^2) \|v_n(s)\|_{L^2}^2 ds. \quad (3.7)$$

The Burkholder-Davis-Gundy inequality, the growth condition and the Young inequality imply that

$$E(\sup_{s \leq t} I_1(s)) \leq 8E \left\{ \int_0^t \|\sigma(r, v_n(r))\|_{\mathcal{L}_2(Y, H)}^2 \|v_n(r)\|_{L^2}^6 dr \right\}^{\frac{1}{2}}$$

$$\begin{aligned}
&\leq \gamma E(\sup_{s \leq t} \|v_n(s)\|_{L^2}^4) \\
&+ \frac{16}{\gamma} E \int_0^t (K_0 + K_1 \|v_n(s)\|_{L^2}^2 + K_2 \|\partial_x v_n(t)\|_{L^2}^2) \|v_n(s)\|_{L^2}^2 ds,
\end{aligned} \tag{3.8}$$

since $K_2 < \frac{2}{11}$, we can choose $0 < \gamma < 1$, such that $6K_2 + \frac{16}{\gamma}K_2 - 4 < 0$.

Thus, combining (3.7)–(3.8) and dropping some negative terms on the right of the inequality, we have:

$$\left(\frac{1}{2} - \gamma\right) E \left(\sup_{t \in [0, T]} \|v_n(t)\|_{L^2}^4 \right) \leq E\|v(0)\|_{L^2}^4 + E \int_0^t C_1 \|v_n(s)\|_{L^2}^4 + C_2 \|v_n(s)\|_{L^2}^2 ds,$$

since we have obtained $E(\sup_{t \in [0, T]} \|v_n(t)\|_{L^2}^2) \leq C$, the Gronwall's inequality yields

$$E \left(\sup_{t \in [0, T]} \|v_n(t)\|_{L^2}^4 \right) < \infty.$$

We complete the proof. \square

Lemma 3.5. *We have the following uniform estimates under the hypothesis of Theorem 3.1,*

$$E \sup_{t \in [0, T]} \|v_n(t)\|_{H^{0,1}}^2 + E \int_0^T \|v_n(t)\|_{H^{1,1}}^2 dt \leq C(\tilde{K}_0, \tilde{K}_1, T)(1 + E\|v_0\|_{H^{0,1}}^2). \tag{3.9}$$

Proof. Using again the Itô formula to $\|v_n(t)\|_{H^{0,1}}^2$, we obtain

$$\|v_n(t)\|_{H^{0,1}}^2 + 2 \int_0^t \|v_n(t)\|_{H^{1,1}}^2 ds = \|P_n v(0)\|_{H^{0,1}}^2 + \sum_{j=1}^2 J_j(t), \tag{3.10}$$

where

$$\begin{aligned}
J_1(t) &= 2 \int_0^t (\sigma(s, v_n(s)) dW_n(s), v_n(s))_{H^{0,1}}, \\
J_2(t) &= \int_0^t \|P_n \sigma(s, v_n(s))\|_{\mathcal{L}_2(Y, H^{0,1})}^2 ds.
\end{aligned}$$

The growth condition implies that

$$J_2(t) \leq \int_0^t \tilde{K}_0 + \tilde{K}_1 \|v_n(s)\|_{H^{1,1}}^2 ds, \tag{3.11}$$

and

$$\begin{aligned}
&E \left(\sup_{s \leq t} \left| 2 \int_0^s (\sigma(r, v_n(r)) dW_n(r), v_n(r))_{H^{0,1}} \right| \right) \\
&\leq 6E \left\{ \int_0^s \|P_n \sigma(r, v_n(r))\|_{\mathcal{L}_2(Y, H^{0,1})}^2 \|v_n(r)\|_{H^{0,1}}^2 dr \right\}^{\frac{1}{2}} \\
&\leq \tilde{\beta} E \left(\sup_{s \leq t} (\|v_n(s)\|_{H^{0,1}}^2) + \frac{6}{\tilde{\beta}} E \int_0^t [\tilde{K}_0 + \tilde{K}_1 \|v_n(s)\|_{H^{1,1}}^2] ds \right).
\end{aligned} \tag{3.12}$$

Since $\tilde{K}_1 < \frac{2}{\tilde{\beta}}$, we can choose $0 < \tilde{\beta} < 1$ such that $(\frac{6}{\tilde{\beta}} + 1)\tilde{K}_1 - 2 < 0$. By (3.10)–(3.12) and dropping some negative terms, we deduce

$$(1 - \tilde{\beta})E \sup_{s \in [0, t]} \|v_n(s)\|_{H^{0,1}}^2 \leq E\|v(0)\|_{H^{0,1}}^2 + CK_0T + \frac{1}{2}E \int_0^t \|v_n\|_{H^{0,1}}^2 ds.$$

Gronwall's lemma implies that

$$E(\sup_{t \in [0, T]} \|v_n(t)\|_{H^{0,1}}^2) \leq C, \quad (3.13)$$

which complete the proof. \square

Lemma 3.6. *We have the following uniform estimates under the hypothesis of Theorem 3.1,*

$$E \sup_{t \in [0, T]} \|v_n(t)\|_{H^{0,1}}^4 + E \int_0^T \|v_n(t)\|_{H^{1,1}}^2 \|v_n(t)\|_{H^{0,1}}^2 dt \leq C(\tilde{K}_0, \tilde{K}_1, T)(1 + E\|v_0\|_{H^{0,1}}^4). \quad (3.14)$$

Proof. Using again the Itô formula to $\|v_n(t)\|_{H^{0,1}}^4$, we obtain

$$\|v_n(t)\|_{H^{0,1}}^4 + 4 \int_0^t \|v_n(t)\|_{H^{1,1}}^2 \|v_n(t)\|_{H^{0,1}}^2 ds = \|P_n v(0)\|_{H^{0,1}}^4 + \sum_{j=1}^3 T_j(t). \quad (3.15)$$

where

$$\begin{aligned} T_1(t) &= 4 \int_0^t (\sigma(s, v_n(s)) dW_n(s), v_n(s))_{H^{0,1}} \|v_n(t)\|_{H^{0,1}}^2, \\ T_2(t) &= 2 \int_0^t \|P_n \sigma(s, v_n(s))\|_{\mathcal{L}_2(Y, H^{0,1})}^2 \|v_n(t)\|_{H^{0,1}}^2 ds, \\ T_3(t) &= 4 \int_0^t \|(P_n \sigma(s, v_n(s)))^*(v_n)\|_Y^2 ds. \end{aligned}$$

