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LAW OF LARGE NUMBERS FOR A TWO-DIMENSIONAL CLASS

COVER PROBLEM

Elvan Ceyhan1,* , John C. Wierman2 and Pengfei Xiang3

Abstract. We prove a Law of Large Numbers (LLN) for the domination number of class cover
catch digraphs (CCCD) generated by random points in two (or higher) dimensions. DeVinney and
Wierman (2002) proved the Strong Law of Large Numbers (SLLN) for the uniform distribution in one
dimension, and Wierman and Xiang (2008) extended the SLLN to the case of general distributions in
one dimension. In this article, using subadditive processes, we prove a SLLN result for the domination
number generated by Poisson points in R2. From this we obtain a Weak Law of Large Numbers (WLLN)
for the domination number generated by random points in [0, 1]2 from uniform distribution first, and
then extend these result to the case of bounded continuous distributions. We also extend the results
to higher dimensions. The domination number of CCCDs and related digraphs have applications in
statistical pattern classification and spatial data analysis.
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1. Introduction

1.1. The class cover problem

The class cover problem (CCP) is motivated by its applications in pattern classification [18]. Its study was
initiated by Cowen and Cannon in [3], and has been actively pursued, since its solution can directly be used to
generate classifiers competitive with other methods in the literature (see [20, 23]).

We first give a formal description of the CCP: Let Xn = {X1, X2, . . . , Xn} and Ym = {Y1, Y2, . . . , Ym} be
two sets of i.i.d. random variables taking values in a sample space Ω and are from classes X and Y with class-
conditional distribution functions FX and FY , respectively. Consider a dissimilarity function ρ : Ω × Ω → R+

such that ρ(α, β) = ρ(β, α) ≥ ρ(α, α) = 0 for all α, β ∈ Ω, where R+ denotes the nonnegative real numbers. We
assume Xi’s are independent of Yj ’s, and all Xi’s and Yj ’s are distinct with probability one. For each Xi, we
define its covering ball B(Xi) = {ω ∈ Ω : ρ(Xi, ω) < min

j
ρ(Xi, Yj)}. A class cover of Xn is a subset of covering

balls whose union contains all Xi’s. Obviously, the set consisting of all covering balls of Xi’s constitutes a class
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cover for class X . However, we want to find a cover of class X that is as small as possible. Therefore, the CCP
we consider is equivalent to finding a minimum cardinality class cover. DeVinney [8] proved that solving the
CCP is in general an NP-hard problem.

Furthermore, the CCP can be converted to a purely graph theoretic problem of finding minimum dominating
sets. In a digraph D = (V,A), a vertex u ∈ V dominates itself and all vertices of the form {v : (u, v) ∈ A}. A
dominating set SD for the digraph D is a subset of V such that each vertex u ∈ V is dominated by a vertex
in SD. A minimum dominating set S∗D is a dominating set of minimum cardinality and the domination number
γ(D) is defined as γ(D) := |S∗D|, where | · | denotes the set cardinality functional. The class cover catch digraph
(CCCD) induced by a CCP for a realization of Xn is the digraph D = (V,A) with the vertex set V = Xn and
there is an arc (xi, xj) in arc set A if and only if xj ∈ B(xi). It is easy to see that the CCP is equivalent to
“finding a minimum dominating set of the induced CCCD and using the points in the minimum dominating set
to construct the minimum cover”. More discussion on graph domination is provided in [15].

The solutions of the CCP can be used to build classifiers. For example, the balls around the members of
the minimum dominating sets of the CCCDs can be used to construct discriminant regions for assigning class
labels (see [8] for more detail). In this setting, we want to choose a class cover to represent class X that is as
small as possible (i.e., a minimum dominating set for Xn), to make the classifier less complex while keeping
most of the relevant information. The use of the minimum dominating sets of the CCCDs in classification are
illustrated in [9, 20, 23]. CCCDs can also be used to determine the underlying or inherent scale dimension for
high dimensional data [19]. Eveland et al. proposed a boosted version of CCCD classifiers which are efficient
and fast in computation as well [12]. CCCD classifiers are also used in DNA microarray analysis in [24]. CCCDs
are generalized to random geometric digraphs called proximity catch digraphs (PCDs) in [4] and the minimum
dominating sets of PCDs are also proposed as solutions to the CCP problem, and the cardinality of the minimum
dominating sets (i.e., domination number) of the PCDs is used as a test statistic for testing spatial clustering
in a multi-class setting [4, 6]. The arc density (i.e., number of arcs in a digraph divided by the total number of
arcs possible in a digraph of the same order) of PCDs is also used for the same purpose (see [7] and references
therein).

The mild conditions for the dissimilarity function ρ are sufficient to define the CCP, CCCDs, and the domi-
nating sets and domination number of CCCDs. However, throughout the rest of the article, we take ρ to be the
regular Euclidean distance, although most of the arguments would work if it were only taken to be an increasing
function of the Euclidean distance. The type of the balls depend on the distance or dissimilarity function chosen,
but given the dissimilarity measure, if the change in the radius of the balls do not alter the induced CCCD,
then the solution(s) to the CCP problem would be the same points and balls with the same centers.

Recently a random geometric graph called secrecy graph was also introduced to model a wireless network for
secure communication (see [13, 27]). Taking class X points as the “good guys” (i.e., communicators over the
networks), and class Y points as “bad guys” (i.e., eavesdroppers in the network), an arc is inserted between two
X subjects xi and xj if there are no eavesdroppers falling in the radius of the ball centered at xi with radius
being the distance between xi and xj . A quick investigation shows that the directed secrecy graph is equivalent
to the CCCD; the basic secrecy graph is the reflexivity graph (in which edges are inserted when two vertices
have two distinct arcs between them); and the enhanced secrecy graph is equivalent to the usual underlying
graph of the CCCD. The authors in [13, 27] study the percolation of the connectivity of these secrecy graphs
under the lattice and Poisson models for the vertices.

1.2. Previous results

The domination number of a CCCD is the cardinality of a minimum dominating set of the CCCD. In 1962,
Ore [21] first used the term “domination number”. Due to the many applications of the domination number
in fields such as computer networks, social sciences and computational complexity, there has been increasing
interest on this topic (see, e.g., [2, 26, 34]). In the CCCD setting, we denote the domination number by Γ(Xn,Ym)
to indicate dependence on Xn and Ym.
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DeVinney and Wierman [10] proved the following SLLN for the special case of Ω = R, FX = FY = U [0, 1],
the uniform distribution on [0, 1] and in this special case the domination number is denoted by Γn,m for brevity
in notation.

Theorem 1.1. If Ω = R, FX = FY = U [0, 1], and m = brnc, where r ∈ (0,∞), then

lim
n→∞

Γn,m
n

= g1(r) =
r(12r + 13)

3(r + 1)(4r + 3)
a.s.

Wierman and Xiang [31] extended this result to the case of general distributions in one dimension, as stated
in the following theorem. In this case, fX and fY are probability density functions (pdfs) corresponding to Xn
and Ym, respectively.

Theorem 1.2. If Ω = R, the continuous and bounded pdfs fX and fY have support [a, b] with a < b, and
m/n→ r, r ∈ (0,∞) as n→∞, then

lim
n→∞

Γ(Xn,Ym)

n
=

∫ b

a

g1

(
r · fY (u)

fX(u)

)
· fX(u)du a.s.

where g1(r) is defined as in Theorem 1.1.

1.3. Our results

Extending the previous results in one dimension to higher dimensions requires a different approach, since
the exact distribution of the domination number in the multi-dimensional case is unknown. In this paper, we
first focus on R2 and develop the LLN for the domination number in R2 by using the ergodic theorem for two-
dimensional subadditive processes. Then we extend the results to higher dimensions in Section 6. See [25, 30]
for the subadditive Euclidean functionals. Our approach is to prove the SLLN for the domination number of the
CCCD generated by the Poisson points in R2, and then transfer the result to uniform data sets on [0, 1]2 with
fixed sample sizes. Our arguments are similar to those given in [22, 25, 30, 33]. In particular, the subadditive
approximation is also known as the boundary functional. Furthermore, the de-Poissonization argument we
employ was introduced in [33]. However, the domination number in the Poisson case is not subadditive. To
make use of the SLLN for subadditive processes, we construct the constrained domination number of the CCCD
induced by the X-points and Y -points with the covering balls bounded also by the boundary of the study region,
which is assumed to be a rectangular region R in R2. Below, we define the domination number and constrained
domination number based on CCCDs generated by realizations of Xn and Ym in region R. To emphasize the
distinction between the two versions, the former will also be called unconstrained domination number when
there is potential ambiguity.

Definition 1.3. (Unconstrained) Domination Number: For a rectangle R in R2, the (unconstrained)
covering ball of any xi ∈ R is defined by

BR(xi) =

{
ω ∈ Ω : ρ(xi, ω) < min

yj∈R
ρ(xi, yj)

}
.

The (unconstrained) domination number ΓR is the minimum number of (unconstrained) covering balls needed
to cover all X-points in R ⊆ R2.

Definition 1.4. Constrained Domination Number: For a rectangle R with boundary ∂(R), the constrained
covering ball of any xi ∈ R is defined by

BR(xi) = {ω ∈ Ω : ρ(xi, ω) < min
{

min
yj∈R

ρ(xi, yj), min
z∈∂(R)

ρ(xi, z)}
}
.
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The constrained domination number ΓR is the minimum number of constrained covering balls needed to cover
all X-points in R.

