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APPROXIMATING QUASI-STATIONARY DISTRIBUTIONS WITH

INTERACTING REINFORCED RANDOM WALKS

Amarjit Budhiraja, Nicolas Fraiman* and Adam Waterbury

Abstract. We propose two numerical schemes for approximating quasi-stationary distributions
(QSD) of finite state Markov chains with absorbing states. Both schemes are described in terms of
certain interacting chains in which the interaction is given in terms of the total time occupation mea-
sure of all particles in the system and has the impact of reinforcing transitions, in an appropriate
fashion, to states where the collection of particles has spent more time. The schemes can be viewed as
combining the key features of the two basic simulation-based methods for approximating QSD originat-
ing from the works of Fleming and Viot (1979) and Aldous, Flannery and Palacios (1998), respectively.
The key difference between the two schemes studied here is that in the first method one starts with
a(n) particles at time 0 and number of particles stays constant over time whereas in the second method
we start with one particle and at most one particle is added at each time instant in such a manner
that there are a(n) particles at time n. We prove almost sure convergence to the unique QSD and
establish Central Limit Theorems for the two schemes under the key assumption that a(n) = o(n).
When a(n) ∼ n, the fluctuation behavior is expected to be non-standard. Some exploratory numerical
results are presented to illustrate the performance of the two approximation schemes.
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1. Introduction

Markov processes with absorbing states occur frequently in epidemiology [2], statistical physics [33], and
population biology [29]. Quasi-stationary distributions (QSD) are the basic mathematical object used to describe
the long time behavior of such Markov processes on non-absorption events. Just as stationary distributions of
ergodic Markov processes make the law of the Markov process, initialized at that distribution, invariant at
all times, quasi-stationary distributions are probability measures that leave the conditional law of the Markov
process, on the event of non-absorption, invariant. QSD have been widely studied since the pioneering work
of Kolmogorov [26], Yaglom [36] and Sevastyanov [32], cf. [14, 29, 30]. Numerical computation of QSD is an
important problem and the goal of this work is to investigate two related approximation schemes for QSD of
finite state Markov chains. Specifically, we consider the following setting.

Let ∆ denote a finite set and consider a nonempty subset ∂∆ ⊂ ∆. Let ∆o .
= ∆ \ ∂∆ and assume that ∆o is

nonempty. Let {Yn} be a Markov chain taking values in ∆ with transition probability kernel {Px,y}x,y∈∆. We
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denote by Pν the probability measure under which {Yn} has initial distribution ν, namely Pν(Y0 ∈ A) = ν(A).
If ν = δx for some x ∈ ∆, we write Px instead of Pν . We assume that {Yn} is absorbed upon entering ∂∆. In
particular, for each x ∈ ∂∆,

Px(Y1 ∈ ∆o) = 0.

Without loss of generality, we assume that ∂∆ consists of a single point which we denote by 0. Note that

Px(Y1 = y) = Px,y for x, y ∈ ∆.

A probability measure µ on ∆o is a quasi-stationary distribution (QSD) for the chain {Yn} if

Pµ(Yn = x |Yn ∈ ∆o) = µ(x), for all x ∈ ∆o and n ∈ N.

A set S ⊂ ∆ is called an irreducible class of the Markov chain if for each x, y ∈ S, there is some n ∈ N0 such
that Px(Yn = y) > 0. We assume that ∆o is an irreducible class of the Markov chain and that the Markov chain
can reach ∂∆ from ∆o. The latter property means that Pz,0 > 0 for some z ∈ ∆o. Under this irreducibility
assumption on the chain it follows from Perron-Frobenius theory that there is a unique QSD for {Yn} which we
denote by θ∗; see ([14], Chap. 3). This probability measure on ∆o can be characterized as the normalized left
eigenvector of the substochastic matrix {Px,y}x,y∈∆o associated with some eigenvalue λ ∈ (0, 1). In particular,
unlike invariant distributions for Markov processes, the QSD is characterized as a solution of a nonlinear equation
and thus presents harder numerical challenges. In general, numerical linear algebra methods become difficult
when the underlying transition probability matrix is large or ill-conditioned. Thus, it is natural to explore
simulation-based approaches.

There have been two main simulation-based approaches for approximating QSD. These approaches originate
from the works of Fleming and Viot [20] and Aldous et al. [1], respectively. In numerical schemes based on the
ideas of Fleming and Viot (see [12, 16]), one considers a collection of particles evolving independently according
to the Markov chain with transition probability kernel {Px,y}, and whenever a particle is absorbed it jumps
instantly to the position of another particle selected at random. It is known that as both time and the number
of particles tend to infinity, the empirical measure of the current positions of the particles converges almost
surely to the unique QSD θ∗ [6, 16, 34]. The method of Aldous et al. (see [6, 10]) approximates the QSD with
the time occupation measure of a single particle that evolves according to the transition kernel {Px,y} between
visits to 0, and when it hits 0 it jumps to a previously visited position with probability proportional to the time
the chain spent at that position.

There has been substantial recent progress in analyzing the convergence rates of these algorithms. Cérou et
al. [13] proved a Central Limit Theorem (CLT) for the law of Fleming-Viot particle systems at a given fixed
time under very general assumptions. Lelievre et al. [28] obtained an infinite-time version in the setting of finite
space Markov chains, extending the ideas of Del Moral and Miclo [15]. For the Aldous, Flannery and Palacios
scheme, Benäım and Cloez [6] and, independently, Blanchet, Glynn and Zheng [10] proved a Central Limit
Theorem, see also [17, 18].

The convergence properties of the method of Aldous et al. have recently been studied in other contexts as
well. Benäım et al. [7] established the convergence of such methods in compact state space, and Benäım et al.
[5] and Wang et al. [35] proved similar results for diffusions with soft and hard killing respectively.

Each of the approximation methods discussed above has benefits and shortcomings. Approximating with
several particles helps the approximation better explore the space, particularly when the Markov process has
metastable states where a scheme using a single particle can get stuck in place for long periods of time. On
the other hand, as the number of particles approach infinity, a Fleming-Viot approximation approaches the
conditional law of the Markov chain (conditioned on non-extinction) at some finite-time instant rather than
the QSD, and thus in order to obtain a good approximation for the QSD one needs to run the algorithm over
long time periods. This can be computationally expensive and numerical experiments (see Sect. 7) suggest
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that, with equivalent number of particle moves, a single particle reinforced random walk scheme of Aldous et al.
performs better than a Fleming-Viot type scheme. This trade-off between the exploration of state space through
multiple particles and the reinforcement of particle transition probabilities based on the time occupation measure
motivates the present work, which studies two algorithms that combine desirable features of both approximation
schemes.

The two schemes that we study consider a collection of particles that, unlike Fleming-Viot approximations
in which interactions occur through the current particle states, are governed by interactions with the time
occupancy measures of all particles. Specifically, when a particle is absorbed, it instantly jumps to a state
with probability proportional to the total time spent at that position by all the particles in the collection. The
main difference between the two schemes considered in this work is that in the first scheme we start with a(n)
particles at time 0 and the number of particles stays constant over time, whereas in the second scheme we add
one particle at a time at some fixed rate so that there are a(n) particles at time instant n. The approximation
to the QSD is given by the combined (and suitably normalized) time occupation measure of all particles in the
system. Our main results, Theorems 1.2, 1.3, 1.4, and 1.5 provide a.s. convergence to the QSD (i.e. strong law
of large numbers) and central limit theorems for the two schemes. In Section 7 we present some exploratory
numerical results on the performance of the two schemes and its comparison with the Fleming-Viot and Aldous
et al. methods. The approach to the mathematical analysis of the two schemes is inspired by the methods used
in [6], for the study of the Aldous et al. scheme based on the path of a single particle, and draws from techniques
for establishing central limit results for general stochastic approximation schemes developed by Delyon [19] and
Fort [21].

The theory of stochastic approximations (SA) has a long history, starting from the works of Robbins and
Monro [31], and Kiefer and Wolfowitz [25]. Since then, it has found many applications and has developed into a
thriving area of research [9, 11, 27]. In a typical stochastic approximation scheme one constructs a discrete time
stochastic process whose continuous time interpolation over suitably slow decreasing time steps approaches
the fixed point of a deterministic ordinary differential equation (ODE) as the continuous time parameter t
approaches infinity. One of the key differences, from this standard setting, in the analysis of our first scheme
presented in Sections 2–4, is that instead of a single stochastic approximation sequence, one needs to study an
array, indexed by n, of sequences such that for each n the sequence can be viewed as a SA algorithm targeting
the QSD as the number of steps increase. Our first result, Theorem 1.2, provides a strong law of large numbers
for this array as n and the number of time steps become large. This result also provides an almost sure upper
bound on the rate of convergence which plays a crucial role later in the proof of the central limit theorem in
Theorem 1.3. In order to establish a suitable rate of convergence, we introduce the notion of pseudo-trajectory
sequences (see Def. 2.1), which is inspired by the ideas of asymptotic pseudo-trajectories, first introduced in [8]
(see also [3, 6]), and is well-suited for array-type schemes such as those considered here.

In Theorem 1.3 we establish a central limit theorem for the array by considering the n-th sequence run for n
time steps. The proof uses several ideas from Section 4 of [21]. In that work, the author considers a general SA
algorithm which covers settings such as that of a controlled Markov chain that evolves, conditional on the past
history of the system, according to a stochastic kernel depending on the current approximation. The proofs of
[21] do not easily extend to array settings of the form considered in the current work and it turns out that the
rate of convergence in Theorem 1.2 is key to suitably controlling the error arrays in the martingale decomposition
of the SA sequences. One of the key requirements in the proofs is that a(n) = o(n). Indeed, when a(n) ∼ n, the
errors due to the finite-time behavior of the collection of particles can accumulate and the fluctuation properties
under the natural central limit scaling can be somewhat non-standard, see Remark 1.7 for a discussion of this
point.

While in this work our focus is on approximating the QSD of a finite state Markov chain, the approach used
to prove Theorems 1.2 and 1.3 is more generally applicable. In particular, the notion of a pseudo-trajectory
sequence introduced in Definition 2.1 should be useful for obtaining bounds on the rate of convergence and
establishing central limit theorems for other types of SA arrays.

The second numerical scheme is studied in Section 5. In this method the approximation is initialized with
a single particle and as time progresses particles are added to the system. At each step at most one particle
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is added and the number of particles at time n is denoted by a(n). Once more, the combined time occupation
measure of all particles is used to approximate the QSD and to replace particles that get absorbed. Since
the number of particles changes over time, the analysis of error terms and the covariance structure gets more
involved. In order to keep the presentation simple, here we restrict attention to the case where a(n) ∼ nζ for
some ζ ∈ (0, 1). In Theorem 1.4 we prove a.s. convergence of the approximation to the QSD and in Theorem 1.5
we provide a central limit theorem for this approximation scheme.

One of the challenges in constructing stochastic approximation schemes, with provable central limit fluctua-
tions, for approximating QSD using a large number of particles is to carefully analyze the contribution to the
variance and bias due to the finite-time behavior of the dynamics and to suitably calibrate the weights given
to particle states as time increases. Specifically, for the two algorithms studied in the current work, we find
that in comparison to the single particle SA schemes studied in [6, 10], one needs to place higher weights on
particle states at later time instants in order to suitably counterbalance the variability due to the finite-time
behavior of the chains. This point is discussed further in Remark 1.6, however a precise understanding of rela-
tionships between size of SA arrays and time step sizes, for central limit results to hold, remains to be fully
developed. Finally, we remark that in this work we consider SA arrays and sequences with time steps of order
1/n. Convergence and fluctuation results for interacting particle schemes with more general time steps satisfying
appropriate decay conditions will be a topic for future study.

We now comment on some contributions of this work. One of the main challenges is that unlike previous
works [6, 10] which require an analysis of a single SA sequence, here one needs to study asymptotic behavior
of an SA array {θnk , n ∈ N, k ∈ N0}. Specifically we need to understand the behavior as the time parameter (k)
and the number of particles (n) increase simultaneously. The array feature of our SA scheme requires several
new ideas. One of these is the extension of the notion of asymptotic pseudo-trajectories introduced in [8] to
pseudo-trajectory sequences (see Def. 2.1). These sequences play a key role in providing a.s. upper bounds on
rates of convergence of SA arrays that are uniform in a suitable sense, which in turn are used in a crucial
way in the proof of the central limit in Theorem 1.3. Indeed, we expect that ideas based on pseudo-trajectory
sequences will be useful for proving rate-of-convergence results and central limit theorems for a broader class of
stochastic approximation arrays and will be of interest to researchers in stochastic approximation methods for
other application areas. Proofs of results that provide rates of convergence bounds are inspired by [6], however
there is one key step where new ideas are needed to control certain martingale difference terms in a uniform
manner as time and number of particles increase simultaneously (see Lems. 2.4 and 2.9). Theorem 1.3 gives a
novel form of CLT which describes fluctuations of the estimates as the number of particles and time increase
simultaneously and we expect such fluctuation results to be of interest for other types of SA arrays. Proof
strategy for the CLT is strongly influenced by Delyon [19] and Fort [21] but it also has one key new ingredient
of leveraging the a.s. rates of convergence to show that various types of error terms decay sufficiently fast (see
e.g. Prop. 4.1 and Cor. 4.2). These convergence rates are also key in estimating (in a uniform manner) the
conditional covariances of certain noise arrays (see Lem. 4.5). The analysis reveals a subtle balance between the
number of particles and relative contributions of early versus later time steps that is needed in the CLT proof.
These points are discussed in detail in Remarks 1.6 and 1.7.

We now describe the two schemes in some detail.

1.1. Description of the algorithms

We denote by P(∆o) the space of probability measures on ∆o. Letting d
.
= |∆o|, P(∆o) can be identified

with the (d− 1)-dimensional simplex

S .
=
{
x ∈ Rd+ :

d∑
i=1

xi = 1
}
.
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For notational convenience, elements of ∆o will be labeled as {1, 2, . . . , d}. For each ν ∈ P(∆o), we consider a
transition probability kernel K[ν] on ∆o given by

K[ν]x,y
.
= Px,y + Px,0 ν(y) for x, y ∈ ∆o. (1.1)

For each ν ∈ P(∆o), the Markov chain associated with the transition probability kernel K[ν] is irreducible, and
we denote the corresponding unique invariant distribution by π(ν). Define

h(ν)
.
= π(ν)− ν for ν ∈ P(∆o).

It is well known that h : S → TS .
= {x ∈ Rd :

∑d
i=1 xi = 0} is a smooth function and the Jacobian matrix

∇h(θ∗) is a Hurwitz matrix, in particular there is some L > 0 such that the eigenvalues of ∇h(θ∗) have their
real parts bounded above by −L; see Corollary 2.3 of [6].

The approximation algorithms described below are given in terms of a certain step size sequence denoted by
{γn}∞n=1, and we assume that for some γ∗ > 0, we have

γk+1
.
=

γ∗
k +N∗

, k ∈ N0, (1.2)

where N∗ = bγ∗c+ 1. This choice of N∗ ensures that γk+1 ≤ 1 for each k ∈ N0, which in turn guarantees that
the two algorithms’ estimates for the QSD are probability measures. In general, N∗ can be taken to be any
positive real such that γk+1 ≤ 1 for each k ∈ N0. Let {a(n)}n∈N be a sequence of positive integers increasing to∞.

Algorithm I. For fixed x0 ∈ ∆o, we consider a collection {Xi,n
k }1≤i≤a(n),n∈N,k∈N0

of ∆o–valued random vari-
ables, an array {θnk}n∈N,k∈N0 of P(∆o)–valued random measures, and a collection {Fnk }n∈N,k∈N0 of σ-fields given
on some probability space (Ω,F ,P), defined recursively as follows. For n ∈ N and k = 0, let

Xi,n
0

.
= x0, 1 ≤ i ≤ a(n), Fn0

.
= {∅,Ω} and θn0

.
= δx0

.

Having defined the above random variables and σ-fields for some k ∈ N0 and all n ∈ N, define, for each n ∈ N
and 1 ≤ i ≤ a(n)

P
(
X1,n
k+1 = y1, . . . , X

a(n),n
k+1 = ya(n)

∣∣∣ Fnk ) =

a(n)∏
i=1

K[θnk ]xi,yi . (1.3)

on the set {X1,n
k = x1, . . . , X

a(n),n
k = xa(n)}. The filtration is extended as

Fnk+1
.
= Fnk ∨ σ

(
X1,n
k+1, . . . , X

a(n),n
k+1

)
and the new estimate of the QSD is given by

θnk+1
.
= (1− γk+1)θnk + γk+1

1

a(n)

a(n)∑
i=1

δXi,nk+1
. (1.4)
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We are interested in the asymptotic behavior of θn
.
= θnn. In order to write {θnk}∞n=1 as a stochastic approximation

(SA) algorithm, for 1 ≤ i ≤ a(n) and k ∈ N0, let

εnk+1
.
=

1

a(n)

a(n)∑
i=1

εi,nk+1 where εi,nk+1
.
= δXi,nk+1

− π(θnk ). (1.5)

Then the evolution for the QSD approximation θnk from (1.4) can be rewritten as

θnk+1 = θnk + γk+1

(
h(θnk ) + εnk+1

)
. (1.6)

Note that when γ∗ = 1 and N∗ = 1, θnk is simply the empirical measure of the previous (k+ 1)a(n) states of the
a(n) particles in the system.

Algorithm II. In order to distinguish from the notation used for the first scheme, we will use bold symbols to
denote some key quantities with slightly different definitions than those in the definition of the first algorithm.
In this method, rather than starting with a(n) particles, we will start with 1 particle at time 0 and add particles
over time. This algorithm is therefore described by a single sequence of random variables rather than by an
array. In particular a(n) will denote the number of particles at the n-th time step rather than the number of
particles in the n-th sequence in the array. Here {a(n)} is a non-decreasing sequence of integers satisfying the
following:

(A) a(0) = 1.
(B) For each n ∈ N, a(n+ 1)− a(n) ≤ 1.
(C) The number of particles at instant n is a(n) and there is some ζ ∈ (0, 1) such that the n-th particle is

added at time step b(n) = bn1/ζc.

The above properties in particular say that a(n) ∼ nζ and the sequence {b(n)} satisfies b(1)
.
= 0, and

b(n)
.
= inf{m > b(n− 1) : a(m) = a(n− 1) + 1}. (1.7)

The above conditions for {a(n)} are satisfied, for example, when a(n)
.
= max{1, bnζc} for some ζ ∈ (0, 1).

Furthermore, as noted in Remark 1.1, condition (B) above can be replaced by the assumption of uniform
boundedness of the increments a(n + 1) − a(n). We will also need a {1, . . . , a(n)} valued random variable ιn
which will tell us where to add the new particle at time instant n+ 1 if a(n+ 1) = a(n) + 1. The precise manner
in which this particle is added is not important and one can use an arbitrary non-anticipative rule for doing so.
More precisely, the scheme is given as follows.

Consider a collection {Xi
n}1≤i≤a(n+1),n∈N0

of ∆o–valued random variables, a sequence {ιn}n∈N0
of random

variables with ιn taking values in {1, . . . , a(n)}, a sequence {θn}n∈N0
of P(∆o)–valued random measures, and a

sequence {Fn}n∈N0 of σ-fields given on some probability space (Ω,F ,P), recursively defined as follows. We let

X1
0
.
= x0, ι0

.
= 1, F0

.
= {∅,Ω} and θ0

.
= δx0

.

Note a(0) = a(1) = 1. We let ι1
.
= 1. Having defined {Xi

n}1≤i≤a(n+1), θn, ιn+1 and Fn, define the elements for
the next step as follows:

– Conditioned on Fn, particles evolve according to the kernelK[θn] independently. In particular, if no branching
occurs, namely a(n+ 2) = a(n+ 1), then

P
(
X1
n+1 = y1, . . . ,X

a(n+2)
n+1 = ya(n+2)

∣∣∣ Fn

)
=

a(n+1)∏
i=1

K[θn]xi,yi
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on the set {X1
n = x1, . . . ,X

a(n+1)
n = xa(n+1)}. On the other hand, if a branching event occurs, i.e. a(n+ 2) =

a(n + 1) + 1, on the set {X1
n = x1, . . . ,X

a(n+1)
n = xa(n+1) and ιn+1 = `}, the particle with index ` will

replicate, the new particle be given the index a(n+ 2), and

P
(
X1
n+1 = y1, . . . ,X

a(n+2)
n+1 = ya(n+2)

∣∣∣ Fn

)
=

a(n+1)∏
i=1

K[θn]xi,yi

K[θn]x`,ya(n+2)
.

