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OPTIMAL CONVERGENCE RATES FOR THE INVARIANT

DENSITY ESTIMATION OF JUMP-DIFFUSION PROCESSES

Chiara Amorino1,*,∗∗ and Eulalia Nualart2,∗∗∗

Abstract. We aim at estimating the invariant density associated to a stochastic differential equation
with jumps in low dimension, which is for d = 1 and d = 2. We consider a class of fully non-linear jump
diffusion processes whose invariant density belongs to some Hölder space. Firstly, in dimension one, we
show that the kernel density estimator achieves the convergence rate 1

T
, which is the optimal rate in the

absence of jumps. This improves the convergence rate obtained in Amorino and Gloter [J. Stat. Plann.
Inference 213 (2021) 106–129], which depends on the Blumenthal-Getoor index for d = 1 and is equal
to log T

T
for d = 2. Secondly, when the jump and diffusion coefficients are constant and the jumps are

finite, we show that is not possible to find an estimator with faster rates of estimation. Indeed, we get
some lower bounds with the same rates { 1

T
, log T

T
} in the mono and bi-dimensional cases, respectively.

Finally, we obtain the asymptotic normality of the estimator in the one-dimensional case for the fully
non-linear process.
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1. Introduction

Solutions to Lévy-driven stochastic differential equations have recently attracted a lot of attention in the
literature due to its many applications in various areas such as finance, physics, and neuroscience. Indeed, it
includes some important examples from finance such as the well-known Kou model in [31], the Barndorff-Nielsen-
Shephard model [7], and the Merton model [37] to name just a few. An important example of application of
jump-processes in neuroscience is the stochastic Morris-Lecar neuron model presented in [24]. As a consequence,
statistical inference for jump processes has recently become an active domain of research.
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We consider the process X = (Xt)t≥0 solution to the following stochastic differential equation with jumps:

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

a(Xs)dBs +

∫ t

0

∫
Rd0
γ(Xs−)z(ν(ds,dz)− F (z)dzds), (1.1)

where (Bt)t≥0 is a d-dimensional Brownian motion and ν is a Poisson random measure on R+ × Rd associated
to a Lévy process (Lt)t≥0 with Lévy density function F . We focus on the estimation of the invariant density µ
associated to the jump-process solution to (1.1) in low dimension, which is for d = 1 and d = 2. In particular,
assuming that a continuous record of (Xt)t∈[0,T ] is available, our goal is to propose a non-parametric kernel
estimator for the estimation of the stationary measure and to discuss its convergence rate for large T .

The same framework has been considered in some recent papers such as [1, 22] (Sect. 5.2), and [2]. In the first
paper, it is shown that the kernel estimator achieves the following convergence rates for the pointwise estimation

of the invariant density: log T
T for d = 2 and (log T )(2−

(1+α)
2

)∨1

T for d = 1 (where α is the Blumenthal-Getoor index).
We recall that, in the absence of jumps, the optimal convergence rate in the one-dimensional case is 1

T , while

the one found in [1] depends on the jumps and belongs to the interval ( log T
T , (log T )

3
2

T ).
In this paper, we wonder if such a deterioration on the rate is because of the presence of jumps or the used

approach. Indeed, our purpose is to look for a new approach to recover a better convergence rate in the one-
dimensional case (hopefully the same as in the continuous case) and to discuss the optimality of such a rate.
This new approach will also lead to the asymptotic normality of the proposed estimator. After that, we will
discuss the optimality of the convergence rate in the bi-dimensional case. This will close the circle of the analysis
of the convergence rates for the estimation of the invariant density of jump-diffusions, as the convergence rates
and their optimality in the case d ≥ 3 have already been treated in detail in [2].

Beyond these works, to our best knowledge, the literature concerning non-parametric estimation of diffusion
processes with jumps is not wide. One of the few examples is given by Funke and Schmisser: in [27] they
investigate the non parametric adaptive estimation of the drift of an integrated jump diffusion process, while
in [40], Schmisser deals with the non-parametric adaptive estimation of the coefficients of a jumps diffusion
process. To name other examples, in [23] the authors estimate in a non-parametric way the drift of a diffusion
with jumps driven by a Hawkes process, while in [3] the volatility and the jump coefficients are considered.

On the other hand, the problem of invariant density estimation has been considered by many authors (see
e.g. [5, 10, 20, 38, 44]) in several different frameworks: it is at the same time a long-standing problem and
a highly active current topic of research. One of the reasons why the estimation of the invariant density has
attracted the attention of many statisticians is the huge amount of numerical methods to which it is connected,
the MCMC method above all. An approximation algorithm for the computation of the invariant density can be
found for example in [33, 39]. Moreover, invariant distributions are essential for the analysis of the stability of
stochastic differential systems (see e.g. [5, 28]).

In [5, 6, 11] some kernel estimators are used to estimate the marginal density of a continuous time process.
When µ belongs to some Hölder class whose smoothness is β, they prove under some mixing conditions that their

pointwise L2 risk achieves the standard rate of convergence T
2β

2β+1 and the rates are minimax in their framework.
Castellana and Leadbetter proved in [14] that, under condition CL below, the density can be estimated with
the parametric rate 1

T by some non-parametric estimators (the kernel ones among them).
In order to introduce condition CL it is necessary to request that the process X belongs to a class of real

processes with common marginal density µ with respect to the Lebesgue measure on R and such that the joint
density of (Xs, Xt) exists for all s 6= t, it is measurable and satisfies µ(Xs,Xt) = µ(Xt,Xs) = µ(X0,Xt−s) and it
is denoted by µ|t−s| for all s, t ∈ R. We also denote by gu the function gu(x, y) = µu(x, y) − µ(x)µ(y). Then,
condition CL writes as follows:

CL: u 7→ ‖gu‖∞ is integrable on (0,∞) and gu(·, ·) is continuous for each u > 0.
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In our context, gu(x, y) = µ(x)pu(x, y)− µ(x)µ(y), where pu(x, y) is the transition density. More precisely, they
shed light to the fact that local irregularities of the sample paths provide some additional information. Indeed,
if the joint distribution of (X0, Xt) is not too close to a singular distribution for |t| small, then it is possible to
achieve the superoptimal rate 1

T for the pointwise quadratic risk of the kernel estimator. Condition CL can be
verified for ergodic continuous diffusion processes (see [45] for sufficient conditions). The paper of Castellana and
Leadbetter led to a lot of works regarding the estimation of the common marginal distribution of a continuous
time process. In [8–10, 16, 32] several related results and examples can be found.

An alternative to the kernel density estimator is given by the local time density estimator, which was proposed
by Kutoyants in [21] in the case of diffusion processes and was extended by Bosq and Davydov in [12] to a more
general context. The latest have proved that, under a condition which is mildly weaker than CL, the mean
squared error of the local time estimator reaches the full rate 1

T . Leblanc built in [34] a wavelet estimator of a
density belonging to some general Besov space and proved that, if the process is geometrically strong mixing
and a condition like CL is satisfied, then its Lp-integrated risk converges at rate 1

T as well. In [18] the authors
built a projection estimator and showed that its L2-integrated risk achieves the parametric rate 1

T under a
condition named WCL, which is blandly different compared to CL.

WCL: There exists a positive integrable function k (defined on R) such that

sup
y∈R

∫ ∞
0

|gu(x, y)|du ≤ k(x), for all x ∈ R.

In this paper, we will show that our mono-dimensional jump-process satisfies a local irregularity condition
WCL1 and an asymptotic independence condition WCL2 (see Prop. 3.2), two conditions in which the original
condition WCL can be decomposed. In this way, it will be possible to show that the L2 risk for the pointwise
estimation of the invariant measure achieves the superoptimal rate 1

T , using our kernel density estimator.
Moreover, the same conditions will result in the asymptotic normality of the proposed estimator. Indeed, as
we will see in the proof of Theorem 2.3, the main challenge in this part is to justify the use of dominated
convergence theorem, which will ensured by conditions WCL1 and WCL2. We will find in particular that, for
any collection (xi)1≤i≤m of real numbers, we have

√
T (µ̂h,T (xi)− µ(xi), 1 ≤ i ≤ m)

D−→ N (m)(0,Σ(m)) as T →∞,

where µ̂h,T is the kernel density estimator and

Σ(m) := (σ(xi, xj))1≤i,j≤m, σ(xi, xj) := 2

∫ ∞
0

gu(xi, xj)du.

We remark that the precise form of the equation above allows us to construct tests and confidence sets for the
density.

