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OPTIMAL CONVERGENCE RATES FOR THE INVARIANT
DENSITY ESTIMATION OF JUMP-DIFFUSION PROCESSES

CHIARA AMORINOY***® AND EULALIA NUALART?***

Abstract. We aim at estimating the invariant density associated to a stochastic differential equation
with jumps in low dimension, which is for d = 1 and d = 2. We consider a class of fully non-linear jump
diffusion processes whose invariant density belongs to some Holder space. Firstly, in dimension one, we
show that the kernel density estimator achieves the convergence rate %, which is the optimal rate in the
absence of jumps. This improves the convergence rate obtained in Amorino and Gloter [J. Stat. Plann.
Inference 213 (2021) 106-129], which depends on the Blumenthal-Getoor index for d = 1 and is equal
to l(’%T for d = 2. Secondly, when the jump and diffusion coefficients are constant and the jumps are
finite, we show that is not possible to find an estimator with faster rates of estimation. Indeed, we get
some lower bounds with the same rates {%7 1°§,T} in the mono and bi-dimensional cases, respectively.
Finally, we obtain the asymptotic normality of the estimator in the one-dimensional case for the fully
non-linear process.
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1. INTRODUCTION

Solutions to Lévy-driven stochastic differential equations have recently attracted a lot of attention in the
literature due to its many applications in various areas such as finance, physics, and neuroscience. Indeed, it
includes some important examples from finance such as the well-known Kou model in [31], the Barndorff-Nielsen-
Shephard model [7], and the Merton model [37] to name just a few. An important example of application of
jump-processes in neuroscience is the stochastic Morris-Lecar neuron model presented in [24]. As a consequence,
statistical inference for jump processes has recently become an active domain of research.
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We consider the process X = (X;)¢>0 solution to the following stochastic differential equation with jumps:

X, = X0+/ b(X ds+/ 5)dB, +/ /R v(ds,dz) — F(z)dzds), (1.1)

where (By);>0 is a d-dimensional Brownian motion and v is a Poisson random measure on R, x R? associated
to a Lévy process (L;)¢>0 with Lévy density function F'. We focus on the estimation of the invariant density u
associated to the jump-process solution to (1.1) in low dimension, which is for d = 1 and d = 2. In particular,
assuming that a continuous record of (X;)icjo,7] is available, our goal is to propose a non-parametric kernel
estimator for the estimation of the stationary measure and to discuss its convergence rate for large 7'

The same framework has been considered in some recent papers such as [1, 22] (Sect. 5.2), and [2]. In the first

paper, it is shown that the kernel estimator achieves the following convergence rates for the pointwise estimation
_ (+a)

(2 V1
of the invariant density: 1°§T for d = 2 and (logﬂ% for d = 1 (where « is the Blumenthal-Getoor index).
We recall that, in the absence of jumps, the optimal convergence rate in the one-dimensional case is %, while

3
the one found in [1] depends on the jumps and belongs to the interval (%7 %)

In this paper, we wonder if such a deterioration on the rate is because of the presence of jumps or the used
approach. Indeed, our purpose is to look for a new approach to recover a better convergence rate in the one-
dimensional case (hopefully the same as in the continuous case) and to discuss the optimality of such a rate.
This new approach will also lead to the asymptotic normality of the proposed estimator. After that, we will
discuss the optimality of the convergence rate in the bi-dimensional case. This will close the circle of the analysis
of the convergence rates for the estimation of the invariant density of jump-diffusions, as the convergence rates
and their optimality in the case d > 3 have already been treated in detail in [2].

Beyond these works, to our best knowledge, the literature concerning non-parametric estimation of diffusion
processes with jumps is not wide. One of the few examples is given by Funke and Schmisser: in [27] they
investigate the non parametric adaptive estimation of the drift of an integrated jump diffusion process, while
n [40], Schmisser deals with the non-parametric adaptive estimation of the coefficients of a jumps diffusion
process. To name other examples, in [23] the authors estimate in a non-parametric way the drift of a diffusion
with jumps driven by a Hawkes process, while in [3] the volatility and the jump coefficients are considered.

On the other hand, the problem of invariant density estimation has been considered by many authors (see
e.g. [5, 10, 20, 38, 44]) in several different frameworks: it is at the same time a long-standing problem and
a highly active current topic of research. One of the reasons why the estimation of the invariant density has
attracted the attention of many statisticians is the huge amount of numerical methods to which it is connected,
the MCMC method above all. An approximation algorithm for the computation of the invariant density can be
found for example in [33, 39]. Moreover, invariant distributions are essential for the analysis of the stability of
stochastic differential systems (see e.g. [5, 28]).

In [5, 6, 11] some kernel estimators are used to estimate the marginal density of a continuous time process.
When p belongs to some Holder class whose smoothness is /3, they prove under some mixing conditions that their
pointwise L? risk achieves the standard rate of convergence T2+ and the rates are minimax in their framework.
Castellana and Leadbetter proved in [14] that, under condition CL below, the density can be estimated with
the parametric rate % by some non-parametric estimators (the kernel ones among them).

In order to introduce condition CL it is necessary to request that the process X belongs to a class of real
processes with common marginal density u with respect to the Lebesgue measure on R and such that the joint
density of (X, X;) exists for all s # ¢, it is measurable and satisfies p(x_ x,) = f(x,,x.) = H(Xo,X;_,) and it
is denoted by ju;_g for all s,# € R. We also denote by g, the function g,(z,y) = pu(2,y) — p(x)p(y). Then,
condition CL writes as follows:

CL: u +— [|gu||, is integrable on (0,00) and g,(-,-) is continuous for each u > 0.
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In our context, g, (x,y) = pw(x)pu(z,y) — pw(x)p(y), where p,(z,y) is the transition density. More precisely, they
shed light to the fact that local irregularities of the sample paths provide some additional information. Indeed,
if the joint distribution of (X, X}) is not too close to a singular distribution for |¢| small, then it is possible to
achieve the superoptimal rate % for the pointwise quadratic risk of the kernel estimator. Condition CL can be
verified for ergodic continuous diffusion processes (see [45] for sufficient conditions). The paper of Castellana and
Leadbetter led to a lot of works regarding the estimation of the common marginal distribution of a continuous
time process. In [8-10, 16, 32] several related results and examples can be found.

An alternative to the kernel density estimator is given by the local time density estimator, which was proposed
by Kutoyants in [21] in the case of diffusion processes and was extended by Bosq and Davydov in [12] to a more
general context. The latest have proved that, under a condition which is mildly weaker than CL, the mean
squared error of the local time estimator reaches the full rate 7. Leblanc built in [34] a wavelet estimator of a
density belonging to some general Besov space and proved that, if the process is geometrically strong mixing
and a condition like CL is satisfied, then its LP-integrated risk converges at rate % as well. In [18] the authors
built a projection estimator and showed that its L?-integrated risk achieves the parametric rate % under a
condition named WCL, which is blandly different compared to CL.