– With Gn+1
.
= Fn ∨ σ{X1

n+1, . . . ,X
a(n+2)
n+1 } and Hn+1 an arbitrary σ-field independent of Gn+1, let ιn+2 be

an arbitrary Gn+1 ∨Hn+1 measurable random variable with values in {1, . . . , a(n+ 2)}.
– Let Fn+1 = Fn ∨ σ

(
X1
n+1 . . . ,X

a(n+2)
n+1

)
∨ σ(ιn+2).

– Finally, let the new QSD estimate be

θn+1
.
= (1− γn+1)θn + γn+1

1

a(n+ 1)

a(n+1)∑
i=1

δXi
n+1

. (1.8)

Note that by construction, θn, {Xi
n}1≤i≤a(n+1), and ιn+1 are Fn measurable for all n ∈ N0. Also note that

ιn+1 plays a role in the definition of the measure θn+2 only when a(n+ 2) = a(n+ 1) + 1.
In order to write θn as a SA algorithm, we define, for 1 ≤ i ≤ a(n+ 1) and n ∈ N0,

εn+1
.
=

1

a(n+ 1)

a(n+1)∑
i=1

εin+1 where εin+1
.
= δXi

n+1
− π(θn). (1.9)

Then the evolution equation in (1.8) can be rewritten as

θn+1 = θn + γn+1(h(θn) + εn+1). (1.10)

Remark 1.1. Condition (B) describing the sequence {a(n)} can be replaced by the following assumption: there
is some c ∈ [1,∞) such that for each n ∈ N, a(n+ 1)− a(n) ≤ c. Our restriction to the case when c = 1 is done
for notational convenience, and the case when c ≥ 1 can be handled similarly.

1.2. Statement of results

We first describe the results for Algorithm I, namely the algorithm given by (1.6). The following theorem
proves that the approximation scheme converges a.s. to the unique QSD θ∗ and provides an a.s. upper bound
on the rate at which {θnk} converges to θ∗.

Theorem 1.2. As n→∞, θnn → θ∗ almost surely. Furthermore, for each p ∈ (0, 1), there is a β > 0, such that
for P-a.e. ω, there is a n0 ≡ n0(ω) ∈ N such that for all n ≥ n0 and np ≤ k ≤ n,

‖θnk − θ∗‖ ≤ k−β .

Note that the constant p appearing in Theorem 1.2 determines the length of the time interval (for each n)
over which the result provides an a.s. upper bound on the algorithm’s rate of convergence. In particular, the
smaller p is, the longer the interval [np, n] is. Therefore, by choosing a smaller value of p, one can ensure some
additional uniformity (in time) of the rate of convergence. However, this has some trade-offs, as the constant β
determining the rate of convergence depends on p as well, and, in general, may decrease as p decreases. Note
that, since the intervals [np, n] decrease with p, for any p∗ ∈ (0, 1), the estimate in the above theorem holds for
all p ∈ (p∗, 1] with the same choice of β and n0.
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Theorem 1.2 is proved in Section 2. The next theorem provides a central limit theorem for the sequence {θnn}.
Define the sequence {σn}∞n=1 by

σn
.
=
√
a(n)/γn. (1.11)

This sequence will give the scaling factor in the CLT. The covariance matrix for the limiting Gaussian distribu-
tion is given in terms of a nonnegative definite matrix U∗ which is introduced later in (3.2). For the CLT we will
need additional conditions on the step sizes and the number of particles in the system. Recall from Section 1.1
that L > 0 is a constant such that the eigenvalues of ∇h(θ∗) have their real parts bounded above by −L. The
additional conditions on γ∗ and L required for Theorem 1.3 and Theorem 1.5 and their comparison with the
conditions in [6] are discussed in Remark 1.6.

Theorem 1.3. Suppose that a(n)/n→ 0 as n→∞ and γ∗ > L−1. Then, as n→∞,

σn(θnn − θ∗)
L→ N (0, V ),

where V is the solution to the Lyapunov equation

U∗ +∇h(θ∗)V + V∇h(θ∗)
T + γ−1

∗ V = 0, (1.12)

U∗ is the nonnegative definite matrix given by (3.2), and
L→ denotes convergence in distribution.

Theorem 1.3 is proved in Section 4 by combining results from Sections 2 and 3. The Lyapunov equation (1.12)
characterizes the asymptotic covariance of the algorithm’s (scaled) fluctuations around the QSD. Such Lyapunov
equations are frequently used to characterize the asymptotic covariance structure of stochastic approximation
techniques such as those considered in this work (see e.g., [21], Thm. 2.1 and [19], Thm. 24). For fundamental
results regarding the existence and uniqueness of solutions to such Lyapunov equations, see [24] and references
therein.

The following are our main results for Algorithm II given by (1.10). The first result proves the a.s. convergence
of the scheme. This time we don’t provide convergence rates as it turns out that unlike the proof of Theorem 1.3,
the proof of Theorem 1.5 does not require the use of convergence rates. Recall that, in order to distinguish from
the quantities that appear in Algorithm I, we denote the corresponding quantities in boldface.

Theorem 1.4. As n→∞, θn → θ∗ almost surely.

Theorem 1.4 is proved in Section 5.
Our final result gives a CLT for Algorithm II. Proof is given in Section 6.

Theorem 1.5. Suppose that a(n)/n→ 0 as n→∞ and γ∗ > L−1. Then, as n→∞,

σn(θn − θ∗)
L→ N (0,V ),

where V is the solution to the Lyapunov equation

U∗ +∇h(θ∗)V + V ∇h(θ∗)
T + (1 + ζ)γ−1

∗ V = 0,

and U∗ is the nonnegative definite matrix given by (3.2).

Remark 1.6. The condition γ∗ > L−1 is used in an important way in the proofs of CLT in Theorems 1.3
and 1.5. We note that the CLT for a single particle scheme given in [6] allows for any γ∗ > (2L)−1. Thus,
we find that for CLT results here we need larger step sizes than those allowed for the single particle scheme.
Larger step sizes correspond to placing higher weights on particle states at later time instants. This need for



QSD APPROXIMATIONS USING INTERACTING REINFORCED WALKS 77

suitably emphasizing later time points more arises in order to counterbalance the variability due to the large
number of particles at any fixed time instant. The fact that a large number of particles at any fixed instant can
qualitatively change the behavior of the fluctuations is further discussed in Remark 1.7.

Remark 1.7. Recall that for the CLT results we require that a(n) = o(n). This condition is crucial in obtaining
the estimates on the discrepancy array (resp. sequence) given in Lemma 4.3 (resp. Prop. 6.6). As noted in the
Introduction, when a(n) ∼ n one expects nonstandard fluctuation behavior under the natural CLT scaling. To
see this, consider the elementary setting of a collection of i.i.d. Markov chains. Specifically, let {Xn

m, m ∈ N0}n∈N
be a collection of i.i.d. irreducible Markov chains on ∆o with transition probability kernel K0 and stationary
distribution θ∗. For simplicity suppose that Xn

0 = x0 for all n ∈ N, for some x0 ∈ ∆o. Define

θnm =
1

ma(n)

m∑
k=1

a(n)∑
i=1

(δXik − θ∗), m, n ∈ N. (1.13)

It is straightforward to show that if a(n) = o(n), then, as n→∞,√
a(n)n(θnn − θ∗)

L→ N (0, U∗).

where U∗ is defined in a similar manner as in (3.2). However when a(n) ∼ a∗n for some a∗ ∈ (0,∞), a different
behavior emerges, and in fact the asymptotic mean of the scaled differences

√
a(n)n(θnn − θ∗) is nonzero as

n→∞. In particular, one can easily see that√
a(n)n(θnn − θ∗)

L→ N (α∗, U∗),

where

α∗
.
= a∗[(K0Q0)x0,· − θ∗(K0Q0)], θ∗(K0Q0)

.
=
∑
x∈∆o

(K0Q0)x,·θ∗(x),

where Q0 is defined as in (1.15) on replacing on its right side K[ν] with K0 and Π(ν) with the d × d matrix
[θ∗, θ∗, · · · ]T . For the stochastic approximation algorithms considered in this work, in order to study the limit
behavior when a(n) ∼ n one will need to carefully analyze the limiting behavior of state dependency in the
(appropriately scaled) discrepancy array/sequence, which describes the deviations of the linearized evolution
from the underlying stochastic approximation algorithm (see discussion in Sect. 1.3) in order to identify the
asymptotic ‘drift’ in the Gaussian limit. This study will be taken up elsewhere.

Remark 1.8. Since in Algorithm II one particle is added at a time and at time k there are a(k) particles, a
more natural choice of the central limit scaling than σn is given by the sequence

βn
.
=

(
γn

1

n

n∑
k=1

1

a(k)

)−1/2

.

From Theorem 1.5 it follows immediately that

βn(θn − θ∗)
L→ N (0, Ṽ ),

where Ṽ is the unique solution to the Lyapunov equation

(1− ζ)U∗ + (1 + ζ)γ−1
∗ Ṽ +∇h(θ∗)Ṽ + Ṽ ∇h(θ∗)

T = 0. (1.14)
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On the other hand, recall that for Algorithm I the central limit theorem takes the form

σn(θnn − θ∗)
L→ N (0, V ),

where V is the solution to (1.12). The quantities V and Ṽ can be viewed as the ‘per-particle’ asymptotic
covariance matrices for the two numerical schemes.

1.3. Decomposition and linearization

One of the key ingredients in the proofs is the following explicit representation of the solution of Poisson’s
equation associated with the transition probability kernel K[·]. For a proof, see Lemma 5.1 of [3].

Lemma 1.9. For each ν ∈ P(∆o), let Π(ν) be the d × d matrix with entries Π(ν)x,y = π(ν)y. Then for each
ν ∈ P(∆o), the matrix

Q[ν]
.
= −

∫ ∞
0

[exp (t(K[ν]− I))−Π(ν)] dt, (1.15)

is well-defined and the map ν 7→ Q[ν] is continuously differentiable. Furthermore,

(I −K[ν])Q[ν] = Q[ν](I −K[ν]) = I −Π(ν). (1.16)

Using the above result, and following [3, 6], we decompose the noise in Algorithm I given in (1.5) in the
following manner: for each n ∈ N and 1 ≤ i ≤ a(n), write

εi,nk+1 = δXi,nk+1
− π(θnk ) = (Xi,n

k+1)T (I −Π(θnk ))

= (Xi,n
k+1)T (I −K[θnk ])Q[θnk ] = Q[θnk ]Xi,nk+1,·

− (K[θnk ]Q[θnk ])Xi,nk+1,·
.

Then we can write εi,nk+1 = ei,nk+1 + ri,nk+1 where

ei,nk+1
.
= Q[θnk ]Xi,nk+1,·

− (K[θnk ]Q[θnk ])Xi,nk ,·, ri,nk+1
.
= (K[θnk ]Q[θnk ])Xi,nk ,· − (K[θnk ]Q[θnk ])Xi,nk+1,· (1.17)

For each n, k ∈ N, define the error and remainder arrays {enk} and {rnk} by

enk+1
.
=

1

a(n)

a(n)∑
i=1

ei,nk+1, rnk+1
.
=

1

a(n)

a(n)∑
i=1

ri,nk+1. (1.18)

Then the algorithm defined in (1.4) can be written as

θnk+1
.
= θnk + γk+1h(θnk ) + γk+1e

n
k+1 + γk+1r

n
k+1. (1.19)

Along with the above evolution equation, it will be helpful to consider the linearized evolution array {µnk}
given by

µn0
.
= 0 and µnk+1

.
=
(
I + γk+1∇h(θ∗)

)
µnk + γk+1e

n
k+1, (1.20)

and to study the discrepancy array {ρnk} given by

ρn0
.
= θn0 − θ∗ and ρnk

.
= (θnk − θ∗)− µnk . (1.21)
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Note that θnk − θ∗ = µnk + ρnk for all k ∈ N0. As in [21], the proof of Theorem 1.3 relies on two steps: the first is
to prove a central limit theorem for the sequence {µnn} (with suitable scaling), and the second is to show that
under the central limit scaling, the sequence {ρnn} tends to 0 in probability.

We follow a similar approach for Algorithm II introduced in (1.8). This time we define the error and remainder
sequences {en+1} and {rn+1} by

en+1
.
=

1

a(n+ 1)

a(n+1)∑
i=1

ein+1, rn+1
.
=

1

a(n+ 1)

a(n+1)∑
i=1

rin+1, (1.22)

where the terms for each particle are given by

ein+1
.
= Q[θn]Xi

n+1,· − (K[θn]Q[θn])Xi
n,·

rin+1
.
= (K[θn]Q[θn])Xi

n,· − (K[θn]Q[θk])Xi
n+1,·

(1.23)

Then the sequence {θn} defined in (1.8) can be rewritten as

θn+1 = θn + γn+1h(θn) + γn+1en+1 + γn+1rn+1. (1.24)

We also introduce the linearized evolution sequence {µk} given by

µ0
.
= 0 and µn+1

.
= (I + γn+1∇h(θ∗))µn + γn+1en+1 (1.25)

and we define the discrepancy sequence {ρk} by

ρ0
.
= θ0 − θ∗ and ρn+1

.
= θn+1 − θ∗ − µn+1. (1.26)

The proof once more proceeds by first establishing a central limit theorem for the linearized evolution and then
showing that the discrepancy is asymptotically negligible.

1.4. Notation

The following notation will be used. Convergence in distribution of random variables Zn to Z will be denoted

as Zn
L→ Z. Constants in the proofs of various estimates will be denoted as κ, κ1, κ2, · · · ; their values may

change from one proof to next. For a space S, m ∈ N and a bounded h : S → Rm, ‖h‖∞
.
= sups∈S ‖h(s)‖. For

nonnegative sequences {an}, {bn} we write an ∼ bn, if an/bn → 1 as n → ∞. For a vector v ∈ Rd, the j-th
coordinate will be denoted as v(j) or vj . We denote by C0 .

= C0(R+,P(∆o)) the space of continuous P(∆o)-
valued functions on [0,∞) endowed with the topology of uniform convergence on compact intervals. Recall that
a sequence {xn} from R+ to P(∆o) converges to a limit x∗ in C0 if and only if for each T > 0,

lim
n→∞

sup
0≤s≤T

‖xn(t)− x∗(t)‖ = 0.

For x ∈ C0 we let ‖x‖T,∗
.
= sup0≤s≤T ‖x(s)‖. Recall that the topology on C0 is induced by the metric

d(x, y)
.
=

∞∑
T=1

2−T min{1, ‖x− y‖T,∗}, x, y ∈ C0.
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1.5. Organization

The paper is organized as follows. In Section 2 we prove a.s. convergence of Algorithm I and provide some
associated rate of convergence bounds (Thm. 1.2). In Section 3 we analyze the noise terms of Algorithm I.
Combining results of Sections 2 and 3, in Section 4 we prove the central limit theorem for this algorithm stated
in Theorem 1.3. In Section 5 we prove a.s. convergence for Algorithm II and in Section 6 we establish the
corresponding CLT. Finally, in Section 7 we present some exploratory numerical experiments.

2. Convergence of Algorithm I

This section is dedicated to the proof of Theorem 1.2. In Section 2.1 we introduce a notion of pseudo-trajectory
sequences for the flow induced by h that is motivated by ideas of asymptotic pseudo trajectories introduced first
in [8] (see also [4, 6]) and which is more well-suited for the array-type stochastic approximations studied here. In

Section 2.2 we show that the sequence {θ̂n} of continuous time processes obtained from a suitable interpolation
of our stochastic approximation array {θnk} satisfies the pseudo-trajectory sequence property introduced in
Section 2.1 and finally, in Section 2.3 we use this fact to complete the proof of Theorem 1.2.

2.1. Pseudo-trajectory sequences

Consider the sequence of algorithm update time instants {τk} associated with the SA, defined as

τ0 = 0, τk
.
=

k∑
j=1

γj , k ∈ N. (2.1)

For r ∈ R+, we let τr
.
= τbrc. For ν ∈ P(∆o), consider the ODE associated with the flow induced by h,

Φ̇(t) = h(Φ(t)), Φ(0) = ν. (2.2)

We denote the solution to (2.2) with initial condition Φ(0) = ν by {Φt(ν)}.
We now introduce a notion of a pseudo-trajectory sequence that will be convenient for our purposes.

Definition 2.1. For λ < 0 and p ∈ (0, 1], we say that a sequence {Xn} ⊂ C0 is a (λ, τn, p)-pseudo-trajectory
sequence (PTS) for Φ if for all T > 0 and ε > 0, there is an n0 ∈ N such that for all n ≥ n0 and 0 ≤ j ≤ Ln

.
=

Ln(p, T )
.
=
⌊

1
T

(
τn − τnp

2

)⌋
+ 1, and tn,j

.
= τnp

2 + jT ,

sup
0≤u≤2T

‖Xn(tn,j + u)− Φu(Xn(tn,j))‖ ≤ exp{(λ+ ε)tn,j}.

The following lemma provides an upper bound for the rate at which a (λ, τn, p)-PTS converges to θ∗. Recall
that the largest eigenvalue of ∇h(θ∗) is bounded above by −L < 0.

Lemma 2.2. Suppose that for some λ < 0 and p ∈ (0, 1), {Xn} is a (λ, τn, p)-PTS for Φ. Then there is some
β > 0 and n0 ∈ N such that for all n ≥ n0, if np ≤ m ≤ n, then

‖Xn(τm)− θ∗‖ ≤ exp(−βτm).

Proof. Fix α1 ∈ (0, L). Then we can find (cf. [6], Lem. 2.1) some T ∈ (0,∞) so that for all ν ∈ P(∆o),

sup
T≤u≤2T

‖Φu(ν)− θ∗‖ ≤ exp(−α1T )‖ν − θ∗‖.
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For np ≤ m ≤ n, let 0 ≤ j(m) ≤ Ln be such that tn,j(m)+1 ≤ τm ≤ tn,j(m)+1 + T and let u(m)
.
= τm − tn,j(m),

so that

τm = (τm − tn,j(m)) + tn,j(m) = u(m) + tn,j(m).

Note that u(m) ∈ [T, 2T ]. Now, fix ε ∈ (0,−λ), and let α2
.
= −(λ+ ε) > 0. Define α

.
= α1 ∧ α2. Since {Xn} is a

(λ, τn, p)-PTS for Φ, we can find some n0 such that for all n ≥ n0 and for each np ≤ m ≤ n,

‖Xn(τm)− θ∗‖ ≤ ‖Xn(u(m) + tn,j(m))− Φu(m)(Xn(tn,j(m)))‖+ ‖Φu(m)(Xn(tn,j(m)))− θ∗‖
≤ exp(−αtn,j(m)) + exp(−αT )‖Xn(tn,j(m))− θ∗‖

≤ exp
(
−ατn

p

2

)
+ exp(−αT )‖Xn(tn,j(m))− θ∗‖.

Iterating this for an additional j(m) times, we see that there are κi ≡ κi(α, T ) ∈ (0,∞) such that if n ≥ n0 and
m ≥ np, then

‖Xn(τm)− θ∗‖ ≤ exp
(
−ατn

p

2

)j(m)∑
k=0

exp(−αkT )

+ κ1 exp (−α(j(m) + 1)T )

≤ κ2

(
exp

(
−ατn

p

2

)
+ exp (−α(j(m) + 1)T )

)
= κ2

(
exp

(
−ατn

p

2

)
+ exp (−α(j(m) + 2)T ) exp(αT )

)
≤ κ3

(
exp

(
−ατn

p

2

)
+ exp (−α(j(m) + 2)T )

)
(2.3)

Note that, by our choice of j(m),

T (j(m) + 2) ≥ τm −
τnp

2
≥ τnp

2
.

Also note that for k ∈ N

γ∗(log(k +N∗)− log(N∗)) ≤ τk ≤ 1 + γ∗ log(k +N∗ − 1)

from which it follows that, there is a κ4 ∈ (0,∞) and n1 ≥ n0 such that and all n ≥ n1, τnp2 ≥ κ4τn. Combining
the above two observations with (2.3), we have for all n ≥ n1 and np ≤ m ≤ n

‖Xn(τm)− θ∗‖ ≤ 2κ3 exp
(
−ατn

p

2

)
≤ 2κ3 exp (−ακ4τm) .

The result follows.

