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LAW OF LARGE NUMBERS FOR A TWO-DIMENSIONAL CLASS
COVER PROBLEM

ELvAN CEYHANY®, JoHN C. WIERMAN? AND PENGFEI XIANG®

Abstract. We prove a Law of Large Numbers (LLN) for the domination number of class cover
catch digraphs (CCCD) generated by random points in two (or higher) dimensions. DeVinney and
Wierman (2002) proved the Strong Law of Large Numbers (SLLN) for the uniform distribution in one
dimension, and Wierman and Xiang (2008) extended the SLLN to the case of general distributions in
one dimension. In this article, using subadditive processes, we prove a SLLN result for the domination
number generated by Poisson points in R?. From this we obtain a Weak Law of Large Numbers (WLLN)
for the domination number generated by random points in [0, 1]* from uniform distribution first, and
then extend these result to the case of bounded continuous distributions. We also extend the results
to higher dimensions. The domination number of CCCDs and related digraphs have applications in
statistical pattern classification and spatial data analysis.
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1. INTRODUCTION

1.1. The class cover problem

The class cover problem (CCP) is motivated by its applications in pattern classification [18]. Its study was
initiated by Cowen and Cannon in [3], and has been actively pursued, since its solution can directly be used to
generate classifiers competitive with other methods in the literature (see [20, 23]).

We first give a formal description of the CCP: Let X, = {X;,X5,...,X,,} and V,,, = {11,Y5,...,Y,,} be
two sets of i.i.d. random variables taking values in a sample space ) and are from classes X and ) with class-
conditional distribution functions F'x and Fy, respectively. Consider a dissimilarity function p: Q x Q@ — R,
such that p(«, 8) = p(B, @) > p(a,a) =0 for all a, B € ), where R, denotes the nonnegative real numbers. We
assume X;’s are independent of Y;’s, and all X;’s and Y}’s are distinct with probability one. For each X;, we
define its covering ball B(X;) = {w € Q: p(X;,w) < mjin p(X;,Y;)}. A class cover of X, is a subset of covering

balls whose union contains all X;’s. Obviously, the set consisting of all covering balls of X;’s constitutes a class
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cover for class X'. However, we want to find a cover of class X that is as small as possible. Therefore, the CCP
we consider is equivalent to finding a minimum cardinality class cover. DeVinney [8] proved that solving the
CCP is in general an NP-hard problem.

Furthermore, the CCP can be converted to a purely graph theoretic problem of finding minimum dominating
sets. In a digraph D = (V, A), a vertex u € V' dominates itself and all vertices of the form {v : (u,v) € A}. A
dominating set Sp for the digraph D is a subset of V' such that each vertex u € V is dominated by a vertex
in Sp. A minimum dominating set ST, is a dominating set of minimum cardinality and the domination number
~(D) is defined as (D) := |S}|, where | - | denotes the set cardinality functional. The class cover catch digraph
(CCCD) induced by a CCP for a realization of X, is the digraph D = (V, A) with the vertex set V = &), and
there is an arc (z;,x;) in arc set A if and only if z; € B(z;). It is easy to see that the CCP is equivalent to
“finding a minimum dominating set of the induced CCCD and using the points in the minimum dominating set
to construct the minimum cover”. More discussion on graph domination is provided in [15].

The solutions of the CCP can be used to build classifiers. For example, the balls around the members of
the minimum dominating sets of the CCCDs can be used to construct discriminant regions for assigning class
labels (see [8] for more detail). In this setting, we want to choose a class cover to represent class X that is as
small as possible (i.e., a minimum dominating set for A,,), to make the classifier less complex while keeping
most of the relevant information. The use of the minimum dominating sets of the CCCDs in classification are
illustrated in [9, 20, 23]. CCCDs can also be used to determine the underlying or inherent scale dimension for
high dimensional data [19]. Eveland et al. proposed a boosted version of CCCD classifiers which are efficient
and fast in computation as well [12]. CCCD classifiers are also used in DNA microarray analysis in [24]. CCCDs
are generalized to random geometric digraphs called proximity catch digraphs (PCDs) in [4] and the minimum
dominating sets of PCDs are also proposed as solutions to the CCP problem, and the cardinality of the minimum
dominating sets (i.e., domination number) of the PCDs is used as a test statistic for testing spatial clustering
in a multi-class setting [4, 6]. The arc density (i.e., number of arcs in a digraph divided by the total number of
arcs possible in a digraph of the same order) of PCDs is also used for the same purpose (see [7] and references
therein).

The mild conditions for the dissimilarity function p are sufficient to define the CCP, CCCDs, and the domi-
nating sets and domination number of CCCDs. However, throughout the rest of the article, we take p to be the
regular Euclidean distance, although most of the arguments would work if it were only taken to be an increasing
function of the Euclidean distance. The type of the balls depend on the distance or dissimilarity function chosen,
but given the dissimilarity measure, if the change in the radius of the balls do not alter the induced CCCD,
then the solution(s) to the CCP problem would be the same points and balls with the same centers.

Recently a random geometric graph called secrecy graph was also introduced to model a wireless network for
secure communication (see [13, 27]). Taking class X' points as the “good guys” (i.e., communicators over the
networks), and class ) points as “bad guys” (i.e., eavesdroppers in the network), an arc is inserted between two
X subjects x; and x; if there are no eavesdroppers falling in the radius of the ball centered at z; with radius
being the distance between z; and z;. A quick investigation shows that the directed secrecy graph is equivalent
to the CCCD; the basic secrecy graph is the reflexivity graph (in which edges are inserted when two vertices
have two distinct arcs between them); and the enhanced secrecy graph is equivalent to the usual underlying
graph of the CCCD. The authors in [13, 27] study the percolation of the connectivity of these secrecy graphs
under the lattice and Poisson models for the vertices.

1.2. Previous results

The domination number of a CCCD is the cardinality of a minimum dominating set of the CCCD. In 1962,
Ore [21] first used the term “domination number”. Due to the many applications of the domination number
in fields such as computer networks, social sciences and computational complexity, there has been increasing
interest on this topic (see, e.g., [2, 26, 34]). In the CCCD setting, we denote the domination number by I'(X,,, Vi)
to indicate dependence on &, and V.
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DeVinney and Wierman [10] proved the following SLLN for the special case of Q = R, Fx = Fy = U|0,1],
the uniform distribution on [0, 1] and in this special case the domination number is denoted by Ty, ,,, for brevity
in notation.

Theorem 1.1. If Q =R, Fx = Fy = U|[0,1], and m = |rn], where r € (0,00), then

lim B g () = r(12r + 13) s
nooe 9 S 3(r+1)r+3)

Wierman and Xiang [31] extended this result to the case of general distributions in one dimension, as stated
in the following theorem. In this case, fx and fy are probability density functions (pdfs) corresponding to X,
and Y,,, respectively.

Theorem 1.2. If Q = R, the continuous and bounded pdfs fx and fy have support [a,b] with a < b, and
m/n —r, r € (0,00) as n — 0o, then

lim
n—o00 n

(X, V) _ /b " (r' Iy (u)

fx(u)) fx(u)du a.s.

where g1(r) is defined as in Theorem 1.1.

1.3. Our results

Extending the previous results in one dimension to higher dimensions requires a different approach, since
the exact distribution of the domination number in the multi-dimensional case is unknown. In this paper, we
first focus on R? and develop the LLN for the domination number in R? by using the ergodic theorem for two-
dimensional subadditive processes. Then we extend the results to higher dimensions in Section 6. See [25, 30]
for the subadditive Euclidean functionals. Our approach is to prove the SLLN for the domination number of the
CCCD generated by the Poisson points in R?, and then transfer the result to uniform data sets on [0, 1] with
fixed sample sizes. Our arguments are similar to those given in [22, 25, 30, 33]. In particular, the subadditive
approximation is also known as the boundary functional. Furthermore, the de-Poissonization argument we
employ was introduced in [33]. However, the domination number in the Poisson case is not subadditive. To
make use of the SLLN for subadditive processes, we construct the constrained domination number of the CCCD
induced by the X-points and Y-points with the covering balls bounded also by the boundary of the study region,
which is assumed to be a rectangular region R in R2. Below, we define the domination number and constrained
domination number based on CCCDs generated by realizations of &), and ), in region R. To emphasize the
distinction between the two versions, the former will also be called unconstrained domination number when
there is potential ambiguity.

Definition 1.3. (Unconstrained) Domination Number: For a rectangle R in R?, the (unconstrained)
covering ball of any z; € R is defined by

Br(ei) = {i € 2 plav) < win (i) |
Yy;ER
The (unconstrained) domination number I'g is the minimum number of (unconstrained) covering balls needed
to cover all X-points in R C R2.

Definition 1.4. Constrained Domination Number: For a rectangle R with boundary 9(R), the constrained
covering ball of any z; € R is defined by

Br(z;) ={w € Q: p(z;,w) < min{;r_lei%p(xi,yj), énai(r}%)p(xi,z)}}.
4 z
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The constrained domination number I'; is the minimum number of constrained covering balls needed to cover
all X-points in R.

Let S? = R? be the two-dimensional quadrant with nonnegative real coordinates. If a = (a;) and b = (b;) for
i = 1,2 are two vectors in S? then [a, b) denotes the set {u : u= (u;) € S?,a; < u; < b;,i = 1,2} (i.e., [a,b)
denotes a rectangle R which is assumed to include the left edge but exclude the right edge in each coordinate)
and let R denote the class of sets of this form. Denote 0 (and e) as the vectors with all coordinates equal to
0 (and 1). Let J, = [0, qe), for ¢ > 0, and |J,| denote its area. Notice that (the closure of) J, is a square with
lower left vertex at origin 0 and side length ¢, so its area is |J,| = ¢. Suppose that there are two independent
Poisson processes {X;} and {Y;} in R?, with rates Ax and Ay, respectively. Notice that the number of X-points
on Jy, denoted Nx(J,) has a Poisson dlbtl‘lbutlon Poisson(Ax|J,|) = Poisson(g*Ax). Similarly, the number of
Y -points on Jy, denoted Ny (J,) has Poisson(g 2)\y) distribution. Throughout the article, we use limg_,o0 gc 4
for the limit as ¢ tending to infinity through the elements of A (e.g., if A = Q means the limit is “as ¢ tends to
infinity through rational numbers”), and lim,_,+, with no specification for ¢ for the limit as ¢ tending to infinity
through the integers. In Section 2, by directly applying the SLLN for subadditive processes and the separability
argument, we establish the following SLLN result for the constrained domination number in the Poisson case.