The growth condition implies that

$$\begin{aligned} T_2(t) + T_3(t) &\leq 2 \int_0^t [\tilde{K}_0 + \tilde{K}_1 \|v_n(s)\|_{H^{1,1}}^2] \|v_n(t)\|_{H^{0,1}}^2 ds \\ &\leq 2\tilde{K}_0 \int_0^t \|v_n(s)\|_{H^{0,1}}^2 ds + 2\tilde{K}_1 \int_0^t \|v_n(s)\|_{H^{1,1}}^2 \|v_n(s)\|_{H^{0,1}}^2 ds. \end{aligned} \quad (3.16)$$

Similar, we have

$$\begin{aligned} &E(\sup_{s \leq t} |2 \int_0^s (\sigma(r, v_n(r)) dW_n(r), v_n(r))_{H^{0,1}} \|v_n(t)\|_{H^{0,1}}^2|) \\ &\leq 12E\{\int_0^s \|P_n \sigma(r, v_n(r))\|_{\mathcal{L}_2(Y, H^{0,1})}^6 \|v_n(r)\|_{H^{0,1}}^2 dr\}^{\frac{1}{2}} \\ &\leq \tilde{\beta}E(\sup_{s \leq t} (\|v_n(s)\|_{H^{0,1}}^4) + \frac{12}{\tilde{\beta}}\tilde{K}_0 E \int_0^t \|v_n\|_{H^{0,1}}^2 ds) \end{aligned}$$

$$+ \frac{12}{\tilde{\beta}} \tilde{K}_1 E \int_0^t \|v_n\|_{H^{1,1}}^2 \|v_n\|_{H^{0,1}}^2 ds. \quad (3.17)$$

Since $\tilde{K}_1 < \frac{2}{7}$, we can choose $0 < \tilde{\beta} < 1$ such that $(\frac{12}{\tilde{\beta}} + 2)\tilde{K}_1 - 4 < 0$. By (3.16)–(3.17) and dropping some negative terms, we deduce

$$(1 - \tilde{\beta})E \sup_{s \in [0, t]} \|v_n(s)\|_{H^{0,1}}^4 \leq E\|v(0)\|_{H^{0,1}}^4 + \frac{1}{2}E \int_0^t \|v_n\|_{H^{0,1}}^4 ds.$$

Gronwall's lemma implies that

$$E(\sup_{t \in [0, T]} \|v_n(t)\|_{H^{0,1}}^4) \leq C. \quad (3.18)$$

□

3.2. Tightness of the family of laws for the Galerkin solutions

In this section, we will prove the tightness of the family of laws for the Galerkin solutions. Before we proceed further, we recall the following definition and theorem which we can refer to [3].

Let (\mathbb{S}, ϱ) be a separable and complete metric space.

Definition 3.7. A sequence $(X_n)_{n \geq 1}$ satisfies the Aldous's condition [A] iff for any $\varepsilon, \eta > 0$, there exists $\delta > 0$ such that for every sequence $(\tau_n)_{n \geq 1}$ of \mathcal{F}_t -stopping times with $\tau_n \leq T$, we have

$$\sup_{n \in \mathbb{N}} \sup_{\theta \in [0, \delta]} \mathbb{P}(\varrho(X_n(\tau_n + \theta), X_n(\tau_n)) \geq \eta) \leq \varepsilon.$$

Theorem 3.8 (see [3]). Assume that (X_n) satisfies Aldous's condition [A]. Let \mathbb{P}_n be the law of X_n on $C([0, T], \mathbb{S})$, $n \in \mathbb{N}$. Then for every ε there exists a subset $A_\varepsilon \subset C([0, T], \mathbb{S})$ such that

$$\sup_{n \in \mathbb{N}} \mathbb{P}_n(A_\varepsilon) \geq 1 - \varepsilon$$

and

$$\lim_{\delta \rightarrow 0} \sup_{u \in A_\varepsilon} \sup_{s, t \in [0, T], |t-s| \leq \delta} \varrho(u(t), u(s)) = 0.$$

We now state and prove the following crucial result.

Lemma 3.9. The family $(v_n)_{n \in \mathbb{N}}$ satisfies the Aldous's condition [A] in $\mathbb{S} = H^{-1}$.

Proof. For any sequence $(\tau_n)_{n \in \mathbb{N}}$ of \mathcal{F}_t -stopping times with $\tau_n \in [0, T]$, we have

$$\begin{aligned} & \|v_n(\tau_n + \theta) - v_n(\tau_n)\|_{H^{-1}} \\ &= \left\| \int_{\tau_n}^{\tau_n + \theta} (\partial_x^2 v_n(s) + P_n B(v_n, v_n)) ds + \int_{\tau_n}^{\tau_n + \theta} P_n \sigma(s, v_n(s)) dW \right\|_{H^{-1}} \\ &\leq \|I_n^{(1)}\|_{H^{-1}} + \|I_n^{(2)}\|_{H^{-1}} + \|I_n^{(3)}\|_{H^{-1}}. \end{aligned} \quad (3.19)$$

Using Lemma 3.3, the definition of $\|\cdot\|_{H^{-1}}$ and the Hölder inequality, we infer that

$$\begin{aligned} E\|I_n^{(1)}\|_{H^{-1}} &= E \int_{\tau_n}^{\tau_n+\theta} \|\partial_x^2 v_n(s)\|_{H^{-1}} ds \\ &\leq CE \int_{\tau_n}^{\tau_n+\theta} \sup_{\|\varphi\|_{H^1} < 1} |\langle \partial_x^2 v_n(s), \varphi \rangle| ds \\ &\leq \theta^{\frac{1}{2}} (E \int_{\tau_n}^{\tau_n+\theta} \|v_n(s)\|_{H^{1,0}}^2 dt)^{\frac{1}{2}} \\ &\leq C\theta^{\frac{1}{2}}. \end{aligned}$$