2.2. The algorithm as a pseudo-trajectory sequence

In this section we show that a suitable continuous time interpolation of the array {θnk} is a PTS for Φ in the

sense of Definition 2.1. For n ∈ N, let θ̂n be the continuous-time process defined as

θ̂n(τk + t)
.
= θnk + t

θnk+1 − θnk
τk+1 − τk

, t ∈ [0, γk+1) and k ∈ N0.
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We write θ̄n(·) to denote the analogous continuous-time process obtained by piecewise constant interpolations

of {θnk}. We will prove in this section that, with λ = −(2γ∗)
−1 and arbitrary p ∈ (0, 1), {θ̂n} is a (λ, τn, p)-PTS

for Φ. Towards that end, let

ε̄n(τk + t)
.
= εnk+1, t ∈ [0, γk+1), k ∈ N0 (2.4)

and define

∆(n, tn,j , T )
.
= sup

0≤u≤2T

∥∥∥∥∥
∫ tn,j+u

tn,j

ε̄n(s)ds

∥∥∥∥∥ , 0 ≤ j ≤ Ln, (2.5)

where Ln = Ln(p, T ) is as in Definition 2.1. In Lemma 2.3 we provide an estimate relating θ̂n with ∆(·, ·, ·) that

is used to prove asymptotic properties of {θ̂n}. The proof is a consequence of the Lipschitz property of h and
Grönwall’s lemma. Define m : R+ → N0 by

m(t)
.
= sup{k ≥ 0 : t ≥ τk}, t ≥ 0. (2.6)

Lemma 2.3. For each T ∈ (0,∞) there is a C
.
= C(T ) ∈ (0,∞) such that for all n ∈ N and k ≤ Ln,

sup
0≤u≤2T

∥∥∥θ̂n(tn,k + u)− Φu(θ̂n(tn,k))
∥∥∥ ≤ C(T )[∆(n, tn,k, T ) + γm(tn,k)]

Proof. Fix T ∈ (0,∞). Note that, for n ∈ N and t ≥ 0,

θ̂n(t) = θ̂n(0) +

∫ t

0

[h(θ̄n(s)) + ε̄n(s)]ds.

Define

An,k(s)
.
=

∫ tn,k+s

tn,k

[h(θ̄n(u))− h(θ̂n(u))]du, Bn,k(s)
.
=

∫ tn,k+s

tn,k

ε̄n(u)du.

Then, for 0 ≤ s ≤ 2T ,

θ̂n(tn,k + s) = θ̂n(tn,k) +

∫ s

0

h(θ̂n(tn,k + u))du+An,k(s) +Bn,k(s).

Also,

Φs(θ̂
n(tn,k)) = θ̂n(tn,k) +

∫ s

0

h(Φu(θ̂n(tn,k)))du.

Letting K denote the Lipschitz constant of h we see that

‖θ̂n(tn,k + s)− Φs(θ̂
n(tn,k))‖ =

∥∥∥∥∫ s

0

[h(θ̂n(tn,k + u))− h(Φu(θ̂n(tn,k)))]du+An,k(s) +Bn,k(s)

∥∥∥∥
≤ K

∫ s

0

‖θ̂n(tn,k + u)− Φu(θ̂n(tn,k))‖du+ ‖An,k(s)‖+ ‖Bn,k(s)‖,
(2.7)
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for all s ≥ 0. Next for each u ∈ [tn,k, tn,k + 2T ],

θ̂n(u)− θ̄n(u) = θ̂n(u)− θ̂n(τm(u)) =

∫ u

τm(u)

[h(θ̄n(s)) + ε̄n(s)]ds. (2.8)

Note that, with κ1
.
= ‖h‖∞ + 2, for u ∈ [tn,k, tn,k + 2T ],∥∥∥∥∥
∫ u

τm(u)

(
h(θ̄n(s)) + ε̄n(s)

)
ds

∥∥∥∥∥ ≤ κ1(u− τm(u)) ≤ κ1γm(u) ≤ κ1γm(tn,k),

Combining the above estimate with (2.8), it follows that for 0 ≤ s ≤ 2T ,

‖An,k(s)‖ ≤ K
∫ tn,k+s

tn,k

‖θ̄n(u)− θ̂n(u)‖du ≤ 2KTκ1γm(tn,k). (2.9)

The result now follows on using the estimate (2.9) in (2.7), recalling the definition of Bn,k and ∆(n, tn,k, T ),
and applying Grönwall’s lemma.

Lemma 2.9 provides the key estimate in the proof that {θ̂n} is a PTS for Φ. The main ingredients in its proof
are Lemmas 2.4, 2.5, 2.6, and 2.7 given below. Consider the following decomposition of the algorithm’s noise
given in terms of δ`,i,nk+1 defined as, for 1 ≤ i ≤ a(n),

δ`,i,nk+1 (x)
.
=



γk+1Q[θnk ]Xik+1,x
− γk+1 (K[θnk ]Q[θnk ])Xik,x

` = 1

γk+1 (K[θnk ]Q[θnk ])Xik,x
− γk (K[θnk ]Q[θnk ])Xik,x

` = 2

γk (K[θnk ]Q[θnk ])Xik,x
− γk+1

(
K[θnk+1]Q[θnk+1]

)
Xik+1,x

` = 3

γk+1

(
K[θnk+1]Q[θnk+1]

)
Xik+1,x

− γk+1 (K[θnk ]Q[θnk ])Xik+1,x
` = 4

(2.10)

For each 1 ≤ ` ≤ 4, let

δ`,nk+1
.
=

1

a(n)

a(n)∑
i=1

δ`,i,nk+1 and observe that γk+1ε
n
k+1 =

4∑
`=1

δ`,nk+1 (2.11)

since

γk+1ε
i,n
k+1 = γk+1

(
Q[θnk ]Xik+1,x

− (K[θnk ]Q[θnk ])Xik+1,x

)
=

4∑
`=1

δ`,i,nk+1 . (2.12)

The following lemma estimates the error term corresponding to ` = 1. Henceforth in this section we assume
that p ∈ (0, 1) and T ∈ (0,∞) are fixed, and λ

.
= −(2γ∗)

−1. Recall the quantities Ln and tn,j from Definition 2.1.

Lemma 2.4. Let q ≥ 2. There is a n0 ∈ N and C(q, T ) ∈ (0,∞) such that for all n ≥ n0 and all 0 ≤ k ≤ Ln,

E

 sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ1,n
j+1

∥∥∥∥∥∥
q ≤ C(q, T ) exp (qλtn,k) .
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Proof. Note that for each n ∈ N, {δ1,n
j }∞j=1 is adapted to {Fnj }∞j=1. Additionally, from (1.3), for all n ∈ N, j ∈ N0,

E[δ1,n
j+1|Fj ] = γj+1

1

a(n)

a(n)∑
i=1

E

[(
Q[θnj ]Xi,nj+1,·

−K[θnj ]Q[θnj ]Xi,nj ,·

) ∣∣∣∣Fnj ] = 0. (2.13)

Also, for all n ∈ N and j ∈ N0,

∥∥δ1,n
j+1

∥∥ ≤ 1

a(n)

a(n)∑
i=1

∥∥δ1,i,n
j+1

∥∥ ≤ γj+1
1

a(n)

a(n)∑
i=1

∥∥∥Q[θnj ]Xi,nj+1,·
−K[θnj ]Q[θnj ]Xi,nj ,·

∥∥∥ ≤ κ1γj+1

for some κ1 ∈ (0,∞). Thus, for each n ∈ N, {δ1,n
j }∞j=1 is a martingale difference sequence, and so from

Burkholder’s inequality we can find a κ2(q) ∈ (0,∞) such that for all n ∈ N and 0 ≤ k ≤ Ln,

fn,k(q)
.
= E

 sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
i=m(tn,k)

δ1,n
i+1

∥∥∥∥∥∥
q ≤ E

 sup
m(tn,k)≤j≤m(tn,k+2T )

∥∥∥∥∥∥
j∑

i=m(tn,k)

δ1,n
i+1

∥∥∥∥∥∥
q

≤ κ2(q)E


m(tn,k+2T )∑
i=m(tn,k)

∥∥δ1,n
i+1

∥∥2

q/2
 ≤ κ2(q)κq1

m(tn,k+2T )∑
i=m(tn,k)

γ2
i+1

q/2

≤ κ2(q)κq1
[
m(tn,k + 2T )−m(tn,k) + 1

]q/2
γqm(tn,k).

Next note that, for some κ3(T ) ∈ (0,∞) and n0 ∈ N,

[
m(tn,k + 2T )−m(tn,k) + 1

]
≤ κ3(T ) exp

(
tn,k
γ∗

)
(2.14)

and for all n ≥ n0

γm(tn,k) ≤
γ∗e

N∗
exp

(
− tn,k
γ∗

)
. (2.15)

Thus, there is some κ4(q, T ) ∈ (0,∞) such that for all n ≥ n0,

fn,k(q) ≤ κ4(q, T ) exp

(
− q

2γ∗
tn,k

)
= κ4(q, T ) exp (λqtn,k) .

The result follows.

The next three lemmas, namely Lemmas 2.5, 2.6, and 2.7 will be used to bound the remaining error terms.

Lemma 2.5. There is a C ∈ (0,∞) such that for all T > 0, n ∈ N and k ≤ Ln

sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ2,n
j+1

∥∥∥∥∥∥ ≤ Cγm(tn,k).
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Proof. Fix n ∈ N and let

κ
.
= sup
θ∈P(∆o),x∈∆o

∥∥∥(K[θ]Q[θ])x,·

∥∥∥ <∞. (2.16)

Then for each 1 ≤ i ≤ a(n), ‖δ2,i,n
j+1 ‖ ≤ κ(γj+1 − γj) for all j ∈ N0, and so for each k ≤ Ln,

sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ2,n
j+1

∥∥∥∥∥∥ ≤ sup
0≤u≤2T

m(tn,k+u)∑
j=m(tn,k)

1

a(n)

a(n)∑
i=1

∥∥δ2,i,n
j+1

∥∥ ≤ κγm(tn,k).

The result follows.

Lemma 2.6. There is a C ∈ (0,∞) such that for all T > 0, n ∈ N and 0 ≤ k ≤ Ln.

sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ3,n
j+1

∥∥∥∥∥∥ ≤ Cγm(tn,k).

Proof. Let bi,nj (·) .
= γjK[θnj ]Q[θnj ]Xij ,·, so that δ3,i,n

j+1 = bi,nj − b
i,n
j+1. Then, with κ as in (2.16), we have that

‖bi,nj ‖ ≤ κγj . Thus ∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ3,n
j+1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

1

a(n)

a(n)∑
i=1

(
bi,nj − b

i,n
j+1

)∥∥∥∥∥∥
≤ 1

a(n)

a(n)∑
i=1

∥∥∥bi,nm(tn,k) − b
i,n
m(tn,k+u)+1

∥∥∥ ≤ 2κγm(tn,k).

The result follows.

Lemma 2.7. Fix T ∈ (0,∞). There is a C ∈ (0,∞) such that for all n ∈ N and 0 ≤ k ≤ Ln

sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ4,n
j+1

∥∥∥∥∥∥ ≤ Cγm(tn,k).

Proof. Using the boundedness and Lipschitz property of K(·) and Q(·), we see that for some κ1 ∈ (0,∞),
‖δ4,i,n
j+1 ‖ ≤ κ1γj+1‖θnj+1 − θnj ‖. Also, from (1.6),

‖θnj+1 − θnj ‖ = γj+1‖h(θnj ) + εnj+1‖ ≤ 3γj+1.

Thus, for 0 ≤ u ≤ 2T ,∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ4,n
j+1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

1

a(n)

a(n)∑
i=1

δ4,i,n
j+1

∥∥∥∥∥∥ ≤ 3κ1

m(tn,k+u)∑
j=m(tn,k)

γ2
j+1

≤ 3κ1γ
2
m(tn,k)+1

[
m(tn,k + 2T )−m(tn,k) + 1

]
.
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The result now follows on noting that from (2.14) and (2.15), for some κ2 ∈ (0,∞)

γ2
m(tn,k)+1

[
m(tn,k + 2T )−m(tn,k) + 1

]
≤ κ2γm(tn,k) exp

(
tn,k
γ∗

)
exp

(
−2tn,k

γ∗

)
≤ κ2γm(tn,k).

The following corollary is used in the proof of Lemma 2.9. Recall the definition of rnk+1 from (1.18). For a
collection of events {An,k : 0 ≤ k ≤ Ln, n ∈ N} we denote

{An,k i.o. } .= {ω : ω ∈ An,k for infinitely many (n, k), s.t. 0 ≤ k ≤ Ln, n ∈ N}.

Corollary 2.8. Fix T ∈ (0,∞). Then, for each C ∈ (0,∞)

P

 sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

γj+1r
n
j+1

∥∥∥∥∥∥+ Cγm(tn,k) >
1

2
exp(λtn,k) i.o.

 = 0.

Proof. Fix T,C ∈ (0,∞). From Lemmas 2.5, 2.6, and 2.7, and (2.15), for some κ1 ∈ (0,∞), n0 ∈ N, and all
n ≥ n0,

sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

γj+1r
n
j+1

∥∥∥∥∥∥+ Cγm(tn,k) ≤
4∑
`=2

sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ`,nj+1

∥∥∥∥∥∥+ Cγm(tn,k)

≤ κ1γm(tn,k) ≤
κ1γ∗e

N∗
exp

(
− tn,k
γ∗

)
.

The last expression can be bounded by 1
2 exp(λtn,k) for n sufficiently large. The result follows.

We now present the key estimate that will be used to prove Theorem 1.2.

Lemma 2.9. For each T > 0,

lim sup
n→∞

sup
k≤Ln

1

tn,k
log ∆(n, tn,k, T ) ≤ λ a.s.

Proof. Fix T ∈ (0,∞) and ε ∈ (0,−λ). Write σ = λ+ ε. From the boundedness of εnk+1, we can find κ1 ∈ (0,∞)
such that

∆(n, tn,k, T ) = sup
0≤u≤2T

∥∥∥∥∥
∫ tn,k+u

tn,k

ε̄n(s)ds

∥∥∥∥∥
≤ sup

0≤u≤2T

∥∥∥∥∥
∫ τm(tn,k+u)

τm(tn,k)

ε̄n(s)ds

∥∥∥∥∥+ κ1

[
sup

0≤u≤T
|tn,k − τm(tn,k)|+ |tn,k + u− τm(tn,k+u)|

]

≤ sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

γj+1ε
n
j+1

∥∥∥∥∥∥+ 2κ1γm(tn,k).
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From (2.12) it follows that

∆(n, tn,k, T ) ≤ sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ1,n
j+1

∥∥∥∥∥∥+ sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

γj+1r
n
j+1

∥∥∥∥∥∥+ 2κ1γm(tn,k).

Thus

P
(

∆(n, tn,k, T ) ≥ exp(tn,kσ) i.o.
)
≤ P

 sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ1,n
j+1

∥∥∥∥∥∥ > 1

2
exp(tn,kσ) i.o.


+P

 sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

γj+1r
n
j+1

∥∥∥∥∥∥+ 2κ1γm(tn,k) >
1

2
exp(tn,kσ) i.o.

 .

(2.17)

From Corollary 2.8, since σ > λ, the second term in (2.17) equals 0. Since ε ∈ (0,−λ) is arbitrary, in order to
complete the proof of the lemma it now suffices to show that

P

 sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ1,n
j+1

∥∥∥∥∥∥ > 1

2
exp(tn,kσ) i.o.

 = 0. (2.18)

Note that we can find some α0 > 0 and n0 ∈ N such that for all n ≥ n0 and all k ≤ Ln,

tn,k ≥
τnp

2
≥ α0 log(n).

Fix q > 1
εα0
∨ 2. Applying Lemma 2.4 and Markov’s inequality, we can find κ2, κ3 ∈ (0,∞) such that

∞∑
n=1

Ln∑
k=1

P

 sup
0≤u≤2T

∥∥∥∥∥∥
m(tn,k+u)∑
j=m(tn,k)

δ1,n
j+1

∥∥∥∥∥∥ > 1

2
exp(tn,kσ)


≤ 2qκ2C(q, T )

∞∑
n=1

Ln∑
k=1

exp (−qtn,kσ) exp (qtn,kλ) = 2qκ2C(q, T )
∞∑
n=1

Ln∑
k=1

exp (−qtn,kε)

≤ 2qκ3C(q, T )

∞∑
n=1

log(n) exp (−qεα0 log(n)) ≤ 2qκ3C(q, T )

∞∑
n=1

log(n)
1

nqεα0
<∞, (2.19)

where C(q, T ) is as in Lemma 2.4. The equation in (2.18) now follows from the Borel-Cantelli lemma and the
result follows.

2.3. Proof of Theorem 1.2

We now complete the proof of Theorem 1.2. Fix p ∈ (0, 1) . From Lemma 2.3, for every T < ∞, there is a
C(T ) ∈ (0,∞) such that for all n ∈ N and all 0 ≤ k ≤ Ln,

sup
0≤u≤2T

∥∥θ̂n(tn,k + u)− Φu(θ̂n(tn,k))
∥∥ ≤ C(T )

[
∆(n, tn,k, T ) + γm(tn,k)

]
. (2.20)
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Additionally, Lemma 2.9 ensures that for a.e. ω, for every ε ∈ (0,−λ), T <∞, there is some n1 ≡ n1(ω, ε, T ) ∈ N
such that for all n ≥ n1 and all 0 ≤ k ≤ Ln,

∆(n, tn,k, T ) ≤ exp (tn,k (λ+ ε/2)) .

Combining this with (2.15) and (2.20), we have that for some n2 ≥ n1 and all n ≥ n2, 0 ≤ k ≤ Ln, we have

sup
0≤u≤2T

∥∥θ̂n(tn,k + u)− Φu(θ̂n(tn,k))
∥∥ ≤ exp ((λ+ ε) tn,k) .

We have thus shown that {θ̂n} is a.s. a (λ, τn, p)-pseudo-trajectory, so Lemma 2.2 ensures that there is some
β > 0 and n0 = n0(ω) ∈ N such that for all n ≥ n0 and np ≤ k ≤ n,∥∥θ̂n(τk)− θ∗

∥∥ ≤ exp(−βτk).

The result follows.

3. Analysis of the noise terms in Algorithm I

The goal of this section is to provide estimates on the error terms defined in (1.18) that will be useful for the
study of the CLT. In Section 3.1 we characterize the covariance structure of the error terms {enk+1}. In Section 3.2
we provide some bounds on the moments of {enk+1}. Finally, in Section 3.3 we estimate the remainder terms
{rnk+1}.

3.1. Covariance structure of the error terms

We first study the covariance structure of the error terms {enk+1}. Consider the collection of d× d matrices
{Fθ(z) : θ ∈ P(∆o), z ∈ ∆o} defined by, for x, y ∈ ∆o, (θ, z) ∈ P(∆o)×∆o,

Fθ(z)x,y
.
=
∑
u∈∆o

(K[θ]z,uQ[θ]u,xQ[θ]u,y)− (K[θ]Q[θ])z,y (K[θ]Q[θ])z,x , (3.1)

and let U∗ be the d× d matrix defined as

U∗
.
=
∑
w∈∆o

Fθ∗(w)(θ∗)w. (3.2)

It is easily verified that U∗ is a nonnegative definite matrix. The following result gives an expression for the
conditional covariance matrix of enk+1.

Proposition 3.1. For each n ∈ N, 0 ≤ k ≤ n− 1, and x, y ∈ ∆o,

E
[
enk+1(x)enk+1(y)

∣∣∣Fnk ] =
1

a(n)

(
(U∗)x,y + (D

(1),n
k )x,y + (D

(2),n
k )x,y

)
, (3.3)

where the following hold:

(i) There is a C1 ∈ (0,∞) such that for all n ∈ N and 0 ≤ k ≤ n− 1, ‖D(1),n
k ‖ ≤ C1‖θnk − θ∗‖.