We have found the convergence rate
{

1
T ,

log T
T

}
for the risk associated to our kernel density estimator for

the estimation of the invariant density for d = 1 and d = 2. Then, some questions naturally arise: are the
convergence rates the best possible or is it possible to improve them by using other estimators? In order to
answer, we consider a simpler model where both the volatility and the jump coefficient are constant and the
intensity of the jumps is finite. Then, we look for a lower bound for the risk at a point x ∈ Rd defined as in
equation (2.8) below. The first idea is to use the two hypothesis method (see Sect. 2.3 in [43]). To do that, the
knowledge of the link between the drift b and the invariant density µb is essential. In absence of jumps such link
is explicit, but in our context it is more challenging. As shown in [2, 19], it is possible to find the link knowing
that the invariant measure has to satisfy A∗µb = 0, where A∗ is the adjoint of the generator of the considered
diffusion. This method allows us to show that the superoptimal rate 1

T is the best possible for the estimation of
the invariant density in d = 1, but it fails in the bi-dimensional case (see Rem. 1 below for details). Finally, we
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use a finite number of hypotheses to prove a lower bound in the bi-dimensional case. This requires a detailed
analysis of the Kullback divergence between the probability laws associated to the different hypotheses. Thanks
to that, it is possible to recover the optimal rate log T

T in the two-dimensional case.
The paper is organised as follows. In Section 2 we give the assumptions on our model and we provide our

main results. Section 3 is devoted to state and prove some preliminary results needed for the proofs of the main
results. To conclude, in Section 4 we give the proof of Theorems 2.1, 2.3, 2.4, and 2.5, where our main results
are gathered.

Throughout all the paper c and λ are constants that may change from line to line. Their dependence on T
or other fixed constants will be implied from the statements.

2. Model assumption and main results

We consider the following stochastic differential equation with jumps

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

a(Xs)dBs +

∫ t

0

∫
Rd0
γ(Xs−)z(ν(ds,dz)− F (z)dzds), (2.1)

where t ≥ 0, d ∈ {1, 2}, Rd0 = Rd\ {0}, the initial condition X0 is a Rd-valued random variable, the coefficients
b : Rd → Rd, a : Rd → Rd ⊗ Rd and γ : Rd → Rd ⊗ Rd are measurable functions, (Bt)t≥0 is a d-dimensional
Brownian motion, and ν is a Poisson random measure on R+ × Rd associated to a Lévy process (Lt)t≥0 with
Lévy density function F . All sources of randomness are mutually independent.

We consider the following assumptions on the coefficients and on the Lévy density F :

A1 The functions b, γ and aaT are globally Lipschitz and bounded. Moreover, infx∈Rd aa
T (x) ≥ cId, for some

constant c > 0, where Id denotes the d× d identity matrix and infx∈Rd det(γ(x)) > 0.
A2 〈x, b(x)〉 ≤ −c1|x|+ c2, for all |x| ≥ ρ, for some ρ, c1, c2 > 0.
A3 Supp(F ) = Rd0 and for all z ∈ Rd0, F (z) ≤ c3

|z|d+α , for some α ∈ (0, 2), c3 > 0.

A4 There exist ε0 > 0 and c4 > 0 such that
∫
Rd0
|z|2eε0|z|F (z)dz ≤ c4.

A5 If α = 1,
∫
r<|z|<R zF (z)dz = 0, for any 0 < r < R <∞.

Assumption A1 ensures that equation (2.1) admits a unique càdlàg adapted solution X = (Xt)t≥0 satisfying
the strong Markov property, see e.g. [4]. Moreover, it is shown in Lemma 2 [1] that if we further assume
Assumptions A2-A4, then the process X is exponentially ergodic and exponentially β-mixing. Therefore the
process is stationary and, in particular, it has a unique invariant distribution π, which we assume it has a density
µ with respect to the Lebesgue measure. Finally, Assumption A5 ensures the existence of the transition density
of X denoted by pt(x, y) which satisfies the following upper bound (see [1], Lem. 1): for all T ≥ 0, there exist
c > 0 and λ > 0 such that for any t ∈ [0, T ] and x, y ∈ Rd,

pt(x, y) ≤ c
(
t−d/2e−λ

|y−x|2
t +

t

(t1/2 + |y − x|)d+α

)
. (2.2)

We assume that the process is observed continuously X = (Xt)t∈[0,T ] in a time interval [0, T ] such that T
tends to ∞. In the paper [1] cited above, the nonparametric estimation of µ is studied via the kernel estimator
which is defined as follows. We assume that µ belongs to the Hölder space Hd(β,L) where β = (β1, . . . , βd),
βi ≥ 1 and L = (L1, . . . ,Ld), Li > 0, which means that for all i ∈ {1, . . . , d}, k = 0, 1, . . . , bβic and t ∈ R,

∥∥∥D(k)
i µ

∥∥∥
∞
≤ L and

∥∥∥D(bβic)
i µ(.+ tei)−D(bβic)

i µ(.)
∥∥∥
∞
≤ Li|t|βi−bβic,
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where D
(k)
i denotes the kth order partial derivative of µ w.r.t the ith component, bβic is the integer part of βi,

and e1, . . . , ed is the canonical basis of Rd. That is, all the partial derivatives of µ up to order bβc are bounded
and the bβcth partial derivative is Hölder continuous of order β − bβc in any direction. We recall that it is
natural in our context to assume that the invariant density belongs to a Hölder class as above. In fact, the proof
of the bias bound (2.5) stated below gives a direct application of this assumption, see the proof of Proposition
2 in [1]. Other examples of nonparametric estimation over Hölder classes can be found in [29, 30, 35, 42].

We set

µ̂h,T (x) =
1

T
∏d
i=1 hi

∫ T

0

d∏
i=1

K

(
xi −Xi

t

hi

)
dt =:

1

T

∫ T

0

Kh(x−Xt)dt,

where x = (x1, . . . , xd) ∈ Rd, h = (h1, . . . , hd) is a bandwidth and K : R→ R is a kernel function satisfying

∫
R
K(x)dx = 1, ‖K‖∞ <∞, supp(K) ⊂ [−1, 1],

∫
R
K(x)xidx = 0,

for all i ∈ {0, . . . ,M} with M ≥ maxi βi.

We first consider equation (2.1) with d = 1 and show that the kernel estimator reaches the optimal rate T−1,
as it is for the stochastic differential equation (2.1) without jumps. For this, we need the following additional
assumption on a.

A6 If d = 1, a2 ∈ C2
b (R), that is, a2 is twice continuously differentiable with bounded first and second

derivatives.

Assumption A6 is needed in order to show the results gathered in Theorems 2.1 and 2.3, while for the other
results only assumptions A1–A5 will be required.

Theorem 2.1. Let X be the solution to (2.1) on [0, T ] with d = 1. Suppose that Assumptions A1–A6 hold and
µ ∈ H1(β,L), with β ≥ 1. Then there exists c > 0 such that for all T > 0, h ≤ 1, and x ∈ R,

E[|µ̂h,T (x)− µ(x)|2] ≤ ceε|x|(h2β +
1

T
), (2.3)

where 0 < ε ≤ min( ε0
‖γ‖∞

, ε0), with ε0 > 0 as in Assumption A4 In particular, choosing h(T ) = 1√
T

, we conclude

that for T ≥ 1,

E[|µ̂h,T (x)− µ(x)|2] ≤ ceε|x|

T
. (2.4)

We observe that both the bandwidth and the upper bound do not depend on the unknown smoothness of the
invariant density β, so there is no need to propose a data driven bandwidth adaptive selection procedure as in
the case d > 2 (see [1]).

Theorem 2.1 improves the upper bound obtained in [1] which was of the form (log T )(2−
1+α
2

)∨1

T . The price
to pay is that the constant in the upper bound depends on x (see Rem. 2.2). However, we are able to find
a convergence rate which is optimal, as we will see in Theorem 2.4. As in [1], we will use the bias-variance
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decomposition (see [17], Prop. 1)

E[|µ̂h,T (x)− µ(x)|2] ≤ |E[µ̂h,T (x)]− µ(x)|2 + E[|µ̂h,T (x)− E[µ̂h,T (x)]|2]

≤ c

(
h2β + T−2Var

(∫ T

0

K(x−Xt)dt

))
,

(2.5)

for some constant c > 0. For the proof of the bias bound ch2β in the same setting of this paper see the proof of
Proposition 2 in [1].