Theorem 1.5. Let {X;} and {Y;} be two independent Poisson processes in R?, with rates A\x and Ay,

F
respectively. Then if Ay [Ax = r for r € (0,00), there exists a function ga(r) such that = lim . |J | =g2(r) a.s.
Although the explicit form of go(r) is not available, in Corollary 4.2 we show that the function go(r) is
bounded, increasing and continuous in (0, 00). Furthermore, the conclusion of Theorem 1.5 also holds for the
(unconstrained) domination number with the square study region with real vertices:

Theorem 1.6. Let {X;} and {Y;} be two independent Poisson processes in R?, with rates Ax and Ay,
T
respectively. Then if Ay /Ax =1 for r € (0,00), then lim =2t = go(r) a.s., where go(r) is as in

t—o0,teER |J |
Theorem 1.5.

Denote I'y, ,,, as the domination number generated by n X-points and m Y-points where both X-points and
Y -points are uniformly distributed in the unit square, denoted U0, 1]2. In Section 4, by viewing the Poisson
points as uniformly distributed points in [0, 1]? (that is, coupling the Poisson point process with a binomial
point process and, in particular, approximating the Poisson distribution by a binomial distribution), we prove
the following Weak Law of Large Numbers (WLLN) for the domination number in [0, 1]2.

iid iid

Theorem 1.7. Let X; ~ U[0,1]> and Y; ~ U[0,1]* and X; and Y; be independent for all i =1,2,...,n and
i=1L2...om. Ifm/n—r, re(0,00), as n — oo, then lim F" ™ = go(r) in probability, where go(r) is as in
n—oo

Theorem 1.5.

Finally in Section 5, based on the approach used in the one dimensional version of this problem in [31], we
generalize the WLLN to the case where the strictly positive and bounded densities fx and fy with support

[0, 1]%. Define
r f1, f2) //92 ( ” ;) f1(u, v)dudv (1.1)

[0,1]2

where go(r) is as in Theorem 1.5.

Theorem 1.8. Let X; i fx and Y; i fy and X; and Y; be independent for all i =1,2,...,n and j =
1,2,...,m. If the pdfs fx and fy are strictly positive, bounded and continuous on their support, [0,1]?, and
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m/n—r, r € (0,00), as n — oo, then

F'n m . .-
lim —= = Lo(r, fx, fy) in probability.

n—oo N

The dependent variables (i.e., constrained and unconstrained domination numbers) in this paper are nega-
tively associated. See [32] for more details on negatively associated random variables and vectors. Therefore,
it is possible to prove CLT results for these two domination numbers. However, currently we only know some
properties of ga(r) (see Cor. 4.2.), hence, the asymptotic distribution (more specifically, CLT) is not pursued in
this article.

2. SLLN FOR THE DOMINATION NUMBER IN THE POISSON CASE

Our proof relies on the ergodic theory of multidimensional subadditive stochastic processes. Subadditive
processes were introduced by Hammersley and Welsh in [14] and developed by Kingman in [16, 17]. In 1981,
Akcoglu and Krengel obtained a SLLN result for multidimensional subadditive processes under several natural
assumptions [1], which we employ in our proof. We state their results in terms of subadditive, instead of
superadditive processes below:

Definition 2.1. Let T denote the class of sets of the form [a,b) := {u:u= (u;) € S%,a; < u; <b;} for two
vectors a = (a;) and b = (b;) in S¢ = Ri, the additive semigroup of d-dimensional vectors with nonnegative
real coordinates where d € N. A continuous subadditive process {X : I € T} satisfies:

S1: If I, I5,..., I are disjoint sets in ¥, and [ = Ui?:lfi is also in T, then X; < Zle Xy,

S2: For I1,Is,..., I € T, and u € S¢, the joint distributions of (Xz,,..., X7, ) and (Xuir,,--., Xuir,) are
identical where u+1I; ={u+a:aecl;} forj=1,2,... k.

S3: E[X ] < oo forall I € ¥ and inf {E[X;]/|I|: I €%, [I|>0}=7(X)> —o0,

where | - | denotes the Lebesgue measure and 7(X) is referred to as the time constant of the stochastic process
{Xr}-

Let S¢ denote the set of vectors in S? with integer coordinates. For a real number ¢t > 0, let S¢ := {tu: u € S§}
and T, := {[a,b) : a,b € S¢}. If { X/} is defined only on T, for some fixed ¢ > 0, and satisfies conditions S1-S3,
then it is called a discrete subadditive process. Akcoglu and Krengel [1] proved the following theorem for the
t =1 case:

Theorem 2.2. If {X;} is a discrete subadditive process on %1, then lim f]""‘ exists a.e., where J, = [0,ne) €
n—oo n

.

Kingman observed that the continuous analogue of Theorem 2.2 is false unless further conditions are added
and proposed a natural supplementary condition [16, 17]. The following theorem gives a multi-parameter
generalization of the result in [1].

Theorem 2.3. Suppose { X} is a subadditive process on rectangles with rational end points. Let J; = [0, se) for
s> 0 and ® = sup | X| where the supremum is taken over all rectangles with rational end points in J; = [0, e).

IfE[®] < o0, then  lim
q—00,q€Q

ﬁ erists a.e.

To eliminate the restriction of ¢ to rational numbers, we rely on the concept of separability. A stochastic
process {Y;, ¢t € T'} is separable if the parameter set T has a countable dense subset D and there is an event E with
probability zero, so that for every open set F' C T and every closed set G C R, the events {Y; € G,Vt € FN D}
and {Y; € G,Vt € F} differ by a subset of E. Doob [11] introduced separability to describe the condition that
the properties of a stochastic process are determined by its values at a countable set of parameter values. Since
{X1,} is constant except for jumps at the Poisson points, it is clearly a separable process. Hence, with D taken
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‘ | as ¢ tends to infinity through the rational numbers implies

a.s. convergence through the real numbers.

Theorem 2.2 alone does not identify the limiting random variable L4 := ’ 1‘1m i II for a subadditive process

{X1}. However, the limit is simply the time constant 7(X) when the subadditive process is independent, where
a subadditive process is defined to be independent if the random variables {X7,} are independent for disjoint
regions {I;} for i =1,2,...,k (see [16, 17]).

Consider the stochastic process {TR : R = [a,b), a, b have nonnegative rational components} where Ty is
the cardinality of the class cover of the X-points with constrained covering balls in R. We prove that

Lemma 2.4. {fR} is a subadditive process.

Proof. In this setting, T in Definition 2.1 is the set of regions [a,b) with a and b having nonnegative rational
components. The set of such regions is denoted by R,. We check the three conditions, S1 —S3, in Definition 2.1
for {FR Re 9‘{(1} as follows:

— For S1, suppose that Ry, Ro, ..., Ry are d1$301nt regions in R, and that R = Uk R, isin Ry as well. If a
point X € R, then there exists a j € {1,2,...,n} such that X € R;. The constramed covering ball for X
with respect to R, denoted Br(X), is the same as or larger than that with respect to R;, denoted ERi (X).
Hence, no constrained covering ball with respect to R is any smaller than its corresponding constrained
covering ball with respect to R;. Thus, the minimum number of constrained covering balls required to
cover all X-points in R would not be larger than that required to cover all X-points in R;’s. Therefore,
after ignoring the boundaries of R;’s, the union of the new constrained covering balls (w1th respect to R)
still contains all X-points in R;’s, and thus all X-points in R. Hence, it follows that, [g < Dy Tr,.

— S2 follows from the homogenelty of Poisson processes.

~ S3 holds, since E [T'g] > 0 for any R and I'g is bounded. O

Next, we prove Theorem 1.5 by applying Theorem 2.3 to the process {f;q} where J, = [0, ge) where ¢ is
rational and then extending this result to J; where ¢ is real.
Proof of Theorem 1.5. We first consider T’ J, With ¢ being rational. To apply Theorem 2.3, we just need to
check that E[®] < oo, where ® = sup ’fR’ with the supremum taken over all rectangles R with rational end
points in J;. For any rational number ¢ < 1, we have i]q < Nx(Jq) < Nx(J1). Thus ® < Nx(Jy1). Taking the
expectation of both sides, we have E[®] < E[Nx(J1)] = Ax|Ji| = Ax < co. Hence, by Theorem 2.3,

1m
q—00,q€Q |J |

Furthermore, the subadditive process {f J, 14 rational} is independent because I'p, and ij are independent
for disjoint rectangles R; and R;. Thus

lim Jq =T (f) a.s.

q—0,q€Q | \

Notice that the time constant 7 ( ) of the stochastic process {FJ } depends on r and J, C R?, so we denote

the time constant as go(r). Since the process {F R} is separable, a.s. convergence of = along each sequence

(1
[ql
of rational numbers implies a.s. convergence of L 7 J | for all positive real numbers, since rational numbers form a
dense countable set in the real numbers. Hence, the desired result follows. O
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FIGURE 1. An illustration of the regions J,, J},, J/, and J!".

3. PROOF OF THEOREM 1.6

In Theorem 1.6, as Ay /Ax =, we have hm h = = go(r) a.s.

Having established the convergence result for the constrained domination number generated by the Poisson
points, we are now ready to prove a similar result for the (unconstrained) domination number, i.e. prove
Theorem 1.6. First, we prove a lemma that shows that the constrained and unconstrained domination numbers
agree in the limit over J[O, ne) as n — oo.