WCL: There exists a positive integrable function k (defined on R) such that

sup/ |gu (2, y)|du < k(z), for all x € R.
yeR Jo

In this paper, we will show that our mono-dimensional jump-process satisfies a local irregularity condition
WCL1 and an asymptotic independence condition WCL2 (see Prop. 3.2), two conditions in which the original
condition WCL can be decomposed. In this way, it will be possible to show that the L? risk for the pointwise
estimation of the invariant measure achieves the superoptimal rate %, using our kernel density estimator.
Moreover, the same conditions will result in the asymptotic normality of the proposed estimator. Indeed, as
we will see in the proof of Theorem 2.3, the main challenge in this part is to justify the use of dominated
convergence theorem, which will ensured by conditions WCL1 and WCL2. We will find in particular that, for
any collection (2;)1<i<m of real numbers, we have

VT (fun.(x5) — p(), 1 < i <m) Ly N(m) (0,2 as T — oo,

where /i, 7 is the kernel density estimator and

oo
S = (o(zi, 2)h<ijem,  olwnx;) = 2/ gu(wi, xj)du.
0

We remark that the precise form of the equation above allows us to construct tests and confidence sets for the
density.

1 logT
T T

the estimation of the invariant density for d = 1 and d = 2. Then, some questions naturally arise: are the
convergence rates the best possible or is it possible to improve them by using other estimators? In order to
answer, we consider a simpler model where both the volatility and the jump coefficient are constant and the
intensity of the jumps is finite. Then, we look for a lower bound for the risk at a point 2 € R? defined as in
equation (2.8) below. The first idea is to use the two hypothesis method (see Sect. 2.3 in [43]). To do that, the
knowledge of the link between the drift b and the invariant density p;, is essential. In absence of jumps such link
is explicit, but in our context it is more challenging. As shown in [2, 19], it is possible to find the link knowing
that the invariant measure has to satisfy A*u, = 0, where A* is the adjoint of the generator of the considered
diffusion. This method allows us to show that the superoptimal rate % is the best possible for the estimation of
the invariant density in d = 1, but it fails in the bi-dimensional case (see Rem. 1 below for details). Finally, we

We have found the convergence rate { } for the risk associated to our kernel density estimator for
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use a finite number of hypotheses to prove a lower bound in the bi-dimensional case. This requires a detailed
analysis of the Kullback divergence between the probability laws associated to the different hypotheses. Thanks
to that, it is possible to recover the optimal rate 6T in the two-dimensional case.

The paper is organised as follows. In Section 2 we give the assumptions on our model and we provide our
main results. Section 3 is devoted to state and prove some preliminary results needed for the proofs of the main
results. To conclude, in Section 4 we give the proof of Theorems 2.1, 2.3, 2.4, and 2.5, where our main results
are gathered.

Throughout all the paper ¢ and A are constants that may change from line to line. Their dependence on T
or other fixed constants will be implied from the statements.

2. MODEL ASSUMPTION AND MAIN RESULTS

We consider the following stochastic differential equation with jumps

X; = Xo—l—/ b(X d8+/ s)dBs —|—/ /]Rd v(ds,dz) — F(z)dzds), (2.1)

where t > 0, d € {1,2}, RZ = R4\ {0}, the initial condition Xy is a R%valued random variable, the coefficients
b:RY 5 RY a:RT - RE@R? and v : RY — RY @ R? are measurable functions, (By)i>o is a d-dimensional
Brownian motion, and v is a Poisson random measure on R, x R¢ associated to a Lévy process (Lt)e>0 with
Lévy density function F. All sources of randomness are mutually independent.

We consider the following assumptions on the coefficients and on the Lévy density F:

A1 The functions b, v and aa” are globally Lipschitz and bounded. Moreover, inf,cga aa® (x) > cld, for some
constant ¢ > 0, where Id denotes the d x d identity matrix and inf,cgra det(y(z)) > 0.
A2 (x,b(x)) < —cq|z| + co, for all |3:| > p, for some p, C1, 3 > 0.
A3 Supp(F) =R¢ and for all z € R¢, F(z) < |z|d+("’ for some « € (0,2),c3 > 0.
A4 There exist €9 > 0 and ¢4 > 0 such that [, |2[2e/*|F(2)dz < 4.
0

A5 Ifa=1, fr<‘z‘<RzF(z)dz =0, for any 0 <7 < R < o0.

Assumption A1 ensures that equation (2.1) admits a unique cadlag adapted solution X = (X;);>¢ satisfying
the strong Markov property, see e.g. [4]. Moreover, it is shown in Lemma 2 [1] that if we further assume
Assumptions A2-Ad4, then the process X is exponentially ergodic and exponentially S-mixing. Therefore the
process is stationary and, in particular, it has a unique invariant distribution 7, which we assume it has a density
1 with respect to the Lebesgue measure. Finally, Assumption A5 ensures the existence of the transition density
of X denoted by pi(z,y) which satisfies the following upper bound (see [1], Lem. 1): for all T > 0, there exist
¢>0and A > 0 such that for any ¢ € [0,7] and z,y € R?,

—d/2 ,)\M t
pt(x5y) Sc(t € + (t1/2+|y—x‘)d+a * (2'2)

We assume that the process is observed continuously X = (X;);epo,7) in a time interval [0,77] such that T
tends to co. In the paper [1] cited above, the nonparametric estimation of y is studied via the kernel estimator
which is defined as follows. We assume that p belongs to the Holder space H4(8, L) where 8 = (81, ..., Ba4),
Bi>1land £ = (Ly,...,Lq), L; > 0, which means that for alli € {1,...,d}, k=0,1,...,|8;] and t € R,

HDEk)MHoo <L and HDzWM)N(' +te;) — DELBiJ)p(.)H —LBid
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—

where D™ denotes the kth order partial derivative of i w.r.t the ith component, |3;| is the integer part of 3;,
i b 2 g

and ey, ..., eq is the canonical basis of R%. That is, all the partial derivatives of y up to order |3] are bounded
and the |8|th partial derivative is Holder continuous of order 5 — | 3] in any direction. We recall that it is
natural in our context to assume that the invariant density belongs to a Holder class as above. In fact, the proof
of the bias bound (2.5) stated below gives a direct application of this assumption, see the proof of Proposition
2 in [1]. Other examples of nonparametric estimation over Holder classes can be found in [29, 30, 35, 42].

We set

: [T (e [
r)=—— K dt =: = Ky (x — Xy)dt,
#h,T( ) TH?:1 h Jo 11;[1 h, T, h( t)

where x = (21,...,24) € R h = (hy,...,hq) is a bandwidth and K : R — R is a kernel function satisfying
/ K(z)dze =1, |K|, <oo, supp(K)C [-1,1], / K(z)z'dz =0,
R R

for all i € {0,..., M} with M > max; f3;.

We first consider equation (2.1) with d = 1 and show that the kernel estimator reaches the optimal rate T—1,
as it is for the stochastic differential equation (2.1) without jumps. For this, we need the following additional
assumption on a.

A6 If d =1, a® € CZ(R), that is, a? is twice continuously differentiable with bounded first and second
derivatives.