Then in [1] bounds on the transition semigroup and on the transition density (see (2.2) above) give an upper
bound for the variance depending on the bandwidth. Here, we use a similar approach as in [14, 18] to obtain a
bandwidth-free rate for the variance of smoothing density estimators (which include the kernel estimator). For
Markov diffusions, the sufficient conditions can be decomposed into a local irregularity condition WCL1 plus
an asymptotic independence condition WCL2. There exist two positive integrable functions k1 and k2 (defined
on R) and u0 > 0 such that

WCL1: sup
y∈R

∫ u0

0

|gu(x, y)|du < k1(x), for all x ∈ R,

WCL2: sup
y∈R

∫ ∞
u0

|gu(x, y)|du < k2(x), for all x ∈ R

where gu(x, y) := µ(x)pu(x, y) − µ(x)µ(y). In order to show these conditions, some further bounds on the
transition density pt(x, y) involving partial derivatives are needed (see Lem. 3.1 below), for which the additional
condition A6 is required.

Remark 2.2. The term eε|x| that appears in the bounds (2.3) and (2.4) comes from the fact that we are able
to show condition WCL2 with k2(x) = µ(x)(1 + f∗(x)), where f∗ is the Lyapunov function constructed in [1],
defined as a C∞ approximation of eε|x| (see the proof of Prop. 3.2). We know that

∫
R µ(x)f∗(x)dx < ∞, as

shown in [36], but this is not sufficient as it was in [18] in order to bound the variance term in (2.5) since here
we are dealing with the kernel estimator. In order to remove the term eε|x| an additional assumption would be
needed that ensures that supx∈R µ(x)f∗(x) <∞.

As shown in [13], conditions WLC1 and WLC2 are also useful to show the asymptotic normality of the
kernel density estimator, as proved in the next theorem.

Theorem 2.3. Let X be the solution to (2.1) on [0, T ] with d = 1. Suppose that Assumptions A1-A6 hold and

µ ∈ H1(β,L), with β ≥ 1. Consider the bandwidth h(T ) = ( 1
T )

1
2−ε, where ε ∈ (0, 1

2 ). Then, for any collection
(xi)1≤i≤m of distinct real numbers

√
T (µ̂h,T (xi)− E[µ̂h,T (xi)], 1 ≤ i ≤ m)

D−→ N (m)(0,Σ(m)) as T →∞, (2.6)

where

Σ(m) := (σ(xi, xj))1≤i,j≤m, σ(xi, xj) := 2

∫ ∞
0

gu(xi, xj)du.

Observe that using the choice of h(T ) = ( 1
T )

1
2−ε, with ε > 0 in the bias bound (2.5), we get that for any

x ∈ R and T ≥ 1,

√
T |E[µ̂h,T (x)]− µ(x)| ≤ cT− 1

2 (β−1−2βε).
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Therefore, choosing β > 1 and ε < β−1
2β and applying Theorem 2.3, we conclude that as T →∞

√
T (µ̂h,T (xi)− µ(xi), 1 ≤ i ≤ m)

D−→ N (m)(0,Σ(m)).

We are also interested in obtaining lower bounds in dimension d ∈ {1, 2}. For the computations of the lower
bounds we consider the particular case of equation (2.1) given by

Xt = X0 +

∫ t

0

b(Xs)ds+ aBt +

∫ t

0

∫
Rd0
γz(ν(ds,dz)− F (z)dzds), (2.7)

where a and γ are d× d constant matrices and the rest of terms are as in equation (2.1).
We next introduce the following set of drift functions of equation (2.7). We say that a bounded and Lipschitz

function b : Rd → Rd belongs to Σ(β,L) if the unique invariant density µb of the solution X = (Xt)t≥0 to (2.7)
belongs to Hd(β, 2L) for some β,L ∈ Rd, βi ≥ 1, Li > 0. A detailed description of the set Σ(β,L) will be given
in Section 4.3, where two explicit examples of drift coefficients b0 and b1 belonging to Σ(β,L) will be introduced.

We denote by P(T )
b and E(T )

b the law and expectation of the solution (Xt)t∈[0,T ]. We define the minimax risk

at a point x ∈ Rd by

RxT (β,L) := inf
µ̃T
R(µ̃T (x)) := inf

µ̃T
sup

b∈Σ(β,L)

E(T )
b [(µ̃T (x)− µb(x))2], (2.8)

where the infimum is taken on all possible estimators of the invariant density.
The following lower bounds hold true.

Theorem 2.4. Let X be the solution to (2.7) on [0, T ] with d = 1. Suppose that Assumptions A1–A5 hold,
that

∫
R F (z)dz <∞ and that µb ∈ H1(β,L), with β ≥ 1. Then, there exists T0 > 0 and c > 0 such that, for all

T ≥ T0,

inf
x∈R
RxT (β,L) ≥ c

T
.

Theorem 2.5. Let X be the solution to (2.7) on [0, T ] with d = 2. Suppose that Assumptions A1–A5 hold,
that

∫
R2 F (z)dz <∞ and that µb ∈ H2(β,L), with βi ≥ 1 for i = 1, 2. Assume that for all i ∈ {1, 2} and j 6= i,

|(aaT )ij(aa
T )−1
jj | ≤

1

2
. (2.9)

Then, there exists T0 > 0 and c > 0 such that, for T ≥ T0,

inf
µ̃T

sup
b∈Σ(β,L)

E(T )
b

[
sup
x∈R2

(µ̃T (x)− µb(x))2

]
≥ c log T

T
.

Recall for these two theorems, a and γ are d × d constant matrices. In this case, when d = 1, Assumption
A1 is equivalent to say that a 6= 0 and γ > 0, while when d = 2, it is equivalent to say that det(a) 6= 0 and
det(γ) > 0. Moreover, hypotheses A3–A5 imply that the unique solution to equation (2.7) admits a unique
invariant measure πb, which we assume has a density µb with respect to the Lebesgue measure, as before.

Comparing these lower bounds with the upper bound of Theorem 2.1 for the case d = 1 and Proposition 4
in [1] for the two-dimensional case, we conclude that the convergence rate { 1

T ,
log T
T } are the best possible for

the estimation of the invariant density in dimension d ∈ {1, 2}.
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The proof of Theorem 2.4 follows along the same lines as that of Theorem 2 in [2], where a lower bound for
the estimation of the invariant density for the solution to (2.7) for d ≥ 3 is obtained. The proof is based on the
two hypotheses method, explained for example in Section 2.3 of [43]. However, this method does not work for
the two-dimensional case as explained in Remark 4.2 below. Instead, we use the Kullback’s version of the finite
number of hypotheses method as stated in Lemma C.1 of [41], see Lemma 3.4 below. Observe that this method
gives a slightly weaker lower bound as we get a supx inside the expectation, while the method in [2] provides
an infx outside the expectation.

3. Preliminary results

The proof of Theorems 2.1 and 2.3 will use the following bounds on the transition density.

Lemma 3.1. Let X be the solution to (2.1) on [0, T ] with d = 1. Suppose that Assumptions A1–A6 hold. Then,
there exist jointly continuous processes Z, A and B on R+ × R2 such that for all t ≥ 0 and x, y ∈ R,

pt(x, y) = Zt(x, y) +At(x, y) +Bt(x, y) (3.1)

satisfying that for all T > 0, there exist c > 0 and λ > 0 such that for any x, y ∈ R and t ∈ [0, T ]∣∣∣∣ ∂2

∂y2
Zt(x, y)

∣∣∣∣ ≤ c t−3/2e−λ
|y−x|2

t , (3.2)

|At(x, y)| ≤ c (t3/2(|y − x|+
√
t)−1−α + e−λ

|y−z|2
t ), (3.3)

and

|Bt(x, y)| ≤ c (1 + t2−α/2)(|y − x|+
√
t)−1−α. (3.4)

Proof. By Duhamel’s formula (1.12) of [15], the transition density of the solution to (2.1) satisfies that for all
t ≥ 0 and x, y ∈ R,

pt(x, y) = Zt(x, y) +At(x, y) +Bt(x, y)

where Zt(x, y) is the transition density of the solution to (2.1) with b = γ = 0, and At and Bt are defined as
follows

At(x, y) :=

∫ t

0

∫
R
pr(x, z) b(z)

∂

∂z
Zt−r(z, y) dz dr,

and

Bt(x, y) :=

∫ t

0

∫
R
pr(x, z)

∫
R

(
Zt−r(z + ξ, y)− Zt−r(z, y)

− 1|ξ|≤1 ξ
∂

∂z
Zt−r(z, y)

)k(z, ξ)

|ξ|1+α
dξ dz dr,

where k(z, ξ) = 1
γ(z) |ξ|

1+αF ( ξ
γ(z) ). This shows the decomposition formula (3.1).
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By (6.1) in Theorem 7 of [26], using the fact that a2 is bounded together with A6, we have that for all T > 0,
there exist c, λ > 0 such that for all x, y ∈ R and t ∈ [0, T ]

∣∣∣∣ ∂2

∂y2
Zt(x, y)

∣∣∣∣ ≤ c t−3/2e−λ
|y−x|2

t ,

(which proves (3.2)) and ∣∣∣∣ ∂∂xZt(x, y)

∣∣∣∣ ≤ c t−1e−λ
|y−x|2

t . (3.5)

In particular, using (3.5) and the fact that b is bounded, we get that

|At(x, y)| ≤ c
∫ t

0

∫
R
pr(x, z)(t− r)−1e−λ

|y−z|2
t−r dz dr.