(ii) There are some C2, β ∈ (0,∞) such that for all n ∈ N and 1 ≤ k ≤ n,

γkE

∥∥∥∥∥
k∑

m=1

D
(2),n
m−1

∥∥∥∥∥ ≤ C2k
−β
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Proof. Fix n ∈ N and 0 ≤ k ≤ n− 1. Then, from (1.3), for each x, y ∈ ∆o and 1 ≤ i ≤ a(n),

E
[
Q[θnk ]Xi,nk+1,x

|Fnk
]

= (K[θnk ]Q[θnk ])Xi,nk ,x ,

and

E
[
Q[θnk ]Xi,nk+1,x

Q[θnk ]Xi,nk+1,y
|Fnk

]
=
∑
w∈∆o

K[θnk ]Xi,nk ,wQ[θnk ]w,xQ[θnk ]w,y. (3.4)

Similarly, for each x, y ∈ ∆o, if 1 ≤ i 6= j ≤ a(n), then

E
[
Q[θnk ]Xi,nk+1,x

Q[θnk ]Xj,nk+1,y
|Fnk

]
= (K[θnk ]Q[θnk ])Xi,nk ,x (K[θnk ]Q[θnk ])Xj,nk ,y . (3.5)

Therefore, for each x, y ∈ ∆o,

E
[
enk+1(x)enk+1(y)|Fnk

]
=

1

a(n)2

a(n)∑
i,j=1

E

[
Q[θnk ]Xi,nk+1,x

Q[θnk ]Xj,nk+1,y
−Q[θnk ]Xi,nk+1,x

(K[θnk ]Q[θnk ])Xj,nk ,y

−Q[θnk ]Xj,nk+1,y
(K[θnk ]Q[θnk ])Xi,nk ,x + (K[θnk ]Q[θnk ])Xi,nk ,x (K[θnk ]Q[θnk ])Xj,nk ,y

∣∣∣∣Fnk ]

=
1

a(n)2

a(n)∑
i,j=1

E

[
Q[θnk ]Xi,nk+1,x

Q[θnk ]Xj,nk+1,y
− (K[θnk ]Q[θnk ])Xi,nk ,x (K[θnk ]Q[θnk ])Xj,nk ,y

∣∣∣∣Fnk ]

=
1

a(n)2

a(n)∑
i=1

( ∑
w∈∆o

K[θnk ]Xi,nk ,wQ[θnk ]w,xQ[θnk ]w,y − (K[θnk ]Q[θnk ])Xi,nk ,y (K[θnk ]Q[θnk ])Xi,nk ,x

)
,

(3.6)

where in the last line we have used (3.4) and (3.5). Recalling the definition of Fθ(·) we now see that

E[enk+1(x)enk+1(y)|Fnk ] =
1

a(n)2

a(n)∑
i=1

Fθnk (Xi,n
k )x,y. (3.7)

We can write

Fθnk (Xi,n
k )x,y = (U∗)x,y + (D

(1),i,n
k )x,y + (D

(2),i,n
k )x,y,

where

D
(1),i,n
k

.
=
∑
w∈∆o

(Fθnk (w)π(θnk )w − Fθ∗(w)(θ∗)w), D
(2),i,n
k

.
= Fθnk (Xi,n

k )−
∑
w∈∆o

Fθnk (w)π(θnk )w.

Letting

D
(1),n
k

.
=

1

a(n)

a(n)∑
i=1

D
(1),i,n
k =

∑
w∈∆o

(
Fθnk (w)π(θnk )w − Fθ∗(w)(θ∗)w

)
,
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D
(2),n
k

.
=

1

a(n)

a(n)∑
i=1

D
(2),i,n
k ,

and using (3.7), we obtain the identity in (3.3).

Proof of Claim (i): Since π(θ∗) = θ∗, we have that

D
(1),n
k =

∑
w∈∆o

(
Fθnk (w)π(θnk )w − Fθ∗(w)π(θ∗)w

)
. (3.8)

Since the maps θ 7→ K[θ], θ 7→ Q[θ] are bounded and Lipschitz, it follows that θ 7→ Fθ(w) is a bounded and
Lipschitz map as well for every w ∈ ∆o. Also, θ 7→ π(θ) is a bounded and Lipschitz map (see e.g. [6], Cor. 2.3).
Combining these facts we see that θ 7→

∑
w∈∆o Fθ(w)π(θ)w is a bounded and Lipschitz map as well. The claim

in (i) is now immediate from the representation of D
(1),n
k in (3.8).

Proof of Claim (ii): It suffices to show that for each (u, v) ∈ ∆o ×∆o, there are some C2, β > 0 such that for
all n ∈ N and 1 ≤ k ≤ n,

γkE

∥∥∥∥∥
k∑

m=1

(D
(2),n
m−1)u,v

∥∥∥∥∥ ≤ C2k
−β .

Now fix (u, v) ∈ ∆o ×∆o and, abusing notation, denote (D
(2),n
m )u,v once more as D

(2),n
m . By another abuse of

notation, denote the (u, v)-th coordinate of Fθ(x), for θ ∈ P(∆o) and x ∈ ∆o, by Fθ(x) as well. For θ ∈ P(∆o)
let Uθ ∈ Rd be the vector whose x-th coordinate is given by Uθ(x)

.
= (Q[θ]Fθ)(x). By the Poisson equation

(1.16) we have that

[(I −K[θ])Uθ](x) = Fθ(x)−
∑
w∈∆o

Fθ(w)π(θ)w.

Therefore, if we let

D
(2,a),i,n
k

.
= Uθnk (Xi,n

k+1)− (K[θnk ]Uθnk )(Xi,n
k ), D

(2,b),i,n
k

.
= Uθnk (Xi,n

k )− Uθnk (Xi,n
k+1),

and

D
(2,a),n
k

.
=

1

a(n)

a(n)∑
i=1

D
(2,a),i,n
k , D

(2,b),n
k

.
=

1

a(n)

a(n)∑
i=1

D
(2,b),i,n
k ,

then D
(2),n
k = D

(2,a),n
k +D

(2,b),n
k . Note that with Gnk

.
= Fnk+1, we have that, for each fixed n ∈ N, {D(2,a),n

k }∞k=1

is a Gnk -martingale increment sequence. Applying Burkholder’s inequality, we see that, for some κ1 ∈ (0,∞),
and for all n ∈ N,

E

∣∣∣∣∣
k∑

m=1

D
(2,a),n
m−1

∣∣∣∣∣
2
 ≤ κ1

k∑
m=1

E
∣∣∣D(2,a),n

m−1

∣∣∣2 ≤ κ1

(
1

a(n)

)2 k∑
m=1

a(n)∑
i,j=1

E
[
D

(2,a),i,n
m−1 D

(2,a),j,n
m−1

]
. (3.9)
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For i 6= j, we have by a conditioning argument, and using (1.3), that

E
[
D(2,a),i,n
m D(2,a),j,n

m

]
= 0. (3.10)

Let

κ2
.
= sup
θ∈P(∆o),x,y∈∆o

|Uθ(x)− (K[θ]Uθ)(y)|2 <∞.

Then

E

[(
D(2,a),i,n
m

)2
]

= E

[(
Uθnm(Xi,n

m+1)− (K[θnm]Uθnm)(Xi,n
m )
)2
]
≤ κ2. (3.11)

Combining (3.9), (3.10), and (3.11) we see that with κ3 = κ1κ2,

E

∣∣∣∣∣
k∑

m=1

D
(2,a),n
m−1

∣∣∣∣∣
2
 ≤ κ1

k∑
m=1

1

a(n)2

a(n)∑
i=1

E

[(
D

(2,a),i,n
m−1

)2
]
≤ κ3

k

a(n)
.

Applying the Cauchy-Schwarz inequality, we have, for some κ4 ∈ (0,∞), and all n ∈ N, 0 ≤ k ≤ n,

γkE

∣∣∣∣∣
k∑

m=1

D
(2,a),n
m−1

∣∣∣∣∣ ≤ κ1/2
3 γk

(
k

a(n)

)1/2

=

(
κ4

γk
a(n)

)1/2

. (3.12)

We now consider {D(2,b),n
k }. Letting κ5

.
= supθ∈P(∆o),z∈∆o |Uθ(z)| <∞,

∣∣∣∣∣
k∑

m=1

D
(2,b),n
m−1

∣∣∣∣∣ =

∣∣∣∣∣∣
k∑

m=1

1

a(n)

a(n)∑
i=1

D
(2,b),i,n
m−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

a(n)

a(n)∑
i=1

k∑
m=1

(
Uθnm−1

(Xi,n
m−1)− Uθnm−1

(Xi,n
m )
)∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1

a(n)

a(n)∑
i=1

(
Uθn0 (Xi,n

0 )− Uθnk−1
(Xi,n

k ) +

k∑
m=1

(
Uθnm(Xi,n

m )− Uθnm−1
(Xi,n

m )
))∣∣∣∣∣∣

≤ 2κ5 +
1

a(n)

a(n)∑
i=1

∣∣∣∣∣
k∑

m=1

(
Uθnm(Xi,n

m )− Uθnm−1
(Xi,n

m )
)∣∣∣∣∣

Since the maps θ 7→ K[θ] and θ 7→ Q[θ] are bounded Lipschitz maps, there is a κ6 ∈ (0,∞) such that for all
x ∈ ∆o and θ, θ′ ∈ P(∆o), |Uθ(x)− Uθ′(x)| ≤ κ6‖θ − θ′‖. Observe that

‖θnm − θnm−1‖ = γm

∥∥∥∥∥∥a(n)−1

a(n)∑
i=1

δXi,nm − θ
n
m−1

∥∥∥∥∥∥ ≤ 2γm, (3.13)
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so for some κ7 ∈ (0,∞),

∣∣∣∣∣
k∑

m=1

D
(2,b),n
m−1

∣∣∣∣∣ ≤
2κ5 +

κ6

a(n)

a(n)∑
i=1

k∑
m=1

∥∥θnm − θnm−1

∥∥ ≤ κ7

(
1 +

k∑
m=1

γm

)
. (3.14)

Combining (3.12) and (3.14) we see that for some κ8 ∈ (0,∞),

γkE

∥∥∥∥∥
k∑

m=1

D
(2),n
m−1

∥∥∥∥∥ ≤ κ8

[(
γk
a(n)

)1/2

+ γk

k∑
m=1

γm

]
.

The result follows.

3.2. Bounds on the moments of the error terms

The following result gives a useful moment bound for {enk}.

Proposition 3.2. There exists C ∈ (0,∞) such that for all n ∈ N and 0 ≤ k ≤ n− 1,

E‖enk+1‖4 ≤
C

a(n)2
.

Proof. Recall that

enk+1 =
1

γk+1
δ1,n
k+1 =

1

a(n)

a(n)∑
i=1

ξi

where for each 1 ≤ i ≤ a(n) and x ∈ ∆o, ξi(x)
.
= Q[θnk ]Xi,nk+1,x

− (K[θnk ]Q[θnk ])Xi,nk ,x . The result is now immediate

on observing that if 1 ≤ i1, i2, i3, i4 ≤ a(n) and i4 /∈ {i1, i2, i3}, then we have that E
[
ξi1(x)ξi2(x)ξi3(y)ξi4(y)

]
= 0,

and, for x, y ∈ ∆o, 1 ≤ i1, i2, i3, i4 ≤ a(n), 0 ≤ k ≤ n− 1 and n ∈ N,

∣∣ξi1(x)ξi2(x)ξi3(y)ξi4(y)
∣∣ ≤ ( sup

θ∈P(∆o)

sup
x1,y1
x2,y2∈∆o

∣∣∣Q[θ]x1,y1 − (K[θ]Q[θ])x2,y2

∣∣∣)4

<∞.

3.3. Analysis of the remainder terms

In this section we provide bounds to control the remainder terms rnk+1.

Proposition 3.3. We can write rnk+1 = rn,ak+1 + rn,bk+1, such that for some C ∈ (0,∞), and all n ∈ N and
0 ≤ k ≤ n− 1,

(a) E

∥∥∥∥ 1

γk+1
rn,ak+1

∥∥∥∥ ≤ C (b)

∥∥∥∥∥
n−1∑
i=k

rn,bi+1

∥∥∥∥∥ ≤ C.
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Proof. Recall that

rnk+1
.
=

1

γk+1

(
δ2,n
k+1 + δ3,n

k+1 + δ4,n
k+1

)
=

1

a(n)

a(n)∑
j=1

(
(K[θnk ]Q[θnk ])Xj,nk ,· − (K[θnk ]Q[θnk ])Xj,nk+1,·

)
.

Rewrite this as rnk+1 = rn,ak+1 + rn,bk+1, where

rn,ak+1
.
=

1

a(n)

a(n)∑
j=1

((
K[θnk+1]Q[θnk+1]

)
Xj,nk+1,·

− (K[θnk ]Q[θnk ])Xj,nk+1,·

)
(3.15)

and

rn,bk+1
.
=

1

a(n)

a(n)∑
j=1

(
(K[θnk ]Q[θnk ])Xj,nk ,· −

(
K[θnk+1]Q[θnk+1]

)
Xj,nk+1,·

)
. (3.16)

Proof of Claim (a): Since θ 7→ K[θ], θ 7→ Q[θ] are bounded Lipschitz maps, there is a κ1 ∈ (0,∞) such that for
all θ, θ′ ∈ P(∆o) ‖K[θ]Q[θ]−K[θ′]Q[θ′]‖ ≤ κ1‖θ − θ′‖. From this and (3.13) it follows that

‖rn,ak+1‖ ≤
κ1

a(n)

a(n)∑
j=1

‖θnk+1 − θnk‖ = κ1‖θnk+1 − θnk‖ ≤ 2κ1γk+1,

which shows that E‖γ−1
k+1r

n,a
k+1‖ ≤ 2κ1.

Proof of Claim (b): From the definition of rn,bi , Note that

n−1∑
i=k

rn,bi+1 =
1

a(n)

a(n)∑
j=1

(
(K[θnk ]Q[θnk ])Xj,nk ,· − (K[θnn]Q[θnn])Xj,nn ,·

)

from which it follows that ∥∥∥∥∥
n−1∑
i=k

rn,bi+1

∥∥∥∥∥ ≤ κ2
.
= 2 sup

θ∈P(∆o)

sup
x∈∆o

∥∥(K[θ]Q[θ])x,·
∥∥.

4. Central limit theorem for Algorithm I

The goal of this section is to prove Theorem 1.3. To do this we first study the linearized evolution (1.20).
Then, in Section 4.1, we study the asymptotic behavior of the discrepancy (1.21). Finally, in Section 4.3 we
present the proof of Theorem 1.3.
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4.1. The linearized evolution

Let, for 1 ≤ k ≤ m <∞,

ψ∗(m, k)
.
=

m∏
j=k

(I + γj∇h(θ∗)), ψ∗(m,m+ 1)
.
= I. (4.1)

Then by a simple recursion we see that for 0 ≤ m ≤ n− 1,

µnm+1 =

m+1∑
k=1

γkψ∗(m+ 1, k + 1)enk . (4.2)

Furthermore, from Lemma 5.8 of [21], with L as introduced above (1.2), for each 0 < L′ < L there is a C(L′) ∈
(0,∞) such that for all n ∈ N and 1 ≤ k ≤ n

‖ψ∗(n, k)‖ ≤ C(L′) exp

−L′ n∑
j=k

γj

 . (4.3)

The following proposition provides some useful bounds on {µnk}.

Proposition 4.1. The following hold:

(i) With probability one, as n → ∞ we have µnn → 0. Furthermore, for each p ∈ (0, 1), and a.e. ω, there is
some α > 0 and n0(ω) ∈ N such that if n ≥ n0(ω) and np ≤ k ≤ n, then ‖µnk+1‖ ≤ k−α.

(ii) Suppose that γ∗ > (2L)−1. Then there is some C > 0 such that for all n ∈ N and 0 ≤ k ≤ n− 1,

E‖µnk+1‖2 ≤
Cγk+1

a(n)
.

Proof. The proof of (i) is similar to the proof of Theorem 1.2 and is omitted for brevity.
Next, using (4.2), (4.3), and Proposition 3.2, we see that for each L′ ∈ (0, L), there is a κ1(L′) ∈ (0,∞), such

that, for 0 ≤ m ≤ n− 1,

E
[
‖µnm+1‖2

]
≤
m+1∑
k=1

γ2
k‖ψ∗(m+ 1, k + 1)‖2E

[
‖enk‖2

]
≤ κ1(L′)

a(n)

m+1∑
k=1

γ2
k exp

−2L′
m+1∑
j=k+1

γj

 .

Choosing L′ ∈ (0, L) such that L′γ∗ > 1/2, and using the form of γk, we can find a κ2 ∈ (0,∞) such that for
all 0 ≤ m ≤ n− 1, E‖µnm+1‖2 ≤

κ2γm+1

a(n) . The result follows.

4.2. Analysis of the discrepancy

The following result is used to study the asymptotic behavior of {ρnn}. Following [21], consider for θ ∈ P(∆o)

the collection of d× d matrices {R(n)
i (θ)}di=1 defined as

R
(n)
i (θ)[k, l]

.
=

∫ 1

0

1

2
(1− t)2 ∂2hi

∂θk∂θl
(θ + t(θ − θ∗))dt, 1 ≤ k, l ≤ d. (4.4)
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For 0 ≤ j ≤ n, we denote the random matrix R
(n)
i (θnj ) as R

(n,j)
i . Then, using Taylor’s expansion, for 1 ≤ i ≤ d

and 0 ≤ j ≤ n,

hi(θ
n
j ) = ∇hi(θ∗) · (θnj − θ∗) + (θnj − θ∗)TR

(n,j)
i (θnj − θ∗).

For brevity we write the above display in a vector form as

h(θnj ) = ∇h(θ∗)(θ
n
j − θ∗) + (θnj − θ∗)TR

(n,j)
• (θnj − θ∗). (4.5)

Corollary 4.2. Let, for 1 ≤ k ≤ n <∞,

ψ(n, k)
.
=

n∏
j=k

(
I + γj

(
∇h(θ∗) + 2(µnj−1)TR

(n,j−1)
• + (ρnj−1)TR

(n,j−1)
•

))
.

Then for each p ∈ (0, 1), L′ ∈ (0, L), and a.e. ω, there is a C = C(p, L′, ω) ∈ (0,∞) such that if np ≤ k ≤ n,
then

‖ψ(n, k)‖ ≤ C exp

−L′ n∑
j=k

γj

 .

Proof. Let A
.
= ∇h(θ∗) and

Anj
.
= ∇h(θ∗) + 2(µnj−1)TR

(n,j−1)
• + (ρnj−1)TR

(n,j−1)
•

= ∇h(θ∗) + (µnj−1)TR
(n,j−1)
• + (θnj−1 − θ∗)TR

(n,j−1)
• ,

so that with κ1
.
= supn∈N supθ∈P(∆o) max1≤i≤d ‖R(n)

i (θ)‖, we have

‖Anj −A‖ =
∥∥∥(µnj−1)TR

(n,j−1)
• + (θnj−1 − θ∗)TR

(n,j−1)
•

∥∥∥ ≤ κ1

(
‖µnj−1‖+ ‖θnj−1 − θ∗‖

)
.

Fix p ∈ (0, 1) and L′ ∈ (0, L). Applying Proposition 4.1(i) and Theorem 1.2, choose α > 0 and, for a.e. ω, n1 ∈ N
such that if n ≥ n1, and np ≤ j ≤ n, then ‖µnj−1‖ ≤ j−α and ‖θnj−1 − θ∗‖ ≤ j−α. Thus, for a.e. ω there is an

n0 ∈ N such that for all n ≥ n0 and np ≤ j ≤ n, ‖Anj −A‖ ≤ j−α/2. The result now follows from Lemma A.1.

Recall that σn =
√
a(n)/γn. The next result will be used to show that σnρ

n
n

P→ 0 as n→∞.