€R |Jt

Lemma 3.1. Let J, := [O,ne) where n is a positive integer and denote the constrained domination number by

= . S T
I';, and the unconstrained domination number as I';, . Then lim Lin — lim W= q.s.
n n=oo Inl T 550 [0l

Proof. Let n be a positive integer and s, be a positive real number depending on n. Consider J,, = [O,ne),

J = [sne, (n— sn)e), J! = [25ne, (n— 2571)e), and J/" = [ (2 + \@) spe, (n — (2 + \ﬁ) sn)e> as shown in

Figure 1. The quantity s, < j will be chosen later in the proof and we will let it go to infinity together

24V
with n as n — oo but at a much slower rate. Let F,, denote the event that all constrained covering balls B, (X;)
of X-points in J// are contained in J,, and let E,, denote the event that there exists at least one Y-point in
each of the s, x s, squares between J;, and J;/.

The probability of having at least one Y-point in one of those small squares is 1 — exp(—s2\y), and the
number of small squares is |4n/s, — 12] which is less than 4n/s,. Therefore, by the independent increments
property of Poisson processes, we know that

P(E,) > (1 —exp(—s2Ay))4n/sn.
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FIGURE 2. An illustration of E,, C F,, (left) and an illustration of A; < Nx(J, \ J}/") (right).

Next, we show that F,, C F,, which will imply
P(F,) > (1 —exp(—s2Ay))*"/5n.

If there is at least one Y-point in each s, X s, square between J/, and J//, then the constrained covering
ball of any X-point in J// cannot cross the boundary of .J,, (i.e., the constrained covering ball would stay
in J,,). The reason is that for any X; € J/, the constrained covering ball B, (X;) cannot get very far away
from .J},, since there is at least one point Y; in the closest s, x s, square to X;. Hence, B, (X;) is contained
in J,. Specifically (but without loss of generality), suppose Y is the Y-point closest to X;, located at the
position shown in Figure 2 (left). Then the radius of the constrained covering ball B, (X;) is va2 + b2, where
the two segments with respective lengths a and b are also shown in Figure 2 (left). Since a < s,, we have
Va2 2 < \/ s2 4+ b2 < b+ s,. Note that the distance from X; to the the boundary of J, is greater or equal
than b+ s, thus By, (X;) is contained in J,,.

Next we carefully analyze the relation between the constrained domination number T'; and the (uncon-
strained) domination number ' . Let A; =T; —TI'; . If the boundary constraint is ignored, the constrained
covering balls will not decrease (and might increase) for those X-points whose constrained covering balls touch
the boundary; thus, the domination number will not increase, i.e. Ay > 0. Hence, given the event F,,, the
constrained covering ball resizing can only occur for those X-points in J, \ J;/. Although the resized covering
balls may cover other X-points in J, \ J)/, the resized balls do not intersect J;". The reason is that these balls
can not contain the Y-points in the s, X s, squares. Specifically (but without loss of generality), suppose Y;
is the Y-point closest to X;, located at the position shown in Figure 2 (right). Then the radius of the resized
covering ball B(X;) is v/¢? + d?, where the two segments with respective lengths ¢ and d are also shown in
Figure 2 (right). Since ¢ < s,, and d < s,,, we have V2 + d? < v/2s,,. Note that the distance from X; to the
boundary of J/ is greater or equal to v/2s,,. Thus, B(X;) does not intersect J/”'. Thus, resizing the constrained
covering balls of X-points in J,, \ J/ will decrease T',, by at most the number of X-points in J, \ J/”, i.e.
Ay, < Nx(J, \J!).

By the arguments in the preceding paragraph

A
P ( \JJW > e> < P(Nx(Jo \ J") > €| Jn|) + P(FS)
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and by the union bound (for the middle inequality below), for n sufficiently large and s, = /(2 + 6) log(n) /Ay
for some 6 € (0,1)

P(FS) < P(ES) < an —siay < pe~ (3t logn
Sn

which is summable in n, but also E[Nx (J,, \ J)")] ~ ¢nsy,, so by a Chernoff bound for the Binomial distribution,
for n sufficiently large,

P (NX (S \J)") > enz) <e ™

which is also summable in n.
Notice that this choice of s, implies that P(F¢) — 0 as n — oo. By the Borel-Cantelli Lemma, the calculation

| ‘FJJ %+ ﬁ]—""l, and both limits on the right hand side exist

Ay, a.s;

above immediately implies that TR 0. Since

r,
a.s., lim 7] exists a.s. and
n—oo 1Jn

In m I
nh_{réou\ nh_>né<>|J| -5

O

However, to prove Theorem 1.6, we need to show that the result of the above Lemma also holds for I';, for
real t.

Proof of Theorem 1.6. We first define A;, =T —Ty,, for any t € [n,n + 1). Note that A defined before is
the difference between the two processes for the same region .J,,, whereas A, defined above is the difference
over two different regions, J,, and J;. It is possible that 'y, > T;, (i.e., Ay, < 0), but I'j, can only be larger
than T'; by at most Nx(J; \ J,), the number of X-points in J; \ .J,,. Therefore, we obtain the following lower
bound for Ay,:

AJt > _NX(Jt \ Jn) > _NX(Jn+1 \ Jn)~

Below we will show that

AJt > _NX(Jn+1\Jn) a
el | ]|

On the other hand, recall that F,, is the event that all constrained covering balls of X-points in J;/ are contained
in J,. Then given F,,, the covering balls of X-points in J] are completely contained in J,,, so by the same
argument for ', we know that I'; can be larger than I';, by no more than the number of X-points in J; \ J!”,
thus we have

Ag /el < Nx(Je\ ) /il

Convergence to zero for the lower and upper bounds of Ay, /|J;| would yield the result of Theorem 1.6.

We will prove Theorem 1.6 by showing hm sup | JI < lim Ly and hm 1nf —=t > lim . We prove the

n—o0 |Jn‘ ‘Jt‘ n—oo ‘
convergence of the upper bound first.
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_ For any t > 0, there is an integer n(t) such that n(t) < ¢ < n(t) + 1. By the definitions above, I';, =

FJ_,L(t) — Ay,. In addition, we have shown that Aj;, > —Nx (Jn(t)+1 \ Jn(t))a SO

Ly < i’nm — Ay < i’nm Nx (Jn@)+1 \ Jn@r))
[/ AP I I AP | Tnt) |

It should also be noted that

Nx(J, I Nx (J, Jn Nx(J, a.s.
X (Jn@w+1 \ Inw) _ Nx(nw41) [Inp41]  Nx( (t))_)/\X.l_/\X:O.

[ Tn(t)] a1l | Tn(e) | Tn(e)
Therefore,
. r; . Iy
limsup —+ < lim “ a.s. 3.1
R AR (3.1)

For the other direction, we first write

r,, Ty Iy,

— Ap, ., +
| Je] | ] © | gl

Ir

()

(3.2)

where I4 represents the indicator function for the event or set A.
Applying the same technique as when we showed A;, < Nx(J, \ J}'), given F,«), we see that when the
boundary constraint is ignored, the constrained covering balls centered at X-points in Jg(t) do not change,

whereas the covering balls centered at X-points in J; \ J;L’( " do not intersect with J”7,.. Therefore, we conclude

n(t)
that Ay, < Nx (Jt \ Jr/:ft)) Hence, for the first term on the right hand side of equation (3.2), we have

& FJn(t) — Ay, > FJn(t) Nx (Jt \ JTIL/Et))

S PN (CREE, P _
| J:| © | Tnt)+1 © | Tnt)+11 | Ty 41l

g, (3.3)

Recall that we have chosen s, = \/(2—|—6) log (n(t))/Ay. Because we have shown that P( ﬁ(t)) =

1 a.s.
0| ——— |, the Borel-Cantelli Lemma gives Ipe —= 0. Moreover, we have
TL(t)1+6 n(t)

li fJn(t) o . fJn(t) ‘Jn(t)| T fJ71
1m —_ = —_ = a.s.
t—oo,t€R |‘]n(t)+1| t—oo,t€R |Jn(t)| ‘Jn(t)+l| n—00 ‘Jn|

and

" "
Nx (Jt \ Jn(t)> _ Nx(Jy) ’ [J¢| Nx (Jn(t)) ‘J;{Et)| @51 Ax-1=0

| Tn(e)+1l R el |3 [ Tn(t)+1]
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[0
i ‘Jn(t)'Jrl‘
we immediately get

since

— 1 as n — oo by the choice of s,,. Thus, substituting the expressions above into Inequality (3.3),

Ty,

liminf — -Ip , > lim s,
t—o0 ‘Jt| () n—00 | n|
FJt NX(Jt) a.s, . a.s,
In addition, note that PATE AN Ax. Also, recall that, since Ipcm — 0,
Ly,

dpe  250.

|Jt| n(t)

Therefore, we can incorporate the two results above into equation (3.2) to get

|
> = . .
il 1 = g o 4

Furthermore, combining Inequalities (3.1) and (3.4), we conclude that

Ly J
lim 2 = lim —2* a.s.
tmsoorter [ Jy| oo [Ju] 0

Thus, since {F"" } is a subsequence of , it follows that lim Doy —  fim D oas. , where the existence
[n] IJ\ n—soo Il T g 00,q€Q IJI
of the latter is guaranteed as shown in the Proof of Theorem 1.5. That is hm | = = lim ‘FJ""l = g2(r) a.s
0o, teR 1Vt n—oo 1vn
where go(r) is as in Theorem 1.5. O

4. WLLN FOR THE DOMINATION NUMBER OF CCCDS GENERATED BY
UNIFORM DATA IN [0, 1]2

In the previous section, we established the SLLN for the domination number generated by the Poisson points
in R2. In this section, we show the WLLN for the domination number for uniform data sets in [0, 1]? (i.e., prove
Thm. 1.7) by transferring the result in the Poisson case to the uniform distribution case.

