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ON THE CURVED EXPONENTIAL FAMILY IN THE STOCHASTIC

APPROXIMATION EXPECTATION MAXIMIZATION ALGORITHM

Vianney Debavelaere1,* and Stéphanie Allassonnière2

Abstract. The Expectation-Maximization Algorithm (EM) is a widely used method allowing to esti-
mate the maximum likelihood of models involving latent variables. When the Expectation step cannot
be computed easily, one can use stochastic versions of the EM such as the Stochastic Approxima-
tion EM. This algorithm, however, has the drawback to require the joint likelihood to belong to the
curved exponential family. To overcome this problem, [16] introduced a rewriting of the model which
“exponentializes” it by considering the parameter as an additional latent variable following a Normal
distribution centered on the newly defined parameters and with fixed variance. The likelihood of this
new exponentialized model now belongs to the curved exponential family. Although often used, there is
no guarantee that the estimated mean is close to the maximum likelihood estimate of the initial model.
In this paper, we quantify the error done in this estimation while considering the exponentialized model
instead of the initial one. By verifying those results on an example, we see that a trade-off must be
made between the speed of convergence and the tolerated error. Finally, we propose a new algorithm
allowing a better estimation of the parameter in a reasonable computation time to reduce the bias.
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1. Introduction

With the increase of data, parametric statistical models have become a crucial tool for data analysis and
understanding. To be able to describe complex natural phenomena (epidemiology, ecology, finance, disease
evolution, etc.), the models have an increasing complexity. Some of them are based on observed features or data
which are assumed to be generated from a latent random effect. A usual example is the family of mixed effects
models which have been used in pharmacokinetic, pharmacodynamic, shape analysis, etc. In such a context, one
aims at optimizing the model parameter to maximize the likelihood of the observed dataset. This likelihood is
also called the incomplete one as the latent variables are unknown.

Formally, this writes as follow: let y ∈ Rn be the observation and θ ∈ Θ the model parameter. We call g the
incomplete likelihood:

g(y, θ) =

∫
Z

f(y, z, θ) dz.
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In that case, z is the latent or missing variable and f is the joint likelihood of the observations and latent
variables, depending on a parameter θ ∈ Θ.

The Expectation Maximization (EM) algorithm provides a numerical process to answer this problem by
computing iteratively a sequence of estimates (θn)n∈N which, under several conditions (see [12, 34]), converges
towards the maximum likelihood estimate. It proceeds in two steps for each iteration k. First, in the Expectation
step (E), the function

Q(θ|θk−1) =

∫
Z

log(f(y, z, θ))p(y, z, θk−1) dz

is computed where p is the conditional distribution of z given the observations: p(y, z, θ) = f(y, z, θ)/g(y, θ). θk
is then updated in the Maximization step (M) as the argument of the maximum of the function Q(.|θk−1).

The EM algorithm has been first introduced in [12]. Its properties have then been studied in numerous papers,
see [6, 9, 23, 24, 27, 31, 34] among many other works.

In many cases, the (E) step is in fact intractable as we have no closed form for Q. Different algorithms, both
deterministic and stochastic, have been introduced in the literature to overcome this problem. The Monte-Carlo
EM ([33]) replaces the (E) step by computing a Monte Carlo approximation of Q using a large amount of simu-
lated missing data z. Another possibility, more computationally efficient, is to use a Stochastic Approximation
(SA) of the function Q. This SAEM algorithm has been introduced in [11] and the authors proved the conver-
gence towards a local maximum of the incomplete likelihood with probability 1 under several hypotheses. It has
later on been generalized in [15] in the case where we are not able to easily sample z. This new algorithm, called
the SAEM Monte Carlo Markov Chain (SAEM-MCMC) replaces the sampling of z by one step of a Markov
Chain targeting the conditional distribution p. Those two algorithms have then been applied in lots of different
contexts: deformable models [3, 8, 10, 29], Independent Component Analysis [4] and in many medical problems
(see [7, 14, 20, 30] among many others).

Among the hypotheses ensuring the convergence of most of these algorithms, and in particular our focus,
the SAEM algorithm, one of the most restrictive is the necessity for the joint likelihood to belong to the curved
exponential family. This writes:

f(y, z, θ) = exp (−Ψ(θ) + 〈S(y, z),Φ(θ)〉) , (1.1)

where S is called a sufficient statistic of the model and Φ and Ψ are two functions on Θ. Similarly, the different
extensions to the SAEM algorithm, and some of the EM algorithm, carry the same assumption [17, 18, 26, 28].

However, this hypothesis can in fact be a bottleneck in lots of situations. For example, it is not verified
for heteroscedastic models [13, 16] nor with more complex models [8, 10, 21, 25, 29, 32]. Most of the authors
then choose to compute the maximization step using a gradient descent. However, in that case, there is no
theoretical guarantee of convergence. Moreover, the computational complexity increases. One needs to compute
the gradient descent steps and compute the stochastic approximation of the complete likelihood while this
function may not have a simple form. To solve this problem, [16] propose to transform the initial model to make
it curved exponential.

Their solution consists in considering the parameter θ as a realization of a Gaussian vector of mean θ̄ and
fixed variance σ2. θ then becomes an additional latent variable and the new parameter to estimate is θ̄. We
call this new model the exponentialized model. It now belongs to the curved exponential family. However, as
the likelihood of this exponentialized model is different, the function to maximize has also been modified. In
particular, there is no guarantee that the new parameter to estimate is close to the initial one. Nevertheless,
this trick has been successfully used in different situations ([1, 8, 10, 29] among others).

In this paper, we will study the maximum likelihood of this new exponentialized model and measure its
distance to one of the maxima of the initial likelihood. More precisely, we will show that this distance goes
to 0 as the variance σ2 of the exponentialized model tends to 0. We will also provide an upper bound to this
error when σ is small enough. Finally, we will verify those results on an example. This example will show us
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that a compromise must be done in the choice of σ. Indeed, if σ is too big, a substantial error is made in the
estimation. However, for σ too small, despite the theoretical guarantees, the numerical convergence is difficult
to obtain. To overcome this problem, we will present a new algorithm allowing a better estimation of the initial
parameter θ in a reasonable computation time.

2. Presentation of the Stochastic Approximation Expectation
Maximization (SAEM) algorithm

In this section, we recall the Stochastic Approximation Expectation Maximization (SAEM) algorithm, first
presented in [11] and recall the hypotheses ensuring convergence. In the following, we suppose that the observa-
tion y belongs to Rn, the latent variable z to Rl and that the parameter space Θ is an open subset of Rp with
n, l, p ∈ N∗.

2.1. Expectation Maximization (EM) Algorithm

The original EM algorithm proposes to maximize a function defined via:

g(y, θ) =

∫
Rl
f(y, z, θ)µ(dz)

with f the joint likelihood of the model and µ is a σ-finite measure on Rl.
This situation is of interest to estimate the parameters of a statistical model using maximum likelihood

estimates where the model depends on unobserved latent variables.
The Expectation-Maximization consists of iterations which guarantee an increase in g(θk) at each step.

Starting from θ0, the algorithm iterates:

– Expectation. Compute
Qk(θ) =

∫
Rl log (f(y, z, θ)) p(y, z, θk)dz.

– Maximization. Set θk+1 ∈ argmax Qk(θ).

where p is the conditional distribution of z given the observations:

p(y, z, θ) =

{
f(y, z, θ)/g(y, θ) if g(y, θ) 6= 0
0 otherwise.