Lemma 4.3. Suppose that γ∗ > L−1 and a(n)/n → 0 as n → ∞. Then, for some κ, p ∈ (0, 1), we have, as
n→∞,

σ1+κ
n

[
ρnn −

n∑
k=np

γkψ(n, k + 1)rnk

]
P→ 0

and

σn

[
n∑

k=np

γkψ(n, k + 1)rnk

]
P→ 0. (4.6)
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Proof. Fix L′ ∈ (γ−1
∗ , L) and let p ∈ (0, 1 − (L′γ∗)

−1). Using (1.19), (1.20), (1.21), (4.5) and a recursive
argument, we can write

ρnn
.
= ψ(n, np)ρnnp−1 +

n∑
k=np

γkψ(n, k + 1)
[
rnk + (µnk−1)TR

(n,k−1)
• µnk−1

]
,

or equivalently,

ρnn −
n∑

k=np

γkψ(n, k + 1)rnk = ψ(n, np)ρnnp−1 +

n∑
k=np

γkψ(n, k + 1)(µnk−1)TR
(n,k−1)
• µnk−1. (4.7)

Fix κ ∈
(

0, (1−p)L′γ∗−1
2 ∧ 1

4

)
. We begin by showing that

σ1+κ
n ψ(n, np)ρnnp−1

P→ 0. (4.8)

Since ‖ρnnp−1‖ is a bounded sequence, it is enough to show that σ1+κ
n ψ(n, np) converges to 0 in probability. From

Corollary 4.2, for a.e. ω, there is a κ1(ω) ∈ (0,∞) such that

σ1+κ
n ‖ψ(n, np)‖ ≤ κ1(a(n)n)

1
2 (1+κ) exp

−L′ n∑
j=np

γj

 = κ1

(
a(n)

n

) 1
2 (1+κ)

n1+κ exp

−L′ n∑
j=np

γj

 . (4.9)

From the definition of γk we see that for all 1 ≤ k ≤ n

exp

−L′ n∑
j=k

γj

 ≤ (N∗ + k

N∗ + n

)L′γ∗
. (4.10)

From our choice of κ, (p − 1)L′γ∗ + 1 + κ < 0, and so we have, on applying (4.10) with k = np, that the
expression in (4.9) converges to 0. This completes the proof of (4.8). We now show that

σ1+κ
n

n∑
k=np

γkψ(n, k + 1)(µnk−1)TR
(n,k−1)
• µnk−1

P→ 0. (4.11)

Using the uniform-boundedness of {R(n,k−1)
• } and Corollary 4.2, for a.e. ω, we can find a κ2(ω) ∈ (0,∞) such

that ∥∥∥∥∥
n∑

k=np

γkψ(n, k + 1)(µnk−1)TR
(n,k−1)
• µnk−1

∥∥∥∥∥ ≤
n∑

k=np

γk‖ψ(n, k + 1)‖‖µnk−1‖2‖R
(n,k−1)
• ‖

≤ κ2

n∑
k=np

γk exp

−L′ n∑
j=k

γj

 ‖µnk−1‖2.

(4.12)

From Proposition 4.1, there is a κ3 ∈ (0,∞) such that for all n ∈ N and k ≤ n, E‖µnk−1‖2 ≤ κ3γk/a(n). It

follows that, for some κ4 ∈ (0,∞), with κ̃
.
= 1

2 (1 + κ) < 1,
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σ1+κ
n E

 n∑
k=np

γk exp

−L′ n∑
j=k

γj

 ‖µnk−1‖2


≤ κ3σ
1+κ
n

n∑
k=np

γk exp

−L′ n∑
j=k

γj

 γk
a(n)

≤ κ4n
κ̃a(n)κ̃−1

n∑
k=np

γ2
k exp

−L′ n∑
j=k

γj

 .

(4.13)

Using (4.10) once more, we can find some κ5 ∈ (0,∞) such that the last expression is bounded above by

a(n)κ̃−1(n+N∗)
κ̃−L′γ∗

n∑
k=np

(k +N∗)
L′γ∗−2, (4.14)

which tends to 0 as n → ∞, since κ̃ < 1. Combining this convergence with (4.12) and (4.13), we have (4.11),
which together with (4.8) proves the first statement in the lemma.

We now prove the second statement. Let rn,ai , rn,bi be as in (3.15) and (3.16), respectively, so that rni =

rn,ai + rn,bi . Using Corollary 4.2, we can find, for a.e. ω, some κ6 ≡ κ6(ω) ∈ (0,∞) such that

∥∥∥∥∥
n∑

k=np

γkψ(n, k + 1)rn,ak

∥∥∥∥∥ ≤ κ6

n∑
k=np

γ2
k exp

−L′ n∑
j=k

γj

∥∥∥ 1

γk
rn,ak

∥∥∥. (4.15)

Using Proposition 3.3(a), we can find some κ7 ∈ (0,∞) such that for all n ∈ N and 1 ≤ k ≤ n, E‖rn,ak /γk‖ ≤ κ7.
Then, for some κ8 ∈ (0,∞),

σn

n∑
k=np

γ2
k exp

−L′ n∑
j=k

γj

E
∥∥∥ 1

γk
rn,ak

∥∥∥ ≤ κ7σn

n∑
k=np

γ2
k exp

−L′ n∑
j=k

γj


≤ κ8

√
a(n)

n
n

n∑
k=np

γ2
k exp

−L′ n∑
j=k

γj

 .

(4.16)

As in (4.14), the last term can be bounded above by

κ8

√
a(n)

n
n

γ2
∗

(n+N∗)L
′γ∗

n∑
k=np

(k +N∗)
L′γ∗−2

which, since a(n) = o(n), converges to 0 as n→∞. Combining (4.15) and (4.16), we have that, as n→∞,

σn

∥∥∥∥∥
n∑

k=np

γkψ(n, k + 1)rn,ak

∥∥∥∥∥ P→ 0. (4.17)

Now, consider the term σn

∥∥∥∑n
k=1 γkψ(n, k + 1)rn,bk

∥∥∥ . Define for n ∈ N and 1 ≤ k ≤ n

Ξnk
.
=

k∑
i=1

rn,bi , Hn
k
.
= ∇h(θ∗) + 2(µnk )TR

(n,k)
• + (ρnk )TR

(n,k)
• ,
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and apply the summation by parts formula to see that

n∑
k=np

γkψ(n, k + 1)rn,bk = γnΞnn − γnpψ(n, np + 1)Ξnnp−1 −
n−1∑
k=np

Ξnk (γk+1ψ(n, k + 2)− γkψ(n, k + 1)) . (4.18)

Thus

σn

n∑
k=np

γkψ(n, k + 1)rn,bk

= σn(γnΞnn − γnpψ(n, np + 1)Ξnnp−1)− σn
n−1∑
k=np

Ξnk (γk+1ψ(n, k + 2)− γkψ(n, k + 1))

= σn(γnΞnn − γnpψ(n, np + 1)Ξnnp−1)

− σn
n−1∑
k=np

Ξnk (γk+1ψ(n, k + 2)− γkψ(n, k + 2) (I + γk+1H
n
k ))

= σn(γnΞnn − γnpψ(n, np + 1)Ξnnp−1) + σn

n−1∑
k=np

γkγk+1Ξnkψ(n, k + 2)
(
γ−1
∗ I +Hn

k

)
.

(4.19)

Applying Corollary 4.2 and Proposition 3.3, for a.e. ω, we can find a κ9 ≡ κ9(ω) ∈ (0,∞) such that

σnγnp‖ψ(n, np + 1)Ξnnp−1‖ ≤ κ9σnγnp exp

−L′ n∑
j=np+1

γj

 . (4.20)

Using (4.10), the expression in the previous display can be bounded by

κ10

√
na(n)

γ∗
np +N∗ − 1

(
N∗ + np + 1

N∗ + n

)L′γ∗
,

which tends to 0 as n→∞. Also, using Proposition 3.3 we see that for some κ11 ∈ (0,∞)

σnγn‖Ξnn‖ ≤ κ11

(
a(n)

n

)1/2

, (4.21)

which, since a(n) = o(n), also goes to 0 as n→∞. Finally, note that

A
.
= sup
n∈N

sup
np≤k≤n

∥∥(γ−1
∗ I +Hn

k

)∥∥ <∞ a.s.,

which, together with Proposition 3.3(b), ensures that for a.e. ω, there is a κ12 ≡ κ12(ω) ∈ (0,∞) such that

∥∥∥∥∥σn
n−1∑
k=np

γkγk+1Ξnkψ(n, k + 2)
(
γ−1
∗ I +Hn

k

)∥∥∥∥∥ ≤ κ12σn

n−1∑
k=np

γ2
k exp

−L′ n∑
j=k

γj

 (4.22)
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which, as for (4.16), goes to 0 as n → ∞. Upon combining (4.19), (4.20), (4.21), and (4.22), we see that, as
n→∞,

σn

∥∥∥∥∥
n∑

k=np

γkψ(n, k + 1)rn,bk

∥∥∥∥∥ P→ 0.

This, along with (4.17), shows (4.6) and completes the proof of the lemma.

4.3. Proof of Theorem 1.3

In order to prove Theorem 1.3, it will be convenient to consider the array {Zn,k, n ∈ N, 1 ≤ k ≤ n} defined
for n ∈ N and 1 ≤ k ≤ n as

Zn,k
.
= σnγkψ∗(n, k + 1)enk . (4.23)

From (4.2) we see that

n∑
k=1

Zn,k = σnµ
n
n. (4.24)

The next lemma is used to verify that a conditional Lindeberg condition holds for {Zn,k}.

Lemma 4.4. Suppose that γ∗ > (2L)−1. Then, as n→∞, we have
∑n
k=1 E‖Zn,k‖4 → 0.

Proof. From Proposition 3.2, there is κ1 ∈ (0,∞) such that for all n ∈ N and all 1 ≤ k ≤ n, E
[
‖enk‖4

]
≤ κ1

a(n)2 .

Now, fix L′ ∈ (0, L) such that L′γ∗ > 1/2, and recall from (4.3) that for some κ2 ∈ (0,∞), and for all n ∈ N
and 1 ≤ k ≤ n,

‖ψ∗(n, k + 1)‖ ≤ κ2 exp

−L′ n∑
j=k

γj

 .

Thus, for some κ3 ∈ (0,∞) we have that

n∑
k=1

E‖Zn,k‖4 ≤
n∑
k=1

σ4
nγ

4
k‖ψ∗(n, k + 1)‖4E‖enk‖4 ≤ κ3

n∑
k=1

σ4
nγ

4
k exp

−4L′
n∑
j=k

γj

 1

a(n)2

≤ κ3
n2γ4
∗

(N∗ + n)4L′γ∗

n∑
k=1

(N∗ + k)4(L′γ∗−1), (4.25)

which tends to 0 as n→∞. The result follows.

The next lemma is used in the proof of Theorem 1.3 to establish the form of the limiting covariance matrix
V . Recall the matrix U∗ introduced in (3.2).

Lemma 4.5. Suppose that γ∗ > (2L)−1. Define

V (1)
n

.
= σ2

n

n∑
k=1

γ2
kψ∗(n, k + 1)

U∗
a(n)

ψ∗(n, k + 1)T ,
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and

V (2)
n

.
= σ2

n

n∑
k=1

γ2
kψ∗(n, k + 1)

(
E[enk (enk )T |Fnk−1]− U∗

a(n)

)
ψ∗(n, k + 1)T .

Then V
(1)
n

P→ V and V
(2)
n

P→ 0, where V is the matrix given as the unique solution of the Lyapunov equation

U∗ +∇h(θ∗)V + V∇h(θ∗)
T + γ−1

∗ V = 0. (4.26)

Proof. We begin by noting that the Lyapunov equation in (4.26) has a unique solution. Indeed, note that U∗ is
nonnegative definite and ∇h(θ∗) + (2γ∗)

−1I is Hurwitz, as −L+ (2γ∗)
−1 < 0. The unique solvability of (4.26)

is now an immediate consequence of Theorem 2.2.3 in [24]. Next, noting that

V (1)
n = γ−1

n

n∑
k=1

γ2
kψ∗(n, k + 1)U∗ψ∗(n, k + 1)T ,

the proof that V
(1)
n

P→ V as n → ∞ follows from [21] (see Sect. 5.4, Limiting Variance, therein). Now, recall

that with the matrices {D(1),n
k } and {D(2),n

k } introduced in Proposition 3.1, we can write

E[enk (enk )T |Fnk−1]− U∗
a(n)

=
D

(1),n
k

a(n)
+
D

(2),n
k

a(n)
.

Thus, V
(2)
n = V

(2,a)
n + V

(2,b)
n , where

V (2,a)
n

.
= σ2

n

n∑
k=1

γ2
kψ∗(n, k + 1)

D
(1),n
k−1

a(n)
ψ∗(n, k + 1)T =

1

γn

n∑
k=1

γ2
kψ∗(n, k + 1)D

(1),n
k−1 ψ∗(n, k + 1)T ,

and

V (2,b)
n

.
= σ2

n

n∑
k=1

γ2
kψ∗(n, k + 1)

D
(2),n
k−1

a(n)
ψ∗(n, k + 1)T =

1

γn

n∑
k=1

γ2
kψ∗(n, k + 1)D

(2),n
k−1 ψ∗(n, k + 1)T .

Using part (i) of Proposition 3.1, we can find some κ1 ∈ (0,∞) such that for all n ∈ N and 1 ≤ k ≤ n,

‖D(1),n
k−1 ‖ ≤ κ1‖θnk−1 − θ∗‖. Also, for each p ∈ (0, 1), from Theorem 1.2, we can find α > 0 such that for a.e. ω,

there is an n0(ω) ∈ N such that for all n ≥ n0(ω) and np ≤ k ≤ n, ‖θnk−1(ω)− θ∗‖ ≤ k−α. Fix L′ ∈ (0, L) such
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that L′γ∗ > 1/2. Then, for n ≥ n0(ω) and some κ2 ∈ (0,∞), we have

‖V (2,a)
n ‖ ≤ 1

γn

n∑
k=1

γ2
k‖ψ∗(n, k + 1)‖2‖D(1),n

k ‖

≤ κ2
1

γn

n∑
k=1

γ2
k exp

(
−2L′

n∑
i=k

γi

)
‖θnk − θ∗‖

= κ2
1

γn

(
np−1∑
k=1

γ2
k exp

(
−2L′

n∑
i=k

γi

)
‖θnk − θ∗‖+

n∑
k=np

γ2
k exp

(
−2L′

n∑
i=k

γi

)
‖θnk−1 − θ∗‖

)

≤ 2κ2
1

γn

(
np−1∑
k=1

γ2
k exp

(
−2L′

n∑
i=k

γi

)
+

n∑
k=np

γ2
k exp

(
−2L′

n∑
i=k

γi

)
k−α

)
.

(4.27)

We can find κ3 ∈ (0,∞) such that first term on the last line is bounded above by

κ3(n+N∗)
−(2L′γ∗−1)(np +N∗)

2L′γ∗−1,

and such that the second term is bounded above by

κ3
(N∗ + n)

(N∗ + n)2L′γ∗

n∑
k=np

k−α(k +N∗)
2L′γ∗−2.

Since L′γ∗ > 1/2, both of these terms converge to 0 as n→∞ and so we have that ‖V (2,a)
n ‖ → 0 almost surely,

as n→∞. Now, let Ξnk
.
=
∑k
j=1D

(2),n
j−1 . Using summation by parts we have

V (2,b)
n = γnΞnn +

1

γn

n−1∑
k=1

(
γ2
kψ∗(n, k + 1)Ξnkψ∗(n, k + 1)T − γ2

k+1ψ∗(n, k + 2)Ξnkψ∗(n, k + 2)T
)
. (4.28)

From Proposition 3.1(ii) we have that for some κ4, β ∈ (0,∞) and all n ∈ N, 1 ≤ k ≤ n, γkE‖Ξnk‖ ≤ κ4k
−β , and

so

γnΞnn
P→ 0 as n→∞. (4.29)

Let Ṽ
(2,b)
n = V

(2,b)
n − γnΞnn. Following [19], if we let A1

.
= γkψ∗(n, k + 1), A2

.
= γk+1ψ∗(n, k + 2), and B

.
= Ξnk ,

then using the inequality

‖A1BA
T
1 −A2BA

T
2 ‖ = ‖(A1 −A2)BAT1 −A2B(AT2 −AT1 )‖ ≤ ‖A1 −A2‖‖B‖(‖A1‖+ ‖A2‖),

we see that

‖Ṽ (2,b)
n ‖

≤ 1

γn

n−1∑
k=1

(
‖γkψ∗(n, k + 1)− γk+1ψ∗(n, k + 2)‖ · ‖Ξnk‖ ·

(
‖γkψ∗(n, k + 1)‖+ ‖γk+1ψ∗(n, k + 2)‖

))
. (4.30)
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Furthermore, using the fact that γk+1 − γk+2 ≤ γ2
k+1/γ∗, we can find some κ5 ∈ (0,∞) such that

‖γkψ∗(n, k + 1)− γk+1ψ∗(n, k + 2)‖ = ‖γk(I + γk+1∇h(θ∗))− γk+1I‖‖ψ∗(n, k + 2)‖
≤ (γk − γk+1 + ‖∇h(θ∗)‖γkγk+1) ‖ψ∗(n, k + 2)‖ ≤ κ5γ

2
k+1‖ψ∗(n, k + 2)‖. (4.31)

Additionally, there is some κ6 ∈ (0,∞) such that for all n ∈ N and 1 ≤ k ≤ n− 1,

‖γkψ∗(n, k + 1)‖+ ‖γk+1ψ∗(n, k + 2)‖ ≤ κ6γk+1‖ψ∗(n, k + 2)‖. (4.32)

Using (4.30), (4.31) and (4.32) we see that

‖Ṽ (2,b)
n ‖ ≤ κ5κ6

1

γn

n−1∑
k=0

γ2
k+1‖ψ∗(n, k + 2)‖2γk+1‖Ξnk‖.

Thus, from Proposition 3.1(ii), for some κ7, κ8 ∈ (0,∞),

E‖Ṽ (2,b)
n ‖ ≤ κ7

1

γn

n−1∑
k=0

γ2
k+1 exp

−2L′
n∑

j=k+2

γj

 k−β ≤ κ7γ∗
(n+N∗)2L′γ∗−1

n−1∑
k=0

(k +N∗)
2(L′γ∗−1)k−β ,

which goes to 0 as n→∞. Combining the above convergence with (4.29), it follows from (4.28) that V
(2,b)
n

P→ 0
as n→∞. The result follows.

We now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. From (1.21) we see that σn(θnn − θ∗) = σnµ
n
n + σnρ

n
n. Also, from Lemma 4.3, σnρ

n
n

P→ 0

as n→∞. Thus, it suffices to show that σnµ
n
n
L→ N (0, V ) where V is as in the statement of the theorem. Recall

the martingale difference array {Zn,k} introduced in (4.23), and note from (4.24) that σnµ
n
n =

∑n
k=1 Zn,k. In

order to complete the proof we apply ([23], Cor. 3.1). From Lemma 4.4 it follows that for each ε > 0,

n∑
k=1

E
[
‖Zn,k‖21‖Zn,k‖≥ε

∣∣ Fnk−1

] P→ 0,

as n→∞. Additionally, if we let {V (1)
n }, {V (2)

n } and V be as in Lemma 4.5, then we have from this lemma that

n∑
k=1

E
[
Zn,kZ

T
n,k|Fnk−1

]
= V (1)

n + V (2)
n

P→ V,

as n→∞. Therefore, the conditions of [23]*Corollary 3.1 are satisfied, proving that
∑n
k=1 Zn,k

L→ N (0, V ), as
n→∞. The result follows.

5. Convergence of Algorithm II

In this section we prove the a.s. convergence of Algorithm II introduced in Section 1.1. Namely we provide
the proof of Theorem 1.4. Recall that in this method, we initialize the scheme with a single particle and as time
progresses, particles are added to the system and the total time occupation measure of all particles is used to
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update the SA estimate. The goal of the section is to prove that θn → θ∗ as n→∞, where θn is as introduced
in (1.10). The proof idea is similar to that in [6]. We introduce the continuous-time process {θ̂(t)} given by

θ̂(τn + t)
.
= θn + t

θn+1 − θn
τn+1 − τn

, t ∈ [0, γn+1), n ∈ N0,

where the sequence {τn} is defined in (2.1). As before, for each ν ∈ P(∆o), we denote the solution to the ODE
(2.2) by {Φt(ν)}. We now recall the notion of an asymptotic pseudo-trajectory for a single trajectory which was
introduced first in [8] (see also [4, 6]). Recall the space C0 from Section 1.4.

Definition 5.1. A trajectory X ∈ C0 is an asymptotic pseudo-trajectory of Φ if for all T > 0,

lim sup
t→∞

sup
0≤u≤T

‖X(t+ u)− Φu(X(t))‖ = 0. (5.1)

In order to prove Theorem 1.4 we will show that {θ̂} is a.s. an asymptotic pseudo-trajectory of Φ. For this,
we begin by decomposing algorithm’s noise in the following manner: for each n ∈ N0, 1 ≤ i ≤ a(n + 1), and
x ∈ ∆o, let

δ`,in+1(x)
.
=



γn+1Q[θn]Xi
n+1,x

− γn+1 (K[θn]Q[θn])Xi
n,x

` = 1

γn+1 (K[θn]Q[θn])Xi
n,x
− γn (K[θn]Q[θn])Xi

n,x
` = 2

γn (K[θn]Q[θn])Xi
n,x
− γn+1 (K[θn+1]Q[θn+1])Xi

n+1,x
` = 3

γn+1 (K[θn+1]Q[θn+1])Xi
n+1,x

− γn+1 (K[θn]Q[θn])Xi
n+1,x

` = 4

(5.2)

where Q(·) denotes the solution to the Poisson equation in (1.16).
For 1 ≤ ` ≤ 4, let

δ`n+1
.
=

1

a(n+ 1)

a(n+1)∑
i=1

δ`,in+1,

and observe that with εn+1 as in (1.9),

γn+1εn+1 =

4∑
`=1

δ`n+1. (5.3)

We will now establish several bounds on the error terms. The following lemma provides a bound for the
martingale noise term, namely the term corresponding to ` = 1. Recall the function m(·) defined in (2.6).