Proof of Theorem 1.7. In the Poisson case, without loss of generality, we let the rates be Ax =1 and A\y =r.
For any integer n > 0, we let T'(n) be the smallest real number such that there are n 4+ 1 X-points in the
closure of Jr(,). Note that the (n + 1)-st X-point is on the boundary of Jp(,), and the other n X-points are
in the interior of Jp(,). Moreover, by the SLLN, Nx(J;)/|J:| = 1 as t — oo through the real numbers a.s.
Hence, taking t = T'(n), we have n/Jp,) — 1 a.s. Define I‘n M, =T, where M, is the (random) number

of Y-points in Jp(,). We know, by Theorem 1.6, that hm IJTT<(">)I = go(r) a.s., since T'(n) — 0o a.s. as n — oo.
Equivalently,
r
lim —Mn = (r) a.s.
Combining the equation above with the fact that lim IJL = Ax =1 a.s., we obtain
n—o00 'T(n)l
lim —= = lim —~ - ——— = lim = = go(r) a.s

nooo  m n—oo N |JT(n)| oo |JT(n)|



LLN FOR CCP 387
Since almost sure convergence implies convergence in probability, it follows that

lim Dont, _ g2(r) in probability (4.1)
n— o0 n

as well. From the conditional uniformity property of Poisson processes, the n X-points and M,, Y-points are
both uniformly distributed in J7(,). Recall that the desired number of Y-points is m = m(n), which is a non-
random function of n. For simplicity, we will use m instead of m(n) in the rest of the proof. On the other hand,
M, is the random number of Y-points in the Poisson case. If M,, < m, we will add m — M,, Y-points in the
region Jr(,) in a uniform way. Similarly, if M,, > m, then we will delete M,, —m Y-points uniformly from the
M,, Y-points in Jp(,). Of course, if M,, = m, no change is needed. After such modifications, the original M,,
Y -points become m Y-points. Let F’mm denote the domination number generated by the CCCD based on n X-
points and the m Y-points, which are uniformly distributed in Jz(,). Note that F;l’m has the same distribution
as I'y, p,, the domination number of the CCCD based on n X-points and m Y-points uniformly distributed in
[0,1]2. Hence, if we can prove

!

. n,m
lim :
n—oo N

= ga(r) in probability, (4.2)

’

then we have lim FT = lim —=™ = go(r) in probability. Hence, lim FT = g2(r) in probability, since the
n—00 n—00 n—oo
limit is a constant. So, the problem reduces to showing equation (4.2). In fact, if we let A, a7, =17, ,,, — T a1,

and if we can prove

Ap o,

— 0 in probability,
n

then using the result in (4.1), by Slutsky’s Theorem, we obtain

/
nm _ lim Fn,Mn

A,
. . 1, M,
lim + lim ——=
n—oo N n— 00 n n—00 n

= g2(r) in probability.

All that remains from the discussion above is to prove the following lemma, the proof of which is provided in
the Appendix. O
Lemma 4.1. A”’% — 0 in probability.

In this paper, the exact form of go(r) is not identified. However, we can establish the following properties of
g2(r) for which proofs are deferred to the Appendix as well.

Corollary 4.2. The limiting function go(r) is a bounded, increasing, and continuous function of r on (0,00).

5. WLLN FOR THE DOMINATION NUMBER OF CCCDS GENERATED BY
NON-UNIFORM DATA IN [0, 1]?

In this section, we provide the proof of Theorem 1.8 which establishes the WLLN for the domination number
of CCCDs based on continuous and bounded densities in [0, 1]2. We proceed as in [31] where the SLLN for the
domination number of CCCDs with continuous densities in one dimension were proved. In the following two
subsections, we first generalize Theorem 1.7 to piece-wise constant densities, then extend it to the continuous
case. The proofs are analogous to those in [31]. However, adding or deleting a point in two dimensions could
change the domination number quite a bit (as large as n — 1) whereas adding or deleting a point in one dimension
can only change the domination number by at most 2. But such large changes are very unlikely to happen, and
their probabilities are proved to be negligible in the limit as n — oc.
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FIGURE 3. The squares A,, on which densities fx and fy are constant.

5.1. The case of piecewise constant densities

We consider the simple situation in which fx and fy are piecewise constant densities defined as

k k
Fx,v) = > apgla,, (u,v)  and  fy(u,0) =Y bygla,, (u,0), (5.1)

p,q=1 p,q=1

where Apq, p,q = 1,2,...,k equally divide [0,1]? into k? squares (see Fig. 3) and a,, > 0 and by, > 0 for all
p,q. Note that Z;iq:l Apg = qu:l bpg = k2.

Let Iy, ,, be the domination number generated by the n X-points and m Y-points from fx and fy, respec-
tively, in [0,1]%, and I, ,, be the domination number generated by the n,, X-points and m,, Y-points in
Apg. One can think of 37 T m,, as a “filtered” domination number generated by adding a “filter” A,, for
each 'y, m,, . The effect of adding a filter is that no points outside A, contribute to Iy, m,,. The outcome
of ignoring the filters is the restoration of the sum of the “filtered” domination numbers Zp, ¢ Lnpg,mp, tO the
domination number I'y, ,,.

Lemma 5.1. qu ququ — Lo(r, fx, fy) in probability, where Lo(r, fx, fy) is as in equation (1.1).

Proof of Lemma 5.1. By the SLLN (see Lemma 2 of [31] for more details in the d = 1 case), it follows that as
n — 00,

S

n a m
% — pg|Apg| = % a.s. and ﬁ = BralApal =

pq

k2 a.s.
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Hence, mpq/npg — Tpg a.S., where 7pg = 7 - bpg/ape. Therefore, applying Theorem 1.7 on each A,, yields

T n
MNpg;Mpgq % — go (qu) . apq ‘qul in pI‘ObablhtY7

Npq:;Mpqg r

n Npq

and thus

F”pq Mpq an mpq Tlpq
— == —ee—re Tng) - Gpg|Apg| in probability.
Z n Z n Z 92(Tpq) * Apgl Apgl p y

n
p,q p,q pa D,q

Writing the above expression in the form of an integral gives

Fn m, . .1
Z 7‘"; PL Zgg (7 - bpg/Gpq) - apglApgl = La(r, fx, fy) in probability (5.2)
P, P,
where fx and fy are as in equation (5.1). O

Remark 5.2. The proof above can be easily generalized to the case when the regions of constancy for the
densities are rectangles instead of squares. However, the limiting function go, then depends on the ratio between
the length and the width of the rectangles, hence the final limiting value can not be written in a simple integral
form, hence the square partition of the unit square.

Lemma 5.3. Let A, p, =1 — Ep}q Lhpympg- Then as n — oo, RN probability.

n

Proof. We prove this lemma by applying the same technique used in Section 2. Specifically, with v = v(n) to
be chosen later, we shrink each A,, additively by § = 1/kv to get A, then shrink A} additively by & to get

Ap,, and then shrink A additively by V2¢ to get Apy (see Fig. 4). Finally, we divide A, \ A}, equally into
4v — 12 small squares with side length . Then, there are totally (4v — 12)k? small squares in UA, , = [0, 1]2.
Define the event E,,, := {3 at least one Y-point in each small square}. To analyze the probability of the event
E,,, we will consider the complementary event. First consider one particular square A,, and the event E,, that
there is no Y-point in a small square in A,,. Let b* = min, ,{b,,}, and require that ¢ < 1/v/b* to make the

second expression in equation (5.3) below positive. Since all m Y-points must fall outside A,,, we have
P(Epq) = (1 — £2byg)™ < e ¢ bram, (5.3)

By Boole’s inequality, we have

P(E;fn) =P (U qu> < Ze*§2bpqm < (41/ _ 12)k267£2b*m < 41//472675217*7”'

p,q p,q

Next, we apply the results obtained in the proof of the SLLN of the domination number in the Poisson case
(refer to Fig. 2). Conditional on E,,, the covering ball of any X-point in qu is contained in A,,. Therefore,
ignoring the filter A, has no effect on these X-points. However, there may be some Y-points just outside the
boundary of Ap,, while some X-point in A, \ A}, could have a covering ball that is not contained in Ap,.
Thus, ignoring the filter A,, could reduce the covering ball of some X-points in A,, \qu, thereby increasing
the domination number. Such an increase is bounded by the number of X-points in Ay, \ A"/, since no covering

2y
ball of any X-point in A,, \ A7, can intersect with A}/. Summarizing the argument above, we obtain

An m An m
) — 771]17 +

An,m 1
m ETC,”
n n n

(5.4)
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FIGURE 4. The squares Ay, A}, Ay, and Ajl.

where

An m

’ L lge | <Ige (5.5)
and

N A A///
0 S An,mI . S Zp,q X( pq\ pq). (56)
n n

We may choose the relationships between the parameters. Let v = {, /%J and in order to satisfy
€ < 1/Vb*, we need to take k < \/ﬁ/\/log v/m. For sufficiently large k and m with k being no larger than

\/ﬁ/\/log v/m, we have

P(ES) < 4vk?exp (sz2> < b —0 as m — oo,
kv Vm**~1log /m
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so Ig. — 0 in probability. The expression above combined with Inequality (5.5) yields

An,m

Ige — 0 in probability. (5.7)

2opa Nx(Apg\Ay:) i Lix;eUp,q(Apg\ay,

Finally, we write the right hand side in Inequality (5.6) as ). Tt should

be noted that (see Figs. 3 and 4.) E [I{Xieup,q(qu\A;’;)}} =P (X; € Upqg(Apg \ A7) and

n n

P(Xi € A\ A}) = ay <]32_ (;_2<2+ﬂ)£>2> . (4(22[2)5‘4(“@)252)'

So,

P (Xi € Upg(Apg \ A2)) =Sy, (4(22\[2)5 —4(2+ \/5)2 §2>

= k2 (4(2+kﬁ)5—4(2+\/§>252> :4(2+\/§)%—4(2+\/§)2%.

Since 1/v — 0 as m — oo, we have

1 2 ]
E [Lix,cu, gy | =4(2+v2) - —4(24+v2) 5 — 0asm = oc.