Let S2 = R2
+ be the two-dimensional quadrant with nonnegative real coordinates. If a = (ai) and b = (bi) for

i = 1, 2 are two vectors in S2 then [a,b) denotes the set {u : u = (ui) ∈ S2, ai ≤ ui < bi, i = 1, 2} (i.e., [a,b)
denotes a rectangle R which is assumed to include the left edge but exclude the right edge in each coordinate)
and let R denote the class of sets of this form. Denote 0 (and e) as the vectors with all coordinates equal to
0 (and 1). Let Jq = [0, qe), for q > 0, and |Jq| denote its area. Notice that (the closure of) Jq is a square with
lower left vertex at origin 0 and side length q, so its area is |Jq| = q2. Suppose that there are two independent
Poisson processes {Xi} and {Yj} in R2, with rates λX and λY , respectively. Notice that the number of X-points
on Jq, denoted NX(Jq) has a Poisson distribution, Poisson(λX |Jq|) ≡ Poisson(q2λX). Similarly, the number of
Y -points on Jq, denoted NY (Jq) has Poisson(q2λY ) distribution. Throughout the article, we use limq→∞,q∈A
for the limit as q tending to infinity through the elements of A (e.g., if A = Q means the limit is “as q tends to
infinity through rational numbers”), and limq→∞ with no specification for q for the limit as q tending to infinity
through the integers. In Section 2, by directly applying the SLLN for subadditive processes and the separability
argument, we establish the following SLLN result for the constrained domination number in the Poisson case.

Theorem 1.5. Let {Xi} and {Yj} be two independent Poisson processes in R2, with rates λX and λY ,

respectively. Then if λY /λX = r for r ∈ (0,∞), there exists a function g2(r) such that lim
t→∞,t∈R

ΓJt
|Jt|

= g2(r) a.s.

Although the explicit form of g2(r) is not available, in Corollary 4.2 we show that the function g2(r) is
bounded, increasing and continuous in (0,∞). Furthermore, the conclusion of Theorem 1.5 also holds for the
(unconstrained) domination number with the square study region with real vertices:

Theorem 1.6. Let {Xi} and {Yj} be two independent Poisson processes in R2, with rates λX and λY ,

respectively. Then if λY /λX = r for r ∈ (0,∞), then lim
t→∞,t∈R

ΓJt
|Jt|

= g2(r) a.s., where g2(r) is as in

Theorem 1.5.

Denote Γn,m as the domination number generated by n X-points and m Y -points where both X-points and
Y -points are uniformly distributed in the unit square, denoted U [0, 1]2. In Section 4, by viewing the Poisson
points as uniformly distributed points in [0, 1]2 (that is, coupling the Poisson point process with a binomial
point process and, in particular, approximating the Poisson distribution by a binomial distribution), we prove
the following Weak Law of Large Numbers (WLLN) for the domination number in [0, 1]2.

Theorem 1.7. Let Xi
iid∼ U [0, 1]2 and Yj

iid∼ U [0, 1]2 and Xi and Yj be independent for all i = 1, 2, . . . , n and

j = 1, 2, . . . ,m. If m/n→ r, r ∈ (0,∞), as n→∞, then lim
n→∞

Γn,m

n = g2(r) in probability, where g2(r) is as in

Theorem 1.5.

Finally in Section 5, based on the approach used in the one dimensional version of this problem in [31], we
generalize the WLLN to the case where the strictly positive and bounded densities fX and fY with support
[0, 1]2. Define

L2(r, f1, f2) :=

∫∫
[0,1]2

g2

(
r · f2(u, v)

f1(u, v)

)
· f1(u, v)dudv (1.1)

where g2(r) is as in Theorem 1.5.

Theorem 1.8. Let Xi
iid∼ fX and Yj

iid∼ fY and Xi and Yj be independent for all i = 1, 2, . . . , n and j =
1, 2, . . . ,m. If the pdfs fX and fY are strictly positive, bounded and continuous on their support, [0, 1]2, and
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m/n→ r, r ∈ (0,∞), as n→∞, then

lim
n→∞

Γn,m
n

= L2(r, fX , fY ) in probability.

The dependent variables (i.e., constrained and unconstrained domination numbers) in this paper are nega-
tively associated. See [32] for more details on negatively associated random variables and vectors. Therefore,
it is possible to prove CLT results for these two domination numbers. However, currently we only know some
properties of g2(r) (see Cor. 4.2.), hence, the asymptotic distribution (more specifically, CLT) is not pursued in
this article.

2. SLLN for the domination number in the Poisson case

Our proof relies on the ergodic theory of multidimensional subadditive stochastic processes. Subadditive
processes were introduced by Hammersley and Welsh in [14] and developed by Kingman in [16, 17]. In 1981,
Akcoglu and Krengel obtained a SLLN result for multidimensional subadditive processes under several natural
assumptions [1], which we employ in our proof. We state their results in terms of subadditive, instead of
superadditive processes below:

Definition 2.1. Let T denote the class of sets of the form [a,b) :=
{
u : u = (ui) ∈ Sd, ai ≤ ui < bi

}
for two

vectors a = (ai) and b = (bi) in Sd = Rd+, the additive semigroup of d-dimensional vectors with nonnegative
real coordinates where d ∈ N. A continuous subadditive process {XI : I ∈ T} satisfies:

S1: If I1, I2, . . . , Ik are disjoint sets in T, and I = ∪ki=1Ii is also in T, then XI ≤
∑k
i=1XIi .

S2: For I1, I2, . . . , Ik ∈ T, and u ∈ Sd, the joint distributions of (XI1 , . . . , XIk) and (Xu+I1 , . . . , Xu+Ik) are
identical where u + Ij = {u + a : a ∈ Ij} for j = 1, 2, . . . , k.

S3: E[XI ] <∞ for all I ∈ T and inf {E[XI ]/|I| : I ∈ T, |I| > 0 } = τ(X) > −∞,

where | · | denotes the Lebesgue measure and τ(X) is referred to as the time constant of the stochastic process
{XI}.

Let SdZ denote the set of vectors in Sd with integer coordinates. For a real number t > 0, let Sdt := {tu : u ∈ SdZ}
and Tt := {[a,b) : a,b ∈ Sdt }. If {XI} is defined only on Tt for some fixed t > 0, and satisfies conditions S1–S3,
then it is called a discrete subadditive process. Akcoglu and Krengel [1] proved the following theorem for the
t = 1 case:

Theorem 2.2. If {XI} is a discrete subadditive process on T1, then lim
n→∞

XJn

|Jn| exists a.e., where Jn = [0, ne) ∈
T1.

Kingman observed that the continuous analogue of Theorem 2.2 is false unless further conditions are added
and proposed a natural supplementary condition [16, 17]. The following theorem gives a multi-parameter
generalization of the result in [1].

Theorem 2.3. Suppose {XI} is a subadditive process on rectangles with rational end points. Let Js = [0, se) for
s > 0 and Φ = sup |XI | where the supremum is taken over all rectangles with rational end points in J1 = [0, e).

If E[Φ] <∞, then lim
q→∞,q∈Q

XJq

|Jq| exists a.e.

To eliminate the restriction of q to rational numbers, we rely on the concept of separability. A stochastic
process {Yt, t ∈ T} is separable if the parameter set T has a countable dense subsetD and there is an event E with
probability zero, so that for every open set F ⊂ T and every closed set G ⊂ R, the events {Yt ∈ G,∀t ∈ F ∩D}
and {Yt ∈ G,∀t ∈ F} differ by a subset of E. Doob [11] introduced separability to describe the condition that
the properties of a stochastic process are determined by its values at a countable set of parameter values. Since
{XIq} is constant except for jumps at the Poisson points, it is clearly a separable process. Hence, with D taken
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to be the rational numbers, a.s. convergence of
XJq

|Jq| as q tends to infinity through the rational numbers implies

a.s. convergence through the real numbers.
Theorem 2.2 alone does not identify the limiting random variable Ld := lim

|I|→∞
XI

|I| for a subadditive process

{XI}. However, the limit is simply the time constant τ(X) when the subadditive process is independent, where
a subadditive process is defined to be independent if the random variables {XIi} are independent for disjoint
regions {Ii} for i = 1, 2, . . . , k (see [16, 17]).

Consider the stochastic process
{

ΓR : R = [a,b),a,b have nonnegative rational components
}

where ΓR is
the cardinality of the class cover of the X-points with constrained covering balls in R. We prove that

Lemma 2.4.
{

ΓR
}

is a subadditive process.

Proof. In this setting, T in Definition 2.1 is the set of regions [a,b) with a and b having nonnegative rational
components. The set of such regions is denoted by Rq. We check the three conditions, S1−S3, in Definition 2.1
for
{

ΓR : R ∈ Rq

}
as follows:

– For S1, suppose that R1, R2, . . . , Rk are disjoint regions in Rq and that R = ∪ki=1Ri is in Rq as well. If a
point X ∈ R, then there exists a j ∈ {1, 2, . . . , n} such that X ∈ Rj . The constrained covering ball for X
with respect to R, denoted BR(X), is the same as or larger than that with respect to Rj , denoted BRj

(X).
Hence, no constrained covering ball with respect to R is any smaller than its corresponding constrained
covering ball with respect to Rj . Thus, the minimum number of constrained covering balls required to
cover all X-points in R would not be larger than that required to cover all X-points in Rj ’s. Therefore,
after ignoring the boundaries of Rj ’s, the union of the new constrained covering balls (with respect to R)
still contains all X-points in Rj ’s, and thus all X-points in R. Hence, it follows that, ΓR ≤

∑n
i=1 ΓRi

.
– S2 follows from the homogeneity of Poisson processes.
– S3 holds, since E

[
ΓR
]
> 0 for any R and ΓR is bounded.