Assumption A6 is needed in order to show the results gathered in Theorems 2.1 and 2.3, while for the other
results only assumptions A1-A5 will be required.

Theorem 2.1. Let X be the solution to (2.1) on [0,T] with d = 1. Suppose that Assumptions A1-A6 hold and
€ Hi(B, L), with > 1. Then there exists ¢ > 0 such that for allT >0, h <1, and x € R,

) i 1
B[l fon,r(2) — p(@)|] < ce (0?0 4 7) (2.3)
where 0 < € < min(ﬁ, €0), with €g > 0 as in Assumption A4 In particular, choosing h(T) = ﬁ, we conclude

that for T > 1,

Ceé‘z‘

E|fin,r(z) — p(z)?] < T

(2.4)

We observe that both the bandwidth and the upper bound do not depend on the unknown smoothness of the
invariant density (3, so there is no need to propose a data driven bandwidth adaptive selection procedure as in
the case d > 2 (see [1]).

(2—1feyyy
Theorem 2.1 improves the upper bound obtained in [1] which was of the form M%. The price

to pay is that the constant in the upper bound depends on = (see Rem. 2.2). However, we are able to find
a convergence rate which is optimal, as we will see in Theorem 2.4. As in [1], we will use the bias-variance



OPTIMAL CONVERGENCE RATES FOR THE INVARIANT DENSITY ESTIMATION OF JUMP-DIFFUSION PROCESSES 131
decomposition (see [17], Prop. 1)

Elljinr(x) = u(2)|*] < |Eln,r(@)] = p(@)|* + Ellinr(z) — Elinr(2)]])

<c <h2ﬁ + T~ *Var (/T K(z — Xt)dt>> ) (2
0

for some constant ¢ > 0. For the proof of the bias bound ch?? in the same setting of this paper see the proof of
Proposition 2 in [1].

Then in [1] bounds on the transition semigroup and on the transition density (see (2.2) above) give an upper
bound for the variance depending on the bandwidth. Here, we use a similar approach as in [14, 18] to obtain a
bandwidth-free rate for the variance of smoothing density estimators (which include the kernel estimator). For
Markov diffusions, the sufficient conditions can be decomposed into a local irregularity condition WCL1 plus
an asymptotic independence condition WCL2. There exist two positive integrable functions k1 and ko (defined
on R) and wuy > 0 such that

ug
WCL1: sup/ |gu(z,y)| du < k1 (z), for all z € R,
yeER JO

WCL2: sup/ |gu(z,y)| du < ka(z), for all z € R

yER Jug

where g, (z,y) = p(z)pu(z,y) — p(x)u(y). In order to show these conditions, some further bounds on the
transition density p¢(x, y) involving partial derivatives are needed (see Lem. 3.1 below), for which the additional
condition A6 is required.

Remark 2.2. The term e/l that appears in the bounds (2.3) and (2.4) comes from the fact that we are able
to show condition WCL2 with ko(z) = u(x)(1+ f*(x)), where f* is the Lyapunov function constructed in [1],
defined as a C* approximation of el”! (see the proof of Prop. 3.2). We know that [ u(z)f*(2)dz < oo, as
shown in [36], but this is not sufficient as it was in [18] in order to bound the variance term in (2.5) since here
we are dealing with the kernel estimator. In order to remove the term efl*! an additional assumption would be
needed that ensures that sup,cp p(z)f*(z) < cc.

As shown in [13], conditions WLC1 and WLC2 are also useful to show the asymptotic normality of the
kernel density estimator, as proved in the next theorem.

Theorem 2.3. Let X be the solution to (2.1) on [0,T] with d = 1. Suppose that Assumptions A1-A6 hold and
w € Hi(B, L), with 8 > 1. Consider the bandwidth h(T) = (%)%’6, where € € (0,%). Then, for any collection
(i)1<i<m of distinct real numbers

VT (i, (x:) — Elfin ()], 1 < i < m) 2 NO(0,507) as T — oo, (2.6)

where
e’}
E(m) = (U(ivi,xj))lgi’jgm, U(SL‘Z‘,J}J‘) = 2/ gu(a:i,a:j)du.
0

Observe that using the choice of h(T) = (T)%_e, with € > 0 in the bias bound (2.5), we get that for any
r€Rand T > 1,

VT |E[jin1(z)] — p(z)] < T~ 38-1-269),
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Therefore, choosing 8 > 1 and € < @—731 and applying Theorem 2.3, we conclude that as T' — oo

VT (fui 7 (2:) — p(as), 1 < i <m) 2 N0 (0, n0m),

We are also interested in obtaining lower bounds in dimension d € {1, 2}. For the computations of the lower
bounds we consider the particular case of equation (2.1) given by

¢ ¢
Xy =Xo+ / b(Xs)ds + aB; + / / vz(v(ds,dz) — F(z)dzds), (2.7)
0 o Jre

where a and 7 are d x d constant matrices and the rest of terms are as in equation (2.1).

We next introduce the following set of drift functions of equation (2.7). We say that a bounded and Lipschitz
function b : R — R? belongs to (3, £) if the unique invariant density g, of the solution X = (X;);>0 to (2.7)
belongs to Hq(f3,2L) for some 8,L£ € R%, 5; > 1, L; > 0. A detailed description of the set ¥(3, £) will be given
in Section 4.3, where two explicit examples of drift coefficients by and b belonging to (3, £) will be introduced.

We denote by IPIET) and IEIET) the law and expectation of the solution (X¢);c[o,r]. We define the minimax risk
at a point z € R? by

RE(B,L) = inf R(jir(x)) == inf sup E7[(ir(x) — m(2))?], (2.8)
mT mT bGE(ﬁ,C)

where the infimum is taken on all possible estimators of the invariant density.
The following lower bounds hold true.

Theorem 2.4. Let X be the solution to (2.7) on [0,T] with d = 1. Suppose that Assumptions A1-A5 hold,
that [, F(z)dz < oo and that py, € H1(B3, L), with B > 1. Then, there exists Ty > 0 and ¢ > 0 such that, for all
T Z T07

C
i z > .
;gﬂngT(ﬁ,E) 2 T

Theorem 2.5. Let X be the solution to (2.7) on [0,T] with d = 2. Suppose that Assumptions A1-A5 hold,
that f]R2 F(2)dz < oo and that pu, € Ha(B, L), with B; > 1 for i =1,2. Assume that for alli € {1,2} and j # i,

(aa™)i;(aa™);}| <

. (2.9)

N =

Then, there exists Ty > 0 and ¢ > 0 such that, for T > Ty,

logT
inf sup E{" | sup (jir(z) — pup(@))?| = c—om.
KT bex(8,L) TER?

Recall for these two theorems, a and ~ are d x d constant matrices. In this case, when d = 1, Assumption
A1l is equivalent to say that a # 0 and v > 0, while when d = 2, it is equivalent to say that det(a) # 0 and
det(y) > 0. Moreover, hypotheses A3—A5 imply that the unique solution to equation (2.7) admits a unique
invariant measure 7, which we assume has a density p;, with respect to the Lebesgue measure, as before.