2.2. SAEM algorithm

Because the expectation with respect to the conditional distribution p(y, z, θ) is often intractable in practice,
a different approach suggests replacing the E-step by a stochastic approximation on Q, starting from θ0 and
Q0 = 0. This gives us the following algorithm:

– Simulation. Generate zk, a realization of the hidden variable under the conditional density p(y, z, θk).
– Approximation. Update

Qk(θ) = Qk−1(θ) + γk(log f(y, zk, θ)−Qk−1(θ)) . (2.1)

– Maximization. Set θk+1 ∈ argmax Qk(θ).

Convergence of this procedure is shown under the following hypotheses:

(M1) The parameter space Θ is an open subset of Rp, and f can write:

f(y, z, θ) = exp (−Ψ(θ) + 〈S(y, z),Φ(θ)〉) , (2.2)
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where S(·) is a Borel function taking its value in S, an open subset of Rns . In that case, we say that f
belongs to the curved exponential family.
Moreover, the convex hull of S(Rl) is included in S and, for all θ ∈ Θ,∫

Rl
|S(y, z)|p(y, z, θ)µ(dz) <∞ .

(M2) The functions Ψ and Φ are twice continuously differentiable on Θ.

(M3) The function s : Θ→ S defined as:

s(θ) =

∫
Rl
S(y, z)p(y, z, θ)µ(dz)

is continuously differentiable on Θ.

(M4) The observed log-likelihood l(θ) := log g(y, θ) is continuously differentiable on Θ and

∂θg(y, θ) =

∫
Rl
∂θf(y, z, θ)µ(dz) .

(M5) There exists a function θ̂ : S → Θ such that ∀θ ∈ Θ,∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ), with L(s, θ) =
−Ψ(θ) + 〈s,Φ(θ)〉.
Moreover, θ̂ is continuously differentiable on S.

(SAEM1) For all k ≥ 0, 0 ≤ γk ≤ 1,
∑∞
i=1 γk =∞ and

∑∞
i=1 γ

2
k <∞.

(SAEM2) θ̂ : S → Θ and the observed-data log likelihood l : θ → R are ns times differentiable.

(SAEM3) For all positive Borel function φ:

E(φ(zk+1)|Fk) =

∫
Rl
φ(z)p(z, θk)µ(dz) ,

where zk is the missing value simulated at step k under the conditional density p(y, z, θk−1) and Fn is the
family of σ-algebra generated by the random variables S0, z1, . . . , zn.

(SAEM4) For all θ ∈ Θ,
∫
Rl ||S(y, z)||2p(y, z, θ)µ(dz) < ∞ and Γ(θ) := Covθ(S(y, z)) is continuous with

respect to θ.

With the hypothesis (M1) specifying the form of the complete likelihood and (M5) giving us the existence

of a maximizer θ̂, the algorithm can take a simpler form. Indeed, using the fact that Q is fully defined by a
sufficient statistic S, we remark, by linearity, that the stochastic approximation (2.1) is only applied on this

sufficient statistic. Similarly, the maximization step can be rewritten using only the sufficient statistic and θ̂.
This gives the following algorithm:

– Simulation. Generate zk, a realization of the hidden variable under the conditional density p(y, z, θk).
– Approximation. Update Sk = Sk−1 + γk(S(y, z)− Sk−1)

– Maximization. Set θk+1 = θ̂(Sk).
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We finally assume the following hypothesis:

(A) With probability 1, clos((Sk)k≥1) is a compact subset of S.

Remark 2.1. The assumption (A) can be relaxed by projecting the sequence (Sk)k∈N on increasing compacts.
See [5] for more details.

Under the hypotheses (M1)–(M5), (SAEM1)–(SAEM4) and (A), it was shown in [5] that the distance between
the sequence generated by the SAEM and the set of stationary point of the observed likelihood g converges
almost surely towards 0.

However, in numerous cases, even quite simple [13, 16], the joint likelihood f does not verify the hypothesis
(M1) as it does not belong to the curved exponential family. In the next Section, we will present a trick allowing
us to approximate the maximum likelihood when (M1) is not verified.

In the following, to simplify the notations, we no longer write the variable y in the different expressions.

2.3. Exponentialization process

We now denote by (θ, ψ) the parameters of g where θ ∈ Θ, ψ ∈ Ω = Rm, and we tackle the case where the
model cannot be written under the curved exponential form (2.3) because of the parameter ψ. In that case, the
log-likelihood can only be written as:

f(z, θ, ψ) = exp (−Ψ(θ) + 〈S(z),Φ(θ)〉)h(z, ψ) (2.3)

and f does not belong to the curved exponential family.
Here, some parameters θ are separable from the latent variables z and do not require further transformation.

Other variables ψ are at the source of the computational problem and the exponentialization process will only
apply on those parameters. It must be noticed that, in some cases, θ can be empty.

The trick proposed in [16] is to consider ψ as a Gaussian random variable ψ ∼ ⊗N (ψ, σ2), where the notation
⊗N (., .) denotes a multivariate Gaussian distribution with diagonal covariance matrix. Hence, in this augmented
model, ψ is no longer a parameter but becomes an additional latent variable while a new parameter ψ̄ appears.

The resulting perturbed statistical model is curved exponential, with augmented parameters θ̂ = (θ, ψ) and
augmented random latent variables ẑ = (z, ψ).

The variance σ2 is chosen by the user, and should be reasonably small in order to minimally perturb the
original model. In practice, this variance should at the same time be chosen reasonably large in order to speed-up
the parameter estimation (see experiments in Sect. 4).

The complete log-likelihood of this exponentialized model then writes:

log fσ(ẑ, θ̂) = −Ψ(θ) + 〈S(z),Φ(θ)〉+ log(h(z, ψ))− ||ψ − ψ̄||
2

2σ2
. (2.4)

It is easy to check that the complete log-likelihood now belongs to the curved exponential family with sufficient
statistics: (S(z), ψ). Concerning the parameter θ, the maximization is done as usual: θk+1 = θ̂(Sk) with Sk the
stochastic approximation of the (S(zi))i≤k. The update of the parameter ψ̄ can for its part be written as:

ψ̄k+1 = ψ̄k + γk(ψk − ψ̄k) . (2.5)

If we suppose that this augmented model satisfies the hypotheses (M1)–(M5), (SAEM1)–(SAEM4) and (A),
we know, using the theorem proved in [5], that it will converge towards a critical point of its incomplete
likelihood. However, if this process is used in several applications [19], there is in fact no guarantee that the
algorithm will converge towards a critical point of the incomplete log-likelihood of the initial model.

In the following section, we show that, in general, the parameter returned by the SAEM on the exponentialized
model is indeed not a maximum likelihood of the initial model. However, when σ goes to 0, it converges towards
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a critical point of the incomplete log likelihood of the initial model. We also give an upper bound of the error
made by this process for σ small.

It is interesting to notice that, even if this proof is done in the context of the SAEM algorithm, the same
results can be obtained for the MCMC-SAEM [15] as well as for the Approximate SAEM [2].

3. Distance between the limit point and the nearest critical
point

In this section, we first present an equation satisfied by the limit of the sequence of estimated parameters
of the SAEM algorithm for the exponentialized model. Using this equation, we will then give an upper bound
on the distance between this limit point and the nearest critical point of the incomplete likelihood of the non-
exponential model. This upper bound will in particular show us that this distance tends to 0 when σ goes
to 0.