Next, we prove Theorem 1.5 by applying Theorem 2.3 to the process
{

ΓJq
}

where Jq = [0, qe) where q is
rational and then extending this result to Jt where t is real.
Proof of Theorem 1.5. We first consider ΓJq with q being rational. To apply Theorem 2.3, we just need to

check that E[Φ] < ∞, where Φ = sup
∣∣ΓR∣∣ with the supremum taken over all rectangles R with rational end

points in J1. For any rational number q ≤ 1, we have ΓJq ≤ NX(Jq) ≤ NX(J1). Thus Φ ≤ NX(J1). Taking the
expectation of both sides, we have E[Φ] ≤ E[NX(J1)] = λX |J1| = λX <∞. Hence, by Theorem 2.3,

lim
q→∞,q∈Q

ΓJq
|Jq|

exists a.s.

Furthermore, the subadditive process
{

ΓJq : q rational
}

is independent because ΓRi
and ΓRj

are independent
for disjoint rectangles Ri and Rj . Thus

lim
q→∞,q∈Q

ΓJq
|Jq|

= τ
(
Γ
)
a.s.

Notice that the time constant τ
(
Γ
)

of the stochastic process
{

ΓJq
}

depends on r and Jq ⊂ R2, so we denote

the time constant as g2(r). Since the process
{

ΓR
}

is separable, a.s. convergence of
ΓJq

|Jq| along each sequence

of rational numbers implies a.s. convergence of
ΓJt

|Jt| for all positive real numbers, since rational numbers form a

dense countable set in the real numbers. Hence, the desired result follows. �
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Figure 1. An illustration of the regions Jn, J ′n, J ′′n , and J ′′′n .

3. Proof of Theorem 1.6

In Theorem 1.6, as λY /λX = r, we have lim
t→∞,t∈R

ΓJt

|Jt| = g2(r) a.s.

Having established the convergence result for the constrained domination number generated by the Poisson
points, we are now ready to prove a similar result for the (unconstrained) domination number, i.e. prove
Theorem 1.6. First, we prove a lemma that shows that the constrained and unconstrained domination numbers
agree in the limit over J

[
0, ne

)
as n→∞.

Lemma 3.1. Let Jn :=
[
0, ne

)
where n is a positive integer and denote the constrained domination number by

ΓJn and the unconstrained domination number as ΓJn . Then lim
n→∞

ΓJn

|Jn| = lim
n→∞

ΓJn

|Jn| a.s.

Proof. Let n be a positive integer and sn be a positive real number depending on n. Consider Jn =
[
0, ne

)
,

J ′n =
[
sne, (n − sn)e

)
, J ′′n =

[
2sne, (n − 2sn)e

)
, and J ′′′n =

[ (
2 +
√

2
)
sne,

(
n −

(
2 +
√

2
)
sn
)
e
)

as shown in

Figure 1. The quantity sn <
n

2(2+
√

2)
will be chosen later in the proof and we will let it go to infinity together

with n as n→∞ but at a much slower rate. Let Fn denote the event that all constrained covering balls BJn(Xi)
of X-points in J ′′n are contained in Jn, and let En denote the event that there exists at least one Y -point in
each of the sn × sn squares between J ′n and J ′′n .

The probability of having at least one Y -point in one of those small squares is 1 − exp(−s2
nλY ), and the

number of small squares is b4n/sn − 12c which is less than 4n/sn. Therefore, by the independent increments
property of Poisson processes, we know that

P (En) ≥ (1− exp(−s2
nλY ))4n/sn .
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Figure 2. An illustration of En ⊆ Fn (left) and an illustration of ∆Jn ≤ NX(Jn \ J ′′′n ) (right).

Next, we show that En ⊆ Fn, which will imply

P (Fn) ≥ (1− exp(−s2
nλY ))4n/sn .

If there is at least one Y -point in each sn × sn square between J ′n and J ′′n , then the constrained covering
ball of any X-point in J ′′n cannot cross the boundary of Jn (i.e., the constrained covering ball would stay
in Jn). The reason is that for any Xi ∈ J ′′n , the constrained covering ball BJn(Xi) cannot get very far away
from J ′n, since there is at least one point Yj in the closest sn × sn square to Xi. Hence, BJn(Xi) is contained
in Jn. Specifically (but without loss of generality), suppose Yj is the Y -point closest to Xi, located at the
position shown in Figure 2 (left). Then the radius of the constrained covering ball BJn(Xi) is

√
a2 + b2, where

the two segments with respective lengths a and b are also shown in Figure 2 (left). Since a ≤ sn, we have√
a2 + b2 ≤

√
s2
n + b2 ≤ b + sn. Note that the distance from Xi to the the boundary of Jn is greater or equal

than b+ sn, thus BJn(Xi) is contained in Jn.
Next we carefully analyze the relation between the constrained domination number ΓJn and the (uncon-

strained) domination number ΓJn . Let ∆Jn = ΓJn − ΓJn . If the boundary constraint is ignored, the constrained
covering balls will not decrease (and might increase) for those X-points whose constrained covering balls touch
the boundary; thus, the domination number will not increase, i.e. ∆Jn ≥ 0. Hence, given the event Fn, the
constrained covering ball resizing can only occur for those X-points in Jn \ J ′′n . Although the resized covering
balls may cover other X-points in Jn \ J ′′n , the resized balls do not intersect J ′′′n . The reason is that these balls
can not contain the Y -points in the sn × sn squares. Specifically (but without loss of generality), suppose Yj
is the Y -point closest to Xi, located at the position shown in Figure 2 (right). Then the radius of the resized
covering ball B(Xi) is

√
c2 + d2, where the two segments with respective lengths c and d are also shown in

Figure 2 (right). Since c ≤ sn and d ≤ sn, we have
√
c2 + d2 ≤

√
2sn. Note that the distance from Xi to the

boundary of J ′′′n is greater or equal to
√

2sn. Thus, B(Xi) does not intersect J ′′′n . Thus, resizing the constrained
covering balls of X-points in Jn \ J ′′n will decrease Γn by at most the number of X-points in Jn \ J ′′′n , i.e.
∆Jn ≤ NX(Jn \ J ′′′n ).

By the arguments in the preceding paragraph

P

(
∆Jn

|Jn|
> ε

)
≤ P (NX(Jn \ J ′′′n ) > ε|Jn|) + P (F cn)
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and by the union bound (for the middle inequality below), for n sufficiently large and sn =
√

(2 + δ) log(n)/λY
for some δ ∈ (0, 1)

P (F cn) ≤ P (Ecn) ≤ 4n

sn
e−s

2
nλY ≤ ne−(2+δ) logn

which is summable in n, but also E[NX(Jn \J ′′′n )] ∼ cnsn, so by a Chernoff bound for the Binomial distribution,
for n sufficiently large,

P
(
NX (Jn \ J ′′′n ) > εn2

)
≤ e−n

which is also summable in n.
Notice that this choice of sn implies that P (F cn)→ 0 as n→∞. By the Borel-Cantelli Lemma, the calculation

above immediately implies that
∆Jn

|Jn|
a.s.−→ 0. Since

ΓJn

|Jn| =
ΓJn

|Jn| +
∆Jn

|Jn| , and both limits on the right hand side exist

a.s., lim
n→∞

ΓJn

|Jn| exists a.s. and

lim
n→∞

ΓJn
|Jn|

= lim
n→∞

ΓJn
|Jn|

a.s.

However, to prove Theorem 1.6, we need to show that the result of the above Lemma also holds for ΓJt for
real t.

Proof of Theorem 1.6. We first define ∆Jt = ΓJn − ΓJt , for any t ∈ [n, n+ 1). Note that ∆Jn defined before is
the difference between the two processes for the same region Jn, whereas ∆Jt defined above is the difference
over two different regions, Jn and Jt. It is possible that ΓJt > ΓJn (i.e., ∆Jt < 0), but ΓJt can only be larger
than ΓJn by at most NX(Jt \ Jn), the number of X-points in Jt \ Jn. Therefore, we obtain the following lower
bound for ∆Jt :

4Jt ≥ −NX(Jt \ Jn) ≥ −NX(Jn+1 \ Jn).

Below we will show that

∆Jt

|Jt|
≥ −NX(Jn+1 \ Jn)

|Jt|
a.s.−→ 0.

On the other hand, recall that Fn is the event that all constrained covering balls of X-points in J ′′n are contained
in Jn. Then given Fn, the covering balls of X-points in J ′′n are completely contained in Jn, so by the same
argument for ΓJn , we know that ΓJn can be larger than ΓJt by no more than the number of X-points in Jt \ J ′′′n ,
thus we have

∆Jt/|Jt| ≤ NX(Jt \ J ′′′n )/|Jt|.

Convergence to zero for the lower and upper bounds of ∆Jt/|Jt| would yield the result of Theorem 1.6.

We will prove Theorem 1.6 by showing lim sup
t→∞

ΓJt

|Jt| ≤ lim
n→∞

ΓJn

|Jn| and lim inf
t→∞

ΓJt

|Jt| ≥ lim
n→∞

ΓJn

|Jn| . We prove the

convergence of the upper bound first.
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For any t > 0, there is an integer n(t) such that n(t) ≤ t < n(t) + 1. By the definitions above, ΓJt =
ΓJn(t)

−4Jt . In addition, we have shown that ∆Jt ≥ −NX
(
Jn(t)+1 \ Jn(t)

)
, so

ΓJt
|Jt|
≤

ΓJn(t)
−∆Jt

|Jn(t)|
≤

ΓJn(t)

|Jn(t)|
+
NX(Jn(t)+1 \ Jn(t))

|Jn(t)|
.