Comparing these lower bounds with the upper bound of Theorem 2.1 for the case d = 1 and Proposition 4
in [1] for the two-dimensional case, we conclude that the convergence rate {%, %} are the best possible for
the estimation of the invariant density in dimension d € {1, 2}.
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The proof of Theorem 2.4 follows along the same lines as that of Theorem 2 in [2], where a lower bound for
the estimation of the invariant density for the solution to (2.7) for d > 3 is obtained. The proof is based on the
two hypotheses method, explained for example in Section 2.3 of [43]. However, this method does not work for
the two-dimensional case as explained in Remark 4.2 below. Instead, we use the Kullback’s version of the finite
number of hypotheses method as stated in Lemma C.1 of [41], see Lemma 3.4 below. Observe that this method
gives a slightly weaker lower bound as we get a sup,, inside the expectation, while the method in [2] provides
an inf, outside the expectation.

3. PRELIMINARY RESULTS

The proof of Theorems 2.1 and 2.3 will use the following bounds on the transition density.

Lemma 3.1. Let X be the solution to (2.1) on [0,T] with d = 1. Suppose that Assumptions A1—A6 hold. Then,
there exist jointly continuous processes Z, A and B on R, x R? such that for allt >0 and z,y € R,

pt(Iay) = Zt(xay)+At(xay)+Bt(xay) (31)

satisfying that for all T > 0, there exist ¢ > 0 and A > 0 such that for any z,y € R and t € [0,T]

2

w2
‘ayQZQ(x,yﬂ < ct73/2e M (3.2)
A, )| < e (BB (ly— 2| + VB 4 e AT, (3.3)
and
|Bi(w,y)| < (14 272)(|y — af + VE) 1. (3.4)

Proof. By Duhamel’s formula (1.12) of [15], the transition density of the solution to (2.1) satisfies that for all
t>0and x,y € R,

pe(x,y) = Zi(x,y) + Ae(z,y) + Bi(z,y)

where Z;(z,y) is the transition density of the solution to (2.1) with b =~ = 0, and A; and B; are defined as

follows
(z,y) / /prmz Zt ~(z,y)dzdr,

and

S(2,) //mw/%AHM)%Mw

k
Ager€ i (e, mgﬂﬁwm

where k(z,£) = \§|1+‘1F( )). This shows the decomposition formula (3.1).

v(z
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By (6.1) in Theorem 7 of [26], using the fact that a? is bounded together with A6, we have that for all 7' > 0,
there exist ¢, A > 0 such that for all z,y € R and ¢ € [0, 7]

0? y—e|?
‘a ZZt(‘T7y)‘ < Ct_3/26_>\|y t | )
Y
(which proves (3.2)) and
0 1 ylu=e?
a—Zt(ac,y) <ct e o (3.5)
x

In particular, using (3.5) and the fact that b is bounded, we get that

ly—=|2

t
Ad(ey)| < ¢ / / oo 2)(t — 1) Te M Qs
0 R

Moreover, using (2.2) together with (2.6) and (2.8) of [15] with 71 = —1 and 72 =2, and 7; = 0 and v, = —1,
respectively, we conclude that (3.3) holds true.

On the other hand, appealing to Corollary 2.4(i) of [15], from hypotheses A1, A3 and A5, we get that for
all T > 0, there exists ¢ > 0 such that for all z,y € R and ¢ € [0, 7],

By(z,y)| < C/o /Rpr(x,Z)(Iy—z\ VTR dzr,

Finally, using again (2.2) together with (2.5) and (2.6) of [15] with v; = 0 and 72 = 2, and ; = 0 and v, = 0,
respectively, we obtain (3.4).
The proof of the Lemma is completed. O

The key point of the proof of Theorem 2.1 consists in showing that conditions WCL1 and WCL2 hold true,
which is proved in the next proposition.

Proposition 3.2. Let X be the solution to (2.1) on [0,T] with d = 1. Suppose that Assumptions A1-A6 hold.
Then, conditions WCL1 and WCL2 are satisfied.

Proof. We start considering WCL1. The density estimate (2.2) yields
p(zy) <ct P4dt T <et T 0<t<2, (3.6)

which combined with sup,cg p1(y) < oo gives WCL1 with ky(z) = p(r) and ug = 2. In order to show WCL2,
we set (&) := Elexp(i£X:)] and ¢, (€, t) := E[exp(i€X:)| Xo = x| and we claim that there exists ¢ > 0 such that
for all £ € R,

(&)l < e+ [e)) 2. (3.7)

Moreover, there exists ¢ > 0, such that for all ¢t > 2, z € R, and £ € R,

0w (&, 1)] < €1+ €))7 (3-8)
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Recall from Lemma 2 in [1] and its proof that the process X is exponentially S-mixing and there exists p > 0
such that for all z € R and t > 0,

1P (2, ) = nC)llpy < 1+ £ (2)e™"", (3.9)

where (P;):cr is the transition semigroup of our process X, ||| is the total variation norm and f*(z) is a
Lyapounov function. Specifically, f*(z) is defined as el*! for |z| > 1, with e < min(ﬁ7 €0) (€0 > 0 as in Asm.

A4). In order to avoid any regularity problem in 0, f* is introduced as piecewise function. For |z| < 1 it is
defined as a C* approximation of e€l*l such that f* is C* on R.

We now prove that inequalities (3.7), (3.8) and (3.9) imply WCL2. Using the inverse Fourier transform, we
have

2 (pr(y) — ply)) = / exp(—i€y) (s (£,8) — o(t))dE.

Then, using (3.7) and (3.8) we get, for t > 2,

p—1

2rlpu(e, ) - )| < 20+ 6)'F (uplon(e ) — o€ [ (14975 ae,
¢eR R+

where we have used that 1 = X 4+ 21, We can choose p > 2, so that 2pr1 > 1. We get that there exists a finite
constant ¢ such that, for all ¢ > 2 and x,y € R,

9¢ (2, y)| = p(x)|pe(z,y) — py)| < cu(:c)(?elg l0a (€, 1) — p(E)])7,

where we observe that the right hand side is independent of y. By using the fact that

sup [ oz (A, 1) = o(N)| < ([Pl ) = p()llpy
AER

together with (3.9) we obtain that there exist ¢ > 0 and p > 0 such that for all z,y € R and ¢ > 2,
lge(2,y)| < cp(@)(1+ f(z))e™"",

as f* is positive, and so

sup [ o)l dt < ep(@) (1 + £(2) / T eetar,

yeR

which implies WCL2 with ko(z) = cp(x)(1 4 f*(x)).
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We are left to show (3.7) and (3.8). We start showing (3.8). Using (3.1) and integrating by parts yields

u(,8)] = /R exp(z'fy)mx,y)dy]

— /R /R exp(i€y)pi—1(z, 2)p1(z, y)dy dz

- / / exp(i€y)pi—1(2,2) (Z1(2,9) + A1 (2,9) + Br(29)) dydz

€7 [ [ peates
+/R/Rptf1(x,z)|z41(z,y)|dydz+/R/Rpt,l(x,z)|31(z7y)‘dydz

e T+ I+ I3).