Therefore, for any § > 0, the Markov inequality provides

— 0 as n — oo,

" T, E[Lx,c0,., (4,0 a2
p (2:11 {Xi€Up g (Ap\ AL} > 6) < {X:eu ,5( \Ay )}
n

Zp,q Nx (qu\A;:;I;)

and thus - — 0 in probability. Combining this with Inequality (5.6) yields
An m . o1
~—1g, — 0 in probability. (5.8)
Finally, substituting equations (5.7) and (5.8) into equation (5.4) yields the desired result. O

5.2. The case of continuous bounded densities: Proof of Theorem 1.8

If fx and fy are bounded and continuous, then they are both uniformly continuous on [0, 1]2. Thus, given
any ¢ > 0, there exists an integer ko such that for any k > ko and the equal partition {A,, : p,¢=1,2,...,k}
of [0,1]? (see Fig. 3), the following must hold:

|fx (ur,v1) = fx(uz,v2)] <6 and |fy(u1,v1) — fy(uz,v2)[ <6 (5.9)

for any (u1,v1), (u2,v2) € Apy. We define piecewise constant functions approximating fx and fy as follows: For
(u,v) € Apg, define

JFX(U’”) = min{fx(x,y), (1‘,y) S qu} and fY(uvv) = min{fy(x,y), (a:,y) € qu},
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and then rescale fx and fy by dividing them by their respective integrals to give piecewise constant densities
fX and fy, which approximate fx and fy, respectively.

For random vectors U; := (X1, Xi2, Xi3), @ = 1,2,...,n, distributed i.i.d. uniformly between {(u,v,0) :
(u,v) € [0,1]?} and the surface {(u,v, fx(u,v)) : (u,v) € [0,1]*}, the marginal density of X; = (X1, Xi2) is
proved to be fx. A similar procedure generates i.i.d. random vectors V; := (Y;1,Y2,Y3), = 1,2,...,m, with
the marginal density of Y; = (Yj1,Y}2) being fy.

Next, we let Ui = (Yﬂ,yig,yig) ,i = 1,2, RN and Vj = (le,?jQ,?]B) ,j = 172, e,y be i.i.d.
random vectors uniformly distributed under surfaces {(u,v, fx(u,v)) : (u,v) € [0,1]?} and {(u,v, fy (u,v)) :
(u,v) €10, 1]2}, respectively. Moreover, U;’s are independent of U;’s and V;’s are independent of V;’s.

Finally, let Rx be the region between the surfaces

{(u,v, fx(u,v)) : (u,0) € [0,1]?} and {(u,v, fx (u,v)) : (u,v) € [0,1]?},
and let Ry be the region between the surfaces

{(u, v, fy (u,0)) : (u,0) € [0,1]*} and {(u,v, fy (u,v)) : (u,v) € [0,1]2}.
We then define

ﬁi = ()?ih)?z?a)?w) = Ui I{Uzgﬁx} + Ul I{Uieﬁx} for ¢ = 1,2,. .., N

and
V= (3@-1,}92,1@3) =Vi Ly gy + Vi Ly emyy forj=12....m.
The sequences above can be interpreted as follows. For each ¢ € [n] := {1,2,...,n}, if the point U; =

(Xi1, Xio, Xi3) does not fall into Rx, then this point is assigned to ﬁi; otherwise, U; = (X“,Yig,yig) is
assigned to U;. A similar procedure applies to Y-points. Again, using a similar technique to one in [31] shows
that ()?ﬂ,)?ig) and (}Afjl,f’jg) have piecewise constant densities fX and fy, respectively.

Define X, = {X; = (X1, Xi2), 1 =1,2,...,n}, and YV, ={Y; = (Y;1,Yj2),5 = 1,2,...,m}. Let T'(X,, Vi)

denote the domination number generated by X, and ),,. Similarly, let T (fn,ji\m) denote the domination
number generated by X, = {X} = ()?il,)?ig),i = 1,2,...,n}, and Y, = {EA/J = ()A’jl,f/jg) ,J = 1,2,...,m}.

Note that only the points U; € Rx and V; € Ry could cause a difference between I'(X,,, ,,) and T (.)?n, )A}m>.

But such a difference could be as large as n — 1. However, by applying the results obtained in the proof of
Theorem 1.7 in Section 4, we next show that if the largest covering ball is small, then the difference is negligible
in the limit.
Handling U; Points in Rx: When any U; € Ry is replaced by U;, it is equivalent to deleting X; = (X1, Xi2)
from X,, and then putting X; = (X;1, X;2) in X,,. Deleting X; could decrease (but never increase) the domination
number T'(X,,, V,,) by at most 1, provided that X; is not the center of a covering ball. On the other hand, note
that deleting the covering ball of X; could also increase (but never decrease) the domination number by at most
the number of X-points in B(X;) \ {X;}. Hence, deleting X; could change the domination number by at most
the number of X-points in B(Xj).

Similarly, adding X; could further increase the domination number by at most 1. However, note that adding
the covering ball of X; can also decrease the domination number by at most the number of X-points in
B (X;) \ {X;}. Hence, adding X; can change the domination number by at most the number of X-points in
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B (YZ) Therefore, replacing any U; € Rx by X; could only change the domination number by at most
Nx(B(Xi)) + Ng (B (X))

where Nx (B(X;)) := z; Iixenx,)} and Ng (B (X)) := l; If%ep(x,)} Hence, the change caused by the
set of points X; in Ry is bounded by

n

3 Lperyy (Nx(B(X0) + Ng (B (X)) (5.10)

i=1

Given any U; € Rx, we denote the radius of the covering ball B(X;) by B;. For any fixed U; € Ry, we can
bound P(B; > b) as follows:

P (Bi >b|U;,U; € EX) < P(there are no Y-points in the ball centered at X; with radius b).

Recall that fx, fX, fy and fy are all strictly positive and bounded, so we can assume k1 < fx < ko, k1 <
fX < kg, k1 < fy <ksand k; < fy < ko for some strictly positive constants k1, ko. Hence, the inequality above
can be further bounded as P (Bi >b|U;,U; € EX) < (1 — kﬂer)m . Since the bound above is uniform for any
U; € Ry, it follows that P (BZ- >b|U; € RX) < (1 — klﬂ'bQ)m. Note that for any I € [n]_; := {1,2,...,i —
1,44+1,2,...,n}, the random point X, is independent of X; and Y;, j =1,2,...,m. Therefore,

E [Iixenxy | Ui € Rx] =E[E [Iixepx,)y | Ui € Rx, Bi] | U; € Rx]
=E [P (X, € B(X;) |U; € Rx,B;) | Ui € Rx] <E [kemB? | U; € Rx].

By applying the same technique as in the proof of Lemma 4.1, Case 2 in the Appendix, we can further bound
the above expectation as E [I{Xleg(xi)} ’ U, € RX] <[ (1 — k:17rb2)md (klﬂ'b2) < mLH Since m/n — r, when
n is sufficiently large, it follows that

_ _ 1
E U, € Ry U eRx| <14+ 2= <K,
m-+1

> Iixenx)

=1

=1+E| Y Iixenca
le[n]—;

for some constant Ky > 0.

< Kj. From the two inequalities

Similarly, when n is sufficiently large, E lZ?_l I{)?LEB(Y,-)} U; € Rx

above, we bound the expectation of equation (5.10) as follows:

E

> Twemyy (Nx(B(X:) + Ng (B (Xi)))] =) E [I{Uieﬁx} (Nx(B(X3)) + Ng (B (Yi)))}

i=1 i=1
n
=B
i=1
n

<Y 2K\P(U; € Rx) = 2Ki» P(U;€Rx) < 2Kién,

=1 i=1

(NX(B(Xz)) + N)A( (B (yl))) U; € Rx PU; € Rx) (5.11)
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where ¢ is the unifi)rm bound on the densities fx and fy introduced in equation (5.9). In fact, § can be taken
to be 6 = P(U; € Rx). - - B

Handling V; Points in Ry: After replacing all U; € Rx by U;, the original domination number
I'(X,, Ym) becomes T’ (fn,ym). Next, we consider the effect of replacing V; = (Yj1,Yj2, Yj3) € Ry by
V; = (Y;1,Y2,Y3), which is equivalent to deleting Y; = (Y;1,Y)2) and then adding Y; = (Y 1,Y2). After
replacing all V; € Ry by Vj, the domination number I' ()/(\n, ym) becomes I" ()?n, )Aim) We have discussed the

effect of deleting and adding )y,-points in the proof of Theorem 1.7 in Section 4. For all Y; ¢ Ry, refer to Y;
as a ), -point. For any Y} € Ry, define B;-’ as the maximum radius of all balls that contain Y; but contain no
Y/ -points. Applying the arguments in the proof of Lemma 4.1 in the Appendix shows that deleting Y; could

decrease (but never increase) I’ (é?n, ym) by at most the number of X-points in the ball B(Y;) = B(Y;,2BY),

centered at Y; with radius QB;-’.

Furthermore, for any Z € Ry, define Ej as the maximum radius of all balls that contain ?] but contain no V! -
points. Similarly, applying the arguments in the proof of Lemma 4.1 in the Appendix shows that adding Y} could

further increase (but never decrease) I’ (z’?n, ym) by at most the number of X-points in B (Y;) = B(Y;,2B;),

centered at Y; with radius 2B;. Thus, replacing any V; € Ry by Y; could further change the original domination
number I'(X,,, V,,) by no more than

S 1y cmyy (Ne(B(Y)) + Ng (B (V7)) (5.12)
j=1

where Ng(B(Yj)) == 221, I{)?leB(Yj)} and Ng (B (Y;)) =X, I{)?leB(T,-)}-
Let Mg denote the number of V; € Ry . Note that M is a Binomial(m, §) random variable and is based on
the region between the two surfaces { (u,v, fy (u,v)) : (u,v) € [0,1]*} and {(u,v, fy (u,v)) : (u,v) € [0,1]?}.
For any fixed V; € Ry, using the same argument (and recalling the small grid balls inscribed in the squares)
in the proof of Lemma 4.1 Case 1 in the Appendix, we bound P(B] >b|Y;,Y; € Ry, Mg) as follows:

m—Mp

P(BY > b |Y;,Y; € Ry,Mpg) < 64 x P(3no Y, -points in any grid ball) < 64 (1 — kym(b/4)?)

Since the above bound is uniform for any V; € Ry, it follows that P(B} >b|Y; € Ry, Mpg) < 64(1 —
kym(b/4)?)m Mz,
Note that for any { € [n], the random point X; is independent of Y}, j = 1,2,...,m. Therefore,

E [Lz,cniyy | V5 € Ry, Mal E[E Titienoy | Yi € By Me,BY] | Y; GRy,MR]

_ E[P ()?l EB(Y)) |V € Ry,MR,B;!)