3.1. Equation verified by the limit

We now state a theorem giving us an equation satisfied by the limit parameter estimated by the SAEM
algorithm applied on the exponentialized model. It is important to remark that, if the set of the critical points
of l is finite then, the SAEM algorithm converges almost surely towards one of them (and not only towards a
point at zero distance). Hence, we can study the parameters returned by the SAEM on the exponential model:
ψ̄σ and look at their behaviour when σ goes to 0.

Theorem 3.1. Assume that the exponentialized model with variance σ verifies the hypotheses (M1)–(M5),
(SAEM1)–(SAEM4), (A) and that Ω = Rm. Assume also that, for all σ > 0,

Lσ :=
{

(θ, ψ̄) ∈ Θ× Ω | ∂θ,ψ̄lσ(θ, ψ̄) = 0
}

is finite where lσ refers to the observed log-likelihood of the exponentialized model of variance σ. Then, the
sequence returned by the SAEM algorithm converges almost surely towards (θ∞, ψ̄σ), solutions of the following
set of equations: ∀1 ≤ k ≤ m, ∫

Rm
vkg(θ∞, ψ̄σ + v) exp(−||v||

2

2σ2
)dv = 0 , (3.1)

where vk is the k-th coordinate of v ∈ Rm and g(θ, ψ) =
∫
Z
f(z, θ, ψ)µ(dz).

Remark 3.2. Here, we suppose Ω = Rm to be able to define a Gaussian distribution on Ω. The following
proofs would be adaptable as long as one can define such a gaussian distribution, necessary for applying the
exponentialization trick.

Proof. The update of Sk, ψk can easily be seen as a Robbins Monro update:{
ψ̄k+1 = ψ̄k + γkvk
Sk+1 = Sk + γk(S(zk)− Sk−1)

where zk, vk are sampled following the conditional law fσ(z, ψ + ψ̄k|θk, ψ̄k).
Under the hypotheses explained Section 2.2, it has been shown that this Robbin Monroe approximation

verifies limk→∞ d((θk, ψ̄k),Lσ) = 0. Moreover, because Lσ is finite, [11] show that the sequence (θk, ψ̄k)k≥0

converges almost surely towards a point (θ∞, ψ̄σ) ∈ Θ×Ω (Thm. 6). Using the regularity of lσ, we deduce that
those parameters verify ∂θ,ψ̄lσ(θ∞, ψ̄σ) = 0.
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Figure 1. Function g studied subsection 3.2, with a maximum reached at
√

2.

By replacing lσ by its value in this equation and using the assumption (M4), we find, for all 1 ≤ k ≤ m:

∫
Rm

(vk − ψ̄σ)g(z, θ∞, v) exp(−||v − ψ̄σ||
2

2σ2
)dvdz = 0

Using a change of variable, we finally find the expected result.

Proposition 3.3. Suppose that a point ψ ∈ Rm verifies:

∀v, θ ∈ Rm ×Θ, g(θ, ψ + v) = g(θ, ψ − v) . (3.2)

Then, ψ is solution to equation (3.1) and can be the parameter returned by the exponential model.

Remark 3.4. It is not necessarily the only possibility of returned parameter. Several values of ψ could be
solutions of equation (3.1).

In particular, a solution of (3.2) is a critical point of g. However, a critical point of g is not always solution
of such an equation and will not always be a solution of equation (3.1). It is in fact easy to find cases where the
maximum is not a solution to equation (3.1) and hence where the exponentialized model introduces a bias in
the estimation of maximum likelihood.

We introduce next subsection a function g presenting such a behaviour and we explain the heuristics behind
Theorem 3.1.

3.2. Heuristics

We want to compare the solution of equation (3.1) to a maximum of the function g. Because of the form of f
supposed in equation (2.3), we see that we can maximize g in θ and ψ independently of the other. In particular,
we still immediately have θ∞ ∈ argmaxθg(θ, ψ) (independent of ψ as can be seen in Eq. (2.3)).

To explain equation (3.1), we introduce the function g : v 7→ 1
v exp(− 1

v2 ) presented Figure 1. This function

has a maximum for ψ =
√

2 but is not symmetric around it. We will see that this lack of symmetry around its
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maximum causes
√

2 not to be solution of equation (3.1). We will look at the value of the integral:

∫
Ω

vg(ψ̄ + v) exp

(
− v2

2σ2

)
dv

for different values of ψ̄ and σ. ψ̄ is a solution of equation (3.1) if and only if this integral is null. It is interesting
to remark that one can consider this integral as an expectation if normalized. On the different figures of this
section, we add a green line at x = 0 to visualize the value of this integral.

First we look at the case ψ̄ =
√

2, the argmax of g, and σ = 1 on Figure 2a. In that case, because g is not

symmetric around its maximum, v 7→ g(
√

2 + v) exp
(
− v2

2σ2

)
is not symmetric either. In particular, it means

that
√

2 is not a solution of equation (3.1) as the integral is strictly positive. This lack of symmetry will stay
true for any value of σ, even small, causing

√
2 never to be solution of equation (3.1).

We now interest ourselves in the case where ψ̄ is not the argmax of g by taking ψ̄ = 1 and σ = 1 on

Figure 2b. Because g is strictly increasing at 1, v 7→ g(1 + v) exp
(
− v2

2σ2

)
increases at 0. As it decreases slower

than it increases, the integral is strictly positive and 1 is not a solution of equation (3.1). The same behaviour
would be observed for any point before

√
2 and any value of σ.

We now look at a value bigger than the maximum: ψ̄ = 4 and σ = 3.67 on Figure 2c. This time, v 7→ g(4 +

v) exp
(
− v2

2σ2

)
decreases at 0. But g decreases slower than it increases. Hence, because we have taken ψ̄ >

√
2,

this difference of variation is compensated and, for this particular value of σ, 4 is solution of equation (3.1).
Finally, let us take a smaller value of σ as in Figure 2d. This time, the integral is negative. Indeed, the

difference of variation before and after the maximum is now way smaller and does not compensate the decrease
of g at 0. To have a solution of equation (3.1) for this particular value of σ, we would need to choose a value of
ψ̄ smaller. This suggests that, as σ goes to 0, the solution of equation (3.1) is closer to

√
2.

From these examples, we can deduce two things. First, the argmax of g is not always solution of the equa-
tion (3.1) even for small values of σ when there is a difference in the speed of variation before and after this
maximum. Moreover, when σ goes to 0, it seems that a parameter closer and closer to the argmax is solution
of equation (3.1).

We illustrate this behaviour by plotting the exact value of the solution of equation (3.1) as a function of σ
in Figure 3 for this particular function g.

In the following, we write ψM the critical point of g(θ, ψ) minimizing the distance to ψ̄σ.
Using the heuristics presented above, we will, in the next Section, state the theorem giving us an upper bound

on the distance to the nearest critical point of g. We will then prove it in the case Ω = R. A more general proof
in Rm for m ≥ 2 is given in the annex.

3.3. Upper bound on the distance between ψ̄σ and the nearest critical point of g

Theorem 3.5. – Assume that the exponential model verifies the hypotheses (M1)-(M5), (SAEM1)-
(SAEM4) and (A). Assume also that, for all σ > 0, Lσ is finite, that L := {ψ ∈ Rm|∂ψg(θ, ψ) = 0} is
compact and that there exists K compact such that, ∀σ > 0, ψ̄σ ∈ K. Then,

d(ψ̄σ,L) −−−→
σ→0

0 .