Moreover, using (2.2) together with (2.6) and (2.8) of [15] with γ1 = −1 and γ2 = 2, and γ1 = 0 and γ2 = −1,
respectively, we conclude that (3.3) holds true.

On the other hand, appealing to Corollary 2.4(i) of [15], from hypotheses A1, A3 and A5, we get that for
all T > 0, there exists c > 0 such that for all x, y ∈ R and t ∈ [0, T ],

|Bt(x, y)| ≤ c
∫ t

0

∫
R
pr(x, z)(|y − z|+

√
t− r)−1−α dz dr.

Finally, using again (2.2) together with (2.5) and (2.6) of [15] with γ1 = 0 and γ2 = 2, and γ1 = 0 and γ2 = 0,
respectively, we obtain (3.4).

The proof of the Lemma is completed.

The key point of the proof of Theorem 2.1 consists in showing that conditions WCL1 and WCL2 hold true,
which is proved in the next proposition.

Proposition 3.2. Let X be the solution to (2.1) on [0, T ] with d = 1. Suppose that Assumptions A1-A6 hold.
Then, conditions WCL1 and WCL2 are satisfied.

Proof. We start considering WCL1. The density estimate (2.2) yields

pt(x, y) ≤ ct− 1
2 + c̃t

1−α
2 ≤ c̄t− 1

2 0 < t ≤ 2, (3.6)

which combined with supy∈R µ(y) <∞ gives WCL1 with k1(x) = µ(x) and u0 = 2. In order to show WCL2,
we set ϕ(ξ) := E[exp(iξXt)] and ϕx(ξ, t) := E[exp(iξXt)|X0 = x] and we claim that there exists ĉ > 0 such that
for all ξ ∈ R,

|ϕ(ξ)| ≤ ĉ(1 + |ξ|)−2. (3.7)

Moreover, there exists c̃ > 0, such that for all t ≥ 2, x ∈ R, and ξ ∈ R,

|ϕx(ξ, t)| ≤ c̃(1 + |ξ|)−2. (3.8)
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Recall from Lemma 2 in [1] and its proof that the process X is exponentially β-mixing and there exists ρ > 0
such that for all x ∈ R and t > 0,

‖Pt(x, ·)− µ(·)‖TV ≤ (1 + f∗(x))e−ρt, (3.9)

where (Pt)t∈R is the transition semigroup of our process X, ‖·‖TV is the total variation norm and f∗(x) is a
Lyapounov function. Specifically, f∗(x) is defined as eε|x| for |x| ≥ 1, with ε ≤ min( ε0

‖γ‖∞
, ε0) (ε0 > 0 as in Asm.

A4). In order to avoid any regularity problem in 0, f∗ is introduced as piecewise function. For |x| < 1 it is
defined as a C∞ approximation of eε|x|, such that f∗ is C∞ on R.

We now prove that inequalities (3.7), (3.8) and (3.9) imply WCL2. Using the inverse Fourier transform, we
have

2π(pt(x, y)− µ(y)) =

∫
R

exp(−iξy)(ϕx(ξ, t)− ϕ(t))dξ.

Then, using (3.7) and (3.8) we get, for t ≥ 2,

2π|pt(x, y)− µ(y)| ≤ 2(c̃+ ĉ)
p−1
p (sup

ξ∈R
|ϕx(ξ, t)− ϕ(ξ)|)

1
p

∫
R+

(1 + ξ)−2 p−1
p dξ,

where we have used that 1 = 1
p + p−1

p . We can choose p > 2, so that 2p−1
p > 1. We get that there exists a finite

constant c such that, for all t ≥ 2 and x, y ∈ R,

|gt(x, y)| = µ(x)|pt(x, y)− µ(y)| ≤ cµ(x)(sup
ξ∈R
|ϕx(ξ, t)− ϕ(ξ)|)

1
p ,

where we observe that the right hand side is independent of y. By using the fact that

sup
λ∈R
|ϕx(λ, t)− ϕ(λ)| ≤ ‖Pt(x, ·)− µ(·)‖TV

together with (3.9) we obtain that there exist c > 0 and ρ > 0 such that for all x, y ∈ R and t ≥ 2,

|gt(x, y)| ≤ cµ(x)(1 + f∗(x))e−ρt,

as f∗ is positive, and so

sup
y∈R

∫ ∞
2

|gt(x, y)|dt ≤ cµ(x)(1 + f∗(x))

∫ ∞
2

e−ρt dt,

which implies WCL2 with k2(x) = cµ(x)(1 + f∗(x)).
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We are left to show (3.7) and (3.8). We start showing (3.8). Using (3.1) and integrating by parts yields

|ϕx(ξ, t)| =
∣∣∣∣ ∫

R
exp(iξy)pt(x, y)dy

∣∣∣∣
=

∣∣∣∣ ∫
R

∫
R

exp(iξy)pt−1(x, z)p1(z, y)dy dz

∣∣∣∣
=

∣∣∣∣ ∫
R

∫
R

exp(iξy)pt−1(x, z) (Z1(z, y) +A1(z, y) +B1(z, y)) dy dz

∣∣∣∣
≤ |ξ|−2

∫
R

∫
R
pt−1(x, z)

∣∣∣∣ ∂2

∂y2
Z1(z, y)

∣∣∣∣dy dz

+

∫
R

∫
R
pt−1(x, z)|A1(z, y)|dy dz +

∫
R

∫
R
pt−1(x, z)|B1(z, y)|dy dz

=: |ξ|−2(I1 + I2 + I3).

Appealing to (3.2), we obtain that

I1 ≤ c
∫
R

∫
R
pt−1(x, z)e−λ|y−z|

2

dy dz = c,

where c is independent of t and x as
∫
R pt−1(x, z)dz = 1. Using (3.3), we get that

I2 ≤ c
∫
R

∫
R
pt−1(x, z)(|y − z|+ 1)−1−α + e−λ|y−z|

2

)dy dz = c,

as the dy integral is finite since α ∈ (0, 2). Similarly, by (3.4),

I3 ≤ c
∫
R

∫
R
pt−1(x, z)(|y − x|+ 1)−1−αdy dz ≤ c.

Thus, we have proved that |ϕx(ξ, t)| ≤ c|ξ|−2. Since |ϕx(ξ, t)| ≤ 1, this implies (3.8). Similarly,

|ϕ(ξ)| =
∣∣∣∣ ∫

R
exp(iξy)µ(y)dy

∣∣∣∣
≤
∣∣∣∣ ∫

R

∫
R

exp(iξy)µ(z)Z1(z, y)dy dz

∣∣∣∣
+

∫
R

∫
R
µ(z)|A1(z, y)|dy dz +

∫
R

∫
R
µ(z)|B1(z, y)|dy dz

≤ |ξ|−2

∫
R

∫
R
µ(z)

∣∣∣∣ ∂2

∂y2
Z1(z, y)

∣∣∣∣dy dz

+

∫
R

∫
R
µ(z)|A1(z, y)|dy dz +

∫
R

∫
R
µ(z)|B1(z, y)|dy dz

≤ c|ξ|−2,

which implies (3.8) since |ϕ(ξ)| ≤ 1. The proof of the proposition is now completed.

Theorem 2.3 is an application of the following central limit theorem for discrete stationary sequences. Let
Yn = (Yn,i, i ∈ Z), n ≥ 1 be a sequence of strictly stationary discrete time Rm valued random process. We define
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the α-mixing coefficient of Yn by

αn,k := sup
A∈σ(Yn,i, i≤0), B∈σ(Yn,i, i≥k)

(
P(A ∩B)− P(A)P(B)

)
and we set αk := supn≥1 αn,k (see also Sect. 1 in [25]). We denote by Y (r) the r-th component of anm dimensional
random vector Y .