It should also be noted that

NX(Jn(t)+1 \ Jn(t))

|Jn(t)|
=
NX(Jn(t)+1)

|Jn(t)+1|
·
|Jn(t)+1|
|Jn(t)|

−
NX(Jn(t))

|Jn(t)|
a.s.−→ λX · 1− λX = 0.

Therefore,

lim sup
t→∞

ΓJt
|Jt|
≤ lim
n→∞

ΓJn
|Jn|

a.s. (3.1)

For the other direction, we first write

ΓJt
|Jt|

=
ΓJt
|Jt|
· IFn(t)

+
ΓJt
|Jt|
· IF c

n(t)
(3.2)

where IA represents the indicator function for the event or set A.
Applying the same technique as when we showed ∆Jn ≤ NX(Jn \ J ′′′n ), given Fn(t), we see that when the

boundary constraint is ignored, the constrained covering balls centered at X-points in J ′′n(t) do not change,

whereas the covering balls centered at X-points in Jt \ J ′′n(t) do not intersect with J ′′′n(t). Therefore, we conclude

that ∆Jt ≤ NX
(
Jt \ J ′′′n(t)

)
. Hence, for the first term on the right hand side of equation (3.2), we have

ΓJt
|Jt|
· IFn(t)

≥
ΓJn(t)

−∆Jt

|Jn(t)+1|
· IFn(t)

≥

 ΓJn(t)

|Jn(t)+1|
−
NX

(
Jt \ J ′′′n(t)

)
|Jn(t)+1|

 · IFn(t). (3.3)

Recall that we have chosen sn(t) =
√

(2 + δ) log
(
n(t)

)
/λY . Because we have shown that P

(
F cn(t)

)
=

o

(
1

n(t)1+δ

)
, the Borel-Cantelli Lemma gives IF c

n(t)

a.s.−→ 0. Moreover, we have

lim
t→∞,t∈R

ΓJn(t)

|Jn(t)+1|
= lim
t→∞,t∈R

ΓJn(t)

|Jn(t)|
|Jn(t)|
|Jn(t)+1|

= lim
n→∞

ΓJn
|Jn|

a.s.

and

NX

(
Jt \ J ′′′n(t)

)
|Jn(t)+1|

=
NX(Jt)

|Jt|
· |Jt|
|Jn(t)+1|

−
NX

(
J ′′′n(t)

)
|J ′′′n(t)|

·
|J ′′′n(t)|
|Jn(t)+1|

a.s.−→ λX · 1− λX · 1 = 0,
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since
|J′′′n(t)|
|Jn(t)+1|

→ 1 as n→∞ by the choice of sn. Thus, substituting the expressions above into Inequality (3.3),

we immediately get

lim inf
t→∞

ΓJt
|Jt|
· IFn(t)

≥ lim
n→∞

ΓJn
|Jn|

a.s.

In addition, note that
ΓJt

|Jt| ≤
NX(Jt)
|Jt|

a.s.−→ λX . Also, recall that, since IF c
n(t)

a.s.−→ 0,

ΓJt
|Jt|
· IF c

n(t)

a.s.−→ 0.

Therefore, we can incorporate the two results above into equation (3.2) to get

lim inf
t→∞

ΓJt
|Jt|
≥ lim
n→∞

ΓJn
|Jn|

a.s. (3.4)

Furthermore, combining Inequalities (3.1) and (3.4), we conclude that

lim
t→∞,t∈R

ΓJt
|Jt|

= lim
n→∞

ΓJn
|Jn|

a.s.

Thus, since
{

ΓJn

|Jn|

}
is a subsequence of

{
ΓJq

|Jq|

}
, it follows that lim

n→∞
ΓJn

|Jn| = lim
q→∞,q∈Q

ΓJq

|Jq| a.s., where the existence

of the latter is guaranteed as shown in the Proof of Theorem 1.5. That is, lim
t→∞,t∈R

ΓJt

|Jt| = lim
n→∞

ΓJn

|Jn| = g2(r) a.s.

where g2(r) is as in Theorem 1.5.

4. WLLN for the domination number of CCCDs generated by
uniform data in [0, 1]2

In the previous section, we established the SLLN for the domination number generated by the Poisson points
in R2. In this section, we show the WLLN for the domination number for uniform data sets in [0, 1]2 (i.e., prove
Thm. 1.7) by transferring the result in the Poisson case to the uniform distribution case.

Proof of Theorem 1.7. In the Poisson case, without loss of generality, we let the rates be λX = 1 and λY = r.
For any integer n > 0, we let T (n) be the smallest real number such that there are n + 1 X-points in the
closure of JT (n). Note that the (n + 1)-st X-point is on the boundary of JT (n), and the other n X-points are
in the interior of JT (n). Moreover, by the SLLN, NX(Jt)/|Jt| → 1 as t → ∞ through the real numbers a.s.
Hence, taking t = T (n), we have n/JT (n) → 1 a.s. Define Γn,Mn

= ΓJT (n)
, where Mn is the (random) number

of Y -points in JT (n). We know, by Theorem 1.6, that lim
n→∞

ΓJT (n)

|JT (n)|
= g2(r) a.s., since T (n)→∞ a.s. as n→∞.

Equivalently,

lim
n→∞

Γn,Mn

|JT (n)|
= g2(r) a.s.

Combining the equation above with the fact that lim
n→∞

n
|JT (n)|

= λX = 1 a.s., we obtain

lim
n→∞

Γn,Mn

n
= lim
n→∞

Γn,Mn

n
· n

|JT (n)|
= lim
n→∞

Γn,Mn

|JT (n)|
= g2(r) a.s.
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Since almost sure convergence implies convergence in probability, it follows that

lim
n→∞

Γn,Mn

n
= g2(r) in probability (4.1)

as well. From the conditional uniformity property of Poisson processes, the n X-points and Mn Y -points are
both uniformly distributed in JT (n). Recall that the desired number of Y -points is m = m(n), which is a non-
random function of n. For simplicity, we will use m instead of m(n) in the rest of the proof. On the other hand,
Mn is the random number of Y -points in the Poisson case. If Mn < m, we will add m −Mn Y -points in the
region JT (n) in a uniform way. Similarly, if Mn > m, then we will delete Mn −m Y -points uniformly from the
Mn Y -points in JT (n). Of course, if Mn = m, no change is needed. After such modifications, the original Mn

Y -points become m Y -points. Let Γ′n,m denote the domination number generated by the CCCD based on n X-
points and the m Y -points, which are uniformly distributed in JT (n). Note that Γ′n,m has the same distribution
as Γn,m, the domination number of the CCCD based on n X-points and m Y -points uniformly distributed in
[0, 1]2. Hence, if we can prove

lim
n→∞

Γ′n,m
n

= g2(r) in probability, (4.2)

then we have lim
n→∞

Γn,m

n = lim
n→∞

Γ′n,m

n = g2(r) in probability. Hence, lim
n→∞

Γn,m

n = g2(r) in probability, since the

limit is a constant. So, the problem reduces to showing equation (4.2). In fact, if we let ∆n,Mn = Γ′n,m − Γn,Mn ,
and if we can prove

∆n,Mn

n
→ 0 in probability,

then using the result in (4.1), by Slutsky’s Theorem, we obtain

lim
n→∞

Γ′n,m
n

= lim
n→∞

Γn,Mn

n
+ lim
n→∞

∆n,Mn

n
= g2(r) in probability.

All that remains from the discussion above is to prove the following lemma, the proof of which is provided in
the Appendix.

Lemma 4.1.
∆n,Mn

n → 0 in probability.

In this paper, the exact form of g2(r) is not identified. However, we can establish the following properties of
g2(r) for which proofs are deferred to the Appendix as well.

Corollary 4.2. The limiting function g2(r) is a bounded, increasing, and continuous function of r on (0,∞).

5. WLLN for the domination number of CCCDs generated by
non-uniform data in [0, 1]2

In this section, we provide the proof of Theorem 1.8 which establishes the WLLN for the domination number
of CCCDs based on continuous and bounded densities in [0, 1]2. We proceed as in [31] where the SLLN for the
domination number of CCCDs with continuous densities in one dimension were proved. In the following two
subsections, we first generalize Theorem 1.7 to piece-wise constant densities, then extend it to the continuous
case. The proofs are analogous to those in [31]. However, adding or deleting a point in two dimensions could
change the domination number quite a bit (as large as n−1) whereas adding or deleting a point in one dimension
can only change the domination number by at most 2. But such large changes are very unlikely to happen, and
their probabilities are proved to be negligible in the limit as n→∞.
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Figure 3. The squares Apq on which densities fX and fY are constant.

5.1. The case of piecewise constant densities

We consider the simple situation in which fX and fY are piecewise constant densities defined as

fX(u, v) =

k∑
p,q=1

apqIApq (u, v) and fY (u, v) =

k∑
p,q=1

bpqIApq (u, v), (5.1)

where Apq, p, q = 1, 2, . . . , k equally divide [0, 1]2 into k2 squares (see Fig. 3) and apq > 0 and bpq > 0 for all

p, q. Note that
∑k
p,q=1 apq =

∑k
p,q=1 bpq = k2.