– Assume also that L is finite and that, for all ψM ∈ L, there exists an integer lM such that g is lM -times
continuously differentiable and such that

∀k ≤ m, ∃i ≤ lM with
∂ig

∂ψik
(ψM ) 6= 0 .
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Figure 2. Plot of v 7→ g(ψ̄ + v) exp(−v
2

2σ2 ) for different values of ψ̄ and σ. The green line

highlights the point x = 0. On the first line, we can see that
√

2 is not a solution of equation (3.1)
because g increases quicker than it decreases. On the second line, since g is increasing at 1, we
see that 1 is not solution of (3.1). Finally, on subfigure 2c, ψ̄ = 4 is solution of equation (3.1)
with σ = 3.67. On subfigure 2d, for a smaller value of σ, the integral (3.1) is this time negative.

We write l = maxψM∈LlM .
Then, there exists c > 0 such that, for σ small enough,

d(ψ̄σ,L) ≤ cσ
2
l+2 . (3.3)

– Suppose that v 7→ g(θ∞, v) and v 7→ vkg(θ∞, v) are integrable for all k between 1 and m. Then, we have
the following approximation of ψ̄σ when σ goes to infinity: for all 1 ≤ k ≤ m,

(ψ̄σ)k −−−−→
σ→∞

∫
Rm vkg(θ∞, v)dv∫
Rm g(θ∞, v)dv

.
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Figure 3. Solution of equation (3.1) as a function of σ for the function g studied subsection 3.2.

Remark 3.6. When m = 1, lM is the smallest integer such that the lM -th derivative of g(θ∞, .) at ψM is not
0. The inequality (3.3) indicates that the convergence will be slower when the function to maximize behaves as
a flat curve around the maximum, which was expected.

If such a lM does not exist, it means that g is constant in at least one direction around ψM .

Remark 3.7. We need to take a maximum over all ψM in L since, from one σ to another, ψσ can approach a
different maximum ψM ∈ L. It is also why the upper bound depends on this maximum l. It is constrained by
the critical point for which the convergence is the slowest.

Remark 3.8. For m = 1, we have the exact value of the constant in (3.3):

c = max
ψM∈L

(12(lM − 1)!
||g||∞

|∂lMψ g(θ∞, ψM )|

) 1
lM+2

 .
Remark 3.9. The results presented here are still true in the case of the SAEM-MCMC algorithm. Indeed,
in that case, the limit parameters still verify limk→∞ d((θk, ψ̄k),Lσ) = 0. Hence, the equation (3.1) and the
Theorem 3.5 can still be verified using the same steps as for the SAEM algorithm.

In the following, we will present the proof in the case m = 1. The proof in the multi-dimensional case follows
the same ideas than in dimension one but is more technical. It is presented in the annex.

Proof. We present the proof in the case m = 1. As the maximum does not depend of θ∞ and to simplify
notations, we will forget the variable θ in g and use g(ψ) = g(θ∞, ψ).

First step: d(ψ̄σ,L) −−−→
σ→0

0

We suppose that ψ̄σ is never a critical point of g for σ small enough. Otherwise, we directly have the result.
The equation (3.1) writes: ∫

R
vg(ψ̄σ + v) exp(− v2

2σ2
)dv = 0 .

The first step is to show that d(ψ̄σ,L) −−−→
σ→0

0. By contradiction, even if it means extracting a subsequence,

we can suppose that there exists c > 0 such that ∀σ > 0, d(ψ̄σ,L) > 3c.
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Because there is no critical point between ψ̄σ − c and ψ̄σ + c, g is either increasing or decreasing on [ψ̄σ −
c, ψ̄σ + c]. We first suppose it is increasing. In particular, K0 := K \ {y | d(y,L) < c} is compact and thus
c0 := inf{g′(y) |y ∈ K0, g

′(y) ≥ 0} > 0. According to equation (3.1), the integral on [−c, c] must have the same
absolute value as the integral on [−c, c]c. However, we will show that, when σ goes to zero, the first one converges
towards 0 much more slowly than the second one. Indeed,∫

|v|≥c
vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≥

∫
v≤−c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

≥ ||g||∞
∫
v≤−c

v exp(− v2

2σ2
)dv

≥ −σ2||g||∞ exp(− c2

2σ2
) .

On the other hand, we have:∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv =

∫
0≤v≤c

v
(
g(ψ̄σ + v)− g(ψ̄σ − v)

)
exp(− v2

2σ2
)dv .

Using the mean value theorem, for all 0 ≤ v ≤ c, there exists ψ̃v ∈ [ψ̄σ − v, ψ̄σ + v] ⊂ K0 such that g(ψ̄σ +
v)− g(ψ̄σ − v) = 2vg′(ψ̃v) ≥ 2c0v. Hence, we find:∫

|v|≤c
vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≥ 2c0

∫
0≤v≤c

v2 exp(− v2

2σ2
)dv .

But, using an integration per part and defining

erf(x) :=
2√
π

∫ x

0

e−t
2

dt ,

we have: ∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≥ 2c0σ

2

[
−c exp(− c2

2σ2
) + σ

√
π

2
erf(

c√
2σ

)

]
.

Hence, because ∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv = −

∫
|v|≥c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv ,

we have:

||g||∞ exp(− c2

2σ2
) ≥ 2c0

[
−c exp(− c2

2σ2
) + σ

√
π

2
erf(

c√
2σ

)

]
.

It is easy to find the same inequality if g is decreasing on [ψ̄σ − c, ψ̄σ + c]. Indeed, in that case, using the fact
that the integral on {v ≤ c} is negative and using the same inequalities as above for the integral on {v ≥ c}, we
first show that ∫

|v|≥c
vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≤ σ2||g||∞ exp(− c2

2σ2
) .
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Then, by considering this time c1 := sup{g′(y) |y ∈ K0, g
′(y) ≤ 0} < 0, and using again the mean value theorem,

we find: ∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≤ 2c1

∫
0≤v≤c

v2 exp(− v2

2σ2
)dv

≤ 2c1σ
2

[
−c exp(− c2

2σ2
) + σ

√
π

2
erf(

c√
2σ

)

]
.

Hence, for all σ > 0, there exists C := 2 max(c0,−c1) > 0 such that:

||g||∞
σ

exp(− c2

2σ2
) ≥ C

[
− c
σ

exp(− c2

2σ2
) +

√
π

2
erf(

c√
2σ

)

]
.

By taking σ to 0 and using the fact that erf(x) −−−−→
x→∞

1, we find C ≤ 0 which is a contradiction.

Hence, we have proved that

d(ψ̄σ,L) −−−→
σ→0

0 .

The next step is to find an upper bound on d(ψ̄σ,L).
Second step: Search of the upper bound
In the following, we will suppose that the critical point towards which ψ̄σ converges is a maximum. In

practice, it will always be the case as any other critical point would be unstable numerically. Theoretically, a
set of conditions (LOC1)-(LOC3) are given in [11] insuring the convergence towards a local maximum.

We write ψM the closest critical point to ψ̄σ and ασ = |ψ̄σ −ψM |. We also write lM the smallest integer such
that g(lM )(ψM ) 6= 0. Moreover, as explained above, we assume that ψM is a maximum. It must be remarked that
ψM depends on σ. However, as L is finite, we will be able to consider maxima at the end of the proof. Since we
assume ψM maximum, lM is even and, for σ small enough, since g(lM ) is continuous, ∀v ∈ [ψ̄σ − ασ, ψ̄σ + ασ],

g(lM )(v) ≤ 1

2
g(lM )(ψM ) := −cM < 0 .