By Lemma 3.4, Lemma 3.6 and (2.1), we have

$$\begin{aligned} E \int_0^T \|P_n B(v_n(t))\|_{H^{-1}}^2 dt &\leq E \int_0^T \sup_{\|\psi\|_{H^1} < 1} |b(v_n, \psi, v_n)|^2 dt \\ &\leq E \int_0^T \left(\|v_n\|_{L^2}^2 \|\partial_z v_n\|_{L^2} \|\partial_x v_n\|_{L^2} \right. \\ &\quad \left. + \|v_n\|_{L^2} \|\partial_x v_n\|_{L^2}^3 \right) dt \\ &\leq C \left(E \int_0^T \|v_n\|_{L^2}^2 \|\partial_z v_n\|_{L^2}^2 dt + E \int_0^T \|v_n\|_{L^2}^2 \|\partial_x v_n\|_{L^2}^2 dt \right. \\ &\quad \left. + E \int_0^T \|\partial_x v_n\|_{L^2}^2 dt + E \int_0^T \|v_n\|_{L^2}^4 dt \right) \\ &\leq C \left(E \sup_{t \in [0, T]} \|v_n\|_{L^2}^4 + E \sup_{t \in [0, T]} \|\partial_z v_n\|_{L^2}^4 \right. \\ &\quad \left. + E \int_0^T \|\partial_x v_n\|_{L^2}^2 dt + E \int_0^T \|v_n\|_{L^2}^2 \|\partial_x v_n\|_{L^2}^2 dt \right) \\ &< \infty, \end{aligned}$$

such that

$$\begin{aligned} E\|I_n^{(2)}\|_{H^{-1}} &= E \int_{\tau_n}^{\tau_n+\theta} \|B(v_n(s), v_n(s))\|_{H^{-1}} ds \\ &\leq CE \int_{\tau_n}^{\tau_n+\theta} \sup_{\|\varphi\|_{H^1} < 1} |\langle B(v_n(s)), \varphi \rangle| ds \\ &\leq E \left(\int_{\tau_n}^{\tau_n+\theta} \|B(v_n(s))\|_{H^{-1}}^2 ds \right)^{\frac{1}{2}} \left(\int_{\tau_n}^{\tau_n+\theta} \|\varphi\|_{H^1}^2 ds \right)^{\frac{1}{2}} \\ &\leq \theta^{\frac{1}{2}} (E \int_{\tau_n}^{\tau_n+\theta} \|B(v_n(s))\|_{H^{-1}}^2 ds)^{\frac{1}{2}} \\ &\leq C\theta^{\frac{1}{2}}. \end{aligned}$$

By Burkholder-Davis-Gundy inequality and (2.4), we have

$$E\|I_n^{(3)}\|_{H^{-1}} = E \left\| \int_{\tau_n}^{\tau_n+\theta} \sigma(s, v_n(s)) dW \right\|_{H^{-1}}$$

$$\begin{aligned}
&\leq \left(E \left\| \int_{\tau_n}^{\tau_n + \theta} \sigma(s, v_n(s)) dW \right\|_{H^{-1}}^2 \right)^{\frac{1}{2}} \\
&\leq C \left(E \int_{\tau_n}^{\tau_n + \theta} \|\sigma(s, v_n(s))\|_{\mathcal{L}_2(Y, H^{-1})}^2 ds \right)^{\frac{1}{2}} \\
&\leq C\theta^{\frac{1}{2}}.
\end{aligned}$$

Collecting these estimates altogether and plugging them in (3.19), we obtain that there exists a constant $C > 0$ such that for any $\delta \in (0, \infty)$,

$$\sup_{n \in \mathbb{N}} \sup_{\theta \in [0, \delta]} \|v_n(t + \theta) - v_n(t)\|_{H^{-1}} \leq C\delta. \quad (3.20)$$

By Chebyshev's inequality, for any $\varepsilon > 0$ and $\vartheta > 0$

$$\sup_{n \in \mathbb{N}} \sup_{\theta \in [0, \delta]} \mathbb{P}(\|v_n(t + \theta) - v_n(t)\|_{H^{-1}} \geq \vartheta) \leq \frac{1}{\vartheta} E \|v_n(t + \theta) - v_n(t)\|_{H^{-1}} \leq \frac{C}{\vartheta} \delta.$$

Choosing δ in such a way that $\delta < C^{-1}\vartheta\varepsilon$, we infer that

$$\sup_{n \in \mathbb{N}} \sup_{\theta \in [0, \delta]} \mathbb{P}(\|v_n(t + \theta) - v_n(t)\|_{H^{-1}} \geq \vartheta) < \varepsilon,$$

from which we easily infer that $(v_n)_{n \in \mathbb{N}}$ satisfies the condition [A] in H^{-1} . \square

In the next lemma we will prove that the family of laws of $(v_n)_{n \in \mathbb{N}}$, denoted by \hat{P}_n is tightness.

Lemma 3.10. *Under the hypothesis of Theorem 3.1, \hat{P}_n is tight in the space*

$$\mathcal{X} = C([0, T]; H^{-1}) \cap L^2([0, T]; H) \cap L_w^2([0, T]; H^{1,1}) \cap L_{w^*}^\infty([0, T]; H^{0,1}),$$

where $L_w^2([0, T]; H^{1,1})$ denotes $L^2([0, T]; H^{1,1})$ with the weak topology and $L_{w^*}^\infty([0, T]; H^{0,1})$ denotes $L^\infty([0, T]; H^{0,1})$ with the weak star topology.

Proof. In order to get the tightness of \hat{P}_n , we should prove that there exists a compact subset K_ε of \mathcal{X} such that

$$\sup_{n \in \mathbb{N}} \hat{P}_n(K_\varepsilon) \geq 1 - \varepsilon. \quad (3.21)$$

By the Chebyshev inequality and Lemma 3.3, Lemma 3.5, we infer that for any $n \in \mathbb{N}$ and any $r_1, r_2 > 0$,

$$\begin{aligned}
\mathbb{P} \left(\sup_{s \in [0, T]} \|v_n\|_{H^{0,1}}^2 > r_1 \right) &\leq \frac{E(\sup_{s \in [0, T]} \|v_n\|_{H^{0,1}}^2)}{r_1} \leq \frac{C_1}{r_1}, \\
\mathbb{P} \left(\|v_n\|_{L^2([0, T]; H^{1,1})} > r_2 \right) &\leq \frac{E(\|v_n\|_{L^2([0, T]; H^{1,1})}^2)}{r_2^2} \leq \frac{C_2}{r_2^2}.
\end{aligned}$$

Let R_1, R_2 be such that $\frac{C_1}{R_1} \leq \frac{\varepsilon}{3}$ and $\frac{C_2}{R_2^2} \leq \frac{\varepsilon}{3}$, we denote

$$B_1 := \{v \in \mathcal{X} : \sup_{s \in [0, T]} \|v\|_{H^{0,1}}^2 \leq R_1\},$$

$$B_2 := \{v \in \mathcal{X} : \|v\|_{L^2([0,T];H^{1,1})} \leq R_2\}.$$

Then

$$\sup_{n \in \mathbb{N}} \mathbb{P} \left(\sup_{s \in [0,T]} \|v_n\|_{H^{0,1}}^2 > R_1 \right) \leq \frac{\varepsilon}{3}, \quad (3.22)$$

$$\sup_{n \in \mathbb{N}} \mathbb{P} \left(\|v_n\|_{L^2([0,T];H^{1,1})} > R_2 \right) \leq \frac{\varepsilon}{3}. \quad (3.23)$$

By Theorem 3.8, there exists a subset $A_{\frac{\varepsilon}{3}} \subset C([0,T], H^{-1})$ such that

$$\mathbb{P}(A_{\frac{\varepsilon}{3}}) \geq 1 - \frac{\varepsilon}{3} \quad (3.24)$$

and

$$\lim_{\delta \rightarrow 0} \sup_{v_n \in A_{\frac{\varepsilon}{3}}} \sup_{s, t \in [0, T], |t-s| \leq \delta} \|v_n(t) - v_n(s)\|_{H^{-1}} = 0. \quad (3.25)$$

It is sufficient to define K_ε as the closure of the set $B_1 \cap B_2 \cap A_{\frac{\varepsilon}{3}}$ in \mathcal{X} , and by (3.22), (3.23) and (3.24), we can obtain (3.21).