IN

Z (z, y)‘dy dz

Appealing to (3.2), we obtain that

= C/ / Pz, 2)e =Py dz = ¢,
RJR

where ¢ is independent of ¢ and x as fR pi—1(x, z)dz = 1. Using (3.3), we get that
I < C/]R /]Rpt_1(x, Dy — 2|+ 1) e M= dydz = ¢,
as the dy integral is finite since « € (0,2). Similarly, by (3.4),
I3 < C/R/Rpt,l(x,z)(\y —z|+ 1) dydz < .

Thus, we have proved that |p,(£,t)] < c|¢|72. Since |¢,(&,t)] < 1, this implies (3.8). Similarly,

&)= \ / exp(ify)u(y)dy‘
< ‘ || [ explignnt)z1 . maya:

// |A1zy|dydz+// 2)|Bi(z,y)|dy dz
<t [ [ e
// 2)] Ax ( zy|dydz+// z)|B1(z,y)|dy dz

< clel ™2,

(z y)’dydz

which implies (3.8) since |p(§)| < 1. The proof of the proposition is now completed.

O

Theorem 2.3 is an application of the following central limit theorem for discrete stationary sequences. Let
Y, = (Y,,, i € Z),n > 1 be a sequence of strictly stationary discrete time R valued random process. We define
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the a-mixing coeflicient of Y,, by

Qp ks = sup (P(AN B) —P(A)P(B))
AEU(KL,i7iSO)7 BEU(Yn,iink)

and we set ay 1= sup,, > ay  (see also Sect. 1in [25]). We denote by YV’ ") the r-th component of an m dimensional
random vector Y.

Theorem 3.3 (Thm. 1.1 [13]). Assume that

(i) E[Yé?] =0 and |Y7§?| <M, for everyn>1,i>1 and 1 <r < m, where M, is a constant depending
only on n.

(i)

sup ]E[(Yé;))Q] < 00.

1>1,1<r<m
(iii) For every 1 <r,s < m and for every sequence b, — oo such that b, < n for every n > 1, we have

bn bn

_— (r) (s)
lim E E Y. E Y =0,
n—o00 bn pt n,? = n,J )

J0—1

(iv) There exists yo € (1,00) such that 3~ ke, ™ < oo.

2
Y0
(v) For some constant ¢ > 0 and for everyn > 1, M,, < cn®Go-D@0-1,

Then,

7212171 £ 25 N(0,%)

as n — 0o,

where & = (0y.5)1<r.s<m.-

The proof of Theorem 2.5 is based on the following Kullback version of the main theorem on lower bounds
in [43], see Lemma C.1 of [41]:

Lemma 3.4. Fiz 3,£ € (0,00)? and assume that there exists fo € Ha(B,L) and a finite set Jr such that one
can find {f;, j € Jr} C Ha(B, L) satisfying

1fi = fillo =2>0  Vj#keJr (3.10)

Moreover, denoting IP’; ) the probability measure associated with f;, ¥j € Jp, P (T) < ]P’( ) and

(T)
€ S ke pf") = IJTI ST E® [log (Zﬁ (XT)>] < §log(|J7) (3.11)

|JT| jeJT JjeJT
for some 6 € (0, %) Then, for ¢ > 0, we have

inf  sup  (BYV [ far — ]| L))V > e(8) > 0,
T i, eHa(B,L)
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where the infimum is taken over all the possible estimators jir of pp.

4. PROOF OF THE MAIN RESULTS
4.1. Proof of Theorem 2.1

By the symmetry of the covariance operator and the stationarity of the process,

T T
T Var(jin 1 (z)) = % /0 /0 Cov(Kn(x — X1), Kn(x — X.))ds dt
= % /0 (T — u)Cov(Kp(z — Xu), Kp(z — Xo))du
T u
=2 [ 0= [ [ i - ka0 )y azau
< [ Kuta=nlswp [ lgu(y.2)dudy [ (o - 2.

In the proof of Proposition 3.2 we have shown that

z€R

sup /OOO |9u(y, 2)|du < (1 + p(y)(1+ f*(y))).
It follows that
T Var(fu,r(x)) < C/R Kp(z —y)[(1+ p(y)(1+ f*(y))dy,

since, by the definition of the kernel function,

o LN
[ o=z = [ Ko - 2)lds < [Kal o b < 5 l2h = K]
R z—h

Then, by the definition of Kj, we get that

/R [Kn (2 — 9)|(1+ uly)(1+ 1*(4)))dy

1

z+h T —
:E/H K () + n(y) (1 + £ (5)dy

<K, / (1 e = )1+ (@ = 1)),

where we have applied the change of variable § := *5#. Now we observe that, if [z — hgj| < 1, then f*(x — hg)
is bounded by construction. Otherwise, for | — hg| > 1, we have

f*(.lf _ h?j) _ €e|9:7h3]| < ee\z|€eh\g\ < ee|m\es’
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where in the last inequality we have used the fact that both h and |g| are smaller than 1. Therefore, we have
shown that

T Var(fin,r(z)) < cee‘ml,

where c is independent of T', h and z. Finally, from the bias-variance decomposition (2.5) we obtain (2.3), which
concludes the desired proof.

4.2. Proof of Theorem 2.3

We aim to apply Theorem 3.3. For this, we split the interval [0, 7] into n intervals [¢;_1,t;], where t; = iA
for any i € {0,...,n}, nA =T, and n = |T| with T > 1, which implies that 1 < A < 2.
For each n > 1 and 1 < r < m, we consider the sequence (Y(T))izl defined as

n,:

/ K, (2, — Xu>du]> |

for 2, € R. We denote by Y, ; the R valued random vector defined by Y, ; = (Y(l-) Y(T)). By construction,

ngot o dn,

1 b
er”i) = ﬁ (/ Kp(z, — Xy)du — E
ti—1

2?:1 Yn,i

N VT (jinr(x) — Elfin7(2)]),

where i, 7(x) — E[fi,r(2)] is the vector
(i, (z1) = Elfn,r (1)), -, fin,7 (@) — Elfin, 7 (20)])-
It is clear that E[Y,, ;] = 0 for all n > 1 and ¢ > 1. Moreover, for all ¢ > 1,1 <r <m and n > 1 we have

1K o
W)

1

7x V2.