Let Γn,m be the domination number generated by the n X-points and m Y -points from fX and fY , respec-
tively, in [0, 1]2, and Γnpq,mpq

be the domination number generated by the npq X-points and mpq Y -points in
Apq. One can think of

∑
p,q Γnpq,mpq as a “filtered” domination number generated by adding a “filter” Apq for

each Γnpq,mpq . The effect of adding a filter is that no points outside Apq contribute to Γnpq,mpq . The outcome
of ignoring the filters is the restoration of the sum of the “filtered” domination numbers

∑
p,q Γnpq,mpq

to the
domination number Γn,m.

Lemma 5.1.
∑
p,q

Γnpq,mpq

n → L2(r, fX , fY ) in probability, where L2(r, fX , fY ) is as in equation (1.1).

Proof of Lemma 5.1. By the SLLN (see Lemma 2 of [31] for more details in the d = 1 case), it follows that as
n→∞,

npq
n
→ apq|Apq| =

apq
k2

a.s. and
mpq

m
→ bpq|Apq| =

bpq
k2

a.s.
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Hence, mpq/npq → rpq a.s., where rpq = r · bpq/apq. Therefore, applying Theorem 1.7 on each Apq yields

Γnpq,mpq

n
=

Γnpq,mpq

npq

npq
n
→ g2(rpq) · apq|Apq| in probability,

and thus ∑
p,q

Γnpq,mpq

n
=
∑
p,q

Γnpq,mpq

npq

npq
n
→
∑
p,q

g2(rpq) · apq|Apq| in probability.

Writing the above expression in the form of an integral gives

∑
p,q

Γnpq,mpq

n
→
∑
p,q

g2 (r · bpq/apq) · apq|Apq| = L2(r, fX , fY ) in probability (5.2)

where fX and fY are as in equation (5.1).

Remark 5.2. The proof above can be easily generalized to the case when the regions of constancy for the
densities are rectangles instead of squares. However, the limiting function g2, then depends on the ratio between
the length and the width of the rectangles, hence the final limiting value can not be written in a simple integral
form, hence the square partition of the unit square.

Lemma 5.3. Let ∆n,m = Γn,m −
∑
p,q Γnpq,mpq . Then as n→∞,

∆n,m

n → 0 in probability.

Proof. We prove this lemma by applying the same technique used in Section 2. Specifically, with ν = ν(n) to
be chosen later, we shrink each Apq additively by ξ = 1/kν to get A′pq, then shrink A′pq additively by ξ to get

A′′pq, and then shrink A′′pq additively by
√

2ξ to get A′′′pq (see Fig. 4). Finally, we divide A′pq \ A′′pq equally into
4ν − 12 small squares with side length ξ. Then, there are totally (4ν − 12)k2 small squares in ∪Ap,q = [0, 1]2.

Define the event Em := {∃ at least one Y -point in each small square}. To analyze the probability of the event
Em, we will consider the complementary event. First consider one particular square Apq and the event Epq that

there is no Y -point in a small square in Apq. Let b∗ = minp,q{bpq}, and require that ξ ≤ 1/
√
b∗ to make the

second expression in equation (5.3) below positive. Since all m Y -points must fall outside Apq, we have

P (Epq) = (1− ξ2bpq)
m ≤ e−ξ

2bpqm. (5.3)

By Boole’s inequality, we have

P (Ecm) = P

(⋃
p,q

Epq

)
≤
∑
p,q

e−ξ
2bpqm ≤ (4ν − 12)k2e−ξ

2b∗m ≤ 4νk2e−ξ
2b∗m.

Next, we apply the results obtained in the proof of the SLLN of the domination number in the Poisson case
(refer to Fig. 2). Conditional on Em, the covering ball of any X-point in A′′pq is contained in Apq. Therefore,
ignoring the filter Apq has no effect on these X-points. However, there may be some Y -points just outside the
boundary of Apq, while some X-point in Apq \ A′′pq could have a covering ball that is not contained in Apq.
Thus, ignoring the filter Apq could reduce the covering ball of some X-points in Apq \ A′′pq, thereby increasing
the domination number. Such an increase is bounded by the number of X-points in Apq \A′′′pq, since no covering
ball of any X-point in Apq \A′′pq can intersect with A′′′pq. Summarizing the argument above, we obtain

∆n,m

n
=

∆n,m

n
IEm

+
∆n,m

n
IEc

m,
(5.4)
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Figure 4. The squares Apq, A
′
pq, A

′′
pq and A′′′pq.

where ∣∣∣∣∆n,m

n
IEc

m

∣∣∣∣ ≤ IEc
m

(5.5)

and

0 ≤ ∆n,m

n
IEm ≤

∑
p,q NX(Apq \A′′′pq)

n
. (5.6)

We may choose the relationships between the parameters. Let ν =
⌊√

mb∗

k4·log
√
m

⌋
and in order to satisfy

ξ ≤ 1/
√
b∗, we need to take k ≤

√
m
/√

log
√
m. For sufficiently large k and m with k being no larger than

√
m
/√

log
√
m, we have

P (Ecm) ≤ 4νk2 exp

(
−mb

∗

k2ν2

)
≤ 4

√
b∗√

mk2−1 log
√
m
→ 0 as m→∞,
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so IEc
m
→ 0 in probability. The expression above combined with Inequality (5.5) yields

∆n,m

n
IEc

m
→ 0 in probability. (5.7)

Finally, we write the right hand side in Inequality (5.6) as
∑

p,q NX(Apq\A′′′pq)

n =

∑n
i=1 I{Xi∈∪p,q(Apq\A′′′pq)}

n . It should

be noted that (see Figs. 3 and 4.) E
[
I{Xi∈∪p,q(Apq\A′′′pq)}

]
= P

(
Xi ∈ ∪p,q(Apq \A′′′pq)

)
and

P
(
Xi ∈ Apq \A′′′pq

)
= apq

(
1

k2
−
(

1

k
− 2

(
2 +
√

2
)
ξ

)2
)

= apq

(
4
(
2 +
√

2
)
ξ

k
− 4

(
2 +
√

2
)2

ξ2

)
.

So,

P
(
Xi ∈ ∪p,q(Apq \A′′′pq)

)
=
∑
p,q

apq

(
4
(
2 +
√

2
)
ξ

k
− 4

(
2 +
√

2
)2

ξ2

)

= k2

(
4
(
2 +
√

2
)
ξ

k
− 4

(
2 +
√

2
)2

ξ2

)
= 4

(
2 +
√

2
) 1

ν
− 4

(
2 +
√

2
)2 1

ν2
.

Since 1/ν → 0 as m→∞, we have

E
[
I{Xi∈∪p,q(Apq\A′′′pq)}

]
= 4

(
2 +
√

2
) 1

ν
− 4

(
2 +
√

2
)2 1

ν2
−→ 0 as m→∞.

Therefore, for any δ > 0, the Markov inequality provides

P

(∑n
i=1 I{Xi∈∪p,q(Apq\A′′′pq)}

n
≥ δ

)
≤

E
[
I{Xi∈∪p,q(Apq\A′′′pq)}

]
δ

−→ 0 as n→∞,

and thus
∑

p,q NX(Apq\A′′′pq)

n → 0 in probability. Combining this with Inequality (5.6) yields

∆n,m

n
IEm

→ 0 in probability. (5.8)

Finally, substituting equations (5.7) and (5.8) into equation (5.4) yields the desired result.

5.2. The case of continuous bounded densities: Proof of Theorem 1.8

If fX and fY are bounded and continuous, then they are both uniformly continuous on [0, 1]2. Thus, given
any δ > 0, there exists an integer k0 such that for any k ≥ k0 and the equal partition {Apq : p, q = 1, 2, . . . , k}
of [0, 1]2 (see Fig. 3), the following must hold:

|fX(u1, v1)− fX(u2, v2)| ≤ δ and |fY (u1, v1)− fY (u2, v2)| ≤ δ (5.9)

for any (u1, v1), (u2, v2) ∈ Apq. We define piecewise constant functions approximating fX and fY as follows: For
(u, v) ∈ Apq, define

f̄X(u, v) := min{fX(x, y), (x, y) ∈ Apq} and f̄Y (u, v) := min{fY (x, y), (x, y) ∈ Apq},
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and then rescale f̄X and f̄Y by dividing them by their respective integrals to give piecewise constant densities
f̂X and f̂Y , which approximate fX and fY , respectively.

For random vectors Ui := (Xi1, Xi2, Xi3), i = 1, 2, . . . , n, distributed i.i.d. uniformly between {(u, v, 0) :
(u, v) ∈ [0, 1]2} and the surface

{(
u, v, fX(u, v)

)
: (u, v) ∈ [0, 1]2

}
, the marginal density of Xi = (Xi1, Xi2) is

proved to be fX . A similar procedure generates i.i.d. random vectors Vj := (Yj1, Yj2, Yj3), j = 1, 2, . . . ,m, with
the marginal density of Yj = (Yj1, Yj2) being fY .

Next, we let U i :=
(
Xi1, Xi2, Xi3

)
, i = 1, 2, . . . , n, and V j :=

(
Y j1, Y j2, Y j3

)
, j = 1, 2, . . . ,m, be i.i.d.

random vectors uniformly distributed under surfaces
{

(u, v, f̄X(u, v)) : (u, v) ∈ [0, 1]2
}

and
{(
u, v, f̄Y (u, v)

)
:

(u, v) ∈ [0, 1]2
}

, respectively. Moreover, U i’s are independent of Ui’s and V i’s are independent of Vj ’s.

Finally, let RX be the region between the surfaces{
(u, v, fX(u, v)) : (u, v) ∈ [0, 1]2

}
and

{
(u, v, f̄X(u, v)) : (u, v) ∈ [0, 1]2

}
,

and let RY be the region between the surfaces{
(u, v, fY (u, v)) : (u, v) ∈ [0, 1]2

}
and

{
(u, v, f̄Y (u, v)) : (u, v) ∈ [0, 1]2

}
.