By the definition, K_ε is uniformly bounded hence relatively compact in $L_w^2([0, T]; H^{1,1})$ and $L_{w^*}^\infty([0, T]; H^{0,1})$. Since L^2 could be embedded compactly in H^{-1} , as $n, m \rightarrow \infty$, we have

$$\begin{aligned} \int_0^t \|v_n - v_m\|_{L^2}^2 dt &\leq \int_0^t \|v_n - v_m\|_{H^1} \|v_n - v_m\|_{H^{-1}} dt \\ &\leq C_{R_2, T} \sup_{t \in [0, T]} \|v_n - v_m\|_{H^{-1}}^2 \\ &\rightarrow 0. \end{aligned} \quad (3.26)$$

By (3.25), argument analogously to the proof of the classical Arzelá-Ascoli Theorem, we can obtain that $v_n \in A_{\frac{\varepsilon}{3}}$ is compact in $C([0, T], H^{-1})$. To sum up, we conclude that K_ε is a compact subset of \mathcal{X} . The proof is thus completed. \square

We will use the following Jakubowski's version of the Skorokhod theorem in the form given by Brzezniak and Ondrejat [4], see also [29].

Theorem 3.11. *Let \mathcal{Y} be a topological space such that there exists a sequence f_m of continuous functions $f_m : \mathcal{Y} \rightarrow \mathbb{R}$ that separates points of \mathcal{Y} . Let us denote by \mathcal{S} the σ -algebra generated by the maps f_m . Then*

(j1) every compact subset of \mathcal{Y} is metrizable;

(j2) if (μ_m) is tight sequence of probability measures on $(\mathcal{Y}, \mathcal{S})$, then there exists a subsequence (m_k) , a probability space (Ω, \mathcal{F}, P) with \mathcal{Y} -valued Borel measurable variables ξ_k, ξ such that μ_{m_k} is the law of ξ_k and ξ_k converges to ξ almost surely on Ω . Moreover, the law of ξ is a Radon measure.

As in [39], we can obtain that on each space appearing in the definition of \mathcal{X} there exists a countable set of continuous real-valued functions separating points. Then all the conditions of the above Skorokhod theorem are satisfied. By Theorem 3.2, there exists another probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ and a subsequence \hat{P}_{n_k} as well as random variables \tilde{v}_{n_k} in the space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$, such that

- (i) \tilde{v}_{n_k} has the law \hat{P}_{n_k} ,
- (ii) \hat{P}_{n_k} converges weakly to some \hat{P} ,
- (iii) $\tilde{v}_{n_k} \rightarrow \tilde{v}$ in \mathcal{X} $\tilde{\mathbb{P}} - a.s.$ and \tilde{v} has the law $\hat{P} \in \mathcal{P}(C([0, T]; H^{-1}))$.

Remark 3.12. since \tilde{v}_{n_k} has the same law as v_{n_k} , we immediately have

$$\begin{aligned} E^{\tilde{\mathbb{P}}} \left(\sup_{t \in [0, T]} \|\tilde{v}(t)\|_{L^2}^2 \right) + E^{\tilde{\mathbb{P}}} \int_0^T \|\tilde{v}(t)\|_{H^{1,0}}^2 dt &\leq C(1 + E^{\tilde{\mathbb{P}}} \|v_0\|_{L^2}^2), \\ E^{\hat{P}} \left(\sup_{t \in [0, T]} \|v(t)\|_{L^2}^2 \right) + E^{\hat{P}} \int_0^T \|v(t)\|_{H^{1,0}}^2 dt &\leq C(1 + E^{\hat{P}} \|v_0\|_{L^2}^2). \end{aligned} \quad (3.27)$$

Remark 3.13. Similarly, for $L^4(\Omega)$ estimates, we have

$$\begin{aligned} E^{\tilde{\mathbb{P}}} \left(\sup_{t \in [0, T]} \|\tilde{v}(t)\|_{L^2}^4 \right) + E^{\tilde{\mathbb{P}}} \int_0^T \|\tilde{v}(t)\|_{L^2}^2 \|\tilde{v}(t)\|_{H^{1,0}}^2 dt &\leq C(1 + E^{\tilde{\mathbb{P}}} \|v_0\|_{L^2}^4), \\ E^{\hat{P}} \left(\sup_{t \in [0, T]} \|v(t)\|_{L^2}^4 \right) + E^{\hat{P}} \int_0^T \|v(t)\|_{L^2}^2 \|v(t)\|_{H^{1,0}}^2 dt &\leq C(1 + E^{\hat{P}} \|v_0\|_{L^2}^4). \end{aligned} \quad (3.28)$$

3.3. Pass to the limit and the proof of main theorems

Let us denote the subsequence (\tilde{v}_{n_k}) again by (\tilde{v}_n) and pass the limit as $n \rightarrow \infty$.

Proof of Theorem 3.1. Let us prove \hat{P} satisfies $(M1)$, $(M2)$ and $(M3)$.