As before, we will split up the integral (3.1) in two parts: {v||v| < ασ} and {v||v| > ασ}. The idea behind the
computations is that ασ cannot be too big without making the absolute value of the integral on {v||v| < ασ}
strictly superior than the one on {v||v| > ασ}.

On {v | |v| > ασ} we can use the same upper and lower bounds as before to find:∣∣∣∣∣
∫
|v|≥ασ

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

∣∣∣∣∣ ≤ σ2||g||∞ exp(− α2
σ

2σ2
) . (3.4)

On {v | |v| < ασ}, we use twice the mean value theorem to find, for any v ∈ [0, ασ], there exist ψ̃0
v ∈ [ψ̄σ −

v, ψ̄σ + v] and ψ̃1
v ∈ [ψ̄σ − ασ, ψ̄σ + ασ] such that:

g(ψ̄σ + v)− g(ψ̄σ − v) = 2vg′(ψ̃0
v) = 2v(g′(ψ̃0

v)− g′(ψM ))

= 2v(ψ̃0
v − ψM )lM−1g(lM )(ψ̃1

v)/(lM − 1)!

≥ 2v(ψ̄σ + v − ψM )lM−1g(lM )(ψ̃1
v)/(lM − 1)! .
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We first suppose that g is increasing on [ψ̄σ − ασ, ψ̄σ + ασ]. Then, ασ = ψM − ψ̄σ and:

g(ψ̄σ + v)− g(ψ̄σ − v) ≥ 2cM
(lM − 1)!

v(ασ − v)lM−1 .

Hence, computing the integral (3.1) on {v | |v| < ασ}, we find:∫
|v|≤ασ

vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≥ 2cM

(lM − 1)!

∫ ασ

0

v2(ασ − v)lM−1 exp(− v2

2σ2
)dv

≥ 2cM
(lM − 1)!

αlM+2
σ

∫ 1

0

v2(1− v)lM−1 exp(−α
2
σv

2

2σ2
)dv

≥ 2cM
(lM − 1)!

αlM+2
σ exp(− α2

σ

2σ2
)

∫ 1

0

v2(1− v)dv .

Finally, by combining this inequality and (3.4), we find:

σ2||g||∞ exp(− α2
σ

2σ2
) ≥ cM

6(lM − 1)!
αlM+2
σ exp(− α2

σ

2σ2
) .

Hence, if σ ≤ 1,

ασ ≤
(

6(lM − 1)!
||g||∞
cM

)1/(lM+2)

σ
2

lM+2

≤ max
ψM∈L

((
6(lM − 1)!

||g||∞
cM

)1/(lM+2)
)
σ

2
l+2 .

Because L is finite, we indeed have a maximum which is strictly positive.
In the case where g in decreasing on [ψ̄σ − ασ, ψ̄σ + ασ], we have ασ = ψ̄σ − ψM and it is easy to show that

we have this time

g(ψ̄σ + v)− g(ψ̄σ − v) ≤ −2cMv(ασ − v)lM−1/(lM − 1)! .

Hence, we can use the same inequalities as before to find again:

ασ ≤ max
ψM∈L

((
6(lM − 1)!

||g||∞
cM

)1/(lM+2)
)
σ

2
l+2 .

Third step: Approximation when σ goes to infinity
We use again the equation (3.1). For all σ > 0,∫

R
vg(ψ̄σ + v) exp(− v2

2σ2
)dv = 0 .

Using the change of variable ψ̄σ + v, we find:

ψ̄σ =

∫
R vg(v) exp

(
− (v−ψ̄σ)2

2σ2

)
dv∫

R g(v) exp
(
− (v−ψ̄σ)2

2σ2

)
dv

.
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But ψ̄σ is supposed to stay in a compact so, ∀v ∈ R, exp
(
− (v−ψ̄σ)2

2σ2

)
−−−−→
σ→∞

1. Using the integrability of g and

v 7→ vg(v), it is easy to conclude using the dominated convergence theorem.

4. Simulation of a counter example

In this Section, we demonstrate that the maximum likelihood of g is indeed not reached by the SAEM
algorithm on the exponentialized model on a concrete situation.

4.1. Application of the SAEM algorithm to the exponentialized model

We choose to study a heteroscedastic model where the variance depends on the observation. This model has
been used in [16] in order to analyze the growth of orange trees. The parameters to estimate are the age β1 at
half asymptotic trunk circumference ψi and the grow scale β2 of n orange trees according to the measurement
of their circumference yi,j at m different ages xj .

We suppose that our observation yi,j verifies, for i between 1 and n and j between 1 and m:

yi,j =
φi

1 + exp
(
−xj−β1

β2

) (1 + εi,j) ,

where εi,j are independent noises of distribution N (0, σ2
ε) of variance σ2

ε supposed to be known. φi is treated as
a random effect and is supposed to follow a Gaussian distribution of mean µ to estimate and known variance
τ2.

Such a model cannot be written in an exponential form due to the parameters β1 and β2 and we will hence
consider an exponentialized model where β1 and β2 are considered as random effects with β1 ∼ N (β̄1, σ

2) and
β2 ∼ N (β̄2, σ

2).
Writing

h(φ, β1, β2, x) =
φ

1 + exp
(
−x−β1

β2

) ,
the complete likelihood of the exponentialized model can then be written as:

f(y, φ, β1, β2, θ) = 2πσ2(2πσ2
ε)−nm/2(2πτ2)−n/2 · exp

− 1

2σ2
ε

∑
i,j

(
yi,j

h(φi, β1, β2, xj)
− 1

)

−
∑
i,j

log(h(φi, β1, β2, xj)) −
∑
i

(φi − µ)2

2τ2
− (β1 − β̄1)2

2σ2
− (β2 − β̄2)2

2σ2

]
,

where θ = (µ, β̄1, β̄2) are the exponentialized model parameters to estimate.

Remark 4.1. It would be easy to suppose τ and σ2
ε unknown and estimate them using the SAEM algorithm.

Those parameters would leave the joint distribution curved exponential and it would not be necessary to further
exponentialize the model. To simplify, we assume them known here.
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It is then easy to show that this likelihood belongs to the curved exponential family with sufficient statistics
being:  S1(φ) =

∑
i φi ,

S2(β1) = β1 ,
S3(β2) = β2 .

The maximum likelihood estimator can then be expressed as a function of S1(φ), S2(β1) and S3(β2) as follows:
µ̂ = S1(φ)/n ,
ˆ̄β1 = S2(β1) ,
ˆ̄β1 = S3(β2) .

Because we cannot easily sample (φ, β1, β2) from the conditional distribution, we will not directly use the
SAEM algorithm but the SAEM-MCMC algorithm. We replace the sampling step by one iteration of a Metropo-
lis Hastings algorithm targeting the posterior distribution. Under hypotheses presented in [15], this process
converges towards the same limit as the SAEM algorithm. In particular, it has been proved in [16] that those
conditions are indeed verified here and thus that the algorithm converges. Moreover, as the limit is the same
than the one given by the SAEM, our Theorem 3.5 still applies.