Y}‘ GRy,MR:| <E |:]€17T<QBJ1_/)2 ’ ij €§Y7MR} .

By applying the same technique as in the proof of Lemma 4.1, Case 2 in the Appendix, we can further bound
the above expression as follows

E [I{)?ZGB(YJ,)} Y, € Ry,MR] < /64 (1- km(b/4)2)m_MR d(kam(20)?).
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Hence,

E [Ng(B(Y)) |Y; € Ry, Mg] <n- /64 (1= kam(b/4)%)™ M d(kym(20)2) < n - —

for some constant C' > 0.
Since m/n — r, when n is sufficiently large, conditional on Mg < 26m, the inequality above yields

¢ < Ko, (5.13)

E [Ng _
m—2dm —

< (B(Y;))

YjGRy,MR<25m1 <n-

for some constant Ko > 0. o
Furthermore, by applying the argument above to the case of adding Y;, we conclude that, when n is sufficiently
large,

E |Ng(B(Y;))

Y; € Ry, Mg < 25m] < Ko. (5.14)

Note that

&
NE
[}

(viehyy (Nz(B(Y;) + Ng(B(Y;))) ’ Mp < 26m

(Ng(B(Y;)) + Ng(B(Y;))) | V; € Ry, Mg < 26m| x P (V; € Ry | Mg < 26m).

Applying Inequalities (5.13) and (5.14) to the above equation, we obtain

B\ Tyemn 2 (Tzenon + Ixenmn) ‘ Mp <20m | <2K;) P (V; € Ry | Mp < 20m)
j=1 =1 j=1
< 4Ky6m (5.15)

since P (Vj € Ry | Mg < 25m) <1 for Mr < 26ém, and is zero for Mg > 2dm.

Recall from equations (5.10) and (5.12) that ’I‘(Xn, Ym)—-T (z’?n, JA)m) is bounded by

ZI{UieEX} (Nx(B(X:)) + Ng (B (X)) + DTy emyy (Ng(B(Y)) + Ng(B(Y)))) -

i=1 j=1

Since for positive real numbers a, b, c with a +b > ¢ > € for some € > 0 implies a > €/2 or b > €/2,

S Ly (Nx(BOX)) + Ng(B (X)) > 7;)

i=1

P

n

LSRN

+ P Do Lery, (N3 (BOG) + N (B(T) > 5

Jj=1
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=P <ZI{U¢eRX} (Nx(B(X:)) + Ng(B (X)) > T;) + P(Mp>26m)
+P ZI{VJeﬁy} (N)?(B(Yg)) + Ny (B (?g)))>% ‘ Mpr<2im| .
=1

Applying the Markov inequality to equations (5.11) and (5.15) yields that, for any € > 0, when n is sufficiently
large,

DX, V) = T (%, V) | E [fZlI{UiERx} (Nx(B(X:) + Ng(B (Xv:))]
> € =

n ne/2

IN

+P(MR > 25m)

E

£ Lm0+ 5 (8(77) | <200

ne/2

(5.16)

2K16 4K56
10 2R20M L ppg > 26m) < K8+ P(Mp > 26m)
ne ne
for some constant K determined by e.
Recall that Mg is a Binomial(m, d) random variable, by applying the Markov inequality, we obtain P(Mg >

2md) = P(Mr — md > md) < % = %. Thus, for any fixed § € (0,1), when m is sufficiently large (in

particular, m > 15_—25), it follows that P(Mp > 26m) < ¢. Hence, Inequality (5.16) reduces to

|F(mem) -r (')?nvj;\m> I

n

>e| <K&+0. (5.17)

: : L(X0,Ym
In the previous section, we proved that %

7r(2?2,37m) — L (7“7 J?XaJ?Y)

— Lo (r, ]?X, fy) in probability as n — co. Thus, when n is

sufficiently large, P (

> e> < 6. Combining this inequality with Inequality (5.17)

yields

P

(|F2) o (v o)

>26) < Ké§ + 26.

Corollary 4.2 says that go(r) is bounded and continuous. Since fx = fxand fy — fy asd —0 (i.e., as k — 00),
then by the dominated convergence theorem, it follows that as 6 — 0

Lo (7“, J?X,J?Y) — La(r, [x, fr)

Since 6 > 0 can be arbitrarily small, we immediately obtain P (’w — Lo(r, fx, fy)]’ > e) — 0 which
finishes the proof of Theorem 1.8. O
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Remark 5.4. The limiting function Lo(r, fx, fy) gives the same value for uniform densities or when fx = fy.
However, since we have not proved whether gy is concave, we do not know yet if this limiting function achieves
the maximum value when fx = fy.

6. EXTENSION TO HIGHER DIMENSIONS

The extension of our results in R? to higher dimensions R? with d > 2 can be achieved in a straightforward
fashion with some modifications in the geometric arguments. The class cover problem (CCP) is already defined
in any dissimilarity space (including R?) [3]. The LLNs for the domination number in R¢ also follow from
the ergodic theorem for multidimensional subadditive processes. One can prove the SLLN for the domination
number of the CCCD generated by the Poisson points in R?, and then transfer the result to uniform data sets

n [0,1]¢ with fixed sample sizes. The extension of constrained domination number induced by the X-points
and Y-points with the covering balls bounded by the boundary of the study region is also straightforward.

In particular, in higher dimensions, S* = R¢, the region .J, becomes Jy , = [0, ge), for ¢ > 0, and |J4 4| = ¢*.
Furthermore, we assume that there are two independent Poisson processes {X;} and {Y;} in R¢, with respective
rates Ax and Ay. Then the extension of our main findings to higher dimensions are as below:

— Extension of Theorem 1.5: Let {X;} and {Y;} be two independent Poisson processes in R%, with rates

F]dt _

Ax and Ay, respectively. If \y [Ax =71, r € (0,00), there exists a function gq such that lim 2Tl =
—o00,te

ga(r) a.s
— Extension of Theorem 1.6: Let {X;} and {Y;} be two z'ndependent Poisson processes in R, with rates

Ax and Ay, respectively If oy [Ax =r, r € (0,00), then hm
the Extension of Theorem 1.5.
— Extension of Theorem 1.7: Let X; ”de[O 14 fori=1,2,...,n and Y; ”AflU[O 119 for j =1,2,...,m

Fnom

. \Jdt\ = ga(r) a.s., where gq(r) is as in

and X; and Y be independent. If m/n — r, r € (0,00), as n — oo, then lim

= gq(r) in probability,
n—00
where gq(r) is as in the Extension of Theorem 1.5.
— Extension of Theorem 1.8: Let X; be i.i.d. from fx fori=1,2,...,n and Y be i.i.d. from fy for
j=12,...,m and X; and Y; be independent. If the densities fx and fy are positive, bounded, and

continuous on their support, [0,1]%, and m/n — r, r € (0,00), as n — oo, then

Fn m
lim :

n—oo N

= Lq(r, fx, fy) in probability.

where Lq(r, fx,fy) = [ [ g4 (T

[0,1]4
dzy -+ -dag and gq(r) is as in the Extension of Theorem 1.5.

fY(i%) - [x(x)dx where x = (21,...,24), ¥ = (Y1,---,¥d), dx =

The proofs of these extensions are similar to those in the two-dimensional case. We only provide the proof
of the higher dimensional version of Lemma 3.1 as an illustration.

Lemma 6.1. (Extension of Lem. 3.1) Let Jy,, = [0,ne) and I';,  be the constrained domination number

T, T,
and I'j, . be the unconstrained domination number. Then lim lim %=
Pl n—oo |J ’n‘ n—o0 |J "‘

a.s.

Proof. In R?, we have Jom = [sne, (n — sp)e), i, = [2s,€, (n — 2sy)e), and i = {(24- ﬁ) sne, (n —
(2 + \/&) sn)e). The quantity s, < m will be chosen later. The s, X s, squares in R? become s, X

Sp... X 8y = sfl hypercubes between J ('M and J C’i’ - Let Fy , denote the event that all constrained covering balls
of X-points in .J C’l' ,, are contained in Jy ,, and let Ey, denote the event that there exists at least one Y-point in

each of the s hypercubes between J} , and J/ . The probability of having at least one Y-point in one of these
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d d
small hypercubes is 1 — exp(—s?)y), and the number of such small hypercubes is equal to (n=sn)—(n—dsn)”

which is less than equal to 2d(n/s,)%~!. Therefore, we have P(E;,) > (1 — eXp(—Ssz))Qd(”/s")d%.
Next, we show that Eg, C Fgy,, so it would follow that

P(Fyqn) > (1— exp(_si)\y))&i(n/sn)dﬂ.

Suppose Y; is the Y-point closest to X;, and let Z; be the closest point on 9(Jy,,), the boundary of Jy ., to
X, and let P; be the projection of Y; on the line segment joining X; and Z,. Moreover, let d(X;, P;) = b and
d(Y;, P;) = a. Then the radius of the constrained covering hypersphere EJ(M (X;) is Va? + b2, Since a < s, we
have va2 4+ b2 < \/8% + b2 < s,, + b. But the distance from X; to 9(Jg ) is greater or equal than s,, + b, so we
obtain B, , (X;) is contained in Jy,.