For $(M1)$, noting that $v_n(0) \rightarrow v_0$ in H , we have

$$\hat{P}(v(0) = v_0) = \tilde{\mathbb{P}}(\tilde{v}(0) = v_0) = \lim_{n \rightarrow \infty} \tilde{\mathbb{P}}(\tilde{v}_n(0) = P_n v_0) = 1,$$

$$\begin{aligned} \hat{P}\{v \in C([0, T], H^{-1}) : \int_0^T \|F(v(s))\|_{H^{-1}} ds + \int_0^T \|\sigma(s, v(s))\|_{\mathcal{L}_2(Y, H)}^2 ds < +\infty\} \\ = \tilde{\mathbb{P}}\{\tilde{v} \in C([0, T], H^{-1}) : \int_0^T \|F(\tilde{v}(s))\|_{H^{-1}} ds + \int_0^T \|\sigma(s, \tilde{v}(s))\|_{\mathcal{L}_2(Y, H)}^2 ds < +\infty\}. \end{aligned}$$

Since

$$\begin{aligned} \tilde{v}_n &\rightarrow \tilde{v} \text{ in } \mathcal{X} \tilde{\mathbb{P}} - a.s., \\ \tilde{v} &\in L^2([0, T], H^{1,1}) \cap L^\infty([0, T], H^{0,1}) \tilde{\mathbb{P}} - a.s., \end{aligned}$$

thus by the growth condition of σ , we have

$$\int_0^T \|\sigma(s, \tilde{v}(s))\|_{\mathcal{L}_2(Y, H)}^2 ds \leq \int_0^T (K_0 + K_1 \|\tilde{v}\|_{L^2}^2 + K_2 \|\partial_x \tilde{v}\|_{L^2}^2) ds < \infty, \tilde{\mathbb{P}} - a.s.$$

Similar as (3.19), we obtain $\int_0^T \|F(\tilde{v}(s))\|_{H^{-1}} ds < +\infty, \tilde{\mathbb{P}} - a.s.$. Thus $(M1)$ is satisfied. Then we prove $(M2)$. The following key lemma should be given.

Lemma 3.14. For all $s, t \in [0, T]$ such that $s \leq t$ and all $\psi \in C_{per}^\infty(\overline{M})$,

$$\begin{aligned} (a) \quad &\lim_{n \rightarrow \infty} (\tilde{v}_n(t), P_n \psi)_{H^{0,1}} = (\tilde{v}(t), \psi)_{H^{0,1}}, \quad \tilde{\mathbb{P}} - a.s. \\ (b) \quad &\lim_{n \rightarrow \infty} \int_s^t \langle \partial_{xx} \tilde{v}_n(\sigma), P_n \psi \rangle d\sigma = \int_s^t \langle \partial_{xx} \tilde{v}(\sigma), \psi \rangle d\sigma, \quad \tilde{\mathbb{P}} - a.s. \end{aligned}$$

$$(c) \lim_{n \rightarrow \infty} \int_s^t \langle B(\tilde{v}_n(\sigma)), P_n \psi \rangle d\sigma = \int_s^t \langle B(\tilde{v}(\sigma)), \psi \rangle d\sigma, \quad \tilde{\mathbb{P}} - a.s.$$

Proof. Let us fix $s, t \in [0, T]$, $s \leq t$ and $\psi \in C_{per}^\infty(\overline{M})$. We know that

$$\tilde{v}_n \rightarrow \tilde{v} \text{ in } \mathcal{X}, \quad \tilde{\mathbb{P}} - a.s.. \quad (3.29)$$

Thus $\tilde{v}_n \rightarrow \tilde{v}$ in $L_{w^*}([0, T]; H^{0,1})$, $\tilde{\mathbb{P}}$ -a.s., and $P_n \psi \rightarrow \psi$ in H^1 , we infer that assertion (a) holds.

Let us move to (b). Since $\tilde{v}_n \rightarrow \tilde{v}$ in $L_w^2(0, T; H^{1,1})$, $\tilde{\mathbb{P}}$ -a.s., and $P_n \psi \rightarrow \psi$ in H^1 , we infer that $\tilde{\mathbb{P}}$ -a.s.,

$$\begin{aligned} \int_s^t \langle \partial_{xx} \tilde{v}_n(\sigma), P_n \psi \rangle d\sigma &= \int_s^t \langle \partial_x \tilde{v}_n(\sigma), P_n \partial_x \psi \rangle d\sigma \rightarrow \int_s^t \langle \partial_x \tilde{v}(\sigma), \partial_x \psi \rangle d\sigma \\ &= \int_s^t \langle \partial_{xx} \tilde{v}(\sigma), \psi \rangle d\sigma, \quad \text{as } n \rightarrow \infty. \end{aligned}$$

We will prove now assertion (c). The proof is easily get if we are able to show that

$$\int_s^t \langle B(\tilde{v}_n) - B(\tilde{v}), \psi \rangle d\sigma \rightarrow 0, \quad \text{as } n \rightarrow \infty. \quad (3.30)$$

For this purpose, by (3.26), we obtain the strong convergence of $(\tilde{v}_n)_n$ in $L^2([0, T], L^2)$. This implies that in $L^1([0, T], L^1)$, we have the following weak convergence (see Rem. 3.15).

$$\tilde{v}_n \cdot \partial_x \tilde{v}_n \rightharpoonup \tilde{v} \cdot \partial_x \tilde{v}, \quad (3.31)$$

$$\mathbb{W}(\tilde{v}_n) \cdot \partial_z \tilde{v}_n \rightharpoonup \mathbb{W}(\tilde{v}) \cdot \partial_z \tilde{v}, \quad (3.32)$$

and by (3.31)–(3.32), it yields that

$$\begin{aligned} &\int_s^t \langle B(\tilde{v}_n) - B(\tilde{v}), \psi \rangle d\sigma \\ &= \int_s^t \langle \tilde{v}_n \cdot \partial_x \tilde{v}_n - \tilde{v} \cdot \partial_x \tilde{v}, \psi \rangle d\sigma \\ &\quad + \int_s^t \langle \mathbb{W}(\tilde{v}_n) \cdot \partial_z \tilde{v}_n - \mathbb{W}(\tilde{v}) \cdot \partial_z \tilde{v}, \psi \rangle d\sigma \\ &\rightarrow 0, \quad \text{as } n \rightarrow \infty. \end{aligned} \quad (3.33)$$

Then we have

$$\begin{aligned} &\int_s^t \langle B(\tilde{v}_n, \tilde{v}_n), P_n \psi \rangle d\sigma \\ &= \int_s^t \langle B(\tilde{v}_n, \tilde{v}_n), P_n \psi - \psi \rangle d\sigma + \int_s^t \langle B(\tilde{v}_n, \tilde{v}_n), \psi \rangle d\sigma \\ &= S_1(n) + S_2(n). \end{aligned}$$

Since

$$|S_1(n)| \leq \int_s^t \|B(\tilde{v}_n, \tilde{v}_n)\|_{H^{-1}} d\sigma \cdot \|P_n \psi - \psi\|_{H^1}. \quad (3.34)$$

By (3.30) and (3.34), we infer that

$$\lim_{n \rightarrow \infty} \int_s^t \langle B(\tilde{v}_n(\sigma)), P_n \psi \rangle d\sigma = \lim_{n \rightarrow \infty} (S_1(n) + S_2(n)) = \int_s^t \langle B(\tilde{v}(\sigma)), \psi \rangle d\sigma, \quad \tilde{\mathbb{P}} - a.s..$$

This completes the proof of the lemma. \square

By Lemma 3.14, we have

$$\int_0^T \langle F(\tilde{v}_n(s)), P_n \psi \rangle ds \rightarrow \int_0^T \langle F(\tilde{v}(s)), \psi \rangle ds, \quad \tilde{\mathbb{P}} - a.s., \quad (3.35)$$

with (3.35) in hand, using a similar method as in [20, 39], (M2) holds.