We then create a synthetic dataset of a thousand observations following this model (100 subjects observed at
10 different ages). Knowing the exact value of µ, we plot the incomplete likelihood of the non-exponentialized
model gNE as a function of (β1, β2) (Fig. 4a). We also plot its behaviour around the maximum and along the
axes β1 and β2 (Figs. 4b and 4c).

As we can see, the function is not symmetric around the maximum. Hence, there should be a bias while
estimating the maximum likelihood using the exponentialized model. More precisely, we can see the error in β2

should be larger than the one in β1 as the function is less symmetric along the y axis than along the x axis.
To verify this heuristic, we use the SAEM-MCMC algorithm and launch our algorithm a hundred times for

different values of σ. We then compare the results given by the SAEM-MCMC algorithm to the exact value of
the maximum likelihood of the initial model. Because we know the exact parameters from which the dataset
has been simulated, we are also able to compute numerically the solution of the equation (3.1) as a function of
σ. The results are presented in Figure 5.

For σ ≥ 1, the results of the simulation follow our theory with the estimated parameters estimated close to
the solution of the equation (3.1). Moreover, as expected, the error is bigger in the estimation of β2 than in the
estimation of β1 (see axis scale).

However, for a small σ, the algorithm does not converge. Indeed, in that case, the variance of the conditional

distribution is really small as it is proportional to exp
(
− (β−β̄)2

2σ2

)
. In fact, although the algorithm converges

theoretically, numerically, the time of convergence is too long to be achieved, and the returned parameters stay
near their initial values (β1 = 6, β2 = 34 here).

4.2. Proposition of a new algorithm

To prevent this phenomenon, we now propose a transformation of the algorithm that will allow a better
estimation of the real maximum of the non-exponentialized likelihood. We will still use the exponential trick
but using an adaptive σ along the iterations. The goal is to allow the estimate to escape from its initial value
while converging towards a point closer to the true maximum.

We propose to first run the algorithm with σ = 1 for a certain number kσ of iterations and then reduce the
value of σ by multiplying it by 0.9. We iterate this process p times, with p fixed, every kσ iterations. We then
let the algorithm converge with this small, now fixed, value of σ = σend. This may be seen as launching the
algorithm several times with an initialization closer and closer to the true maximum likelihood. In other words,
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Figure 4. Plot of the incomplete likelihood of the initial model as a function of (β1, β2) along
different Sections for µ = 5.

it consists in reducing the value of σ along iterations until a certain fixed small value σend is reached. At this
point, we again have a classical MCMC-SAEM but with a clever initialization and a small sigma that allows a
quicker convergence. In particular, the results of the previous theorem can still be applied with variance σend.
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Figure 5. The red line represents the theoretical value towards which the algorithm is supposed
to converge. The red points are the means of the parameters estimated over 100 iterations with
their standart deviations represented by the red zone. In dotted blue is the maximum likelihood
of the initial model. In magenta, the theoretical limit towards which the parameter converges
when σ goes to infinity. Finally, the green cross represents the value returned while varying the
variance of the exponentialized model throughout the algorithm.

While the algorithm will not converge towards the real maximum likelihood estimate as σend is still positive
during the last iterations, the error should be smaller than before as the variance has been significantly reduced.

This transformation can be compared to a simulated annealing, as implemented, for instance in the Monolix
software [22]. Here however, we change the model by modifying only the law of the prior ψ, whereas, with
simulated annealing, the whole log conditional distribution is divided by the temperature. The two processes
could still be used in conjunction, either with only one temperature parameter or with a temperature parameter
and another parameter controlling the decrease of σ.

To test this new algorithm, we launch this process a hundred times. We choose kσ = 1000 and reduce the
value of σ from 1 to 0.04. Once this value of σ = 0.04 is reached, we let the algorithm converge. We present the
means and variances of the estimated parameters in Table 1 and as green crosses in Figure 5. If we do not reach
the maximum likelihood of the initial model, the error for β2 is now smaller: 1.04% while it was at least 2.6%
without reducing the variance throughout the algorithm. As for β1, the error is of the same order as before.

Remark 4.2. Here, the value of kσ and the final value of σ are fixed in advance. One could try to automatically
choose kσ along the algorithm by checking the variation of the estimated parameters along the iterations and
reduce the value of σ when those parameters begin to oscillate around the limit parameter ψ̄σ. Similarly, one
could choose to reduce the value of σ until the values of ψ̄σ stay similar from one σ to another.



ON THE CURVED EXPONENTIAL FAMILY IN THE SAEM 425

Table 1. Mean and variance of the parameters estimated while reducing the variance through-
out the algorithm. To be compared with the maximum likelihood of the non-exponentialized
model reached for β1 = 6.3 and β2 = 32.28.

Mean of β̄1 Variance of β̄1 Mean of β̄2 Variance of β̄2

6.21 0.10 32.62 0.26

Remark 4.3. In [16], the authors use this model and algorithm on a real dataset for different values of σ. They
conclude that the estimation of (β1, β2) does not seem to depend on the choice of σ. In fact, for the particular
values of this real dataset, the likelihood is practically symmetric around its maximum. Hence, the error made
in that case is indeed small for any σ.

5. Conclusion

In this paper, we have proved that the exponentialization process does not converge in general towards the
maximum likelihood of the initial model using the SAEM or SAEM-MCMC algorithm. If the error converges
towards 0 when σ goes to 0, it is numerically impossible to take σ too small as the algorithm is numerically
never able to converge. To overcome this problem, we propose a new numerical scheme consisting in launching
the algorithm several times while making the variance of the exponentialized model decrease. Thanks to our
theoretical results, we show that this new process converges towards a better estimation of the maximum of
likelihood of the initial model, as verified by the numerical simulations. Hence, we are able to approach the exact
maximum likelihood even in the case where our likelihood does not belong to the curved exponential family.
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Appendix A. Proof of Theorem 2 for m ≥ 2

Proof. We prove the Theorem 2 in the case m ≥ 2 and l = 2. For l ≥ 3, the proof could be obtained using
Taylor Lagrange formula at a higher order.

We recall the following equation verified by the limit (Thm. 1):

∫
Rm

vkg(θ∞, ψ̄σ + v) exp(−||v||
2

2σ2
)dv = 0 , (A.1)

A.1 First step: d(ψ̄σ,L) −−−→
σ→0

0

We suppose that d(ψ̄σ,L) does not converge towards 0. Even if it means extracting a subsequence, we can
suppose that, ∃c > 0,∀σ > 0, d(ψ̄σ,L) > 3c. As for the one-dimensional proof, we forget the θ in g and write
g(ψ) = g(θ∞, ψ). We also set K0 = K \ {y | d(y,L) < c}.

We want to show that

∃c0 > 0,∃c1 > 0,∀y ∈ K0,∃1 ≤ i ≤ m,∀x verifying ||x− y|| ≤ c1, |
∂g

∂ψi
(x)| > c0 . (A.2)
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By contradiction, we can take c0 = 1/n and extract a converging subsequence in the compact K0 to find:

∀c1 > 0,∃y ∈ K0,∀1 ≤ i ≤ m,∃x verifying ||x− y|| ≤ c1, |
∂g

∂ψi
(x)| = 0 .

However, because y /∈ L, there exists 1 ≤ j ≤ m such that | ∂g∂ψj (y)| 6= 0. If we take c1 small enough then, for all

x such that ||y − x|| ≤ c1, | ∂g∂ψj (x)| 6= 0 and we find a contradiction. Hence, the condition (A.2) is verified.