V7] < —= [IKnll o A <

We choose h(T) := (%)%’6 = (%)%*6 > ¢(2)(279 for some € € (0, 1). Hence, assumption (i) holds true with

M, := cnz—*. Concerning assumption (ii) we remark that, for any ¢ > 1 and any 1 < r < m,
1 A
E[(Y,"))?] = Var | —= / Kp (2, — X,)du | = Var(vVAjip a(2,))
s /A 0

= AVar(iip a(z,)) < AZ =g,
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where in the last inequality we have used (4.1). We next check condition (iii). Let b, be a sequence of integers
such that b, — oo and b,, < n for every n. For every 1 <r <m and 1 < s < m, we have

by, ") by 1 Ab,  pAb,
7IE Sy Z _ AT"/O /O Cov(Kp (2 — Xo), Kn (s — X,))dudv
=1 =1

Ab,
—2/ (1_Ab //Kh r — 21)Knp(2s — 22)gu(21, 22)dz1 dzo du

o [ [ 70 K K e — W2~ BT s,

where we have used Fubini’s theorem and the change of variables wy := %, wo 1= h(T) Using dominated
convergence and the fact that h(T") — 0 for T — oo and Ab,, — oo for n — oo as A > 1, we obtain

b

1 = s S
lim b—IE ZYH() Y( /K w1 /K wWa / Gu(r, xs)du dwsy dw,

n— oo

= 2/ gu(Tr, x5 )du =: o(xy, x),
0

which proves (iii). Remark that it is possible to use dominated convergence theorem since we have shown in the
proof of Proposition 3.2 that

sup gu(z,y)| < ¢ (/2L pucay + (@) (14 £ @) Lusay )
yeR

for some positive constants ¢ and p. In particular, we have

u

I( Ab.
<c (u—l/Ql{uQ} + e6<‘zr|+‘"’1‘>e—f’“1{u>2}) |K (w1) K (ws)| € L*(RT x R?),

VK (w1) K (w2)gu (2, — R(T)w1, s — M(T)w2) 10,1 (u) g2 (w1, wo)|

as K has support on [—1,1].
We now check (iv). We remark that if a process is S-mixing, then it is also a-mixing and the following
estimation holds (see Thm. 3 in Sect. 1.2.2 of [25])

o < By, (k) = Bx (k) < ce™ k.

Therefore, it suffices to show that there exists vy € (1, 00) such that

(=1

—k

g ke™"™ 0 < oo,
k>1

which is true for any 7 > 1, so (iv) is satisfied.

We are left to show (v). Set f(y0) := Mm
1

strictly decreasing, and § < f(70) < 3. Therefore, given € € (0, 1), there always exists 7o > 1 such that for all

and observe that f(1) = % and for 79 > 1, f is continuous,
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n>1

)

nz—e < nf00),

Thus, condition (v) is satisfied. We can then apply Theorem 3.3 which directly leads us to (2.6) and concludes
the desired proof.

4.3. Proof of Theorem 2.4

The proof of of Theorem 2.4 follows as the proof of the lower bound for d > 3 obtained in Theorem 3 of [2].
Therefore, we will only explain the main steps and the principal differences.

Step 1 The first step consists in showing that given a density function f, we can always find a drift function
by such that f is the unique invariant density function of equation (2.7) with drift coefficient b = by. We give
the statement and proof in dimension d = 1, as in Propositions 2 and 3 of [2] it is only done for d > 2.

Proposition 4.1. Let f : R — R be a C? positive probability density satisfying the following conditions

1. limy 100 f(y) =0 and lim, 4 f'(y) = 0.
2. There exist ¢1 > 0 and 0 < € < \E»TO\’ where €q is as in Assumption A4 such that, for any y,z € R,

flyEz) < erel?f(y).

3. For € >0 as in 2. there exists éz(€) > 0 such that

. 1 > .
sup —— o / fw)dw < éa and sup)/y flw)dw < éo.

y<0 y>0 Iy
4. There ezists 0 < € < m and R > 0 such that for any |y| > R, J;(y)) < —ésgn(y), where ¢y is as in

Assumption Ad. Moreover, there exists ¢z such that for any y € R, |f'(y)| < é3f(y).
5. For anyy € R and € as in 4. |f"(y)| < 1€ f(y).

Then there exists a bounded Lipschitz function by which satisfies A2 such that f is the unique invariant density
to equation (2.7) with drift coefficient b = by.

Proof. Let Ag be the discrete part of the generator of the diffusion process X solution of (2.7) and let A} its
adjoint. We define by as

by(x) = {f(lz) LG (w) + A5 f(w)dw, — if 2 < 0;

—ﬁ [ 50 (@)(w) + A f(w)dw, if x>0,
where
A3 f(@) = [ [Fle=72) = 1(@) + 72 (@) ()

Then, following Proposition 3 in [2], one can check that by is bounded, Lipschitz, and satisfies A2. Moreover,
if we replace b by by in equation (2.7), then f is the unique invariant density. O

Step 2 The second step consists in defining two probability density functions fy and f1 in Hq(5, £).
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We first define fo(y) = ¢, f(nly|), where n € (0, 1), ¢, is such that [ fo = 1, where f is defined as follows. We
first consider the piecewise function

e~ l=l, if 2] > 1
g(z) = { e=22l=2)  jf 1<zl<1
1, if |z < 3.
Observe that g is continuous, satlsﬁes “lzl < g(2) < 2e~1#l for all 2 € R, and each piece belongs to C* and

has bounded derivatives. We define f as a C* approximation of g, with bounded derivatives of all orders and
satisfying

S < f) < 27l < e, and (£ (Ja])] < 1407 (4.1)

Observe that the two latter inequalities are satisfied by g piecewise.

It is easy to see that n can be chosen small enough so that fo € Hi(8,L). Indeed, first, it is clear that all
the derivatives of fy can be bounded by the constant £ for n small enough. Furthermore, the following bounds
hold true for any x and ¢ in R

|DW fo(x + 1) — D fo ()|
< |DY) fo(a + t) — DB o ()P~ 18)( QHDwaO” ~(8-181)

HB L8]

< HD“”“fo (QHDLanOH Y1=(B=181) ||8-18)

Again, it suffices to choose 1 small enough to ensure that

Hﬁ—[m

HDLBJHfO 2 HDmeOH y--18) < 1,

which shows that fo € H1(8,L) C H1(B,2L).
We also ask that the constant ¢4 in Assumption A4 is such that

CL2

This means that the jumps have to integrate an exponential function. The bound depends on the coefficients a
and v and so it depends only on the model.

Under the conditions above it is easy to see that fj satisfies the assumptions of Proposition 4.1 with ¢ = 4,
e=1, é = g, R = %, € =1 ¢é3 = 287, and ¢4 = 28. Indeed, point 1 of Proposition 4.1 clearly holds true from
the definition of fy. To show the second point we observe that, thanks to (4.1), we have

foly £ 2) = eaf(nly £ 2]) < 2e,e” e < dfy(y)e™?!,

which implies point 2 with ¢; = 4 and € = 7, since we can choose 1 small enough to make the condition on €
satisfied. In order to prove point 3 we use again (4.1). It follows that, for any y < 0,

1
= enf D) / enf (]} de
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‘efnly\ 4

Yy
< 2¢MYl / 2e M dw = 4eY
—oo n n

For y > 0 an analogous reasoning applies. Thus, fy satisfies the third point with éa(€) = éa(n) = %. For the
fourth point, we observe that, for |y| > %,

fo(y) = —nsgn(y) fo(y).

That is, the first part of point 4 holds true for |y| > R, taking R = % and € = n. Moreover, we observe that
using (4.1) we have, for k = 1,2,

£E @) = leat® (lyD)] < 1eane™ ¥ < 280" foly).