Now let Ay, =Ty, —Tj,.. As in the two-dimensional case, Ay, = > 0. Given the event Fy,, the
constrained covering hypersphere resizing can only occur for those X-points in Jy ., \ Jé’y , and the resized
hyperspheres do not intersect .Jj’, . The reason is that there is a closest Y; to X; in the hypercube and that the
radius of the resized covering hypersphere B(X;) is \/b? + b2 + --- + b2. Since b; < s, for all i = 1,2,...,d we
have /b + b3 + - - - + b2 < V/ds,, and the distance from X; to the boundary of .J}’, is greater or equal to v/ds,,.
Therefore, Ay, . < Nx(Jan \ J(/i//n)

By the arguments in the preceding paragraph

Ay, )
P <|Jddv > €> < P(NX(JdﬂL \ J(/i/fn) > C‘Jd,nD 4 P(de)

and by the union bound (for the middle inequality below), for n sufficiently large and s,, = {/(d + 0) log(n) /Ay
for some 6 € (0,1)

2d d—1
P(F,) < P(E§,) < ~e ™ <nf-lem (o) losn
Sn
which is summable n, but also E[Nx(Jan \ JJ},)] ~ cn%1s,, so by a Chernoff bound for the Binomial

distribution, for n sufficiently large,
P (NX(Jd,n \ Jg) > end/(d_l)) < exp(—n?1)

which is also summable in n.
Notice that this choice of s, implies P(Fj,) — 0 as n — oo. By the Borel-Cantelli Lemma, the above

A .
calculations imply that I J‘;d”i 2% 0. Therefore

lim D _ L, a.s
which completes the proof. O

The proofs of the high dimensional extension of Theorems 1.6 and 1.7 also follow with similar geometric
adjustments above for higher dimensions. As main changes in proving the extension of Lemma 4.1, we modify
the cases of adding and deleting Y-points as follows. In the case of adding one new Y-point: Y,, we equally
divide the hypercube centered at Y, with side length 4b into 8¢ smaller hypercubes, and refer to the 8¢ small
hyperspheres inscribed in the hypercubes with radius b/4 as grid hyperspheres. As the Poisson process Y has



LLN FOR CCP 399

/2 d
rate Ay, the probability that a particular grid hypersphere covers no Y-point is exp (—%) where

[(z) = [, t*"te~'dt is the usual gamma function. Then the proof proceeds as in the d = 2 case with inserting
this probability appropriately. The same conclusion of Corollary 4.2 also holds for g4(r) with the proof requiring
almost no adjustment for extending to higher dimensions.

The extension of Theorem 1.8 can be proved similarly to the one in the two dimensional setting: We first
generalize extension of Theorem 1.7 to piece-wise constant densities, then extend it to the continuous case. The
proofs are analogous to those in the two dimensional setting.

Remark 6.2. Notice that go(r) in Theorems 1.5-1.8 (and likewise for gq(r) in Sect. 6) is not explicitly available
in contrast to the one-dimensional case. In applications, this might constitute a drawback which can be overcome
by estimating go(r) empirically by Monte Carlo simulations (which is not pursued in this article).

7. DISCUSSION AND CONCLUSIONS

We study the class cover problem (CCP) of random point sets in two (or higher) dimensions. In particular,
given two classes X and ) in a sample space £ with corresponding random variables X; and Y;, respectively,
the covering ball of X;, denoted by B(X;,r;), is the set of points w in Q such that X; is closer to w than to
any other Yj. That is, letting &,, = {X1,X>,..., X,,} and Y, = {¥1,Y2,...,Y,,}, B(X;,r;) is the ball with
radius r; < min; d(X;,Y;). The goal in the CCP is to minimize the number of covering balls needed to cover all
X-points, X,,. This goal is equivalent to finding a minimum dominating set for the digraph called the class cover
catch digraph (CCCD). A CCCD has vertex set &,, and an arc (i.e., directed edge) from X; to X is inserted
if Xj S B(Xi, Ti)-

The CCP (and hence the CCCD) is motivated by its application in pattern classification. DeVinney and
Wierman proved the Strong Law of Large Numbers (SLLN) for the uniform distribution in one dimension [10],
and Wierman and Xiang extended the SLLN to the case of general distributions in one dimension [31]. We
study the behavior of the domination number of CCCDs when X- and Y-points are coming from independent
Poisson point processes in R?, as well as X,, and ), are chosen uniformly from the unit square and also X- and
Y -points have positive, bounded and continuous densities. In the Poisson process case, we prove a SLLN result
for the domination number; i.e., we show that the domination number (properly scaled) converges almost surely
to a limiting function, denoted g4(r), where r is the ratio of the rate of the Poisson process for Y points to that
for X points in R%. The proof proceeds by applying a result on almost sure convergence of subadditive processes
for a constrained domination number, and then showing that the difference between the unconstrained and
constrained domination number vanishes in the limit, which is shown by extensive geometric and probabilistic
computations. For the case of uniformly distributed points in the unit square, we obtain a WLLN result (i.e.,
convergence in probability) for the scaled domination number. Finally, we generalize this result to the case where
the densities are positive, bounded and continuous on [0, 1]? and then extend the results to higher dimensions.

The solutions to the CCP (i.e., the minimum dominating sets of the CCCDs) are employed to build classifiers.
For example, the balls around the members of the minimum dominating sets of the CCCDs can be used to
construct discriminant regions for assigning class labels (see [8] for more detail). CCCD-based methods have
been shown to have relatively good performance in classification (see [9, 23]) and also to be robust to the class
imbalance problem [20].

One major drawback of CCCDs is that the (exact or asymptotic) distribution of its domination number
is only available in the one dimensional case. Despite this difficulty, we were able to show SLLN and WLLN
results for the domination number in the Poisson process and uniform distribution cases, respectively, and
also determine some properties of the limit of the domination number. The difficulties in extending the nice
properties and results in the one-dimensional case to higher dimensions are discussed in [5]. These difficulties
mainly arise from the lack of a natural ordering of points in two or higher dimensions, and when ), partitions
the space into cells, the balls are not necessarily restricted to the particular cell their center reside in. CCCDs
were generalized to proximity catch digraphs (PCDs) in [4] where distribution of the domination number of
PCDs is more tractable than that of CCCDs. The current work also suggests that domination number of CCCDs



400 E. CEYHAN ET AL.
might have asymptotic normality, so a CLT result is also a topic of prospective research. Moreover, this prospect
is also highly contingent on finding the explicit forms of the limiting function, g4(r), at least for d = 2, which

is also an open problem.

APPENDIX A.

A.1 Proof of Lemma 4.1
For any 6 > 0 and ¢ > 0, by the law of total probability, we have

An A"L
P(' ,Mn>e) 3 P(' o
n n
pn>0n
|AnM
P il n
s 3 p(B

A,
+ Z P<| 1’1M"|>e

= Mol = o )P (= My | = )

Ay,
>e’Mn—m:pn>P(Mn—m=pn)+P(|’M">e Mn—m:())P(Mn—mzo)
n

mMn—pn>P(mMn—pn).

Observe that the first term in the right hand side is for the case of m and M,, differing by more than
on from each other, the second term is for deleting p, Y-points, the third term is when there is no need
of change in the number of Y-points, and finally the last term is for adding p, Y-points. Observe that if

m = M, then A, », =0, thus P (% > € ‘ M, —m = O) = 0, hence the third term above vanishes. Since
P (‘Ani‘ >e ‘ m — M,| = pn) <1 and Y3, 5P (Im— M| = pn) = P(jm— M,| > 6n) the probability
above can be bounded as follows:

An An
P(|’M"|>e) < P(|M,, —m| > én) + Z P(T’lM"|>e‘Mn—m:pn>P(Mn—m:pn)

n
1<p, <dn

A,
+ Z P(| T’LM"|>6

1<pn<én

m— M, = pn)P (m — M, = pn). (A1)
We bound the first term in the right hand side of equation (A.1) as follows. Since m/n — r, when n is
sufficiently large, we have

Im=rnl 5o, (A.2)
thus, by triangle inequality and using equation (A.2)

M, — M, — -
P(|Mn—m>5n)=P<nnm|>5>§P(| nn rn|+|mnrn\ >6)

<P<M>g) = P(|M, —rn| > én/2).

n =

Applying a similar argument as in page 432 of [10], which uses Chernoff’s Theorem, the above is further
bounded as follows:

P(|M, —m|>dn) <P (|Mn —rn| > 6:) < Kekom (A.3)
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FIGURE A.1. The result of adding one new point Y.

for some constants K,k > 0 and sufficiently large n. Next, we bound the second and third terms in (A.1) by
considering the cases of adding and deleting up to dn Y-points.

Case 1: Adding up to én Y-Points. We first consider the case of adding one new Y-point: Y,, i.e.,
m— M, = 1.

As illustrated in Figure A.1, if Y, falls into the covering ball B(X;) of some point X;, the covering ball B(X;)
will decrease to B'(X;) so that the domination number may increase (but never decreases). Such an increase can
be at most the number of X-points in B(X;).

Note that it is possible for Y, to fall into more than one covering ball. To take this into account, define the
random variable B, as the maximum radius of all balls that contain Y, but contain no other Y-points. We
know that given B, = b > 0, the covering balls into which Y, could fall must be contained in the ball B(Y,, 2b),
which is the ball centered at Y, with radius 2b. Otherwise, if there exists a covering ball that contains Y, but is
not contained in B(Y,,2b), then that covering ball must have a radius greater than b but contains no Y-points,
which contradicts B, = b. Therefore, A, 5, is bounded above by the number of X-points in B(Y,,2b), thus

0< An, < Nx(B(Ya,20) = > Tix,env.2n)- (A4)
=1
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FIGURE A.2. The affected region of an added point Y.

Next, we calculate an upper bound for P(B, > b). Define E(Y,,b) to be the event that “there exists a ball
in B(Y,,2b) with radius b which contains no Y-point.” Note that in the definition above, the ball is a subset
of B(Y,,2b), but is not necessarily centered at an X-point or a Y-point. From the definition of B,, we have
{Bq, > b} C E(Y,,)).

Thus, we will find an upper bound for P(E(Y,,b)). As shown in Figure A.2, suppose we equally divide the
square centered at Y, — with sides parallel to the coordinate axes — with side length 4b into 82 = 64 smaller
squares, and refer to the 64 small balls inscribed in the squares with radius b/4 as grid balls. It E(Y,,b) occurs,
i.e., there exists a ball in B(Y,,2b) with radius b which contains no Y-points, then that ball must contain a grid
ball that covers no Y-point (as illustrated in Fig. A.2).