Lemma 5.2. For each T ∈ (0,∞),

lim
t→∞

sup
0≤u≤T

∥∥∥∥∥∥
m(t+u)−1∑
j=m(t)

δ1
j+1

∥∥∥∥∥∥ = 0.

Proof. Note that {δ1
j }∞j=1 is adapted to {F j}∞j=1, and E[δ1

j+1|F j ] = 0, where F j is as introduced above (1.8).

Thus, {δ1
j }∞j=1 is a martingale difference sequence. Furthermore, there is some κ1 ∈ (0,∞) such that ‖δ1

j+1‖ ≤
κ1γj+1 for each j ∈ N0. The result now follows by standard martingale estimates (see e.g. the proof of Prop.
4.4 in [4]).
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The next result provides bounds for the remaining error terms.

Lemma 5.3. For ` = 2, 3, 4 and T > 0, we have that

lim
t→∞

sup
0≤u≤T

∥∥∥∥∥∥
m(t+u)−1∑
j=m(t)

δ`j+1

∥∥∥∥∥∥ = 0. (5.4)

Proof. The proofs for the cases when ` = 2 and ` = 4 are similar to the proofs of Lemma 2.5 and Lemma 2.7,
respectively, and are omitted. We now consider the case when ` = 3. Recall the sequence {b(n), n ∈ N0} defined
in (1.7). Note that for an array {αij , i, j ∈ N}, we have, for n ∈ N,

n−1∑
j=0

a(j+1)∑
i=1

αij+1 =

n−1∑
j=0

a(n)∑
i=1

αij+11{1≤i≤a(j+1)} =

a(n)∑
i=1

n−1∑
j=0

αij+11{1≤i≤a(j+1)}

=

n−1∑
j=0

α1
j+1 +

a(n)∑
i=2

n−1∑
j=0

αij+11{1≤i≤a(j+1)} =

n−1∑
j=0

α1
j+1 +

a(n)∑
i=2

n−1∑
j=0

αij+11{0≤b(i)≤j+1}

=

n−1∑
j=0

α1
j+1 +

a(n)∑
i=2

n−1∑
j=b(i)−1

αij+1.

(5.5)

Let, for j ∈ N0, βij
.
= γj(K[θj ]Q[θj ])Xi

j ,· so that,

δ3
j+1 =

1

a(j + 1)

a(j+1)∑
i=1

δ3,i
j+1 =

a(j+1)∑
i=1

βij − βij+1

a(j + 1)
.

Then, using (5.5),

n−1∑
j=0

δ3
j+1 =

n−1∑
j=0

β1
j − β1

j+1

a(j + 1)
+

a(n)∑
i=2

n−1∑
j=b(i)−1

βij − βij+1

a(j + 1)

=

n−1∑
j=0

β1
j − β1

j+1

a(j + 1)
+

a(n)∑
i=2

βib(i)−1

a(b(i))
− βin
a(n)

+

n−1∑
j=b(i)

(
βij

a(j + 1)
−

βij
a(j)

) .
For t, u > 0, let

n
.
= n(t, u)

.
= m(t+ u), m

.
= m(t), (5.6)
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where m(t) is given by (2.6). Observe that

n−1∑
j=m

δ3
j+1 =

n−1∑
j=0

δ3
j+1 −

m−1∑
j=0

δ3
j+1

=

n−1∑
j=m

β1
j − β1

j+1

a(j + 1)
+

a(n)∑
i=a(m)+1

βib(i)−1

a(b(i))
+

a(m)∑
i=2

βim
a(m)

−
a(n)∑
i=2

βin
a(n)

+

a(n)∑
i=2

n−1∑
j=b(i)

(
βij

a(j + 1)
−

βij
a(j)

)
−
a(m)∑
i=2

m−1∑
j=b(i)

(
βij

a(j + 1)
−

βij
a(j)

)
.

The last expression can be rewritten as

n−1∑
j=m

β1
j − β1

j+1

a(j + 1)
+

a(n)∑
i=a(m)+1

βib(i)−1

a(b(i))
+

a(m)∑
i=2

βim
a(m)

−
a(n)∑
i=2

βin
a(n)

+

a(m)∑
i=2

n−1∑
j=m

(
βij

a(j + 1)
−

βij
a(j)

)
+

a(n)∑
i=a(m)+1

n−1∑
j=b(i)

(
βij

a(j + 1)
−

βij
a(j)

)
.

Define

η0(n,m)
.
=

n−1∑
j=m

β1
j − β1

j+1

a(j + 1)
, η1(n,m)

.
=

a(n)∑
i=a(m)+1

βib(i)−1

a(b(i))
+

a(m)∑
i=2

βim
a(m)

−
a(n)∑
i=2

βin
a(n)

,

η2(n,m)
.
=

a(m)∑
i=2

n−1∑
j=m

(
βij

a(j + 1)
−

βij
a(j)

)
, η3(n,m)

.
=

a(n)∑
i=a(m)+1

n−1∑
j=b(i)

(
βij

a(j + 1)
−

βij
a(j)

)
.

Then

n−1∑
j=m

δ3
j+1 =

3∑
`=0

η`(n,m). (5.7)

We begin by considering η3(n,m). Let κ1
.
= supθ∈P(∆o)

x∈∆o

‖K[θ]Q[θ]x,·‖, so that ‖βij‖ ≤ κ1γj . Note that there is

some κ2 ∈ (0,∞) such that
γj
a(j) −

γj
a(j+1) ≤ κ2

γj
a(j)2 . Using the last two estimates, the form of γj , and the fact

that a(j) ∼ jζ , we can find some κ3 ∈ (0,∞) such that∥∥∥∥∥ βij
a(j + 1)

−
βij
a(j)

∥∥∥∥∥ ≤ κ3

j1+2ζ
. (5.8)

Note that if 1 ≤ i ≤ a(n), then b(i) ≤ n, so b(i)−2ζ ≥ n−2ζ . It follows that there is some κ4 ∈ (0,∞) such that

‖η3(n,m)‖ ≤ κ3

a(n)∑
i=a(m)+1

n∑
j=b(i)

1

j1+2ζ
≤ κ4

a(n)∑
i=a(m)+1

(
1

(b(i)− 1)2ζ
− 1

n2ζ

)
≤ κ4

a(n)

b(a(m))2ζ
. (5.9)



106 A. BUDHIRAJA ET AL.

Note that there are some c1, c2 ∈ (0,∞) and some t1 ∈ (0,∞) such that if t ≥ t1, then c1m(t)ζ ≤ a(m(t)) ≤
c2m(t)ζ . From the definition of a(·) and b(·), we see that b(a(m)) ∼ m. Fix ε ∈ (0, 1). Then, there is a t2 ∈ (t1,∞)
such that if t ≥ t2, then b(a(m(t))) ≥ (1− ε)m(t). It follows that if t ≥ t2, then

a(n(t, u))

b(a(m(t))2ζ
≤ c2n(t, u)ζ

(1− ε)2ζm(t)2ζ
. (5.10)

Recall that τk =
∑k
j=1 γj ∼ γ∗ log(k). From this and the definition of m(·) it follows that, with α = 1/γ∗, for

some t3 ∈ (t2,∞) and c3, c4 ∈ (0,∞), and all t ≥ t3,

c3 exp(4αt/5) ≤ m(t) ≤ c4 exp(3αt/2).

Combining the previous display and (5.10), we see that if t ≥ t3, then

a(n(t, u))

b(a(m(t))2ζ
≤ c2n(t, u)ζ

(1− ε)2ζm(t)2ζ
≤ c2c

ζ
4e

3ζα(t+u)/2

c2ζ3 (1− ε)2ζe8ζαt/5
≤ c2c

ζ
4e

2ζαu

c2ζ3 (1− ε)2ζeζαt/10
. (5.11)

Let κ6
.
= κ6(T )

.
=

c2c
ζ
4e

2ζαT

c2ζ3 (1−ε)2ζ
. Then combining (5.9), (5.10), and (5.11), we see that if t ≥ t3, then

sup0≤u≤T ‖η3(n(t, u),m(t))‖ ≤ κ6

eζαt/10
, and so, as t→∞,

sup
0≤u≤T

‖η3(n(t, u),m(t))‖ → 0. (5.12)

We now consider η2(n,m). From (5.8), there is some κ7 ∈ (0,∞) such that

‖η2(n,m)‖ ≤ κ3

a(m)∑
i=2

n−1∑
j=m

1

j1+2ζ
≤ κ7

a(m)∑
i=1

1

m2ζ
= κ7 a(m)

1

m2ζ
, (5.13)

which shows that as t→∞,

sup
0≤u≤T

‖η2(n(t, u),m(t))‖ → 0. (5.14)

We now consider η1(n,m). We can find some κ8 ∈ (0,∞) such that

‖η1(n,m)‖ ≤ κ8

 a(n)∑
i=a(m)+1

γb(i)−1

a(b(i))
+

a(n)∑
i=1

γn
a(n)

+

a(m)∑
i=1

γm
a(m)

 = κ8

γm + γn +

a(n)∑
i=a(m)+1

γb(i)−1

a(b(i))

 . (5.15)

Note that a(b(i)) = i, so there is some κ9 ∈ (0,∞) such that

a(n)∑
i=a(m)+1

γb(i)−1

a(b(i))
≤ κ9

a(n)∑
i=a(m)+1

1

ib(i)
.
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Additionally, b(i) ∼ i1/ζ , so we can find some t4 ∈ (0,∞) such that if t ≥ t4 and i ≥ a(m(t)), then 1
b(i) ≤

(1 + ε) 1
i1/ζ

. It follows that there is some κ10 ∈ (0,∞) such that if t ≥ t4,

a(n)∑
i=a(m)+1

γb(i)−1

a(b(i))
≤ κ9(1 + ε)

a(n)∑
i=a(m)

1

i1+1/ζ
≤ κ10

1

a(m)1/ζ
. (5.16)

Combining (5.15) and (5.16), we see that

sup
0≤u≤T

‖η1(n(t, u),m(t))‖ → 0, (5.17)

as t→∞. Finally, consider η0(n,m). We have, for some κ11 ∈ (0,∞), that ‖η0(n,m)‖ ≤ κ11

∑n
j=m

1
j1+ζ

, so it
follows that as t→∞.

sup
0≤u≤T

‖η0(n(t, u),m(t))‖ → 0. (5.18)

Combining (5.7), (5.12), (5.14), (5.17), and (5.18) we see that the convergence in (5.4) holds with ` = 3. The
result follows.

Define the continuous-time process {ε̄(t), t ≥ 0} by

ε̄(τn + t)
.
= εn+1, t ∈ [0, γk+1), n ∈ N0,

and define

∆(t, T )
.
= sup

0≤u≤T

∥∥∥∥∫ t+u

t

ε̄(s)ds

∥∥∥∥ , t, T ≥ 0.

We now complete the proof of Theorem 1.4.
Proof of Theorem 1.4: Fix T ∈ (0,∞). Then, for some κ1 ∈ (0,∞), and all t > 0.

∆(t, T ) ≤ sup
0≤u≤T

∥∥∥∥∥
∫ τm(t+u)

τm(t)

ε̄(s)ds

∥∥∥∥∥+ sup
0≤u≤T

∥∥∥∥∥
∫ t

τm(t)

ε̄(s)ds

∥∥∥∥∥+ sup
0≤u≤T

∥∥∥∥∥
∫ t+u

τm(t+u)

ε̄(s)ds

∥∥∥∥∥
≤

4∑
k=1

sup
0≤u≤T

∥∥∥∥∥∥
m(t+u)−1∑
j=m(t)

δkj+1

∥∥∥∥∥∥+ 2κ1γm(t).

(5.19)

From Lemma 5.2 and Lemma 5.3 we now have that limt→∞∆(t, T ) = 0. From Proposition 4.1 of [3] it follows

that {θ̂(t)} is an asymptotic pseudo-trajectory. The result now follows exactly as in the proof of [6]*Theorem
1.2.

6. Central limit theorem for Algorithm II

In this section we provide the proof of Theorem 1.5. In Section 6.1, we characterize the covariance structure
of the error sequence {en}. In Section 6.2 we present some results for the linearized evolution sequence {µn},
and in Section 6.3 we characterize the asymptotic behavior of the discrepancy sequence {ρn}. The proof of
Theorem 1.5 is completed in Section 6.4.

We begin by studying the covariance structure of the error terms.
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6.1. Covariance structure of the error terms

Recall the collection of matrices {Fθ(z) : θ ∈ P(∆o), z ∈ ∆o} defined by (3.1) and let U∗ be the d× d matrix
introduced in (3.2). The following result gives an expression for the conditional covariance matrix of {en+1}
introduced in (1.22). The proof is similar to the proof of Proposition 3.1.

Proposition 6.1. For each n ∈ N0 and x, y ∈ ∆o,

E [en+1(x)en+1(y)|Fn] =
1

a(n+ 1)

(
(U∗)x,y + (D(1)

n )x,y + (D(2)
n )x,y

)
, (6.1)

where D
(1)
n and D

(2)
n are d× d random matrices satisfying the following:

(i) for some C1 ∈ (0,∞) and all n ∈ N, ‖D(1)
n ‖ ≤ C1‖θn − θ∗‖.

(ii) for some C2, β ∈ (0,∞) and for all n ∈ N,

γn+1E

∥∥∥∥∥
n∑

m=1

D
(2)
m−1

∥∥∥∥∥ ≤ Cn−β .
Proof. By a similar argument as in the proof of Proposition 3.1, we have that

E[en+1(x)en+1(y)|Fn] = a(n+ 1)−2

a(n+1)∑
i=1

Fθn(Xi
n)x,y. (6.2)

We can write

Fθn(Xi
n)x,y = (U∗)x,y + (D(1),i

n )x,y + (D(2),i
n )x,y,

where

D(1),i
n

.
=
∑
w∈∆o

(Fθn(w)π(θn)w − Fθ∗(w)(θ∗)w) and D(2),i
n

.
= Fθn(Xi

n)−
∑
w∈∆o

Fθn(w)π(θn)w.

The identity in (6.1) is obtained by defining

D(1)
n

.
=

1

a(n+ 1)

a(n+1)∑
i=1

D(1),i
n =

∑
w∈∆o

(Fθn(w)π(θn)w − Fθ∗(w)(θ∗)w) ,

and

D(2)
n

.
=

1

a(n+ 1)

a(n+1)∑
i=1

D(2),i
n ,

and using the identity in (6.2). The proof of (i) is similar to the proof of part (i) of Proposition 3.1 and is
omitted. We now show that (ii) holds as well.
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Proof of (ii): As in the proof of part (ii) of Proposition 3.1, it suffices to show that there is some C2, β > 0
such that for each (u, v) ∈ ∆o ×∆o and all n ∈ N,

γn+1E

∥∥∥∥∥
n∑

m=1

(D(2)
m )u,v

∥∥∥∥∥ ≤ C2(n+ 1)−β .

Fix (u, v) ∈ ∆o × ∆o and, once more abusing notation, denote (D
(2)
m )u,v as D

(2)
m . Using the Poisson

equation (1.16) we have, as in the proof of Proposition 3.1, with

D(2,a),i
n

.
= Uθn(Xi

n+1)− (K[θn]Uθn)(Xi
n), D(2,b),i

n
.
= Uθn(Xi

n)− Uθn(Xi
n+1),

that D
(2),i
n = D

(2,a),i
n +D

(2,b),i
n . Now, let

D(2,a)
n

.
=

1

a(n+ 1)

a(n+1)∑
i=1

D(2,a),i
n , D(2,b)

n
.
=

1

a(n+ 1)

a(n+1)∑
i=1

D(2,b),i
n ,

so that D
(2)
n = D

(2,a)
n + D

(2,b)
n . Note that with Gn

.
= Fn+1, {D(2,a)

n }∞n=1 is a {Gn}∞n=1-martingale increment
sequence. Consequently, we can apply Burkholder’s inequality and use a conditioning argument to show that,
for some κ1 ∈ (0,∞), and all n ∈ N,

γn+1E

∣∣∣∣∣
n∑

m=1

D
(2,a)
m−1

∣∣∣∣∣ ≤ κ1γn+1

(
n∑

m=1

1

a(m)

)1/2

. (6.3)

We now consider {D(2,b)
n }. Observe that

∣∣∣∣∣
n∑

m=1

D
(2,b)
m−1

∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1

a(1)

a(1)∑
i=1

Uθ1(Xi
1)− 1

a(n)

a(n)∑
i=1

Uθn(Xi
n+1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∑

m=2

 1

a(m)

a(m)∑
i=1

Uθm(Xi
m)− 1

a(m− 1)

a(m−1)∑
i=1

Uθm−1(Xi
m)

∣∣∣∣∣∣ ,
(6.4)

and ∣∣∣∣∣∣
n∑

m=2

 1

a(m)

a(m)∑
i=1

Uθm(Xi
m)− 1

a(m− 1)

a(m−1)∑
i=1

Uθm−1(Xi
m)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n∑

m=2

1

a(m)

a(m)∑
i=a(m−1)+1

Uθm(Xi
m)

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑

m=2

a(m−1)∑
i=1

[
1

a(m)
Uθm(Xi

m)− 1

a(m− 1)
Uθm−1(Xi

m)

]∣∣∣∣∣∣ .
(6.5)

Letting κ2
.
= supθ∈P(∆o),z∈∆o |Uθ(z)| <∞, and noting that 0 ≤ a(m)− a(m− 1) ≤ 1 for all m ∈ N, we see that∣∣∣∣∣∣

n∑
m=2

1

a(m)

a(m)∑
i=a(m−1)+1

Uθm(Xi
m)

∣∣∣∣∣∣ ≤ κ2

n∑
m=2

1

a(m)
. (6.6)
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Since the maps θ 7→ K(θ) and θ 7→ Q(θ) are bounded Lipschitz maps, there is a κ3 ∈ (0,∞) such that for all
x ∈ ∆o and θ, θ′ ∈ P(∆o), |Uθ(x)− Uθ′(x)| ≤ κ3‖θ − θ′‖, so there is some κ4 ∈ (0,∞) such that

∣∣∣∣∣∣
n∑

m=2

a(m−1)∑
i=1

[
1

a(m)
Uθm(Xi

m)− 1

a(m− 1)
Uθm−1(Xi

m)

]∣∣∣∣∣∣
≤

n∑
m=2

a(m−1)∑
i=1

[ ∣∣∣∣ 1

a(m)
Uθm(Xi

m)− 1

a(m− 1)
Uθm(Xi

m)

∣∣∣∣+

∣∣∣∣ 1

a(m− 1)

(
Uθm(Xi

m)− Uθm−1
(Xi

m)
)∣∣∣∣
]

≤
n∑

m=2

a(m−1)∑
i=1

[
κ2

1

a(m− 1)a(m)
+ 2κ3γm

1

a(m− 1)

]
≤ κ4

n∑
m=1

[
1

a(m)
+ γm

]
. (6.7)

Additionally, ∣∣∣∣∣∣ 1

a(1)

a(1)∑
i=1

Uθ1(Xi
1)− 1

a(n)

a(n)∑
i=1

Uθn(Xi
n+1)

∣∣∣∣∣∣ ≤ 2κ2. (6.8)

Combining (6.4),(6.5), (6.6), (6.7), and (6.8) we see that there is some κ5 ∈ (0,∞) such that

γn+1

∥∥∥∥∥
n∑

m=1

D
(2,b)
m−1

∥∥∥∥∥ ≤ κ5γn+1

(
1 +

n∑
m=1

[
1

a(m)
+ γm

])
. (6.9)

The result follows on combining (6.3) and (6.9).

The next result provides a useful bound for the moments of the error sequence {en}. The proof is similar to
the proof of Proposition 3.2 and is omitted.

Proposition 6.2. There is some C > 0 such that for all n ∈ N, E‖en‖4 ≤ C/a(n)2.

6.2. The linearized evolution sequence

The goal of this section is to study the linearized evolution sequence given in (1.25). The following lemma
says that µn given by the linearized evolution in (1.25) converges a.s. to 0. The proof is similar to the proof of
Proposition 5.1 in [21] and Proposition 4.1, and is therefore omitted.