Theorem 3.3 (Thm. 1.1 [13]). Assume that

(i) E[Y
(r)
n,i ] = 0 and |Y (r)

n,i | ≤ Mn for every n ≥ 1, i ≥ 1 and 1 ≤ r ≤ m, where Mn is a constant depending
only on n.

(ii)

sup
i≥1,1≤r≤m

E[(Y
(r)
n,i )2] <∞.

(iii) For every 1 ≤ r, s ≤ m and for every sequence bn →∞ such that bn ≤ n for every n ≥ 1, we have

lim
n→∞

1

bn
E

 bn∑
i=1

Y
(r)
n,i

bn∑
j=1

Y
(s)
n,j

 = σr,s.

(iv) There exists γ0 ∈ (1,∞) such that
∑
k≥1 kα

γ0−1
γ0

k <∞.

(v) For some constant c > 0 and for every n ≥ 1, Mn ≤ cn
γ0

2

(3γ0−1)(2γ0−1) .

Then, ∑n
i=1 Yn,i√
n

D−→ N(0,Σ) as n→∞,

where Σ = (σr,s)1≤r,s≤m.

The proof of Theorem 2.5 is based on the following Kullback version of the main theorem on lower bounds
in [43], see Lemma C.1 of [41]:

Lemma 3.4. Fix β,L ∈ (0,∞)2 and assume that there exists f0 ∈ H2(β,L) and a finite set JT such that one
can find {fj , j ∈ JT } ⊂ H2(β,L) satisfying

‖fj − fk‖∞ ≥ 2ψ > 0 ∀j 6= k ∈ JT . (3.10)

Moreover, denoting P(T )
j the probability measure associated with fj, ∀j ∈ JT , P(T )

j � P(T )
0 and

1

|JT |
∑
j∈JT

KL(P(T )
j ,P(T )

0 ) =
1

|JT |
∑
j∈JT

E(T )
j

[
log

(
dP(T )

j

dP(T )
0

(XT )

)]
≤ δ log(|JT |) (3.11)

for some δ ∈ (0, 1
8 ). Then, for q > 0, we have

inf
µ̃T

sup
µb∈H2(β,L)

(E(T )
b [ψ−q ‖µ̃T − µb‖q∞])1/q ≥ c(δ) > 0,
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where the infimum is taken over all the possible estimators µ̃T of µb.

4. Proof of the main results

4.1. Proof of Theorem 2.1

By the symmetry of the covariance operator and the stationarity of the process,

T Var(µ̂h,T (x)) =
1

T

∫ T

0

∫ T

0

Cov(Kh(x−Xt),Kh(x−Xs))dsdt

=
2

T

∫ T

0

(T − u)Cov(Kh(x−Xu),Kh(x−X0))du

= 2

∫ T

0

(1− u

T
)

∫
R

∫
R
Kh(x− y)Kh(x− z)gu(y, z)dy dz du

≤
∫
R
|Kh(x− y)| sup

z∈R

∫ ∞
0

|gu(y, z)|dudy

∫
R
|Kh(x− z)|dz.

In the proof of Proposition 3.2 we have shown that

sup
z∈R

∫ ∞
0

|gu(y, z)|du ≤ c(1 + µ(y)(1 + f∗(y))).

It follows that

T Var(µ̂h,T (x)) ≤ c
∫
R
|Kh(x− y)|(1 + µ(y)(1 + f∗(y)))dy,

since, by the definition of the kernel function,

∫
R
|Kh(x− z)|dz =

∫ x+h

x−h
|Kh(x− z)|dz ≤ ‖Kh‖∞ h ≤

‖K‖∞
h

h = ‖K‖∞ .

Then, by the definition of Kh, we get that∫
R
|Kh(x− y)|(1 + µ(y)(1 + f∗(y)))dy

=
1

h

∫ x+h

x−h
|K(

x− y
h

)|(1 + µ(y)(1 + f∗(y)))dy

≤ ‖K‖∞
∫ 1

−1

(1 + µ(x− hỹ)(1 + f∗(x− hỹ)))dỹ,

where we have applied the change of variable ỹ := x−y
h . Now we observe that, if |x− hỹ| ≤ 1, then f∗(x− hỹ)

is bounded by construction. Otherwise, for |x− hỹ| > 1, we have

f∗(x− hỹ) = eε|x−hỹ| ≤ eε|x|eεh|ỹ| ≤ eε|x|eε,
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where in the last inequality we have used the fact that both h and |ỹ| are smaller than 1. Therefore, we have
shown that

T Var(µ̂h,T (x)) ≤ ceε|x|,

where c is independent of T , h and x. Finally, from the bias-variance decomposition (2.5) we obtain (2.3), which
concludes the desired proof.

4.2. Proof of Theorem 2.3

We aim to apply Theorem 3.3. For this, we split the interval [0, T ] into n intervals [ti−1, ti], where ti = i∆
for any i ∈ {0, . . . , n}, n∆ = T , and n = bT c with T ≥ 1, which implies that 1 ≤ ∆ < 2.

For each n ≥ 1 and 1 ≤ r ≤ m, we consider the sequence (Y
(r)
n,i )i≥1 defined as

Y
(r)
n,i :=

1√
∆

(∫ ti

ti−1

Kh(xr −Xu)du− E

[∫ ti

ti−1

Kh(xr −Xu)du

])
,

for xr ∈ R. We denote by Yn,i the Rm valued random vector defined by Yn,i = (Y
(1)
n,i , . . . , Y

(m)
n,i ). By construction,

∑n
i=1 Yn,i√
n

=
√
T (µ̂h,T (x)− E[µ̂h,T (x)]),

where µ̂h,T (x)− E[µ̂h,T (x)] is the vector

(µ̂h,T (x1)− E[µ̂h,T (x1)], . . . , µ̂h,T (xm)− E[µ̂h,T (xm)]).

It is clear that E[Yn,i] = 0 for all n ≥ 1 and i ≥ 1. Moreover, for all i ≥ 1, 1 ≤ r ≤ m and n ≥ 1 we have

|Y (r)
n,i | ≤

1√
∆
‖Kh‖∞∆ ≤

‖K‖∞
h(T )

√
2.

We choose h(T ) := ( 1
T )

1
2−ε = ( 1

n∆ )
1
2−ε ≥ c( 1

n )( 1
2−ε), for some ε ∈ (0, 1

2 ). Hence, assumption (i) holds true with

Mn := cn
1
2−ε. Concerning assumption (ii) we remark that, for any i ≥ 1 and any 1 ≤ r ≤ m,

E[(Y
(r)
n,i )2] = Var

(
1√
∆

∫ ∆

0

Kh(xr −Xu)du

)
= Var(

√
∆µ̂h,∆(xr))

= ∆Var(µ̂h,∆(xr)) ≤ ∆
c

∆
= c,
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where in the last inequality we have used (4.1). We next check condition (iii). Let bn be a sequence of integers
such that bn →∞ and bn ≤ n for every n. For every 1 ≤ r ≤ m and 1 ≤ s ≤ m, we have

1

bn
E

 bn∑
i=1

Y
(r)
n,i

bn∑
j=1

Y
(s)
n,j

 =
1

∆bn

∫ ∆bn

0

∫ ∆bn

0

Cov(Kh(xr −Xu),Kh(xs −Xv))du dv

= 2

∫ ∆bn

0

(1− u

∆bn
)

∫
R

∫
R
Kh(xr − z1)Kh(xs − z2)gu(z1, z2)dz1 dz2 du

= 2

∫
R

∫
R

∫ ∆bn

0

(1− u

∆bn
)K(w1)K(w2)gu(xr − h(T )w1, xs − h(T )w2)du dw1 dw2,

where we have used Fubini’s theorem and the change of variables w1 := xr−z1
h(T ) , w2 := xs−z2

h(T ) . Using dominated

convergence and the fact that h(T )→ 0 for T →∞ and ∆bn →∞ for n→∞ as ∆ ≥ 1, we obtain

lim
n→∞

1

bn
E

 bn∑
i=1

Y
(r)
n,i

bn∑
j=1

Y
(s)
n,j

 = 2

∫
R
K(w1)

∫
R
K(w2)

∫ ∞
0

gu(xr, xs)du dw2 dw1

= 2

∫ ∞
0

gu(xr, xs)du =: σ(xr, xs),

which proves (iii). Remark that it is possible to use dominated convergence theorem since we have shown in the
proof of Proposition 3.2 that

sup
y∈R
|gu(x, y)| ≤ c

(
u−1/21{u≤2} + µ(x)(1 + f∗(x))e−ρu1{u>2}

)
,

for some positive constants c and ρ. In particular, we have

|(1− u

∆bn
)K(w1)K(w2)gu(xr − h(T )w1, xs − h(T )w2)1[0,bn](u)1R2(w1, w2)|

≤ c
(
u−1/21{u≤2} + eε(|xr|+|w1|)e−ρu1{u>2}

)
|K(w1)K(w2)| ∈ L1(R+ × R2),

as K has support on [−1, 1].
We now check (iv). We remark that if a process is β-mixing, then it is also α-mixing and the following

estimation holds (see Thm. 3 in Sect. 1.2.2 of [25])

αk ≤ βYn,i(k) = βX(k) ≤ ce−γ1k.