(M3) is satisfied by (3.27).

Thus we complete the proof of Theorem 3.1. \square

Remark 3.15. The proofs of (3.31)–(3.32) are similar. Let's take (3.32) as an example. By the boundary conditions and integrating by parts in x or z , we get

$$\begin{aligned} & \left| \int_0^t \langle \mathbb{W}(\tilde{v}_n) \cdot \partial_z \tilde{v}_n - \mathbb{W}(\tilde{v}) \cdot \partial_z \tilde{v}, \psi \rangle ds \right| \\ &= \left| \int_0^t \langle \mathbb{W}(\tilde{v}_n) \cdot \partial_z (\tilde{v}_n - \tilde{v}), \psi \rangle + \langle (\mathbb{W}(\tilde{v}_n) - \mathbb{W}(\tilde{v})) \cdot \partial_z \tilde{v}, \psi \rangle ds \right| \\ &= \int_0^t \left| \langle \partial_z \mathbb{W}(\tilde{v}_n) \cdot (\tilde{v}_n - \tilde{v}), \psi \rangle \right| ds + \int_0^t \left| \langle \mathbb{W}(\tilde{v}_n) \cdot (\tilde{v}_n - \tilde{v}), \partial_z \psi \rangle \right| ds \\ & \quad + \int_0^t \left| \langle \int_{-1}^z (\tilde{v}_n - \tilde{v}) dz \cdot \partial_{xz} \tilde{v}, \psi \rangle \right| ds + \int_0^t \left| \langle \int_{-1}^z (\tilde{v}_n - \tilde{v}) dz \cdot \partial_z \tilde{v}, \partial_x \psi \rangle \right| ds \\ &\leq C \left(\|\tilde{v}_n\|_{L^2([0,T],H^{1,0})} \|\tilde{v}_n - \tilde{v}\|_{L^2([0,T],L^2)} \|\psi\|_{L^\infty} \right. \\ & \quad \left. + \|\mathbb{W}(\tilde{v}_n)\|_{L^2([0,T],L^2)} \|\tilde{v}_n - \tilde{v}\|_{L^2([0,T],L^2)} \|\partial_z \psi\|_{L^\infty} \right. \\ & \quad \left. + \left\| \int_{-1}^z (\tilde{v}_n - \tilde{v}) dz \right\|_{L^2([0,T],L^2)} \|\tilde{v}\|_{L^2([0,T],H^{1,1})} \|\psi\|_{L^\infty} \right. \\ & \quad \left. + \left\| \int_{-1}^z (\tilde{v}_n - \tilde{v}) dz \right\|_{L^2([0,T],L^2)} \|\tilde{v}\|_{L^2([0,T],H^{0,1})} \|\partial_x \psi\|_{L^\infty} \right) \\ &\leq C \|\tilde{v}_n - \tilde{v}\|_{L^2([0,T],L^2)} \left(\|\tilde{v}_n\|_{L^2([0,T],H^{1,0})} + \|\tilde{v}\|_{L^2([0,T],H^{1,1})} + \|\tilde{v}\|_{L^2([0,T],H^{0,1})} \right) \\ &\rightarrow 0, \quad \text{as } n \rightarrow \infty, \end{aligned}$$

where

$$\begin{aligned} \|\mathbb{W}(\tilde{v}_n)\|_{L^2([0,T],L^2)} &= \int_0^1 \int_{-1}^0 \left| \int_{-1}^z \partial_x \tilde{v}_n dz \right|^2 dz dx \\ &\leq C \int_0^1 \int_{-1}^0 \left| \partial_x \tilde{v}_n \right|^2 dz dx \\ &\leq C \|\tilde{v}_n\|_{L^2([0,T],H^{1,0})}, \end{aligned}$$

and

$$\begin{aligned} \left\| \int_{-1}^z (\tilde{v}_n - \tilde{v}) dz \right\|_{L^2([0,T], L^2)} &= \int_0^1 \int_{-1}^0 \left| \int_{-1}^z (\tilde{v}_n - \tilde{v}) dz \right|^2 dz dx \\ &\leq C \int_0^1 \int_{-1}^0 \left| (\tilde{v}_n - \tilde{v}) \right|^2 dz dx \\ &\leq C \|\tilde{v}_n - \tilde{v}\|_{L^2([0,T], L^2)}. \end{aligned}$$

□

Finally let us turn to the proof of the pathwise uniqueness. To this end, we need the following lemma.

Lemma 3.16. *Assume that $u, v \in \tilde{H}^{1,1}$, we have*

$$\langle F(u) - F(v), u - v \rangle + \frac{1}{2} \|\partial_x(u - v)\|_{L^2}^2 \leq C \|u - v\|_{L^2}^2 (1 + \|\partial_x v\|_{L^2}^2 + \|\partial_{xz} v\|_{L^2}^2 + \|\partial_z v\|_{L^2}^4).$$

Proof. Set $\Phi = u - v$. We deduce

$$\begin{aligned} \langle F(u) - F(v), \Phi \rangle &= -\langle \partial_{xx}(u - v), \Phi \rangle - \langle B(u) - B(v), \Phi \rangle \\ &\equiv I_1 + I_2. \end{aligned}$$