This shows that both the fourth and the fifth points hold true, with é3(n) = 287 and é, = 28. Finally, we need
to check that the condition on € given in the fourth point which writes as

a? a?n

TS ittty 29Pcs 4284
which is equivalent to (4.2). Hence, f; satisfies all the assumptions in Proposition 4.1.

Therefore, by := by, belongs to X(3, L£). Recall that by belongs to X(3, £) if and only if fy belongs to H1 (85, 2L)
and bg is bounded, Lipschitz and satisfies the drift condition A2.

We next define

1 . [x—x
= —K 4.3
hi) = fole) + 3K (S5, (4.3
where zg € R is fixed and K :R — Ris a C> function with support on [—1, 1] such that

K(0) =1, /1 K(z)dz = 0.

Here H is a constant and M will be calibrated later and satisfies that M7 — oo as T' — oo. Observe that in
the proof of the lower bound for the case d > 3 presented in [2], H is a function of T' converging to 0 as T' — co.
For the case d = 1, it suffices to chose it constant and we will see below that the same computations done in [2]
will work in this case and it suffices to calibrate Mp.

Then it can be shown as in Lemma 3 of [2] that if for all ¢ > 0 and T sufficiently large,

1 1
ESEHB and EZO(

Mr) (4.4)
as T — oo, then if € > 0 is small enough we have that b; := by, belongs to X(3, L) for T sufficiently large.
Indeed, on one hand, (4.4) is clearly true when H is a constant. On the other hand, the same argument used
in Lemma 3 of [2] applies to show that f; belongs to H;(5,2L) when H is a constant, up to choose € in (4.4)
smaller than a constant depending on £ and H.

Step 3 As by, b1 € X(8, L), we can write

EgT)[(/]T(I'O) — f1(z0))*] + 1H*:(()T)[(llT(xo) = fo(z0))?],

R(fir(z0)) > 5
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where EET) denotes the expectation with respect to b;. Then, following as in [2], using Girsanov’s formula, we
can show that if

1
T—— 4.
o aEE < 49
then for sufficiently large T,
- C 1
Rliir(20)) > 7. (4.6)
8\ Mz

where the constants C' and A are as in Lemma 4 of [2] and they do not depend on the point zy. We finally look
for the larger choice of 47> for which both (4.4) and (4.5) hold true. It suffices to choose M = VT to conclude

the proof of Theorem 2. 4

Remark 4.2. The two hypothesis method used above does not work to prove the 2-dimensional lower bound
of Theorem 2.5. Indeed, following as above, we can define

h) = ho) + 3K (G ) & (52

Then, it is possible to show that (4.6) still holds and, therefore, we should take M7 such that [2 = 1°§iT. On

the other hand, condition (4.5) now becomes

The optimal choice of the bandwidth is achieved for Hy(T) = Hy(T') which yields to suppsq T 5pz < 00, which
- T
_ logT

is clearly not satisfied when MQ .

4.4. Proof of Theorem 2.5

We will apply Lemma 3.4 with ¢ := v lo%iT, where v > 0 is fixed. As above we divide the proof into three
steps.

Step 1 As in the one-dimensional case, the first step consists in showing that given a density function f, we
can always find a drift function by such that f is the unique invariant density function of equation (2.7) with
drift coefficient b = by, which is proved in Propositions 2 and 3 of [2]. We remark that condition (2.9) is needed
in Proposition 4.3 to ensure that the terms on the diagonal of the volatility coefficient a dominate on the others,
which is crucial to get that by satisfies the drift condition A2.

Step 2 We next define the probability density fo € Ha(5, L), the finite set Jr, and the set of probability
densities {f;, j € Jr} C Ha(B, L) needed in order to apply Lemma 3.4.

We first define fy as mp in Section 7.2 of [2], which is the two-dimensional version of fy defined in the proof
of Theorem 2.4, that is,

fol) = epf (naa®) i foa]) f(n(aa™ )3y |22]), @ = (w1,22) € R, (4.7)

where f is as in Step 2 of the proof of Proposition 4.1. The density fo belongs to Ha(5, £) by construction.
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We then set

JT::{I,...,L\/%J}x{l,...,t\/%J}, (4.8)

where in order to lighten the notation we will write H; and Hy for Hy(T') and Hy(T), respectively, which are
two quantities that converge to 0 as T' — oo and need to be calibrated.
Finally, fOI‘j = (jl,j2) S JT7 we define T = ($j71,$j72) = (2j1H172j2H2) and we set

fi(x) == fo(z) +2v loiTK ( Hfﬂ) i (332 ;I:ja) ’

where recall that v > 0 is fixed and K is as in (4.3).

Acting as in Lemma 3 of [2], recalling that the rate N% therein is now replaced by 1°§T (see also points

1. and 3. in the proof of Prop. 4.3 below), it is easy to see that if there exists € > 0 sufficiently small such that

for large T,
log T 3 logT
\/Tger, ,/TgeHga (4.9)

then, for any j € Jr and large T', b; € X(f, £). In particular, f; € Ho(5, L). Therefore, {f;, j € Jr} C Ha(B, L).
In order to evaluate the difference between f; and fi, we remark first of all that, as K has support on [-1,1],
Hl | KBt x”) is different from 0 only if |74t xJ | <1 for any I € {1,2}. Then,

() —
\/E
\/@

where we have used that, as j # k, there is a lg € {1,2} such that Iy # ko and so in particular, by construction,
|71, — Ki,| > 1. Tt follows that

115 = frlle = [£5(x il

fr(x

2 ~ Li] — T 2 Z‘ — X
HK Ll — L4l _]l H 7,1 kl)]
2

=1

logT
T

=29,

|-'17j,l0 — Lk,lo | _ |2jloHlo - 2kl0

Hl°| >2
H; h; -

0 0

and so the kernel evaluated in this point is null. This proves the first condition of Lemma 3.4.
Step 3 We are left to show the remaining conditions of Lemma 3.4. The absolute continuity IP’§-T) < IP’gT)
()
and the expression for %(X Ty are both obtained by Girsanov formula, as in Lemma 4 of [2]. We have,
9

(T) (1) _ (D) fi yr L)
KLe{" p§") = ES [log <fO(X )ﬂ 5E;

T
/0 = (bo(X,.) — b; (X)) *du

where the law of X” = (X¢);e[0,7] under IP’E.T) is the one of the solution to equation (2.7) with b = by.
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By the definition of the f;’s it is easy to see that the first term is o(1) as T' — oco. In fact, as K is supported
n [-1,1],

EgT) {log (j%(XT))] - /R2 log (1 + 2 long (llfii;;)l) K (9"2;[’:‘2) )fo(x)dx

log T
1og(1+c*v o8 ||K||2>

which tends to zero as T — oo, where ¢, := § 4’7]“

deﬁmtlon of fo, and k := max;—; 2(aa”);;*. In fact this follows from the definition of fy in (4.7). Since f(z) >
ie ~Izl we obtain

¢y is the constant of normalization introduced in the

LI 2 2 < A nk(H a2 Hal 4o )

Jo(z) = ey emnlaa) e1] g=n(aaT)y 2] = ¢y

where we have also used the fact that, as K is supported in [—1,1], we have z € [z;1 — H1, 21 + Hq] X [z2 —
Hj, x5+ Ho). Finally, by the definition of z; and the fact that H; — 0 as T — oo for 4 = 1,2 (and so for T
large enough they are smaller than 1), we get

1 g ie47]k?
fo(z) Cn

for any x € [z;1 — Hi,xj1 + Hi| X [xj2 — Ha, 2 + Ha). (4.10)

Regarding the second term, using the stationarity of the process X7, we have

T
B VO [a™" (bo(Xu) = b;(Xu))*du

_ /|a (bo () — b (2)) ] fol)da

Then, the following asymptotic bound will be proved at the end of this Section.