Therefore, it suffices to show that there exists γ0 ∈ (1,∞) such that

∑
k≥1

ke−kγ1
(γ0−1)
γ0 <∞,

which is true for any γ0 > 1, so (iv) is satisfied.

We are left to show (v). Set f(γ0) := γ0
2

(3γ0−1)(2γ0−1) and observe that f(1) = 1
2 and for γ0 > 1, f is continuous,

strictly decreasing, and 1
6 < f(γ0) < 1

2 . Therefore, given ε ∈ (0, 1
2 ), there always exists γ0 > 1 such that for all
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n ≥ 1,

n
1
2−ε ≤ nf(γ0).

Thus, condition (v) is satisfied. We can then apply Theorem 3.3 which directly leads us to (2.6) and concludes
the desired proof.

4.3. Proof of Theorem 2.4

The proof of of Theorem 2.4 follows as the proof of the lower bound for d ≥ 3 obtained in Theorem 3 of [2].
Therefore, we will only explain the main steps and the principal differences.

Step 1 The first step consists in showing that given a density function f , we can always find a drift function
bf such that f is the unique invariant density function of equation (2.7) with drift coefficient b = bf . We give
the statement and proof in dimension d = 1, as in Propositions 2 and 3 of [2] it is only done for d ≥ 2.

Proposition 4.1. Let f : R→ R be a C2 positive probability density satisfying the following conditions

1. limy→±∞ f(y) = 0 and limy→±∞ f ′(y) = 0.
2. There exist ĉ1 > 0 and 0 < ε < ε0

|γ| , where ε0 is as in Assumption A4 such that, for any y, z ∈ R,

f(y ± z) ≤ ĉ1eε|z|f(y).

3. For ε > 0 as in 2. there exists ĉ2(ε) > 0 such that

sup
y<0

1

f(y)

∫ y

−∞
f(w)dw < ĉ2 and sup

y>0

1

f(y)

∫ ∞
y

f(w)dw < ĉ2.

4. There exists 0 < ε̃ < a2

2γ2c4ĉ2ĉ4ĉ1
and R > 0 such that for any |y| > R, f ′(y)

f(y) ≤ −ε̃sgn(y), where c4 is as in

Assumption A4. Moreover, there exists ĉ3 such that for any y ∈ R, |f ′(y)| ≤ ĉ3f(y).
5. For any y ∈ R and ε̃ as in 4. |f ′′(y)| ≤ ĉ4ε̃2f(y).

Then there exists a bounded Lipschitz function bf which satisfies A2 such that f is the unique invariant density
to equation (2.7) with drift coefficient b = bf .

Proof. Let Ad be the discrete part of the generator of the diffusion process X solution of (2.7) and let A∗d its
adjoint. We define bf as

bf (x) =

{
1

f(x)

∫ x
−∞( 1

2a
2f ′′(w) +A∗d f(w))dw, if x < 0;

− 1
f(x)

∫∞
x

1
2a

2f ′′(x)(w) +A∗d f(w)dw, if x > 0,

where

A∗d f(x) =

∫
R
[f(x− γz)− f(x) + γzf ′(x)]F (z)dz.

Then, following Proposition 3 in [2], one can check that bf is bounded, Lipschitz, and satisfies A2. Moreover,
if we replace b by bf in equation (2.7), then f is the unique invariant density.

Step 2 The second step consists in defining two probability density functions f0 and f1 in H1(β,L).
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We first define f0(y) = cηf(η|y|), where η ∈ (0, 1
2 ), cη is such that

∫
f0 = 1, where f is defined as follows. We

first consider the piecewise function

g(x) =


e−|x|, if |x| ≥ 1

e−4(|x|− 1
2 )2 , if 1

2 < |x| < 1

1, if |x| ≤ 1
2 .

Observe that g is continuous, satisfies 1
2e
−|x| ≤ g(x) ≤ 2e−|x| for all x ∈ R, and each piece belongs to C∞ and

has bounded derivatives. We define f as a C∞ approximation of g, with bounded derivatives of all orders and
satisfying

1

2
e−|x| ≤ f(x) ≤ 2e−|x|, |f ′(|x|)| ≤ 5e−|x|, and |f ′′(|x|)| ≤ 14e−|x|. (4.1)

Observe that the two latter inequalities are satisfied by g piecewise.
It is easy to see that η can be chosen small enough so that f0 ∈ H1(β,L). Indeed, first, it is clear that all

the derivatives of f0 can be bounded by the constant L for η small enough. Furthermore, the following bounds
hold true for any x and t in R

|Dbβcf0(x+ t)−Dbβcf0(x)|

≤ |Dbβcf0(x+ t)−Dbβcf0(x)|β−bβc(2
∥∥∥Dbβcf0

∥∥∥
∞

)1−(β−bβc)

≤
∥∥∥Dbβc+1f0

∥∥∥β−bβc
∞

(2
∥∥∥Dbβcf0

∥∥∥
∞

)1−(β−bβc) |t|β−bβc.

Again, it suffices to choose η small enough to ensure that

∥∥∥Dbβc+1f0

∥∥∥β−bβc
∞

(2
∥∥∥Dbβcf0

∥∥∥
∞

)1−(β−bβc) ≤ L,

which shows that f0 ∈ H1(β,L) ⊂ H1(β, 2L).
We also ask that the constant c4 in Assumption A4 is such that

c4 <
a2

2γ24228
. (4.2)

This means that the jumps have to integrate an exponential function. The bound depends on the coefficients a
and γ and so it depends only on the model.

Under the conditions above it is easy to see that f0 satisfies the assumptions of Proposition 4.1 with ĉ1 = 4,
ε = η, ĉ2 = 4

η , R = 1
η , ε̃ = η ĉ3 = 28η, and ĉ4 = 28. Indeed, point 1 of Proposition 4.1 clearly holds true from

the definition of f0. To show the second point we observe that, thanks to (4.1), we have

f0(y ± z) = cnf(η|y ± z|) ≤ 2cne
−η|y|eη|z| ≤ 4f0(y)eη|z|,

which implies point 2 with ĉ1 = 4 and ε = η, since we can choose η small enough to make the condition on ε
satisfied. In order to prove point 3 we use again (4.1). It follows that, for any y < 0,

1

f0(y)

∫ y

−∞
f0(w)dw =

1

cnf(η|y|)

∫ y

−∞
cnf(η|w|)dw
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≤ 2eη|y|
∫ y

−∞
2e−ηwdw = 4eη|y|

e−η|y|

η
=

4

η
.

For y > 0 an analogous reasoning applies. Thus, f0 satisfies the third point with ĉ2(ε) = ĉ2(η) = 4
η . For the

fourth point, we observe that, for |y| > 1
η ,

f0(y) = −η sgn(y)f0(y).

That is, the first part of point 4 holds true for |y| > R, taking R = 1
η and ε̃ = η. Moreover, we observe that

using (4.1) we have, for k = 1, 2,

|f (k)
0 (y)| = |cnf (k)(η|y|)| ≤ 14cnη

ke−η|y| ≤ 28ηkf0(y).

This shows that both the fourth and the fifth points hold true, with ĉ3(η) = 28η and ĉ4 = 28. Finally, we need
to check that the condition on ε̃ given in the fourth point which writes as

ε̃ = η <
a2

2γ2c4ĉ2ĉ4ĉ1
=

a2 η

2γ2c4 4 28 4
,

which is equivalent to (4.2). Hence, f0 satisfies all the assumptions in Proposition 4.1.
Therefore, b0 := bf0 belongs to Σ(β,L). Recall that b0 belongs to Σ(β,L) if and only if f0 belongs toH1(β, 2L)

and b0 is bounded, Lipschitz and satisfies the drift condition A2.
We next define

f1(x) = f0(x) +
1

MT
K̂

(
x− x0

H

)
, (4.3)

where x0 ∈ R is fixed and K̂ : R→ R is a C∞ function with support on [−1, 1] such that

K̂(0) = 1,

∫ 1

−1

K̂(z)dz = 0.