Therefore, if F(Y,,b) occurs, there must be a grid ball containing no Y-point. Since the Poisson process Y’
has rate Ay, we know the probability that a particular grid ball covers no Y-point is exp(—m(b/4)?\y ). Since
Ay = r, and by Boole’s inequality, P(B, > b) < P(E(Yq,b)) < 64exp(—nr(b/4)?). Applying (A.4), we have

A,

P ('LM’J >e|m—M,=1,B, :b) < P (Nx(B(Ya,2b)) > ne | m— M, =1,B, =b).
n

Since the X-points are independent of the Y-points, all X; are identically distributed, and B, is defined indepen-

dently of the X-points, the right side of this inequality equals the unconditional probability. Then, by Markov’s

Inequality, we have

ENT Ik,
P(Nx(B(Ya,28)) > ne) < Bz Iexienoaan] _ P € B, 2)
ne €

Note that if B(Y,, 2b) is contained in Jp(,), then P(Xy € B(Y,,2b)) = m(2b)/|Jr(n)|. However, if Y, is near the
boundary of Jp(,), then it is possible that only part of B(Yg,2b) is contained in Jp(,), so P(X; € B(Yq,2b)) <
7(2b)?/|J7(n)|- Summarizing the discussion above, we obtain

2
P('A”’M">em—Mn:1,Ba:b>< m(20) (A.5)
n

o |JT(n)| €
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Hence, given T'(n),

P<| ’M"’|>e‘mMnl)/ P<| ’M"|>e
n b=0 n

VET() 7 (2)2 VI () 2b)>
< / 7r(7)d(1 —P(B, > b)) < / P(B, > b)d <7T()) :
b=0 | J(n)| - € b=0 | T ()] - €

m— M, =1,B, = b) dFg, (b)

since d(1 — P(B, > b)) = —d(P(B, > b)) and P(B, > v2T(n)) = 0. Recalling that P(B, > b) <
64 exp(—mr(b/4)?), we further bound the above as follows:

|Ap ., | ) /ﬁT(n) 2 ( 7(2b)? ) C
P %">e’m—Mn:1 < 64 exp(—7r(b/4)*)d < ,
( n b=0 (= (6/4)°) | Jr(ny| - € | T ()]

where C' > 0 is a constant. Therefore, without conditioning on T'(n), we have

P<|A”’MW|>6’mMn—1)SC'E{1]'

Next, we consider the case of adding one or more new Y-points: Y.,..., V" Mr when m — M, > 1. Simi-

larly define B! as the radius of the covering balls containing V!, 1 = 1,...,m — M,. Given m — M,, = p,, €
{1,2,...,0n} and B!, = b, > 0, by applying the same arguments to obtain (A.5), we have

JANS
P (| M,

n

P(X; e B Yl,2b Pn 2b;)2
> € m—Mn:meé:bl> < ( =1 ( a l)) SZ|7T( l)
€

Using P(B! > b;) < 64exp(—nr(b;/4)?) for each [ as before, and recalling we have chosen p, < dn, we can
finally get the following bound:

JAVS
P (| My | > €
n

1 1
|J7 ()| |J ()]

Hence,

A 1
> P('”M"'>e’m—Mn:pn>P(m—Mn:pn)g > 6n-C-E{J ]P(m—Mn:pn)
1<pn<on " 1<pa<én |7 (m)|

1
=én-C-E LJ J Z P (m — M, = p,) (since summation equals P(1 <m — M, < dn))
T 1 <p,<on

1
§5n~C’-E{ } (since P(1 <m — M, <dén) <1)
< 6C; (since E [n} is bounded). (A.6)

for some constant C; > 0.
Case 2: Deleting up to én Y-Points. In contrast to adding a point, deleting an ezisting point, Yy, can
only decrease the domination number or leave it unchanged.
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F1GURE A.3. The result of deleting one existing point Y.

As illustrated in Figure A.3, if Yy is on the boundary of B(X;) of some X;, then deleting Y, will cause B(X;)
to increase to B”(X;), which we refer to as the enlarged covering ball. The enlarged covering ball B”(X;) has
a radius equal to the distance between X; and the second nearest Y-point, Yj. It is worth noting that the
domination number can decrease by at most the number of X-points in B”(X;) \ B(X;).

It is also possible for Y, to fall into more than one enlarged covering ball. Refer to the original Y-points
except Yy as Y/-points. Define the random variable By as the maximum radius of all balls that contain Y, but
contain no Y’-points. Given By = b > 0, the enlarged covering balls into which Yy could fall must be contained
in the ball B(Yy, 2b). Otherwise, if there exists an enlarged covering ball that contains Yy but is not contained
in B(Yy, 2b), then that enlarged covering ball must have a radius greater than b but contain no Y”’-point, which
contradicts By = b. Therefore, |A, ar, | is bounded above by the number of X-points in B(Yg, 2b), thus

n
- ZI{XieB(Yd,Qb)} < Apum, <0.

i=1

Define the event E'(Yy,b) = {3 a ball in B(Yy, 2b) with radius b which contains no Y”'-point}. As in the case of
adding one point, it is easy to see that {By > b} C E'(Yy,b). Hence, conditioning on T'(n), we can get the
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following upper bound for P(Bg > b):

b 4 2 m
P(By; >b) < P(E'(Y4,b)) <64 x P(a grid ball contains no Y'-point) = 64 <1 _ T4 ) .

T(n)?
Therefore, using the same argument as in the case of adding points, for any p, € {1,2,...,0n}, we obtain
A, V2T () b/4)2\"™ 2b)?
P ﬂ>e M, —m = p, gén-E/ 64 1_7r(/) d M
n b=0 T(n)? T(n)? ¢
Cl
< dn— <005
m

for some constant Cy > 0. Therefore,

Ay
> P(|’M">e Mnm—pn>P(Mnm—pn)§5C2 > P(M,—m=p,)
1< pn<on " 1< pn <on
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Substituting the bounds found in equations (A.3), (A.6), and (A.7) into Inequality (A.1), it follows that

P ('AmMJ > e> < Ke ™" 4 (Cy + Cy)6. (A.8)

n

For any fixed § > 0, the first term Ke *" goes to 0 as n — oco. Also, since § > 0 can be arbitrarily small,

conclude that P (m”ian > e) — 0, so A"TM — 0 in probability.

we

O

Remark A.1. Notice that when adding points, P(B, > b) has an exponentially decaying bound, while when
deleting points, P(By > b) has a polynomially decaying bound. The main difference between these two cases is
that when adding points, we add from a Poisson process with rate Ay, while deleting points we delete from a

uniform distribution in the region of interest.

A.2 Proof of Corollary 4.2

— g2(r) is bounded: To prove this, we show that go(r) € [0,1]. For integer n, we showed that lim L,

n—oo |Jn

g2(r) a.s., where Ax =1 and Ay =r are assumed.

Since 0 < 3 < M) and M) 25 A = 1t follows that 0 < g5(r) = limy, % <1.

— g2(r) is an increasing function of r: Next, we show that go(r) increases as r increases. We first suppose
that, for any 0 < r; < ro, there is a Poisson process X with rate 1, a Poisson process Y; with rate rq,
and another Poisson process Y3_; with rate ro — r1. For any integer n > 0, let T'(n) be the smallest real
number such that there are n 41 X-points in Jp,). Suppose next that M;(n) is the (random) number of
Y1-points in Jp(,), and My_1(n) is the (random) number of Y5_;-points in Jp(,). We refer to the merged
Y1-points and Y_1-points as Ya-points. We define Iy, a7, (n) as the domination number generated by the
X-points and Yi-points in Jr,), and I'; ar,(n) as the domination number generated by the X-points
and Ya-points in Jp(,). Basically, we have just added M;_1(n) Yz_1-points to those M;(n) Yi-points to
allow us to study the change from Iy, a7, (n) to Ty ary(n)- Since adding Y -points can never decrease the
domination number, we know that I', az,(n) is larger than or equal to I'y, a7, (n)- Recall that Y1-points are
generated from a Poisson process with rate r1, and Y5_1-points are generated from a Poisson process with
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rate ro — r1, hence Ys-points are generated from a Poisson process with rate ro. Therefore, by previous
results, we have
lim I—‘n,Ml(n) o Fn,Mz(n)

= = g2(Tr2) a.s.

ga(ry) a.s. and lim

Recalling Iy, ar,(n) is larger than or equal to I'y ar, (), We conclude that ga(r2) > g2(r1).

— g2(r) is continuous: For any ri,73 > 0 and € > 0, we must show that there exists a 6 = §(e) > 0 such
that if |ro — 71| < d, then |g2(r2) — g2(r1)| < €. Suppose there is a Poisson process X with rate 1, a Poisson
process Y7 with rate r1, and another Poisson process Y3 with rate ro. Then for any integer n > 0, we let
T'(n) be the smallest real number such that there are n + 1 X-points in Jr(n)- Suppose next that M;(n)
is the (random) number of Y;-points in Jp(,), and Mz (n) is the (random) number of Y5-points in Jp .
Taking into consideration that almost sure convergence implies convergence in probability, we have

FTL n Fn n
lim ) 92(r1) in probability and lim —Ma(n)

= g2(r2) in probability.

We will prove the continuity of ga(r) by contradiction. Suppose that |r; — ro| < § and that |ga(re) —
g2(r1)| > €, i.e. |g2(r2) — g2(r1)| = € + « for some a > 0. By the definition of convergence in probability,
we know that when n is sufficiently large,

I—‘n,M n
P< |JT(1()|) —92(7"1)

FmMg(n)

— g2(r2)

<a/2>>1—6andP<

<a/2> >1-24.

The events in the above probabilities together with |ga(r2) — g2(r1)] = € + « imply that

P < F’rL,Ml(n) . Fn,Mz(n)
| T ()| |J7(m)l

> e) >1-26. (A.9)

On the other hand, applying the same techniques used in the proof of Lemma 4.1, we can prove the
following result similar to Inequality (A.8). If [ro — 1| < J, then when n is sufficiently large,

P ( Fn,JVh(n) . Fn,Mg(n)

> e> < P (|Ma(n) — Mi(n)| > 6n) + (C} + C3)6,

where C1, C} > 0 are two constants determined by e.

Applying Chernoff’s Theorem as before, for any fixed 6 > 0, the probability P (|Mz(n) — My(n)| > én)
converges to 0 as n goes to co. Therefore, when ¢ is sufficiently small, the inequality above can be further
bounded as follows: For some constant C' > 0,

( Do) DnMa(n)
|7 ()| |7 ()|

>e> < Co<1-26,
which contradicts Inequality (A.9). O
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