Hence,

∃c0 > 0,∃c1 > 0,∀σ > 0,∃k ∈ [|1,m|],∀v verifying ||v − ψ̄σ|| ≤ c1, |
∂g

∂ψk
(v)| > c0 .

As for the proof in dimension 1, we split up our integral in two parts: I1 = {v | ∀i ∈ [|1, n|], vi ≤ c2} and
I2 = {v | ∃i ∈ [|1, n|], vi ≥ c2} where c2 is chosen such that {v | ∀i ∈ [|1, n|], vi ≤ c2} ⊂ {v | ||v|| ≤ c1}.

First, on I2,

∫
I2

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥

∫
I2,vk≤0

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv

≥ ||g||∞
(∫

Rm,vk≤0

vk exp(−||v||
2

2σ2
)dv −

∫
I1,vk≤0

vk exp(−||v||
2

2σ2
)dv

)
≥ −σ2(

√
2πσ)m−1||g||∞

(
1−

(
1− exp(− c22

2σ2
)

)
erf

(
c2√
2σ

)m−1
)

where erf is the error function defined by erf(x) = 2√
π

∫ x
0
e−t

2

dt.

We now integrate on I1. We write v−k the vector such that, ∀i 6= k, (v−k)i = vi and (v−k)k = −vk. Then,
using the mean value theorem, we have

∫
I1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv =

∫
I1,vk≤0

vk(g(ψ̄σ + v)− g(ψ̄σ + v−k)) exp(−||v||
2

2σ2
)dv

=

∫
I1

2v2
k

∂g

∂ψk
(ψ̃v) exp(−||v||

2

2σ2
)dv

where, for i 6= k, (ψ̃v)i = (ψ̄σ)i + vi and (ψ̃v)k ∈ [(ψ̄σ)k − vk, (ψ̄σ)k + vk]. But we know that ∂g
∂ψk

does not cancel
on I1. Hence, it is either positive or negative. If it is positive, we find:

∫
I1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥ 2c0

∫
I1,vk≤0

v2
k exp(−||v||

2

2σ2
)dv

≥ 2c0(
√

2πσ)m−1σ2

[
−c2 exp(− c22

2σ2
) + σ

√
π

2
erf(

c2√
2σ

)

]
erf

(
c2√
2σ

)m−1
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Finally, using (A.1), we have:

2c0

[
−c2
σ

exp(− c22
2σ2

) +

√
π

2
erf(

c2√
2σ

)

]
erf

(
c2√
2σ

)m−1

≤ |g||∞

1− erf
(

c2√
2σ

)m−1

σ
+

1

σ
exp(− c22

2σ2
)erf

(
c2√
2σ

)m−1

 (A.3)

But,

erf(x) =x→∞ 1− exp(−x2)√
πx

+ o

(
exp(−x2)

x

)
.

Hence, when σ goes to 0, the left-hand side of the inequality goes to
√
πc0 while the right-hand side goes to 0.

We thus find a contradiction.
Finally, if ∂g

∂ψk
is not positive on I1 (as supposed here) but negative, we can use the same method to find

an upper bound on the integral on I2 and on the integral on I1. We would then find the same inequality as in
(A.3).

Hence, in all cases, we have proved that d(ψ̄σ,L) −−−→
σ→0

0.

A.2 Second step: Choice of the basis

The upper bound using second derivatives is more complex to obtain for m > 1 as crossed partial derivatives
appear that can be either positive or negative. To control those parts, the choice of the compact is more complex.
We will first show that we can express our vector v and our function g in any orthonormal basis and still have
the equation (A.1).

Indeed, let P be a change-of-basis matrix. Then, because the equation (A.1) is linear on vk and true for all
k ∈ [|1,m|], we still have:

∫
Rm

(Pv)kg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv = 0 .

Using the change of variable u = Pv, we then find, for any k ∈ [|1,m|]:

∫
Rm

ukg(P−1(Pψ̄σ + u)) exp(−||u||
2

2σ2
)dv = 0 .

We write h : u 7→ g(P−1u). Hence, h verifies the equation (A.1).
We can thus choose to express our function g in any base. In particular, we write ψM the nearest maximum

of ψ̄σ. Then, the Hessian of g at ψM is a negative symmetric matrix. Hence, it is diagonal in an orthonormal
basis. We choose to express g in that basis. With a change of notation, we can hence assume that the hessian
of g at ψM is diagonal. In particular, for all i 6= j ∈ [|1,m|],

∂2g

∂ψ2
i

(ψM ) < 0 and
∂2g

∂ψi∂ψj
(ψM ) = 0 .
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In particular, we are now able to impose a condition between the second derivatives of g on a compact centered
around ψM . There exists K0 compact such that,

− sup
K0

∂2g

∂ψ2
k

>(m− 1) sup

{
∂2g

∂ψk∂ψj
(v)

∣∣∣∣ v ∈ K0, j 6= k,
∂2g

∂ψk∂ψj
(v) > 0

}
− m− 1

2
inf

{
∂2g

∂ψk∂ψj
(v)

∣∣∣∣ v ∈ K0, j 6= k,
∂2g

∂ψk∂ψj
(v) < 0

} (A.4)

A.3 Third step: Search of the upper bound

As for the proof in 1D, we will split our integral into two parts and say that neither can be too big for the
complete integral to be equal to 0. More precisely, for σ > 0, let k be the coordinate such that |(ψ̄σ)k− (ψM )k| =
max |(ψ̄σ)i − (ψM )i|. We write for i ∈ [|1,m|], (ασ)i = |(ψ̄σ)i − (ψM )i|. The goal is to show that (ασ)k goes to
0 when σ goes to 0.

Let c > 0 and σ small enough such that

I1 :=
{
v ∈ Rm | vk ∈ [−(ασ)k, (ασ)k] and, for i 6= k, vi ∈ [−c, c]

}
⊂ K0 .

On Ic1 , we use the same upper bounds as in the first step to find:∫
Ic1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥ −σ2(

√
2πσ)m−1||g||∞

·

(
1−

(
1− exp(− (ασ)2

k

2σ2
)

)
erf

(
c√
2σ

)m−1
) (A.5)

On I1 we will use once again the mean value theorem, first between ψ̄σ + v−k and ψ̄σ + v to find ψ̃v ∈ K0

such that, for i 6= k, (ψ̃v)i = (ψ̄σ + v)i, (ψ̃v)k ∈ [(ψ̄σ − v)k, (ψ̄σ + v)k] and

g(ψ̄σ + v)− g(ψ̄σ + v−k) = 2vk
∂g

∂ψk
(ψ̃v)

and then between ψ̃v and ψM to find ψ̃1
v ∈ K0 such that:

∂g

∂ψk
(ψ̃v) =

m∑
i=1

(ψ̃v − ψM )i
∂2g

∂ψk∂ψi
(ψ̃1
v) .

Even if it means changing basis, we can assume that, ∀i ∈ [|1,m|], (ασ)i = |(ψ̄σ)i − (ψM )i| = (ψM )i − (ψ̄σ)i
without modifying the hypothesis (A.4).

The difficulty to find upper bounds is that ∂2g
∂ψk∂ψi

(ψ̃1
v) and also (ψ̃v −ψM )i can be either positive or negative.