Here H is a constant and MT will be calibrated later and satisfies that MT →∞ as T →∞. Observe that in
the proof of the lower bound for the case d ≥ 3 presented in [2], H is a function of T converging to 0 as T →∞.
For the case d = 1, it suffices to chose it constant and we will see below that the same computations done in [2]
will work in this case and it suffices to calibrate MT .

Then it can be shown as in Lemma 3 of [2] that if for all ε > 0 and T sufficiently large,

1

MT
≤ εHβ and

1

H
= o(MT ) (4.4)

as T → ∞, then if ε > 0 is small enough we have that b1 := bf1 belongs to Σ(β,L) for T sufficiently large.
Indeed, on one hand, (4.4) is clearly true when H is a constant. On the other hand, the same argument used
in Lemma 3 of [2] applies to show that f1 belongs to H1(β, 2L) when H is a constant, up to choose ε in (4.4)
smaller than a constant depending on L and H.

Step 3 As b0, b1 ∈ Σ(β,L), we can write

R(µ̃T (x0)) ≥ 1

2
E(T )

1 [(µ̃T (x0)− f1(x0))2] +
1

2
E(T )

0 [(µ̃T (x0)− f0(x0))2],
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where E(T )
i denotes the expectation with respect to bi. Then, following as in [2], using Girsanov’s formula, we

can show that if

sup
T≥0

T
1

M2
TH

<∞, (4.5)

then for sufficiently large T ,

R(µ̃T (x0)) ≥ C

8λ

1

M2
T

, (4.6)

where the constants C and λ are as in Lemma 4 of [2] and they do not depend on the point x0. We finally look
for the larger choice of 1

M2
T

for which both (4.4) and (4.5) hold true. It suffices to choose MT =
√
T to conclude

the proof of Theorem 2.4.

Remark 4.2. The two hypothesis method used above does not work to prove the 2-dimensional lower bound
of Theorem 2.5. Indeed, following as above, we can define

f1(x) = f0(x) +
1

MT
K̂

(
x− x0

H1(T )

)
K̂

(
x− x0

H2(T )

)
.

Then, it is possible to show that (4.6) still holds and, therefore, we should take MT such that 1
M2
T

= log T
T . On

the other hand, condition (4.5) now becomes

sup
T≥0

T
1

M2
T

(
H2(T )

H1(T )
+
H1(T )

H2(T )

)
<∞.

The optimal choice of the bandwidth is achieved for H2(T ) = H1(T ) which yields to supT≥0 T
1
M2
T
<∞, which

is clearly not satisfied when 1
M2
T

= log T
T .

4.4. Proof of Theorem 2.5

We will apply Lemma 3.4 with ψ := v
√

log T
T , where v > 0 is fixed. As above we divide the proof into three

steps.

Step 1 As in the one-dimensional case, the first step consists in showing that given a density function f , we
can always find a drift function bf such that f is the unique invariant density function of equation (2.7) with
drift coefficient b = bf , which is proved in Propositions 2 and 3 of [2]. We remark that condition (2.9) is needed
in Proposition 4.3 to ensure that the terms on the diagonal of the volatility coefficient a dominate on the others,
which is crucial to get that bf satisfies the drift condition A2.

Step 2 We next define the probability density f0 ∈ H2(β,L), the finite set JT , and the set of probability
densities {fj , j ∈ JT } ⊂ H2(β,L) needed in order to apply Lemma 3.4.

We first define f0 as π0 in Section 7.2 of [2], which is the two-dimensional version of f0 defined in the proof
of Theorem 2.4, that is,

f0(x) = cηf(η(aaT )−1
11 |x1|)f(η(aaT )−1

22 |x2|), x = (x1, x2) ∈ R2, (4.7)

where f is as in Step 2 of the proof of Proposition 4.1. The density f0 belongs to H2(β,L) by construction.
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We then set

JT :=

{
1, . . . , b 1√

H1

c
}
×
{

1, . . . , b 1√
H2

c
}
, (4.8)

where in order to lighten the notation we will write H1 and H2 for H1(T ) and H2(T ), respectively, which are
two quantities that converge to 0 as T →∞ and need to be calibrated.

Finally, for j := (j1, j2) ∈ JT , we define xj := (xj,1, xj,2) = (2j1H1, 2j2H2) and we set

fj(x) := f0(x) + 2v

√
log T

T
K̂

(
x1 − xj,1
H1

)
K̂

(
x2 − xj,2
H2

)
,

where recall that v > 0 is fixed and K̂ is as in (4.3).

Acting as in Lemma 3 of [2], recalling that the rate 1
MT

therein is now replaced by
√

log T
T (see also points

1. and 3. in the proof of Prop. 4.3 below), it is easy to see that if there exists ε > 0 sufficiently small such that
for large T , √

log T

T
≤ εHβ1

1 ,

√
log T

T
≤ εHβ2

2 , (4.9)

then, for any j ∈ JT and large T , bj ∈ Σ(β,L). In particular, fj ∈ H2(β,L). Therefore, {fj , j ∈ JT } ⊂ H2(β,L).

In order to evaluate the difference between fj and fk we remark first of all that, as K̂ has support on [−1, 1],∏2
l=1 K̂(

xl−xj,l
Hl

) is different from 0 only if |xl−xj,lHl
| ≤ 1 for any l ∈ {1, 2}. Then,

‖fj − fk‖∞ ≥ |fj(xj)− fk(xj)|

= 2v

√
log T

T
[

2∏
l=1

K̂(
xj,l − xj,l

Hl
)−

2∏
l=1

K̂(
xj,l − xk,l

Hl
)]

= 2v

√
log T

T

2∏
l=1

K̂(0) = 2v

√
log T

T
= 2ψ,

where we have used that, as j 6= k, there is a l0 ∈ {1, 2} such that l0 6= k0 and so in particular, by construction,
|jl0 − kl0 | ≥ 1. It follows that

|xj,l0 − xk,l0
Hl0

| = |2jl0Hl0 − 2kl0Hl0

hl0
| ≥ 2

and so the kernel evaluated in this point is null. This proves the first condition of Lemma 3.4.

Step 3 We are left to show the remaining conditions of Lemma 3.4. The absolute continuity P(T )
j � P(T )

0

and the expression for
dP(T )
j

dP(T )
0

(XT ) are both obtained by Girsanov formula, as in Lemma 4 of [2]. We have,

KL(P(T )
j ,P(T )

0 ) = E(T )
j

[
log

(
fj
f0

(XT )

)]
+

1

2
E(T )
j

[∫ T

0

|a−1(b0(Xu)− bj(Xu))|2du

]
,

where the law of XT = (Xt)t∈[0,T ] under P(T )
j is the one of the solution to equation (2.7) with b = b0.



146 C. AMORINO AND E. NUALART

By the definition of the fj ’s it is easy to see that the first term is o(1) as T →∞. In fact, as K̂ is supported
in [−1, 1],

E(T )
j

[
log

(
fj
f0

(XT )

)]
=

∫
R2

log

(
1 +

2v
√

log T
T K̂

(
x1−xj,1
H1

)
K̂
(
x2−xj,2
H2

)
f0(x)

)
f0(x)dx

≤
∣∣∣∣ log

(
1 + c∗v

√
log T

T
‖K̂‖2∞

)∣∣∣∣,
which tends to zero as T → ∞, where c∗ := 8

cη
e4η k, cη is the constant of normalization introduced in the

definition of f0, and k := maxi=1,2(aaT )−1
ii . In fact, this follows from the definition of f0 in (4.7). Since f(x) ≥

1
2e
−|x|, we obtain

1

f0(x)
≤ 1

cη

2

e−η(aaT )−1
11 |x1|

2

e−η(aaT )−1
22 |x2|

≤ 4

cη
eηk(|H1|+|xj,1|+|H2|+|xj,2|),

where we have also used the fact that, as K̂ is supported in [−1, 1], we have x ∈ [xj,1 −H1, xj,1 +H1]× [xj,2 −
H2, xj,2 + H2]. Finally, by the definition of xj and the fact that Hi → 0 as T → ∞ for i = 1, 2 (and so for T
large enough they are smaller than 1), we get

1

f0(x)
≤ 4

cη
e4ηk for any x ∈ [xj,1 −H1, xj,1 +H1]× [xj,2 −H2, xj,2 +H2]. (4.10)

Regarding the second term, using the stationarity of the process XT , we have

E(T )
j

[∫ T

0

|a−1(b0(Xu)− bj(Xu))|2du

]
= T

∫
R2

|a−1(b0(x)− bj(x))|2f0(x)dx.