Proposition 4.3. For T large enough,

) 1 logT
IR2Ia Y(bo(x) = b(2))? fo(x)d x<64 z k2 “H1 Hy (Hl +Hg> figr

Taking the optimal choice for the bandwidth in Proposition 4.3, which is H; = Hs, we get that

Bk log T
Ja™" (bo () — b (2)|* folw)de < 645 k?v24=5
R2 Cn T
In particular, after having ordered 5, < 32, we choose H; = Hy = (%)a with a < ﬁ = (ﬁ A ﬁ) so that

condition (4.9) is satisfied. We therefore get

KL(IP’;.T) (T)) < 128 k2 v?log T < 128 k:2 v?log(|Jr]),
s o
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being the last estimation a consequence of the fact that, by construction,

l%wmzam(é;)ZM%@m+dm.

e

2
It is therefore enough to choose v such that 128 ;;nj k*v? < % (ie v? < m) and apply Lemma 3.4 to
n

conclude the proof of Theorem 2.5.

4.5. Proof of Proposition 4.3
The proof of Proposition 4.3 follows similarly as Proposition 4 of [2]. Indeed, we first define the set
Ki = [2j0 = Hi,wj + Hi] X [22 — Ha, 20 + Hol,
where we recall that we write Hy and Hy for H1(T) and Hs(T), respectively, in order to simplify the notation.
Then we show the following points for T' large enough:
1. There exists a constant ¢ > 0 such that, for any = in the complementary set of K, that we denote as

K7, and for any i € {1,2},

) ) logT
65 (@) — b ()| < vy ==

2. There exists a constant ¢ > 0 such that, for any 7 € {1,2},

. . logT
/, b () — by(2)| fo(a)dz < cv ? Hy Hs.
K§e

3. For any z € K% and 7 € {1,2},

) ) 8 logT [ 1 1
b — bg < — etk — 4+ — .
) = o)l < 2oy B ()

The proof of the first two points follows exactly the one in Proposition 4 of [2], remarking that

d T — b
dT(l') = 7T1(£C) — 7r0(.’IJ) = MLT HK ( ;Ll(T)O>

=1

in [2] is now replaced by

and the set
Kp =[xy — hi(T), 25 + b (T)] x -+ X [£§ — ha(T), 2§ + ha(T)]

introduced in [2] is now replaced by K%. We recall that K and K are exactly the same kernel function. The
proof of Proposition 4 of [2] is based on the fact that dp(x) and its derivatives are null for € K¢. In the same
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way, d’(x) and its derivatives are null for z € K2°. Then, acting as in [2], it is easy to see that the first two

points above hold true.

Comparing the third point above with the third point of Proposition 4 of [2], it is clear that our goal is to
show that the constant ¢ that appears in the third point of Proposition 4 of [2] is explicit and equal to C§64’7kk
n

when d = 2. Keeping the notation in [2], we first introduce the following quantities:

2 i
>l g, Bl = [ A

1
2J - .

‘We moreover introduce the notation

I'fo)(x) = Iilfol(2) + I3[ fo] ().
According with the definition of b, we have

1

(@) = g P, 1@ = 7 P
Since the operator f — I’[f] is linear, we deduce that
bi(2) = 1)) = T Ufol(@) + Tl ().
7@ 70 L@
Therefore,
b=ty = (- = P+ 1) = D)+ 2T - f?b T

We need to evaluate such a difference on the compact set K%. For this, we will use that fact that f; =

and obtain a lower bound away from 0. Specifically, from the definition of djf, we get

; logT logT
] = 20/ S5 1K = 200/ 25~
(oo}
In particular,
; logT _ f
fi > fo—ldy| > fo—2v T 250

(4.11)

fO +d%“7

(4.12)

since logT — 0 as T — oo, so for T large enough we have 2v4/ IO%T < % Then, for any x € K%, using (4.10)

we have

1 < SS 4nk

2
(@)~ fo
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Moreover, as by is bounded, we deduce that for all z € K%,

Iid%) (). (4.13)

4 16v logT  8e*nk
i) — Bh()] < et ] /2B + =
77

T

We therefore need to evaluate I'[d))(x) = I:[d%] () + Ii[d2](x) on K. As

J logT
Had o8- (4.14)
Oz T
it clearly follows that
- . logT [ 1 1
Ii[dr)’ <2k — 4+ — . 4.1
sl (@) < 2koy 55 (- + o1 ) (1.15)

Regarding 74[d}](x), we can act exactly as in the third point of Proposition 4 of [2]. As z € K3, x; € [xj; —
H;,z;; + H;] for i = 1,2. Therefore, using also the definition of d]f, the first integral is between z;; — H; and
x;. We enlarge the domain of integration to [x;, — H;,x;,; + H;] and then, appealing to (4.12) and (4.14) and
the fact that the intensity of the jumps is finite, we get

I]7+H 8
Blad@l < [ [ 1) - i) + (0 2w Fe)dadu
wji—H; JR2 axl
xji+H;
<2(f, <>dz>/ 2 dw
x;,—H;
waitHs od}
- 2)i T\l F(2)dzdw
/x]lH /R2 ]R2|(ry ) Ox; || )

< cH, loiT + CIZZ' \/?,
for some ¢ > 0. Using this together with (4.13) and (4.15) it follows that, for any x € K%,
by @) oo < ey BT 4 B gy T (1 L)
T Cn T \Hi H
+ cHi\/lO?T + c\/loiT

864’7kkv logT 1 1
Cnp T Hl H2

<

where the last inequality is a consequence of the fact that, Vi € {1,2}, H; — 0 as T — oo and so, for T large
enough, all the terms are negligible when compared to the second one. Hence, the three points listed at the
beginning of the proof hold true. We deduce that

/ Ibo () — by () 2 fo(w)dz
R2
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= [ 1) = b@Pfala)de + [ o) - i) P ofa)ds
K3, K

log T 64e3% 5 LlogT (1 1\?
SCUQ%HIHQ"’_TICQUQ% ([{1+];I2) |K%’v|
n

We recall that |K%| = H1H> and that, as T" — oo, H; — 0. Thus, the first term is negligible compared to the
second one. The desired result follows.
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