We then define

Ûi :=
(
X̂i1, X̂i2, X̂i3

)
= Ui I{Ui /∈RX} + U i I{Ui∈RX} for i = 1, 2, . . . , n

and

V̂j :=
(
Ŷj1, Ŷj2, Ŷj3

)
= Vj I{Vj /∈RY } + V j I{Vj∈RY } for j = 1, 2, . . . ,m.

The sequences above can be interpreted as follows. For each i ∈ [n] := {1, 2, . . . , n}, if the point Ui =

(Xi1, Xi2, Xi3) does not fall into RX , then this point is assigned to Ûi; otherwise, U i =
(
Xi1, Xi2, Xi3

)
is

assigned to Ûi. A similar procedure applies to Y -points. Again, using a similar technique to one in [31] shows

that
(
X̂i1, X̂i2

)
and

(
Ŷj1, Ŷj2

)
have piecewise constant densities f̂X and f̂Y , respectively.

Define Xn = {Xi = (Xi1, Xi2) , i = 1, 2, . . . , n}, and Ym = {Yj = (Yj1, Yj2) , j = 1, 2, . . . ,m}. Let Γ(Xn,Ym)

denote the domination number generated by Xn and Ym. Similarly, let Γ
(
X̂n, Ŷm

)
denote the domination

number generated by X̂n =
{
X̂i = (X̂i1, X̂i2), i = 1, 2, . . . , n

}
, and Ŷm =

{
Ŷj =

(
Ŷj1, Ŷj2

)
, j = 1, 2, . . . ,m

}
.

Note that only the points Ui ∈ RX and Vj ∈ RY could cause a difference between Γ(Xn,Ym) and Γ
(
X̂n, Ŷm

)
.

But such a difference could be as large as n − 1. However, by applying the results obtained in the proof of
Theorem 1.7 in Section 4, we next show that if the largest covering ball is small, then the difference is negligible
in the limit.
Handling Ui Points in RX : When any Ui ∈ RX is replaced by U i, it is equivalent to deleting Xi = (Xi1, Xi2)
from Xn and then puttingXi =

(
Xi1, Xi2

)
in Xn. DeletingXi could decrease (but never increase) the domination

number Γ(Xn,Ym) by at most 1, provided that Xi is not the center of a covering ball. On the other hand, note
that deleting the covering ball of Xi could also increase (but never decrease) the domination number by at most
the number of X-points in B(Xi) \ {Xi}. Hence, deleting Xi could change the domination number by at most
the number of X-points in B(Xi).

Similarly, adding Xi could further increase the domination number by at most 1. However, note that adding
the covering ball of Xi can also decrease the domination number by at most the number of X̂-points in
B
(
Xi

)
\
{
Xi

}
. Hence, adding Xi can change the domination number by at most the number of X̂-points in
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B
(
Xi

)
. Therefore, replacing any Ui ∈ RX by Xi could only change the domination number by at most

NX(B(Xi)) +NX̂
(
B
(
Xi

))
where NX(B(Xi)) :=

n∑
l=1

I{Xl∈B(Xi)} and NX̂
(
B
(
Xi

))
:=

n∑
l=1

I{X̂l∈B(Xi)}. Hence, the change caused by the

set of points Xi in RX is bounded by

n∑
i=1

I{Ui∈RX}
(
NX(B(Xi)) +NX̂

(
B
(
Xi

)))
. (5.10)

Given any Ui ∈ RX , we denote the radius of the covering ball B(Xi) by Bi. For any fixed Ui ∈ RX , we can
bound P (Bi > b) as follows:

P
(
Bi > b | Ui, Ui ∈ RX

)
≤ P (there are no Y -points in the ball centered at Xi with radius b).

Recall that fX , f̂X , fY and f̂Y are all strictly positive and bounded, so we can assume k1 ≤ fX ≤ k2, k1 ≤
f̂X ≤ k2, k1 ≤ fY ≤ k2 and k1 ≤ f̂Y ≤ k2 for some strictly positive constants k1, k2. Hence, the inequality above
can be further bounded as P

(
Bi > b | Ui, Ui ∈ RX

)
≤
(
1− k1πb

2
)m

. Since the bound above is uniform for any

Ui ∈ RX , it follows that P
(
Bi > b | Ui ∈ RX

)
≤
(
1− k1πb

2
)m

. Note that for any l ∈ [n]−i := {1, 2, . . . , i −
1, i+ 1, 2, . . . , n}, the random point Xl is independent of Xi and Yj , j = 1, 2, . . . ,m. Therefore,

E
[
I{Xl∈B(Xi)}

∣∣ Ui ∈ RX] = E
[
E
[
I{Xl∈B(Xi)}

∣∣ Ui ∈ RX , Bi] ∣∣ Ui ∈ RX]
= E

[
P
(
Xl ∈ B(Xi)

∣∣ Ui ∈ RX , Bi) ∣∣ Ui ∈ RX] ≤ E
[
k2πB

2
i

∣∣ Ui ∈ RX] .
By applying the same technique as in the proof of Lemma 4.1, Case 2 in the Appendix, we can further bound

the above expectation as E
[
I{Xl∈B(Xi)}

∣∣ Ui ∈ RX] ≤ ∫ (1− k1πb
2
)m

d
(
k1πb

2
)
≤ 1

m+1 . Since m/n→ r, when
n is sufficiently large, it follows that

E

[
n∑
l=1

I{Xl∈B(Xi)}

∣∣∣∣∣ Ui ∈ RX
]

= 1 + E

 ∑
l∈[n]−i

I{Xl∈B(Xi)}

∣∣∣∣∣ Ui ∈ RX
 ≤ 1 +

n− 1

m+ 1
≤ K1,

for some constant K1 > 0.

Similarly, when n is sufficiently large, E

[∑n
l=1 I{X̂l∈B(Xi)}

∣∣∣∣∣ Ui ∈ RX
]
≤ K1. From the two inequalities

above, we bound the expectation of equation (5.10) as follows:

E

[
n∑
i=1

I{Ui∈RX}
(
NX(B(Xi)) +NX̂

(
B
(
Xi

)))]
=

n∑
i=1

E
[
I{Ui∈RX}

(
NX(B(Xi)) +NX̂

(
B
(
Xi

)))]
=

n∑
i=1

E

[(
NX(B(Xi)) +NX̂

(
B
(
Xi

))) ∣∣∣∣∣ Ui ∈ RX
]
P (Ui ∈ RX) (5.11)

≤
n∑
i=1

2K1P (Ui ∈ RX) = 2K1

n∑
i=1

P (Ui ∈ RX) ≤ 2K1δn,



394 E. CEYHAN ET AL.

where δ is the uniform bound on the densities fX and fY introduced in equation (5.9). In fact, δ can be taken
to be δ = P (Ui ∈ RX).
Handling Vj Points in RY : After replacing all Ui ∈ RX by U i, the original domination number

Γ(Xn,Ym) becomes Γ
(
X̂n,Ym

)
. Next, we consider the effect of replacing Vj = (Yj1, Yj2, Yj3) ∈ RY by

V j =
(
Y j1, Y j2, Y j3

)
, which is equivalent to deleting Yj = (Yj1, Yj2) and then adding Yj =

(
Y j1, Y j2

)
. After

replacing all Vj ∈ RY by V j , the domination number Γ
(
X̂n,Ym

)
becomes Γ

(
X̂n, Ŷm

)
. We have discussed the

effect of deleting and adding Ym-points in the proof of Theorem 1.7 in Section 4. For all Yj /∈ RY , refer to Yj
as a Y ′m-point. For any Yj ∈ RY , define Byj as the maximum radius of all balls that contain Yj but contain no
Y ′m-points. Applying the arguments in the proof of Lemma 4.1 in the Appendix shows that deleting Yj could

decrease (but never increase) Γ
(
X̂n,Ym

)
by at most the number of X̂-points in the ball B(Yj) = B(Yj , 2B

y
j ),

centered at Yj with radius 2Byj .

Furthermore, for any Yj ∈ RY , defineBj as the maximum radius of all balls that contain Yj but contain no Y ′m-
points. Similarly, applying the arguments in the proof of Lemma 4.1 in the Appendix shows that adding Yj could

further increase (but never decrease) Γ
(
X̂n,Ym

)
by at most the number of X̂-points in B

(
Yj
)

= B(Yj , 2Bj),

centered at Yj with radius 2Bj . Thus, replacing any Vj ∈ RY by Yj could further change the original domination
number Γ(Xn,Ym) by no more than

m∑
j=1

I{Vj∈RY }
(
NX̂(B(Yj)) +NX̂

(
B
(
Yj
)))

(5.12)

where NX̂(B(Yj)) :=
∑n
l=1 I{X̂l∈B(Yj)} and NX̂

(
B
(
Yj
))

:=
∑n
l=1 I{X̂l∈B(Yj)}.

Let MR denote the number of Vj ∈ RY . Note that MR is a Binomial(m, δ) random variable and is based on
the region between the two surfaces

{(
u, v, fY (u, v)

)
: (u, v) ∈ [0, 1]2

}
and

{(
u, v, f̄Y (u, v)

)
: (u, v) ∈ [0, 1]2

}
.