Lemma 6.3. As n→∞ we have µn → 0 a.s.

The next result is used in the proof of Proposition 6.6. It provides a useful bound on the moments of the
linearized evolution sequence. Recall the quantity σn =

√
a(n)/γn defined in (1.11).

Proposition 6.4. Suppose that γ∗ > L−1. Then there is some C ∈ (0,∞) such that for all n ∈ N0, E‖µn+1‖2 ≤
C/σ2

n+1.

Proof. Recall the collection of matrices {ψ∗(n, k), n ∈ N, k ≤ n+1} defined in (4.1). A simple recursive argument
shows that

µn+1 =

n+1∑
k=1

γkψ∗(n+ 1, k + 1)ek. (6.10)
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Proposition 6.2 ensures that there is some κ1 ∈ (0,∞) such that E‖ek‖2 ≤ κ1/a(k) for all k ∈ N. Fix L′ ∈ (0, L)
such that L′γ∗ > 1, and use (4.3) and (6.10) to find some κ2(L′) ∈ (0,∞) such that

E‖µn+1‖2 ≤ κ2(L′)

n+1∑
k=1

γ2
k exp

−2L′
n+1∑
j=k+1

γj

 1

a(k)
.

Note that there is some κ3 ∈ (0,∞) such that

σ2
n ≤ κ3n

1+ζ , n ∈ N, (6.11)

so there is some κ4 ∈ (0,∞) such that

σ2
n+1E‖µn+1‖2 ≤ κ4n

1+ζ
n+1∑
k=1

γ2+ζ
k exp

−2L′
n+1∑
j=k+1

γj

 .

The right side is bounded since γ∗L
′ > 1. The result follows.

6.3. Analysis of the discrepancy sequence

The goal of this section is to show that the discrepancy sequence {ρn} converges to 0 in probability under

the central limit scaling. As in Section 4.2, for each n ∈ N, we let R
(n)
• denote the tensor R

(n)
i

.
= R

(n)
i (θn),

1 ≤ i ≤ d, where R
(n)
i (θ), for θ ∈ P(∆o), is defined as in (4.4). Note that this tensor satisfies

h(θn) = ∇h(θ∗)(θn − θ∗) + (θn − θ∗)TR(n)
• (θn − θ∗). (6.12)

For each 1 ≤ k ≤ n, define the matrix ψ(n, k) by

ψ(n, k)
.
=

n∏
j=k

(
I + γj

(
∇h(θ∗) + 2µTj−1R

(j−1)
• + ρTj−1R

(j−1)
•

))
,

and let ψ(n, n+ 1)
.
= I. The next proposition provides a useful bound on ψ(n, k).

Proposition 6.5. For each L′ ∈ (0, L), and a.e. ω, there is a C = C(L′, ω) ∈ (0,∞) such that if 1 ≤ k ≤ n,
then

‖ψ(n, k)‖ ≤ C exp

−L′ n∑
j=k

γj

 . (6.13)

Proof. Let A
.
= ∇h(θ∗) and

An
.
= ∇h(θ∗) + 2µTj−1R

(j−1)
• + ρTj−1R

(j−1)
• = ∇h(θ∗) + µTj−1R

(j−1)
• + (θj−1 − θ∗)TR(j−1)

• .

From Theorem 1.4 and Lemma 6.3, ‖An − A‖ → 0 a.s. as n→∞. The result now follows from Lemma 5.8 of
[21].

The next result will be used to show that {ρn} tends to 0 in probability under the central limit scaling.
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Proposition 6.6. Suppose γ∗ > L−1. For some κ ∈ (0, 1), we have, as n→∞,

σ1+κ
n

(
ρn −

n∑
k=1

γkψ(n, k + 1)rk

)
P→ 0.

Proof. Fix L′ ∈ (γ−1
∗ , L) and κ ∈

(
0, 1

2 ∧
[
2L′γ∗(1 + ζ)−1 − 1

])
. Using (1.24), (1.25), (1.26), (6.12), and a

recursive argument similar to the one used for obtaining (4.7), we have

ρn −
n∑
k=1

γkψ(n, k + 1)rk = ψ(n, 1)ρ0 +

n∑
k=1

γkψ(n, k + 1)
(
µTk−1R

(k−1)
• µk−1

)
. (6.14)

We begin by showing that as n→∞,

σ1+κ
n ψ(n, 1)ρ0

P→ 0. (6.15)

Since ‖ρ0‖ is bounded, it suffices to show that σ1+κ
n ψ(n, 1) tends to 0 in probability. Using Proposition 6.5, for

a.e. ω, there is some κ1(ω) ∈ (0,∞) such that

‖ψ(n, 1)‖ ≤ κ1 exp

−L′ n∑
j=1

γj

 (6.16)

Additionally, we can find some κ2 ∈ (0,∞) such that

exp

−L′ n∑
j=1

γj

 ≤ κ2n
−L′γ∗ , σ1+κ

n ≤ κ2n
1
2 (1+κ)(1+ζ). (6.17)

Combining (6.16) and (6.17), we obtain, for a.e. ω, some κ3(ω) ∈ (0,∞) such that

σ1+κ
n ‖ψ(n, 1)‖ ≤ κ3n

1
2 (1+κ)(1+ζ)n−L

′γ∗ . (6.18)

Since κ ∈
(
0, 1

2 ∧
[
2L′γ∗(1 + ζ)−1 − 1

])
, we have that 1

2 (1 + κ)(1 + ζ) − L′γ∗ < 0, which ensures that the
expression in (6.18) converges to 0. Therefore, (6.15) holds. We now show that as n→∞,

σ1+κ
n

n∑
k=1

γkψ(n, k + 1)
(
µTk−1R

(k−1)
• µk−1

)
P→ 0. (6.19)

Note that R
.
= supk ‖R

(k−1)
• ‖ < ∞ a.s., so using Proposition 6.5, for a.e. ω, we can find some κ4(ω) ∈ (0,∞)

such that

σ1+κ
n

∥∥∥∥∥
n∑
k=1

γkψ(n, k + 1)
(
µTk−1R

(k−1)
• µk−1

)∥∥∥∥∥ ≤ κ4σ
1+κ
n

n∑
k=1

γk exp

−L′ n∑
j=k

γj

 ‖µk−1‖2 (6.20)
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Using Proposition 6.4, we can find some κ5 ∈ (0,∞) such that for all k ∈ N, E‖µk−1‖2 ≤ κ5σ
2
k−1, so

σ1+κ
n E

 n∑
k=1

γk exp

−L′ n∑
j=k

γj

 ‖µk−1‖2
 ≤ κ5σ

1+κ
n

n∑
k=1

γk exp

−L′ n∑
j=k

γj

σ2
k−1. (6.21)

From (6.17), we can bound the last term in (6.21) above by

κ6n
1
2 (1+κ)(1+ζ)

n∑
k=1

γk exp

−L′ n∑
j=k

γj

 (k − 1)−(1+ζ) (6.22)

for some κ6 ∈ (0,∞). Recalling that κ < 1/2 we see that the expression in (6.22) converges to 0 as n → ∞.
Combining this observation with (6.20) and (6.21) we obtain (6.19). The result now follows on combining (6.15)
and (6.19).

The next result will be used to prove Corollary 6.8.

Proposition 6.7. Suppose that γ∗ > L−1. Then, as n→∞,

σn

[
n∑
k=1

γkψ(n, k + 1)rk

]
P→ 0. (6.23)

Proof. Fix L′ ∈ (γ−1
∗ , L), and define

r
(a)
n+1

.
=

1

a(n+ 1)

a(n+1)∑
i=1

(
(K[θn+1]Q[θn+1])Xi

n+1,·
− (K[θn]Q[θn])Xi

n+1,·

)
,

and

r
(b)
n+1

.
=

1

a(n+ 1)

a(n+1)∑
i=1

(
(K[θn]Q[θn])Xi

n,·
− (K[θn+1]Q[θn+1])Xi

n+1,·

)
,

so that rn+1 = r
(a)
n+1 + r

(b)
n+1. Using Proposition 6.5, we can find, for a.e. ω, some κ1(ω) ∈ (0,∞) such that

∥∥∥∥∥
n∑
k=1

γkψ(n, k + 1)r
(a)
k

∥∥∥∥∥ ≤ κ1

n∑
k=1

γ2
k exp

L′ n∑
j=k

γj

∥∥∥ 1

γk
r

(a)
k

∥∥∥. (6.24)

Using the fact that θ → K[θ], θ → Q[θ] are bounded Lipschitz maps, we can find some κ2 ∈ (0,∞) such that

for k ∈ N, E
∥∥∥ 1
γk
r

(a)
k

∥∥∥ ≤ κ2. From this and (6.11), we can find some κ3 ∈ (0,∞) such that

σn

n∑
k=1

γ2
k exp

−L′ n∑
j=k

γj

E
∥∥∥ 1

γk
r

(a)
k

∥∥∥ ≤ κ3n
1
2 (1+ζ)−L′γ∗

n∑
k=1

kL
′γ∗−2. (6.25)
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Since ζ < 1, the final term in (6.25) tends to 0 as n→∞. Combining this observation with (6.24) and (6.25),
we have that, as n→∞,

σn

∥∥∥∥∥
n∑
k=1

γkψ(n, k + 1)r
(a)
k

∥∥∥∥∥ P→ 0. (6.26)

Next, for n ∈ N define

Ξn
.
=

n∑
k=1

r
(b)
k , Hn

.
= ∇h(θ∗) + 2µTnR

(n)
• + ρTnR

(n)
• ,

and apply the summation by parts formula as in (4.18)–(4.19) to obtain

n∑
k=1

γkψ(n, k + 1)r
(b)
k = γnΞn −

n−1∑
k=1

Ξk(γk+1ψ(n, k + 2)− γkψ(n, k + 1))

= γnΞn +

n−1∑
k=1

γkγk+1Ξkψ(n, k + 2)
(
γ−1
∗ I +Hk

)
.

(6.27)

Recall the sequence {b(n), n ∈ N0} defined as b(n)
.
= bn1/ζc. Let βik

.
= (K[θk]Q[θk])Xi

k,·
. Using the fact that the

map θ → ‖K[θ]Q[θ]‖ is bounded, we can find some κ5 ∈ (0,∞) such that

‖Ξn‖ =

∥∥∥∥∥∥
n∑
k=1

1

a(k)

a(k)∑
i=1

(
βik−1 − βik

)∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑
k=1

a(n)∑
i=2

βik−1 − βik
a(k)

1{2≤i≤a(k)}

∥∥∥∥∥∥+

∥∥∥∥∥
n∑
k=1

β1
k−1 − β1

k

a(k)

∥∥∥∥∥
≤

∥∥∥∥∥∥
n∑
k=1

a(n)∑
i=2

βik−1 − βik
a(k)

1{2≤i≤a(k)}

∥∥∥∥∥∥+

∥∥∥∥ β1
0

a(1)
− β1

n

a(n)

∥∥∥∥+

∥∥∥∥∥
n−1∑
k=1

(
β1
k

a(k + 1)
− β1

k

a(k)

)∥∥∥∥∥
≤

∥∥∥∥∥∥
n∑
k=1

a(n)∑
i=2

βik−1 − βik
a(k)

1{2≤i≤a(k)}

∥∥∥∥∥∥+ κ5. (6.28)

Furthermore, there is a κ6 ∈ (0,∞) such that

∥∥∥∥∥∥
a(n)∑
i=2

n∑
k=1

βik−1 − βik
a(k)

1{2≤i≤a(k)}

∥∥∥∥∥∥ =

∥∥∥∥∥∥
a(n)∑
i=2

n∑
k=b(i)

βik−1 − βik
a(k)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
a(n)∑
i=2

βib(i)−1

a(b(i))
+

n−1∑
k=b(i)

(
βik

a(k + 1)
− βik
a(k)

)
− βin
a(n)

∥∥∥∥∥∥
≤ κ6

a(n)∑
i=2

 1

a(b(i))
+

n−1∑
k=b(i)

(
1

a(k)
− 1

a(k + 1)

)
+

1

a(n)


= κ6

a(n)∑
i=2

[
1

a(b(i))
+

(
1

a(b(i))
− 1

a(n)

)
+

1

a(n)

]
= 2κ6

a(n)∑
i=1

1

i
. (6.29)



QSD APPROXIMATIONS USING INTERACTING REINFORCED WALKS 115

Combining (6.28) and (6.29) we see that there is some κ7 ∈ (0,∞) such that for each n ∈ N,

‖Ξn‖ ≤ κ7 log n. (6.30)

Using (6.11) and (6.30), we can find some κ8 ∈ (0,∞) such that

σnγn‖Ξn‖ ≤ κ8(log n)n−
1
2 (1−ζ), (6.31)

which tends to 0 as n→∞, since ζ < 1. Note that A
.
= supn∈N

∥∥γ−1
∗ I +Hn

∥∥ <∞ a.s., which, along with (6.30)
and Proposition 6.5, ensures that for a.e. ω, there is some κ9(ω) ∈ (0,∞) such that

σn

∥∥∥∥∥
n−1∑
k=1

γkγk+1Ξkψ(n, k + 2)
(
γ−1
∗ I +Hk

)∥∥∥∥∥ ≤ κ9σn

n−1∑
k=1

γ2
k exp

−L′ n∑
j=k

γj

 log k. (6.32)

The last term in (6.32) can be bounded above by κ10(log n)n−
1
2 (1−ζ), for some κ10 ∈ (0,∞) and hence the

expression in (6.32) tends to 0 as n→∞. Combining this with (6.27) and (6.31), we see that as n→∞,

σn

∥∥∥∥∥
n∑
k=1

γkψ(n, k + 1)r
(b)
k

∥∥∥∥∥ P→ 0. (6.33)

The result follows on combining (6.26) and (6.33).

The following corollary says that the discrepancy sequence {ρn} tends to 0 in probability under the central
limit scaling.

Corollary 6.8. Suppose that γ∗ > L−1. Then, as n→∞, σnρn
P→ 0.

Proof. The result is immediate from Proposition 6.6 and Proposition 6.7.

6.4. Proof of Theorem 1.5

Consider the array {Zn,k, n ∈ N, 1 ≤ k ≤ n} given by

Zn,k
.
= σnγkψ∗(n, k + 1)ek, 1 ≤ k ≤ n, n ∈ N. (6.34)

Note that

σnµn =

n∑
k=1

Zn,k. (6.35)

We will apply Corollary 3.1 of [23] to complete the proof of Theorem 1.5. The conditions for this result are
verified in Lemma 6.9 and Lemma 6.10 given below.

Lemma 6.9. Suppose that γ∗ > L−1. Then, as n→∞,
∑n+1
k=1 E‖Zn+1,k‖4 → 0.

Proof. Fix L′ ∈ (γ−1
∗ , L). Using (4.3), Proposition 6.2, and (6.11), we can find some κ1 ∈ (0,∞) such that

n∑
k=1

E‖Zn,k‖4 =

n∑
k=1

E‖σnγkψ∗(n, k + 1)ek‖4 ≤ σ4
n

n∑
k=1

γ4
k‖ψ∗(n, k + 1)‖4E‖ek‖4



116 A. BUDHIRAJA ET AL.

≤ κ1n
2(1+ζ)

n∑
k=1

γ4
k exp

−4L′
n∑
j=k

γj

 1

a(k)2
. (6.36)

Thus, for some κ2 ∈ (0,∞) we have that

n∑
k=1

E‖Zn,k‖4 ≤ κ2n
2(1+ζ)−4L′γ∗

n∑
k=1

k4(L′γ∗−1)k−2ζ ,

which tends to 0 as n→∞. The result follows.

The next lemma is used to characterize the limiting covariance matrix in Theorem 1.5. Recall the matrix U∗
defined in (3.2).

Lemma 6.10. Suppose that γ∗ > L−1. Define

V (1)
n

.
= σ2

n

n∑
k=1

γ2
kψ∗(n, k + 1)

U∗
a(k)

ψ∗(n, k + 1)T ,

and

V (2)
n

.
= σ2

n

n∑
k=1

γ2
kψ∗(n, k + 1)

[
E[eke

T
k |Fk−1]− U∗

a(k)

]
ψ∗(n, k + 1)T .

As n→∞, V
(2)
n

P→ 0 and V
(1)
n

P→ V , where V is the unique solution of the Lyapunov equation

U∗ + (1 + ζ)γ−1
∗ V +∇h(θ∗)V + V ∇h(θ∗)

T = 0. (6.37)

Proof. As in the proof of Lemma 4.5, the Lyapunov equation (6.37) has a unique solution, as U∗ is nonnegative
definite, and the matrix

H̃
.
= ∇h(θ∗) + (1 + ζ)(2γ∗)

−1I, (6.38)

is Hurwitz since −L + (1 + ζ)(2γ∗)
−1 < −L + γ−1

∗ < 0. We now consider V
(1)
n . Define σ̃2

n
.
= n−ζγn. Since

σ̃n/σn → 1 as n→∞, it suffices to prove that

σ̃2
n

σ2
n

V (1)
n

.
= Ṽ (1)

n
P→ V . (6.39)

Observe that

σ̃2
n+1

σ̃2
n

− 1 = (1 + ζ)
γn
γ∗

+ o(γn),
σ̃2
n

a(n)
γ2
n = γn + o(γn), (6.40)

and therefore

σ̃2
n+1

σ̃2
n

γ2
n+1 = γ2

n+1 + o(γ2
n),

σ̃2
n+1

σ̃2
n

γn+1 = γn+1 + o(γn). (6.41)
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From (4.1) it follows that

ψ∗(n+ 1, k + 1) = (I + γn+1∇h(θ∗))ψ∗(n, k + 1),

so we have that

Ṽ
(1)
n+1 =

σ̃2
n+1

a(n+ 1)
γ2
n+1U∗ +

σ̃2
n+1

σ̃2
n

(
I + γn+1∇h(θ∗)

)
Ṽ (1)
n

(
I + γn+1∇h(θ∗)

)T
=

σ̃2
n+1

a(n+ 1)
γ2
n+1U∗ +

σ̃2
n+1

σ̃2
n

(
Ṽ (1)
n + γn+1

[
∇h(θ∗)Ṽ

(1)
n + Ṽ (1)

n ∇h(θ∗)
T
]

+ γ2
n+1∇h(θ∗)Ṽ

(1)
n ∇h(θ∗)

T
)
.

(6.42)

Using the second identity in (6.40),

σ̃2
n+1

a(n+ 1)
γ2
n+1U∗ = γn+1U∗ + o(γn). (6.43)

Fix L′ ∈ (γ−1
∗ , L). Then, from (4.1) there is some κ1 ∈ (0,∞) such that

‖Ṽ (1)
n ‖ ≤ κ1n

1+ζ
n∑
k=1

γ2
k exp

−2L′
n∑

j=k+1

γj

 k−ζ ,

and so we can find some κ2 ∈ (0,∞) such that

‖Ṽ (1)
n ‖ ≤ κ2, n ∈ N. (6.44)

Combining the first identity in (6.40) with (6.44) we see that

σ̃2
n+1

σ̃2
n

Ṽ (1)
n − Ṽ (1)

n =

(
σ̃2
n+1

σ̃2
n

− 1

)
Ṽ (1)
n = (1 + ζ)

γn
γ∗
Ṽ (1)
n + o(γn). (6.45)

Additionally, from (6.41) and (6.44) we see that

σ̃2
n+1

σ̃2
n

γ2
n+1∇h(θ∗)Ṽ

(1)
n ∇h(θ∗)

T = o(γn). (6.46)

Finally, noting that γn+1 = γn + o(γn), and combining (6.41), (6.43), (6.45), and (6.46) with (6.42) we see that

Ṽ
(1)
n+1 = Ṽ (1)

n + γn

[
U∗ + γ−1

∗ (1 + ζ)Ṽ (1)
n +∇h(θ∗)Ṽ

(1)
n + Ṽ (1)

n ∇h(θ∗)
T
]

+ o(γn). (6.47)

Let V denote the aforementioned unique solution to (6.37). Recall from (6.37) that the matrix H̃ defined in
(6.38) satisfies U∗ + H̃V + V H̃T = 0. Thus, (6.47) can be rewritten as

Ṽ
(1)
n+1 − V = Ṽ (1)

n − V + γn

[
H̃(Ṽ (1)

n − V ) + (Ṽ (1)
n − V )H̃T

]
+ o(γn). (6.48)
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Recalling once more that H̃ is Hurwitz, it follows from (6.48) and the proof of Lemma 5.11 in [21] that Ṽ
(1)
n

P→ V

as n→∞. This proves (6.39) and, as noted previously, shows that V
(1)
n

P→ V as n→∞. The proof that V
(2)
n

P→ 0
as n→∞ is similar to the analogous result in Lemma 4.5, and is omitted.