Integrating by parts, using a similar method as in Lemma 2.1, Hölder inequality and Young inequality imply

$$\begin{aligned} I_1 &= -\|\partial_x(u - v)\|_{L^2}^2, \\ I_2 &= b(u - v, v, u - v) \\ &\leq \int_0^1 \left(\sup_{z \in [-1, 0]} |\partial_x v| \int_{-1}^0 [(u - v) \cdot (u - v)] dz \right) dx \\ &\quad + \int_0^1 \left(\sup_{z \in [-1, 0]} \left(\int_{-1}^z \partial_x(u - v) d\tilde{z} \right) \int_{-1}^0 (\partial_z v \cdot (u - v)) dz \right) dx \\ &\leq \|u - v\|_{L^2} \|\partial_x v\|_{L^2}^{\frac{1}{2}} \|\partial_{xz} v\|_{L^2}^{\frac{1}{2}} \|u - v\|_{L^2}^{\frac{1}{2}} \|\partial_x(u - v)\|_{L^2}^{\frac{1}{2}} \\ &\quad + \|\partial_x(u - v)\|_{L^2} \|\partial_z v\|_{L^2} \|u - v\|_{L^2}^{\frac{1}{2}} \|\partial_x(u - v)\|_{L^2}^{\frac{1}{2}} \\ &\leq \frac{1}{2} \|\partial_x(u - v)\|_{L^2}^2 + C \|u - v\|_{L^2}^2 (\|\partial_x v\|_{L^2}^{\frac{3}{2}} \cdot \|\partial_{xz} v\|_{L^2}^{\frac{3}{2}} + \|\partial_z v\|_{L^2}^4) \\ &\leq \frac{1}{2} \|\partial_x(u - v)\|_{L^2}^2 + C \|u - v\|_{L^2}^2 (1 + \|\partial_x v\|_{L^2}^2 + \|\partial_{xz} v\|_{L^2}^2 + \|\partial_z v\|_{L^2}^4). \end{aligned}$$

Combining I_1 and I_2 , we end the proof. □

Proof of Theorem 3.2. Set

$$\tilde{u} := v_1 - v_2, \quad \tilde{w}_u := w_1 - w_2.$$

Then \tilde{u} satisfies the following equation

$$d\tilde{u} = -\left(\partial_{xx} \tilde{u} + (B(v_1(t)) - B(v_2(t))) \right) dt + [\sigma(v_1(t)) - \sigma(v_2(t))] dW(t). \quad (3.36)$$

Let

$$r(t) = C \int_0^t (1 + \|\partial_x v_2\|_{L^2}^2 + \|\partial_{xz} v_2\|_{L^2}^2 + \|\partial_z v_2\|_{L^2}^4) ds, \quad t \in [0, T],$$

by the Itô formula for the term $e^{-r(t)} \|\tilde{u}\|_{L^2}^2$, we get

$$\begin{aligned} & e^{-r(t)} \|\tilde{u}(t)\|_{L^2}^2 \\ & \leq \int_0^t e^{-r(s)} \left(-r'(s) \|\tilde{u}(s)\|_{L^2}^2 - 2 \|\partial_x \tilde{u}(s)\|_{L^2}^2 \right. \\ & \quad \left. - 2 \langle B(v_1(s)) - B(v_2(s)), \tilde{u}(s) \rangle \right) ds \\ & \quad + \int_0^t e^{-r(s)} \|\sigma(v_1(s)) - \sigma(v_2(s))\|_{\mathcal{L}_2(Y, H)}^2 ds \\ & \quad + 2 \int_0^t e^{-r(s)} \langle \sigma(v_1(s)) - \sigma(v_2(s)), \tilde{u}(s) dW(s) \rangle. \end{aligned} \quad (3.37)$$

Due to Lemma 3.16, we have

$$\begin{aligned} 2|\langle B(v_1(s)) - B(v_2(s)), \tilde{u}(s) \rangle| & \leq \|\partial_x \tilde{u}(s)\|_{L^2}^2 \\ & \quad + C \|\tilde{u}\|_{L^2}^2 (1 + \|\partial_x v_2\|_{L^2}^2 + \|\partial_{xz} v_2\|_{L^2}^2 + \|\partial_z v_2\|_{L^2}^4). \end{aligned}$$

By (2.7), hence we have

$$\begin{aligned} e^{-r(t)} \|\tilde{u}(t)\|_{L^2}^2 & \leq \|\tilde{u}(0)\|_{L^2}^2 + (-1 + L_1) \int_0^t e^{-r(s)} \|\partial_x \tilde{u}(s)\|_{L^2}^2 ds \\ & \quad + 2 \int_0^t e^{-r(s)} \langle \sigma(v_1(s)) - \sigma(v_2(s)), \tilde{u}(s) dW(s) \rangle. \end{aligned}$$

Taking expectation on both sides, by the martingales have zero averages, for $L_1 < 1$, we have

$$E \left[e^{-r(t)} \|\tilde{u}(t)\|_{L^2}^2 + (1 - L_1) \int_0^t e^{-r(s)} \|\partial_x \tilde{u}(s)\|_{L^2}^2 ds \right] \leq E \|\tilde{u}(0)\|_{L^2}^2 = 0.$$

Thus we obtain the uniqueness of the solution. \square

With martingale solutions and pathwise uniqueness of the solutions in hand, we obtain the existence of the pathwise solutions (meaning that the solutions are defined on the prescribed probability space) to this system by the infinite-dimensional-space extension of the Yamada-Watanabe theorem (see [23]).

Acknowledgements. We thank the reviewer for the helpful comments.

REFERENCES

- [1] H. Bessaih and A. Millet, On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity. *J. Math. Anal. Appl.* **462** (2018) 915–956.
- [2] D. Bresch, F.-Guillén-González, N. Masmoudi and M.A. Rodríguez-Bellido, On the uniqueness of weak solutions of the two-dimensional primitive equations. *Differ. Integr. Equ.* **162** (2003) 77–94.
- [3] Z. Brzeźniak and E. Motyl, Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains. *J. Differ. Equ.* **254** (2013) 1627–1685.
- [4] Z. Brzeźniak and M. Ondreját, Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces. *Ann. Probab.* **41** (2013) 1938–1977.