Using those previous equalities and the facts that ∂2g
∂ψ2

k
< 0 on K0 and (ψ̃v − ψM )k ≤ (ψ̄σ + v − ψM )k =

(v − ασ)k, we have:

∫
I1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥ 2

∫
I1,vk≥0

v2
k

m∑
i=1

(v − ασ)i
∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
)dv

We will study the different terms of the sum differently according to i = k, or i 6= k.
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First, for i = k, using the fact that (v − ασ)k ≤ 0 on I1, we can compute the integral using integration per
part and the function erf defined above to find:∫

I1,vk≥0

2v2
k(v − ασ)k

∂2g

∂ψ2
k

(ψ̃1
v) exp(−||v||

2

2σ2
)dv ≥ sup

K0

(
∂2g

∂ψ2
k

)∫
I1,vk≥0

2v2
k(v − ασ)k exp(−||v||

2

2σ2
)dv

= −2 sup
K0

(
∂2g

∂ψ2
k

)
(
√

2πσ)m−1erf

(
c√
2σ

)m−1

(ασ)4
k

[√
π

2

(
σ

(ασ)k

)3

erf

(
(ασ)k√

2σ

)

−2

(
d

(ασ)k

)4(
1− exp(− (ασ)k

2σ2
)

)]

For i 6= k, we do similar computations remarking that:

– if ∂2g
∂ψk∂ψi

(ψ̃1
v) > 0 and (v − ασ)i > 0,

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
) > 0

– if ∂2g
∂ψk∂ψi

(ψ̃1
v) > 0 and (v − ασ)i < 0, with K+

0 =
{
v ∈ K0| ∂2g

∂ψk∂ψi
(v) > 0

}
,

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
) > 2v2

k(v − ασ)i exp(−||v||
2

2σ2
) sup
K+

0 ,i

∂2g

∂ψk∂ψi

– if ∂2g
∂ψk∂ψi

(ψ̃1
v) < 0 and (v − ασ)i < 0

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
) > 0

– if ∂2g
∂ψk∂ψi

(ψ̃1
v) < 0 and (v − ασ)i > 0, with K−0 =

{
v ∈ K0| ∂2g

∂ψk∂ψi
(v) < 0

}
,

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
) > 2v2

k(v − ασ)i exp(−||v||
2

2σ2
) inf
K−

0 ,i

∂2g

∂ψk∂ψi

Hence, for i 6= k, we write I−1 = {v ∈ I1 | vk ≥ 0, vi ≤ (ασ)i} and:∫
I−1

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
)dv ≥ sup

K+
0 ,i

∂2g

∂ψk∂ψi

∫
I−1

2v2
k(v − ασ)i exp(−||v||

2

2σ2
)dv

= 2 sup
K+

0 ,i

∂2g

∂ψk∂ψi
(
√

2πσ)m−1erf

(
c√
2σ

)m−1

(ασ)4
k

·

[√
π

2

(
σ

(ασ)k

)4

erf

(
(ασ)k√

2σ

)
−
(

σ

(ασ)k

)3

exp

(
− (ασ)2

k

2σ2

)]

·

exp
(
−c2
2σ2

)
− exp

(
−(ασ)2j

2σ2

)
√

2πerf
(

c√
2σ

) − 1

2

(ασ)j
d

1 +
erf
(

(ασ)j√
2σ

)
erf
(

c√
2σ

)


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Similarly, with I+
1 = {v ∈ I1 | vk ≥ 0, vi ≥ (ασ)i},∫

I+1

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
)dv ≥ inf

K−
0 ,i

∂2g

∂ψk∂ψi

∫
I+1

2v2
k(v − ασ)i exp(−||v||

2

2σ2
)dv

= 2 inf
K−

0 ,i

∂2g

∂ψk∂ψi
(
√

2πσ)m−1erf

(
c√
2σ

)m−1

(ασ)4
k

·

[√
π

2

(
σ

(ασ)k

)4

erf

(
(ασ)k√

2σ

)
−
(

σ

(ασ)k

)3

exp

(
− (ασ)2

k

2σ2

)]

·

exp
(
−(ασ)2j

2σ2

)
− exp

(
−c2
2σ2

)
√

2πerf
(

c√
2σ

) − 1

2

(ασ)j
d

1−
erf
(

(ασ)j√
2σ

)
erf
(

c√
2σ

)



Those three upper bounds are quite complex, but we can remark that they can be written as

dm−1erf
(

c√
2σ

)m−1

(ασ)4
kh
(

(ασ)k
σ

)
.

We will now see that this function h is strictly positive at infinity.
Indeed, using all the previous upper bounds presented previously, equation (A.1) and using the fact that

erf
(

c√
2σ

)
≥ 1/2 for σ small enough, we can write:

(ασ)4
kerf

(
c√
2σ

)m−1
(
h
(αk
σ

)
−

1− erf
(
c/
√

2σ
)

σ2erf
(
c/
√

2σ
) ) ≤ ||g||∞

2
σ2

with:

h(x) =
ex

2/2

x4

[
− sup

K0

∂2g

∂ψ2
k

(√
π

2
xerf(x/

√
2)− 2(1− e−x

2/2)

)
+

(√
π

2
xerf(x/

√
2)− x2e−x

2/2

)
·

[
(m− 1)( inf

K−
0 ,i

∂2g

∂ψk∂ψi
− sup
K+

0 ,i

∂2g

∂ψk∂ψi
)(

2√
2πx

+
1

2
)

− m− 1

2
sup
K+

0 ,i

∂2g

∂ψk∂ψi

]]

is a function independent of ασ and σ.
In particular, when x goes to infinity, h(x) is equivalent to:

ex
2/2

x4

√
π

2
x

[
− sup

K0

∂2g

∂ψ2
k

+
m− 1

2
inf
K−

0 ,i

∂2g

∂ψk∂ψi
− (m− 1) sup

K+
0 ,i

∂2g

∂ψk∂ψi

]

But, according to the hypothesis done on the compact K0, this is strictly positive.
Hence, there exist c0 > 0, c1 > 0 such that, if x ≥ c1, h(x) > c0 > 0.
We will now suppose that (ασ)k ≥ c1σ. Then, h

(
αk
σ

)
≥ c0 > 0. Moreover,

1− erf
(
c/
√

2σ
)

σ2erf
(
c/
√

2σ
) −−−→

σ→0
0 .
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So, for σ small enough, it is smaller than c0/2 and we finally find:

(ασ)4
k ≤ c0||g||∞

σ2

erf
(

c√
2σ

)m−1

Using the fact that erf
(

c√
2σ

)m−1

−−−→
σ→0

1 gives us finally the existence of a constant c > 0 such that

d(ψ̄σ,L) ≤ (c1σ) ∨ (c
√
σ)

which allows us to conclude for σ small enough.

A.4 Fourth step: Approximation when σ goes to infinity

The last step follows the exact same steps as for m = 1. It is copied here.
We use again the equation (A.1). For all σ ∈ R, ∀1 ≤ k ≤ m,∫

Rm
vkg(ψ̄σ + v) exp(−||v||

2

2σ2
)dv = 0

Using the change of variable ψ̄σ + v, we find:

(ψ̄σ)k =

∫
Rm vkg(v) exp

(
− ||v−ψ̄σ||

2

2σ2

)
dv∫

Rm g(v) exp
(
− ||v−ψ̄σ||

2

2σ2

)
dv

But ψ̄σ is supposed to stay in a compact so, ∀v ∈ Rm, exp
(
− ||v−ψ̄σ||

2

2σ2

)
−−−−→
σ→∞

1. Using the integrability of g

and v 7→ vkg(v), it is easy to conclude using the dominated convergence theorem.
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