Proof of Theorem 1.5. From (1.26) we see that σn(θn− θ∗) = σnµn+σnρn. Also, from Corollary 6.8, σnρn
P→ 0

as n→∞. Thus, it suffices to show that σnµn
L→ N (0,V ) where V is as in the statement of the theorem. Recall

the martingale difference array {Zn,k} introduced in (6.34), and note from (6.35) that σnµn =
∑n
k=1 Zn,k. In

order to complete the proof we apply Corollary 3.1 to [23]. From Lemma 4.4 it follows that for each ε > 0,

n∑
k=1

E
[
‖Zn,k‖21‖Zn,k‖≥ε|Fk−1

] P→ 0,

as n→∞. Additionally, if we let {V (1)
n }, {V (2)

n }, and V be as in Lemma 6.10, then we have that

n∑
k=1

E
[
Zn,kZ

T
n,k|Fk−1

]
= V (1)

n + V (2)
n

and from Lemma 6.10,
∑n
k=1 E

[
Zn,kZ

T
n,k|Fk−1

]
P→ V , as n→∞. Therefore, the conditions of Corollary 3.1 in

[23] are satisfied, proving that
∑n
k=1 Zn,k

L→ N (0,V ), as n→∞. The result follows.

7. Numerical experiments

In this section we present results from some numerical experiments. We compare five simulation based
methods for computing the QSD of a finite state Markov chain. The first four methods can be viewed as
stochastic approximation algorithms and are described in terms of a sequence of step sizes given as

γn+1
.
=

γ∗
n+N∗

, n ∈ N0,

where γ∗ ∈ (0,∞) and N∗
.
= bγ∗c + 1. In order to ensure that the results from the various methods are

comparable, we measure the run-time of each method by the total number of particle transitions.
The first estimation method, which we refer to as the Single scheme, is the algorithm given in equation (7)

of [6]. In order to obtain an estimate for the QSD using this scheme, we run the algorithm for

ξ(n)
.
= na(n) (7.1)

time steps. Since there is a single particle, and it moves once at each time step, this means that there are a
total of ξ(n) particle transitions. The second scheme, which we refer to as the Independent scheme, is given by
evolving a(n) Single schemes independently of one another. Each of these independent schemes runs for n time
steps, and the estimate for the QSD is then given by the average of the a(n) estimates. At each time instant,
there are a(n) particle transitions, so the total number of particle transitions is ξ(n). The third scheme, which
we refer to as the Interacting scheme, is the algorithm defined in (1.4). In the notation of this work, our final
estimate for the QSD is then given by θnn. As with the Independent scheme, since a(n) particles move at each
time instant, there are ξ(n) particle transitions in total, and ξ(n) is again given by (7.1). The fourth scheme
is the Branching scheme, which is described in (1.8). Note that for this scheme, by time instant k there are a

total of
k∑
i=1

a(i+ 1) particle transitions. Consequently, we run this scheme for ξB(n) time steps, where
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ξB(n)
.
= inf

{
k :

k∑
i=1

a(i+ 1) ≥ na(n)

}
.

The final method is the Fleming-Viot approximation. A description of this method and some important results
regarding its convergence properties can be found in [22]. In order to estimate the QSD using the Fleming-
Viot approximation, we consider a collection of v(n) particles that evolve according to the dynamics described
in [22]. At each time instant a particle is chosen uniformly at random to move, so after nv(n) time steps,
there have been nv(n) particle transitions. The final estimate for the QSD is given by the empirical measure
of the v(n) particles at the nv(n)-th time instant. In light of the convergence results regarding the Fleming-
Viot approximation established in e.g., [22], we consider situations in which the number of particles grows
exponentially with time, namely the setting where the Fleming-Viot approximation method runs for ξFV (n)
time steps, where ξFV (n) ≈ bexp(n)cn.

Our numerical results are exploratory in nature, and are intended as a starting point for a more detailed
comparison of the performance of the aforementioned approximation methods. We also explore the impact of
several choices that affect the performance of each algorithm, such as the initial distribution of the particles
in the system and the relationship between the number of particles and the algorithms’ overall performance.
The experimental results suggest that the methods all converge rapidly when the dynamics of the underlying
Markov chain are relatively simple. For example, for the Markov chain whose transition matrix is of the form

P =

 1 0 0
1− ε1 − ε2 ε1 ε2
1− ε3 − ε4 ε3 ε4

 ,
where ε1, ε2, ε3, ε4 ∈ (0, 1) satisfy ε1 + ε2 < 1 and ε3 + ε4 < 1, the rates of convergence of the various methods
were comparable regardless of the distribution of the initial states of the particles in the systems.

However, more significant differences begin to emerge when there are several points in the state space at
which the underlying Markov chain is expected to spend a relatively long time. In our experiments, systems
with several of these metastable states tended to favor approximation methods consisting of many (interacting)
particles. This is consistent with our intuition, as the presence of multiple metastable states may lead to
individual particles becoming trapped for long periods of time. For a Markov chain {Yn} on ∆, we refer to a
point x ∈ ∆o as a basin if Ex(Y1) = x.

We now consider two examples of Markov chains that have several basins. The first chain is the Markov
chain {Yn} on ∆

.
= {0, 1, . . . , 9} with transition probability matrix P1 given below in (7.2). Note that {Yn}

has three basins, namely, 2, 5, and 8. Applying Corollary 2.3 of [6] we see that γ∗ ≈ 4.17 satisfies γ∗ > L−1,
where L is as in Section 1.1. The second chain is the Markov chain {Zn} on ∆

.
= {0, 1, . . . , 7} with transition

probability matrix P2 given in (7.2). Here {Zn} has three basins, namely, 2, 4, and 6. As with P1 above, we
applied Corollary 2.3 of [6] to see that γ∗ ≈ 2.54 satisfies γ∗ > L−1, where L is as in Section 1.1. While the
chain with transitions matrix P1 and the chain with transitions matrix P2 both have three basins, one should
expect that approximation methods will generally converge more quickly when estimating the QSD of P2, due
to the fact that the state space of the underlying chain is smaller, and therefore that the particles may traverse
the state space more quickly.

P1 =


1

0.2 0.1 0.7
0.1 0.8 0.1

0.8 0.1 0.1
0.8 0.1 0.1

0.01 0.98 0.01
0.1 0.1 0.8

0.1 0.1 0.8
0.1 0.8 0.1

0.2 0.7 0.1

, P2 =


1

0.3 0.1 0.6
0.1 0.8 0.1

0.8 0.1 0.1
0.025 0.95 0.025

0.1 0.1 0.8
0.1 0.8 0.1

0.3 0.6 0.1

. (7.2)
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Figure 1. Experimental results for the P1 chain. Here a(n) = bn0.75c and n
.
= 1000.

The remainder of Section 7 is organized as follows. In Section 7.1 we compare the performance of the five
approximation methods when approximating the QSD of the Markov chain with transition matrix P1. These
results suggest that the Interacting Scheme may outperform the Independent, Single, and Branching Schemes
when the underlying chain contains several basins at which the particles tend to spend long periods of time. In
Section 7.2 we compare the Interacting Scheme and the Fleming-Viot Approximation method by investigating
each algorithm’s performance in several settings. Similarly, in Section 7.3 we compare the Interacting Scheme
and the Single Scheme, and in Section 7.4 we compare the Interacting Scheme and the Independent Scheme.
Finally, in Section 7.5 we investigate the impact of the choice of the sequence a(n) on the Interacting Scheme.

7.1. Comparing the algorithms

Recall the transition matrix P1 defined in (7.2). For the experimental setup (A) we take a(n) = bn0.75c
and n

.
= 1000. We repeated the experiment for each scheme R = 300 times and averaged the results. For the

Independent, Interacting, and Fleming-Viot schemes, the initial states of the a(1000) = 177 particles were chosen
uniformly at random from {4, 5, 6}. This same set of initial states was used in each of the 300 repetitions of
the simulation. Since the Single and Branching schemes are initialized with only a single particle, we chose the
initial states of the 300 repetitions so that they would be proportionate to the initial states used for the schemes
that start with a(n) particles. In Figure 1 we plot the total variation distance between the estimate of the QSD
given by each scheme and the true QSD as a function of the number of particle transitions. The results are
plotted for the first 70, 000 particle transitions.

Note that the Interacting scheme converges most quickly to the QSD in this experiment. The Fleming-Viot
algorithm appears to have a significant asymptotic bias, which is a consequence of the fact that the number of
particles is not sufficiently large for the time asymptotic behavior of the Fleming-Viot processes to effectively
approximate the QSD. The experimental results when the initial states of the particles were chosen uniformly
at random from ∆o were similar.
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Table 1. Total variation distance from the interacting and Fleming-Viot approximations to the
QSD of P1. For the interacting scheme, n

.
= 500, and a(n) varies. For the Fleming-Viot approx-

imation, we allowed for different choices of n, and each system had nv(n) particle transitions.
Initial states were chosen uniformly over the described sets.

Particle transitions 5500 10500 15500 20500 5500 10500 15500 20500
a(n) or v(n) 11 21 31 41 819 1443 2034 2606
Method Interacting Fleming-Viot

Initial states
4 0.0823 0.0619 0.0508 0.0517 0.4707 0.4542 0.4435 0.4380

{3, 4, 5} 0.0963 0.0714 0.0496 0.0511 0.0917 0.1247 0.0735 0.1885
all ∆o 0.0988 0.0643 0.0622 0.0491 0.0552 0.2059 0.0773 0.1228

Table 2. Total variation distance from the interacting and Fleming-Viot approximations to the
QSD of P2. For the interacting scheme, n

.
= 1000, and a(n) varies. For the Fleming-Viot approx-

imation, we allowed for different choices of n, and each system had nv(n) particle transitions.
Initial states were chosen uniformly over the described sets.

Particle transitions 6000 11000 16000 21000 26000 6000 11000 16000 21000 26000
a(n) or v(n) 6 11 16 21 26 884 1503 2092 2662 3219
Method Interacting Fleming-Viot

Initial states
5 0.2748 0.2453 0.2058 0.1670 0.1326 0.4973 0.4936 0.4958 0.4939 0.4960

{4, 5, 6} 0.2753 0.1478 0.1605 0.1225 0.1117 0.5469 0.3798 0.3598 0.3522 0.3556
all ∆o 0.2767 0.1578 0.1307 0.1322 0.1243 0.0922 0.2118 0.1650 0.1409 0.3255

7.2. Interacting scheme and Fleming-Viot approximation

In order to compare the performance of the Interacting Scheme and the Fleming-Viot Approximation, we
used both methods to approximate the QSD of P1 and P2. To ensure the Fleming-Viot approximation was
initialized with sufficiently many particles to obtain an accurate approximation, in each of our experiments we
let the number of particles driving the approximation grow exponentially with time (n). The number of particles
driving the Fleming-Viot approximation is denoted by v(n). To obtain the comparisons presented in this section,
we measured the algorithms’ performance for several different choices of total particle transitions. Recall that
(for a particular choice of the a(n) sequence) ξ(n) denotes the number of particle transitions in the Interacting
(and Independent) Scheme in n time instants, and that ξFV (n) denotes the number of particle movements in
the Fleming-Viot particle system in n time instants, where the number of particles scales exponentially with
time.

The results of these experiments are presented in Tables 1 and 2. The entries in the tables are as follows:
the first row gives the total number of particle transitions in each system, namely ξFV (n) = ξ(n). The next
row describes the number of particles driving the dynamics of the Interacting Scheme, namely a(n), and the
Fleming-Viot method, v(n), for each choice of total particle transitions. The next three rows describes the
total variation distance of the Interacting Scheme and the Fleming-Viot approximations to the QSD after the
aforementioned number of particle transitions.

While these comparisons are exploratory in nature, several key trends became apparent. The first is that even
though both the Interacting Scheme and the Fleming-Viot Approximation are sensitive to the choice of initial
conditions, the Fleming-Viot Approximation may be even more so. This coincides with our expectations, as the
Fleming-Viot Approximation’s dynamics are driven by a large number of particles, so if the particles all start
near a highly-attractive basin of the underlying Markov chain, then the time for the particles to thoroughly
explore the state space may tend to be quite large. A second point is that for both approximation methods,
when the number of time steps is fixed, if the number of particles in each system is increased, the resultant
approximation does not always improve (although for the Interacting Scheme it typically does).
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Table 3. Total variation distance from the Interacting and Single Schemes to the QSD of
P1. For the interacting scheme, n

.
= 300, and a(n) varies. The single scheme is ran for na(n)

particle transitions. The initial state of the single particle was 4, and the interacting particles
were started uniformly in ∆o.

Particle transitions 5000 9000 13000 17000 21000 25000 29000
a(n) 17 30 44 57 70 84 97
Interacting 0.1713 0.1551 0.1450 0.1060 0.1048 0.0680 0.0580
Single 0.2701 0.2516 0.1820 0.2139 0.1322 0.1090 0.1412

Table 4. The total variation distance from the Interacting Scheme and the Single Scheme to
the QSD of P2. For the interacting scheme, n

.
= 2000, and a(n) varies. For each choice of a(n),

the single scheme is ran for na(n) particle transitions. For these experiments, the initial state
of the particle in the single scheme was state 5, and the particles in the Interacting Scheme
started at state 5.

Particle transitions 5000 21000 37000 57000 85000
a(n) 3 11 19 29 43
Interacting 0.2615 0.1215 0.0782 0.0752 0.0460
Single 0.3352 0.1996 0.1034 0.0909 0.0722

7.3. Interacting scheme and single scheme

Our next set of experiments compares the performance of the Interacting Scheme and the Single Scheme.
For these comparisons, the two approximation methods were both run for ξ(n) particle movements. The results
appear in Tables 3 and 4. Our experiments yielded two key observations regarding the performance of these
two approximation methods. The first is that, in line with our expectations, the Interacting Scheme may be
more well-suited for approximating the QSD of Markov chains with several basins, as the particle driving the
Single Scheme’s approximation may become trapped near such points for long periods of time. In contrast
with this, even if some of the particles driving the Interacting Scheme’s approximation become trapped near
basins of the underlying chain, the other particles driving the approximation can still explore the state space.
The interactions between the particles then allow even the particles which are trapped near basins to continue
updating their dynamics according to the other particles, which may be moving more freely throughout the
system. Our second key observation is that in state spaces with multiple basins, we generally expect that it
will continue to be advantageous to distribute the particles driving the Interacting Scheme’s approximation
throughout the system, which, of course, is not possible with the Single Scheme.

7.4. Interacting scheme and independent scheme

Unlike the Fleming-Viot approximation and the Single Scheme, the Independent Scheme is directly compa-
rable to the Interacting Scheme in terms of the number of particles in the system and the impact of the initial
distribution of the particles. Accordingly, the comparison of the two algorithms is relatively straightforward.
The results are in Tables 5 and 6, and again suggest that for systems in which there are multiple basins at
which particles may become stuck for long periods of time, the Interacting Scheme may provide a more accurate
approximation. Our intuition behind this performance disparity is that even if some of the particles driving
the Independent Scheme become trapped around basins, they can continue to update their dynamics according
to the other particles’ positions. While the difference in performance between these two methods tended to be
relatively minor, we expect that in more complicated settings (e.g., larger state spaces with more basins), that
the Interacting Scheme would continue to outperform the Independent Scheme.
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Table 5. Total variation distance for Interacting and Independent schemes to the QSD of P1.
In both schemes, n

.
= 2000, and a(n) varies. All particles started from state 5.

Particle transitions 4000 8000 16000 24000 32000 40000 48000
a(n) 2 4 8 12 16 20 24
Interacting 0.3191 0.2032 0.1079 0.1081 0.0880 0.0845 0.0841
Independent 0.2450 0.2067 0.1363 0.1654 0.1375 0.1120 0.1018

Table 6. Total variation distance for Interacting and Independent schemes to the QSD of P2.
In both schemes, n

.
= 2000, and a(n) varies.

Particle transitions 15000 25000 35000 45000 55000 65000 75000 85000
a(n) 8 13 18 23 28 33 38 43

Interacting
Initial states

5 0.1231 0.1041 0.1027 0.0568 0.0835 0.0738 0.0469 0.0568
{4, 5, 6} 0.1482 0.0824 0.0913 0.0817 0.0627 0.0665 0.0642 0.0571

Independent
5 0.1251 0.1162 0.1117 0.1117 0.1035 0.1054 0.1050 0.1056

{4, 5, 6} 0.1382 0.1287 0.1355 0.1288 0.1063 0.1270 0.1069 0.1133

Table 7. Total variation distance from the Interacting Scheme to the QSD of P2 after 10000
particle movements for various choices of a(n).

n 100 200 300 400 500 800 1300 2000 10000
a(n) 100 50 34 25 20 13 8 5 1

Initial states
5 0.2144 0.1359 0.1138 0.1210 0.1412 0.1335 0.1543 0.1578 0.1810

{4, 5, 6} 0.0965 0.1052 0.1221 0.1106 0.1389 0.1499 0.1585 0.1578 0.2417
all ∆o 0.0852 0.0981 0.1096 0.1213 0.1572 0.1627 0.1684 0.2218 0.2103

7.5. Selecting the number of particles in the interacting scheme

The experiments presented here are intended to explore the impact that the choice of the sequence a(n)
has on the performance of the Interacting Scheme. To study the effect of a(n), we fixed a total number of
particle movements ξ(n) and compared the performance for various choices of a(n). The results are presented in
Table 7. The experiments suggested that, at least up to a point, it may be advantageous to increase the number
of particles in the system, rather than solely increasing amount of time.

Appendix A. A matrix estimate

The following lemma is similar to Lemma 5.8 of [21].

Lemma A.1. Let A be a d×d Hurwitz matrix such that the real part of all of its eigenvalues is bounded above by
−L where L ∈ (0,∞). Fix p ∈ (0, 1). Let {Ank}∞n,k=1 be an array of matrices such that supnp≤k≤n ‖Ank −A‖ → 0,
where ‖ · ‖ denotes the Frobenius norm on the space of d× d matrices. For each L′ ∈ (0, L), there is a constant
C > 0 such that if np ≤ k ≤ n, then∥∥∥∥∥∥

n∏
j=k

(I + γjA
n
j )

∥∥∥∥∥∥ ≤ C exp

−L′ n∑
j=k

γj

 .

Proof. Let {λi}di=1 denote the eigenvalues of A, and use the Jordan decomposition of A to write A = SJS−1,
where S is invertible and J is a Jordan matrix. Let

Dt
.
= diag(t, t2, . . . , td), Λ

.
= diag(λ1, λ2, . . . , λd).
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Then, following [21], we have that A = (SDt)(Λ +Rt)(SDt)
−1, where limt→0 ‖Rt‖ = 0. Write

(SDt)
−1(I + γjA

n
j )(SDt) = I + γjΛ + γjRt + γj(SDt)

−1(Anj −A)(SDt).

For np ≤ k ≤ n, we have

‖(SDt)
−1(I + γkA

n
k )(SDt)‖ ≤ ‖I + γkΛ‖+ γk‖Rt‖+ γk‖Ank −A‖‖SDt‖‖(SDt)

−1‖. (A.1)

Fix 0 < L′ < L′′ < L, and note that there is some t0 > 0 such that if 0 ≤ t ≤ t0, then ‖Rt‖ ≤ (L′′−L′)/2. Also,
there is some n0 such that if n ≥ n0, np ≤ k ≤ n, then

‖I + γkΛ‖ ≤ 1− γkL′′, ‖Ank −A‖‖SDt‖‖(SDt)
−1‖ ≤ (L′′ − L′)/2. (A.2)

Combining (A.1) and (A.2), we see that if np ≤ k ≤ n, t ≤ t0, and n ≥ n0,

‖(SDt)
−1(I + γkA

n
k )(SDt)‖ ≤ 1− γkL′.

It follows that ∥∥∥∥∥∥
n∏
j=k

(I + γjA
n
j )

∥∥∥∥∥∥ =

∥∥∥∥∥∥(SDt)

 n∏
j=k

(SDt)
−1(I + γjA

n
j )(SDt)

 (SDt)
−1

∥∥∥∥∥∥
≤ ‖SDt‖

n∏
j=k

‖(SDt)
−1(I + γjA

n
j )(SDt)‖‖(SDt)

−1‖

≤ ‖SDt‖‖(SDt)
−1‖ exp

−L′ n∑
j=k

γj

 .
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