Then, the following asymptotic bound will be proved at the end of this Section.

Proposition 4.3. For T large enough,

∫
R2

|a−1(b0(x)− bj(x))|2f0(x)dx ≤ 64
e8ηk

c2η
k2v2H1H2

(
1

H1
+

1

H2

)2
log T

T
.

Taking the optimal choice for the bandwidth in Proposition 4.3, which is H1 = H2, we get that

∫
R2

|a−1(b0(x)− bj(x))|2f0(x)dx ≤ 64
e8ηk

c2η
k2v24

log T

T
.

In particular, after having ordered β1 ≤ β2, we choose H1 = H2 = ( log T
T )α with α ≤ 1

2β2
= ( 1

2β1
∧ 1

2β2
) so that

condition (4.9) is satisfied. We therefore get

KL(P(T )
j ,P(T )

0 ) ≤ 128
e8ηk

c2η
k2 v2 log T ≤ 128

e8ηk

c2ηα
k2 v2 log(|JT |),
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being the last estimation a consequence of the fact that, by construction,

log(|JT |) ≥ α log

(
T

log T

)
= α log(T )(1 + o(1)).

It is therefore enough to choose v such that 128 e
8ηk

c2ηα
k2 v2 < 1

8 (ie v2 <
c2ηα

1024 k2e8ηk
) and apply Lemma 3.4 to

conclude the proof of Theorem 2.5.

4.5. Proof of Proposition 4.3

The proof of Proposition 4.3 follows similarly as Proposition 4 of [2]. Indeed, we first define the set

Kj
T := [xj,1 −H1, xj,1 +H1]× [xj,2 −H2, xj,2 +H2],

where we recall that we write H1 and H2 for H1(T ) and H2(T ), respectively, in order to simplify the notation.
Then we show the following points for T large enough:

1. There exists a constant c > 0 such that, for any x in the complementary set of KT , that we denote as
Kj c
T , and for any i ∈ {1, 2},

|bij(x)− bi0(x)| ≤ c v
√

log T

T
.

2. There exists a constant c > 0 such that, for any i ∈ {1, 2},∫
Kj c
T

|bij(x)− bi0(x)|f0(x)dx ≤ c v
√

log T

T
H1H2.

3. For any x ∈ Kj
T and i ∈ {1, 2} ,

|bij(x)− bi0(x)| ≤ 8

cη
e4ηkkv

√
log T

T

(
1

H1
+

1

H2

)
.

The proof of the first two points follows exactly the one in Proposition 4 of [2], remarking that

dT (x) := π1(x)− π0(x) =
1

MT

d∏
l=1

K

(
xl − xl0
hl(T )

)

in [2] is now replaced by

djT (x) := fj(x)− f0(x) = 2v

√
log T

T
K̂

(
x1 − xj,1
H1

)
K̂

(
x2 − xj,2
H2

)
,

and the set

KT := [x1
0 − h1(T ), x1

0 + h1(T )]× · · · × [xd0 − hd(T ), xd0 + hd(T )]

introduced in [2] is now replaced by Kj
T . We recall that K and K̂ are exactly the same kernel function. The

proof of Proposition 4 of [2] is based on the fact that dT (x) and its derivatives are null for x ∈ Kc
T . In the same
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way, djT (x) and its derivatives are null for x ∈ Kj c
T . Then, acting as in [2], it is easy to see that the first two

points above hold true.
Comparing the third point above with the third point of Proposition 4 of [2], it is clear that our goal is to

show that the constant c that appears in the third point of Proposition 4 of [2] is explicit and equal to 8
cη
e4ηkk

when d = 2. Keeping the notation in [2], we first introduce the following quantities:

Ĩi1[f0](x) :=
1

2

2∑
j=1

(aaT )ij
∂f0

∂xj
(x), Ĩi2[f0](x) =

∫ xi

−∞
A∗d,if0(wi)dw.

We moreover introduce the notation

Ĩi[f0](x) = Ĩi1[f0](x) + Ĩi2[f0](x).

According with the definition of b, we have

bi0(x) =
1

f0(x)
Ĩi[f0](x), bij(x) =

1

fj(x)
Ĩi[fj ](x).

Since the operator f → Ĩi[f ] is linear, we deduce that

bij(x) =
1

fj(x)
Ĩi[fj ](x) =

1

fj(x)
Ĩi[f0](x) +

1

fj(x)
Ĩi[djT ](x). (4.11)

Therefore,

bij − bi0 = (
1

fj
− 1

f0
)Ĩi[f0] +

1

fj
Ĩi[djT ] =

f0 − fj
fj

1

f0
Ĩi[f0] +

1

fj
Ĩi[djT ] =

djT
fj
bi0 +

1

fj
Ĩi[djT ].

We need to evaluate such a difference on the compact set Kj
T . For this, we will use that fact that fj = f0 + djT ,

and obtain a lower bound away from 0. Specifically, from the definition of djT , we get

∥∥∥djT∥∥∥∞ ≤ 2v

√
log T

T
‖K̂‖2∞ = 2v

√
log T

T
. (4.12)

In particular,

fj ≥ f0 − |djT | ≥ f0 − 2v

√
log T

T
≥ f0

2
,

since
√

log T
T → 0 as T →∞, so for T large enough we have 2v

√
log T
T ≤ f0

2 . Then, for any x ∈ Kj
T , using (4.10)

we have

1

fj(x)
≤ 2

f0
≤ 8

cη
e4ηk.
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Moreover, as b0 is bounded, we deduce that for all x ∈ Kj
T ,

|bij(x)− bi0(x)| ≤ 16v

cη
e4ηk

∥∥bi0∥∥∞
√

log T

T
+

8e4ηk

cη
Ĩi[djT ](x). (4.13)

We therefore need to evaluate Ĩi[djT ](x) = Ĩi1[djT ](x) + Ĩi2[djT ](x) on Kj
T . As

∥∥∥∥∂djT∂xj

∥∥∥∥
∞
≤ 2v

Hj

√
log T

T
, (4.14)

it clearly follows that

Ĩi1[dT ]j(x) ≤ 2kv

√
log T

T

(
1

H1
+

1

H2

)
. (4.15)

Regarding Ĩi2[djT ](x), we can act exactly as in the third point of Proposition 4 of [2]. As x ∈ Kj
T , xi ∈ [xj,i −

Hi, xj,i +Hi] for i = 1, 2. Therefore, using also the definition of djT , the first integral is between xj,i −Hi and
xi. We enlarge the domain of integration to [xj,i −Hi, xj,i +Hi] and then, appealing to (4.12) and (4.14) and
the fact that the intensity of the jumps is finite, we get

|Ĩi2[djT ](x)| ≤
∫ xj,i+Hi

xj,i−Hi

∫
R2

|djT (w̃i)− djT (w̃i−1) + (γ · z)i
∂

∂xi
djT (wi)|F (z)dzdw

≤ 2 (

∫
R2

F (z)dz)

∫ xj,i+Hi

xj,i−Hi

∥∥∥djT∥∥∥∞ dw

+

∫ xj,i+Hi

xj,i−Hi

∫
R2

∫
R2

|(γ · z)i|
∥∥∥∥∂djT∂xi

∥∥∥∥
∞
F (z)dzdw

≤ cHi

√
log T

T
+
cHi

Hi

√
log T

T
,

for some c > 0. Using this together with (4.13) and (4.15) it follows that, for any x ∈ Kj
T ,

|bj(x)− b0(x)| ≤ c
√

log T

T
+

8e4ηk

cη
kv

√
log T

T

(
1

H1
+

1

H2

)
+ cHi

√
log T

T
+ c

√
log T

T

≤ 8e4ηk

cη
kv

√
log T

T

(
1

H1
+

1

H2

)
,

where the last inequality is a consequence of the fact that, ∀i ∈ {1, 2}, Hi → 0 as T →∞ and so, for T large
enough, all the terms are negligible when compared to the second one. Hence, the three points listed at the
beginning of the proof hold true. We deduce that∫

R2

|b0(x)− bj(x)|2f0(x)dx
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=

∫
Kj
T

|b0(x)− bj(x)|2f0(x)dx+

∫
Kj c
T

|b0(x)− bj(x)|2f0(x)dx

≤ c v2 log T

T
H1H2 +

64e8ηk

c2η
k2v2 log T

T

(
1

H1
+

1

H2

)2

|Kj
T |.

We recall that |Kj
T | = H1H2 and that, as T →∞, Hi → 0. Thus, the first term is negligible compared to the

second one. The desired result follows.
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