For any fixed Vj ∈ RY , using the same argument (and recalling the small grid balls inscribed in the squares)
in the proof of Lemma 4.1 Case 1 in the Appendix, we bound P (Byj > b | Yj , Yj ∈ RY ,MR) as follows:

P (Byj > b | Yj , Yj ∈ RY ,MR) ≤ 64 × P (∃ no Y ′m-points in any grid ball) ≤ 64
(
1− k1π(b/4)2

)m−MR
.

Since the above bound is uniform for any Vj ∈ RY , it follows that P (Byj > b | Yj ∈ RY ,MR) ≤ 64(1 −
k1π(b/4)2)m−MR .

Note that for any l ∈ [n], the random point X̂l is independent of Yj , j = 1, 2, . . . ,m. Therefore,

E
[
I{X̂l∈B(Yj)}

∣∣∣ Yj ∈ RY ,MR

]
= E

[
E
[
I{X̂l∈B(Yj)}

∣∣∣ Yj ∈ RY ,MR, B
y
j

] ∣∣∣ Yj ∈ RY ,MR

]

= E

[
P
(
X̂l ∈ B(Yj) | Yj ∈ RY ,MR, B

y
j

) ∣∣∣∣ Yj ∈ RY ,MR

]
≤ E

[
k1π(2Byj )2

∣∣∣ Yj ∈ RY ,MR

]
.

By applying the same technique as in the proof of Lemma 4.1, Case 2 in the Appendix, we can further bound
the above expression as follows

E
[
I{X̂l∈B(Yj)} | Yj ∈ RY ,MR

]
≤
∫

64
(
1− k1π(b/4)2

)m−MR
d
(
k2π(2b)2

)
.



LLN FOR CCP 395

Hence,

E
[
NX̂(B(Yj)) | Yj ∈ RY ,MR

]
≤ n ·

∫
64
(
1− k1π(b/4)2

)m−MR
d
(
k2π(2b)2

)
≤ n · C

m−MR

for some constant C > 0.
Since m/n→ r, when n is sufficiently large, conditional on MR ≤ 2δm, the inequality above yields

E

[
NX̂(B(Yj))

∣∣∣∣∣ Yj ∈ RY ,MR ≤ 2δm

]
≤ n · C

m− 2δm
≤ K2, (5.13)

for some constant K2 > 0.
Furthermore, by applying the argument above to the case of adding Yj , we conclude that, when n is sufficiently

large,

E

[
NX̂(B(Y j))

∣∣∣∣∣ Yj ∈ RY ,MR ≤ 2δm

]
≤ K2. (5.14)

Note that

E

 m∑
j=1

I{Vj∈RY }
(
NX̂(B(Yj)) +NX̂(B(Y j))

) ∣∣∣∣∣ MR ≤ 2δm


=

m∑
j=1

E

[(
NX̂(B(Yj)) +NX̂(B(Y j))

) ∣∣∣∣∣ Vj ∈ RY ,MR ≤ 2δm

]
× P

(
Vj ∈ RY |MR ≤ 2δm

)
.

Applying Inequalities (5.13) and (5.14) to the above equation, we obtain

E

 m∑
j=1

I{Vj∈RY }

n∑
l=1

(
I{X̂l∈B(Yj)} + I{X̂l∈B(Yj)}

) ∣∣∣∣∣ MR ≤ 2δm

 ≤ 2K2

m∑
j=1

P
(
Vj ∈ RY |MR ≤ 2δm

)
≤ 4K2δm (5.15)

since P
(
Vj ∈ RY |MR ≤ 2δm

)
≤ 1 for MR ≤ 2δm, and is zero for MR > 2δm.

Recall from equations (5.10) and (5.12) that
∣∣∣Γ(Xn,Ym)− Γ

(
X̂n, Ŷm

)∣∣∣ is bounded by

n∑
i=1

I{Ui∈RX}
(
NX(B(Xi)) +NX̂

(
B
(
Xi

)))
+

m∑
j=1

I{Vj∈RY }
(
NX̂(B(Yj)) +NX̂(B(Y j))

)
.

Since for positive real numbers a, b, c with a+ b > c > ε for some ε > 0 implies a > ε/2 or b > ε/2,

P

 |Γ(Xn,Ym)− Γ
(
X̂n, Ŷm

)
|

n
> ε

 ≤ P ( n∑
i=1

I{Ui∈RX}
(
NX(B(Xi)) +NX̂(B

(
Xi

))
>
nε

2

)

+ P

 m∑
j=1

I{Vj∈RY }
(
NX̂(B(Yj)) +NX̂

(
B
(
Yj
)))

>
nε

2


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≤ P

(
n∑
i=1

I{Ui∈RX}
(
NX(B(Xi)) +NX̂(B

(
Xi

))
>
nε

2

)
+ P (MR>2δm)

+ P

 m∑
j=1

I{Vj∈RY }
(
NX̂(B(Yj)) +NX̂

(
B
(
Yj
)))

>
nε

2

∣∣∣∣∣ MR≤2δm

 .

Applying the Markov inequality to equations (5.11) and (5.15) yields that, for any ε > 0, when n is sufficiently
large,

P

 |Γ(Xn,Ym)− Γ
(
X̂n, Ŷm

)
|

n
> ε

 ≤ E

[
n∑
i=1

I{Ui∈RX}
(
NX(B(Xi)) +NX̂(B

(
Xi

))]
nε/2

+ P (MR > 2δm)

+

E

[
m∑
j=1

I{Vj∈RY }
(
NX̂(B(Yj)) +NX̂

(
B
(
Yj
))) ∣∣∣∣∣ MR ≤ 2δm

]
nε/2

(5.16)

≤ 2K1δn

nε
+

4K2δm

nε
+ P (MR > 2δm) ≤ Kδ + P (MR > 2δm)

for some constant K determined by ε.
Recall that MR is a Binomial(m, δ) random variable, by applying the Markov inequality, we obtain P (MR >

2mδ) = P (MR −mδ > mδ) ≤ mδ(1−δ)
(mδ)2 = (1−δ)

mδ . Thus, for any fixed δ ∈ (0, 1), when m is sufficiently large (in

particular, m > 1−δ
δ2 ), it follows that P (MR > 2δm) ≤ δ. Hence, Inequality (5.16) reduces to

P

 |Γ(Xn,Ym)− Γ
(
X̂n, Ŷm

)
|

n
> ε

 ≤ Kδ + δ. (5.17)

In the previous section, we proved that
Γ(X̂n,Ŷm)

n → L2

(
r, f̂X , f̂Y

)
in probability as n→∞. Thus, when n is

sufficiently large, P

(∣∣∣∣Γ(X̂n,Ŷm)
n − L2

(
r, f̂X , f̂Y

)∣∣∣∣ > ε

)
≤ δ. Combining this inequality with Inequality (5.17)

yields

P

(∣∣∣∣Γ(Xn,Ym)

n
− L2

(
r, f̂X , f̂Y

)∣∣∣∣ > 2ε

)
≤ Kδ + 2δ.

Corollary 4.2 says that g2(r) is bounded and continuous. Since f̂X → fX and f̂Y → fY as δ → 0 (i.e., as k →∞),
then by the dominated convergence theorem, it follows that as δ → 0

L2

(
r, f̂X , f̂Y

)
→ L2(r, fX , fY ).

Since δ > 0 can be arbitrarily small, we immediately obtain P
(∣∣∣Γ(Xn,Ym)

n − L2(r, fX , fY )
]∣∣∣ > ε

)
→ 0 which

finishes the proof of Theorem 1.8. �
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Remark 5.4. The limiting function L2(r, fX , fY ) gives the same value for uniform densities or when fX = fY .
However, since we have not proved whether g2 is concave, we do not know yet if this limiting function achieves
the maximum value when fX = fY .

6. Extension to higher dimensions

The extension of our results in R2 to higher dimensions Rd with d > 2 can be achieved in a straightforward
fashion with some modifications in the geometric arguments. The class cover problem (CCP) is already defined
in any dissimilarity space (including Rd) [3]. The LLNs for the domination number in Rd also follow from
the ergodic theorem for multidimensional subadditive processes. One can prove the SLLN for the domination
number of the CCCD generated by the Poisson points in Rd, and then transfer the result to uniform data sets
on [0, 1]d with fixed sample sizes. The extension of constrained domination number induced by the X-points
and Y -points with the covering balls bounded by the boundary of the study region is also straightforward.

In particular, in higher dimensions, Sd = Rd+, the region Jq becomes Jd,q = [0, qe), for q > 0, and |Jd,q| = qd.
Furthermore, we assume that there are two independent Poisson processes {Xi} and {Yj} in Rd, with respective
rates λX and λY . Then the extension of our main findings to higher dimensions are as below:

– Extension of Theorem 1.5: Let {Xi} and {Yj} be two independent Poisson processes in Rd, with rates

λX and λY , respectively. If λY /λX = r, r ∈ (0,∞), there exists a function gd such that lim
t→∞,t∈R

ΓJd,t

|Jd,t| =

gd(r) a.s.
– Extension of Theorem 1.6: Let {Xi} and {Yj} be two independent Poisson processes in Rd, with rates

λX and λY , respectively If λY /λX = r, r ∈ (0,∞), then lim
t→∞,t∈R

ΓJd,t

|Jd,t| = gd(r) a.s., where gd(r) is as in

the Extension of Theorem 1.5.