- [5] C. Cao, S. Ibrahim, K. Nakanishi and E.S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. *Comm. Math. Phys.* **337** (2015) 473–482.
- [6] C. Cao, J. Li and E.S. Titi, Global well-posedness of the 3D primitive equations with only horizontal viscosity and diffusivity. *Commun. Pure Appl. Math.* **69** (2016) 1492–1531.
- [7] C. Cao, J. Li and E.S. Titi, Strong solutions to the 3D primitive equations with only horizontal dissipation: near H^1 initial data. *J. Funct. Anal.* **272** (2017) 4606–4641.
- [8] C. Cao and E. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. *Ann. Math.* **166** (2007) 245–267.
- [9] B. Cushman-Roisin and J.M. Beckers, *Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects*. Academic Press (2007).
- [10] A. Debussche, N. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model. *Physica D* **240** (2011) 1123–1144.
- [11] A. Debussche, N. Glatt-Holtz, R. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise. *Nonlinearity* **316** (2012) 723–776.
- [12] Z. Dong, J. Zhai and R. Zhang, Large deviation principles for 3D stochastic primitive equations. *J. Differ. Equ.* **263** (2017) 3110–3146.
- [13] Z. Dong and R. Zhang, On the small time asymptotics of 3D stochastic primitive equations. *Math. Meth. Appl. Sci.* (2018) 1–22.
- [14] B. Ewald, M. Petcu and R. Temam, Stochastic solutions of the two-dimensional primitive equations of the ocean and atmosphere with an additive noise. *Anal. Appl.* **5** (2007) 183–198.
- [15] H. Gao and C. Sun, Random attractor for the 3d viscous stochastic primitive equations with additive noise. *Stoch. Dyn.* **9** (2009) 293–313.
- [16] H. Gao and C. Sun, Well-posedness and large deviations for the stochastic primitive equations in two space dimensions. *Commun. Math. Sci.* **10** (2012) 233–273.
- [17] N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations. *J. Math. Phys.* **55** (2014) 051504.
- [18] N. Glatt-Holtz and R. Temam, Pathwise solutions of the 2-d stochastic primitive equations. *Appl. Math. Optim.* **63** (2011) 401–433.
- [19] N. Glatt-Holtz and M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise. *DCDS-Series B* **10** (2008) 801–822.
- [20] B. Goldys, M. Röckner and X. Zhang, Martingale solutions and Markov selections for stochastic partial differential equations. *Stoch. Process. Appl.* **119** (2009) 1725–1764.
- [21] F. Guillen-Gonzalez, N. Masmoudi and M.A. Rodriguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations. *Differ. Integral Eqns.* **14** (2001) 1381–1408.
- [22] B. Guo and D. Huang, 3d stochastic primitive equations of the large-scale oceans: global well-posedness and attractors. *Comm. Math. Phys.* **286** (2009) 697–723.
- [23] I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations. *Probab. Theory Related Fields* **105** (1996) 143–158.
- [24] D. Han-Kwan and T.T. Nguyen, Ill-posedness of the hydrostatic euler and singular Vlasov equations. *Arch. Ratl. Mech. Anal.* **221** (2016) 1317–1344.
- [25] M. Hieber and A. Hussein, An approach to the primitive equations for oceanic and atmospheric dynamics by evolution equations, *Fluids under pressure*. *Adv. Math. Fluid Mech.*, Birkhäuser/Springer, Cham (2020) 1–109.
- [26] C. Hu, R. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations. *Chin. Ann. Math. Ser. B* **23** (2002) 277–292.
- [27] A. Hussein, Partial and full hyper-viscosity for Navier-Stokes and primitive equations. *J. Differ. Equ.* **269** (2020) 3003–3030.
- [28] A. Hussein, M. Saal and M. Wrona, Primitive equations with horizontal viscosity: the initial value and the time-periodic problem for physical bound conditions. *Discr. Continu. Dyn. Syst. A* **41** (2021) 3063–3092.
- [29] A. Jakubowski. Short Communication: The almost sure skorokhod representation for subsequences in Nonmetric spaces. *Theory Probab. Appl.* **42** (1998) 167–175.
- [30] N. Ju, On H^2 solutions and z -weak solutions of the 3D primitive equations. *Mathematics* **66** (2015) 973–996.
- [31] N. Ju, Uniqueness of some weak solutions for 2D viscous primitive equations. *J. Math. Fluid Mech.* **23** (2021) 1–29.
- [32] G.M. Kobelkov, Existence of a solution ‘in the large’ for ocean dynamics equations. *J. Math. Fluid Mech.* **9** (2007) 588–610.
- [33] G.M. Kobelkov, Existence of a solution in the large for the 3D large-scale ocean dynamics equations. *C.R. Math. Acad. Sci. Paris* **343** (2006) 283–286.
- [34] I. Kukavica, Y. Pei, W. Rusin and M. Ziane, Primitive equations with continuous initial data. *Nonlinearity* **27** (2014) 1135–1155.
- [35] I. Kukavica, R. Temam, V. Vicol and M. Ziane, Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain. *J. Differ. Equ.* **250** (2011) 1719–1746.
- [36] I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean. *Nonlinearity* **20** (2007) 2739–2753.
- [37] J. Li and E. Titi, Existence and uniqueness of weak solutions to viscous primitive equations for a certain class of discontinuous initial data. *SIAM J. Math. Anal.* **49** (2017) 1–28.
- [38] J. Li, E. Titi and G. Yuan, The primitive equations approximation of the anisotropic horizontally viscous 3D Navier-Stokes equations. *J. Differ. Equ.* **306** (2022) 492–524.

- [39] S. Liang, P. Zhang and R. Zhu. Deterministic and stochastic 2d Navier-Stokes equations with anisotropic viscosity. *J. Differ. Equ.* **275** (2021) 473–508.
- [40] J.L. Lions, R. Temam and S. Wang, Models for the coupled atmosphere and ocean. Elsevier Science Publishers B.V. **1** (1993) 3–4.
- [41] J.L. Lions, R. Temam and S. Wang. New formulations of the primitive equations of atmosphere and applications. *Nonlinearity* **5** (1992) 237–288.
- [42] J.L. Lions, R. Temam and S. Wang. On the equations of the large-scale ocean. *Nonlinearity* **5** (1992) 1007–1053.
- [43] W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction[M]. Springer International Publishing (2015).
- [44] T.T. Medjo, On the uniqueness of z-weak solutions of the three dimensional primitive equations of the ocean. *Nonlinear Anal. Real World Appl.* **11** (2010) 1413–1421.
- [45] R. Mikulevicius and B. Rozovskii, On Equations of Stochastic Fluid Mechanics. Birkhäuser Boston (2001).
- [46] J. Pedlosky, Geophysical Fluid Dynamics. Springer-Verlag, New York (1987).
- [47] M. Petcu, On the backward uniqueness of the primitive equations. *J. Math. Pures Appl.* **87** (2007) 275–289.
- [48] M. Petcu, R. Temam and D. Wirosoetisno, Existence and regularity results for the primitive equations in two space dimensions. *Comm. Pure Appl. Anal.* **3** (2004) 115–131.
- [49] M. Petcu, R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics. *Handbook of Numerical Analysis* **14** (2009) 577–750.
- [50] M. Saal and J. Slavk, Stochastic primitive equations with horizontal viscosity and diffusivity. Preprint [arXiv:2109.14568](https://arxiv.org/abs/2109.14568) (2021).
- [51] C. Sun and H. Gao, Well-posedness for the stochastic 2D primitive equations with Lévy noise. *Science China Math.* **56** (2013) 1629–1645.
- [52] T.K. Wong, Blowup of solutions of the hydrostatic Euler equations. *Proc. Amer. Math. Soc.* **143** (2015) 1119–1125.

Subscribe to Open (S2O)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: <https://www.edpsciences.org/en/math-s2o-programme>