– Extension of Theorem 1.7: Let Xi
iid∼ U [0, 1]d for i = 1, 2, . . . , n and Yj

iid∼ U [0, 1]d for j = 1, 2, . . . ,m

and Xi and Yj be independent. If m/n→ r, r ∈ (0,∞), as n→∞, then lim
n→∞

Γn,m

n = gd(r) in probability,

where gd(r) is as in the Extension of Theorem 1.5.
– Extension of Theorem 1.8: Let Xi be i.i.d. from fX for i = 1, 2, . . . , n and Yj be i.i.d. from fY for
j = 1, 2, . . . ,m and Xi and Yj be independent. If the densities fX and fY are positive, bounded, and
continuous on their support, [0, 1]d, and m/n→ r, r ∈ (0,∞), as n→∞, then

lim
n→∞

Γn,m
n

= Ld(r, fX , fY ) in probability.

where Ld(r, fX , fY ) =
∫
·· ·
∫

[0,1]d
gd

(
r · fY (y)

fX(x)

)
· fX(x)dx where x = (x1, . . . , xd), y = (y1, . . . , yd), dx =

dx1 · · · dxd and gd(r) is as in the Extension of Theorem 1.5.

The proofs of these extensions are similar to those in the two-dimensional case. We only provide the proof
of the higher dimensional version of Lemma 3.1 as an illustration.

Lemma 6.1. (Extension of Lem. 3.1) Let Jd,n =
[
0, ne

)
and ΓJd,n be the constrained domination number

and ΓJd,n be the unconstrained domination number. Then lim
n→∞

ΓJd,n

|Jd,n| = lim
n→∞

ΓJd,n

|Jd,n| a.s.

Proof. In Rd, we have J ′d,n =
[
sne, (n − sn)e

)
, J ′′d,n =

[
2sne, (n − 2sn)e

)
, and J ′′′d,n =

[ (
2 +
√
d
)
sne,

(
n −(

2 +
√
d
)
sn
)
e
)

. The quantity sn <
n

2(2+
√
d)

will be chosen later. The sn × sn squares in R2 become sn ×

sn . . .× sn = sdn hypercubes between J ′d,n and J ′′d,n. Let Fd,n denote the event that all constrained covering balls
of X-points in J ′′d,n are contained in Jd,n, and let Ed,n denote the event that there exists at least one Y -point in

each of the sdn hypercubes between J ′d,n and J ′′d,n. The probability of having at least one Y -point in one of these
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small hypercubes is 1 − exp(−sdnλY ), and the number of such small hypercubes is equal to (n−sn)d−(n−4sn)d

sdn

which is less than equal to 2d(n/sn)d−1. Therefore, we have P (Ed,n) ≥ (1− exp(−sdnλY ))2d(n/sn)d−1

.
Next, we show that Ed,n ⊆ Fd,n, so it would follow that

P (Fd,n) ≥ (1− exp(−sdnλY ))2d(n/sn)d−1

.

Suppose Yj is the Y -point closest to Xi, and let Zi be the closest point on ∂(Jd,n), the boundary of Jd,n, to
Xi, and let Pi be the projection of Yj on the line segment joining Xi and Zi. Moreover, let d(Xi, Pi) = b and
d(Yj , Pi) = a. Then the radius of the constrained covering hypersphere BJd,n(Xi) is

√
a2 + b2, Since a ≤ sn, we

have
√
a2 + b2 ≤

√
s2
n + b2 ≤ sn + b. But the distance from Xi to ∂(Jd,n) is greater or equal than sn + b, so we

obtain BJd,n(Xi) is contained in Jd,n.

Now let ∆Jd,n = ΓJd,n − ΓJd,n . As in the two-dimensional case, ∆Jd,n ≥ 0. Given the event Fd,n, the
constrained covering hypersphere resizing can only occur for those X-points in Jd,n \ J ′′d,n and the resized
hyperspheres do not intersect J ′′′d,n. The reason is that there is a closest Yj to Xi in the hypercube and that the

radius of the resized covering hypersphere B(Xi) is
√
b21 + b22 + · · ·+ b2d. Since bi ≤ sn for all i = 1, 2, . . . , d we

have
√
b21 + b22 + · · ·+ b2d ≤

√
dsn and the distance from Xi to the boundary of J ′′′d,n is greater or equal to

√
dsn.

Therefore, ∆Jd,n ≤ NX(Jd,n \ J ′′′d,n).
By the arguments in the preceding paragraph

P

(
∆Jd,n

|Jd,n|
> ε

)
≤ P (NX(Jd,n \ J ′′′d,n) > ε|Jd,n|) + P (F cd,n)

and by the union bound (for the middle inequality below), for n sufficiently large and sn = d
√

(d+ δ) log(n)/λY
for some δ ∈ (0, 1)

P (F cd,n) ≤ P (Ecd,n) ≤ 2dnd−1

sd−1
n

e−s
d
nλY ≤ nd−1e−(d+δ) logn

which is summable n, but also E[NX(Jd,n \ J ′′′d,n)] ∼ c′nd−1sn, so by a Chernoff bound for the Binomial
distribution, for n sufficiently large,

P
(
NX(Jd,n \ J ′′′d,n) > εnd/(d−1)

)
≤ exp(−nd−1)

which is also summable in n.
Notice that this choice of sn implies P (F cd,n) → 0 as n → ∞. By the Borel-Cantelli Lemma, the above

calculations imply that
∆Jd,n

|Jd,n|
a.s.−→ 0. Therefore

lim
n→∞

ΓJd,n
|Jd,n|

= lim
n→∞

ΓJd,n
|Jd,n|

a.s.

which completes the proof.

The proofs of the high dimensional extension of Theorems 1.6 and 1.7 also follow with similar geometric
adjustments above for higher dimensions. As main changes in proving the extension of Lemma 4.1, we modify
the cases of adding and deleting Y -points as follows. In the case of adding one new Y -point: Ya, we equally
divide the hypercube centered at Ya with side length 4b into 8d smaller hypercubes, and refer to the 8d small
hyperspheres inscribed in the hypercubes with radius b/4 as grid hyperspheres. As the Poisson process Y has
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rate λY , the probability that a particular grid hypersphere covers no Y -point is exp
(
−π

d/2(b/4)dλY

Γ(d/2+1)

)
where

Γ(x) =
∫∞

0
tx−1e−tdt is the usual gamma function. Then the proof proceeds as in the d = 2 case with inserting

this probability appropriately. The same conclusion of Corollary 4.2 also holds for gd(r) with the proof requiring
almost no adjustment for extending to higher dimensions.

The extension of Theorem 1.8 can be proved similarly to the one in the two dimensional setting: We first
generalize extension of Theorem 1.7 to piece-wise constant densities, then extend it to the continuous case. The
proofs are analogous to those in the two dimensional setting.

Remark 6.2. Notice that g2(r) in Theorems 1.5–1.8 (and likewise for gd(r) in Sect. 6) is not explicitly available
in contrast to the one-dimensional case. In applications, this might constitute a drawback which can be overcome
by estimating g2(r) empirically by Monte Carlo simulations (which is not pursued in this article).

7. Discussion and conclusions

We study the class cover problem (CCP) of random point sets in two (or higher) dimensions. In particular,
given two classes X and Y in a sample space Ω with corresponding random variables Xi and Yj , respectively,
the covering ball of Xi, denoted by B(Xi, ri), is the set of points ω in Ω such that Xi is closer to ω than to
any other Yj . That is, letting Xn = {X1, X2, . . . , Xn} and Ym = {Y1, Y2, . . . , Ym}, B(Xi, ri) is the ball with
radius ri ≤ minj d(Xi, Yj). The goal in the CCP is to minimize the number of covering balls needed to cover all
X-points, Xn. This goal is equivalent to finding a minimum dominating set for the digraph called the class cover
catch digraph (CCCD). A CCCD has vertex set Xn and an arc (i.e., directed edge) from Xi to Xj is inserted
if Xj ∈ B(Xi, ri).

The CCP (and hence the CCCD) is motivated by its application in pattern classification. DeVinney and
Wierman proved the Strong Law of Large Numbers (SLLN) for the uniform distribution in one dimension [10],
and Wierman and Xiang extended the SLLN to the case of general distributions in one dimension [31]. We
study the behavior of the domination number of CCCDs when X- and Y -points are coming from independent
Poisson point processes in R2, as well as Xn and Ym are chosen uniformly from the unit square and also X- and
Y -points have positive, bounded and continuous densities. In the Poisson process case, we prove a SLLN result
for the domination number; i.e., we show that the domination number (properly scaled) converges almost surely
to a limiting function, denoted gd(r), where r is the ratio of the rate of the Poisson process for Y points to that
for X points in Rd. The proof proceeds by applying a result on almost sure convergence of subadditive processes
for a constrained domination number, and then showing that the difference between the unconstrained and
constrained domination number vanishes in the limit, which is shown by extensive geometric and probabilistic
computations. For the case of uniformly distributed points in the unit square, we obtain a WLLN result (i.e.,
convergence in probability) for the scaled domination number. Finally, we generalize this result to the case where
the densities are positive, bounded and continuous on [0, 1]2 and then extend the results to higher dimensions.

The solutions to the CCP (i.e., the minimum dominating sets of the CCCDs) are employed to build classifiers.
For example, the balls around the members of the minimum dominating sets of the CCCDs can be used to
construct discriminant regions for assigning class labels (see [8] for more detail). CCCD-based methods have
been shown to have relatively good performance in classification (see [9, 23]) and also to be robust to the class
imbalance problem [20].

One major drawback of CCCDs is that the (exact or asymptotic) distribution of its domination number
is only available in the one dimensional case. Despite this difficulty, we were able to show SLLN and WLLN
results for the domination number in the Poisson process and uniform distribution cases, respectively, and
also determine some properties of the limit of the domination number. The difficulties in extending the nice
properties and results in the one-dimensional case to higher dimensions are discussed in [5]. These difficulties
mainly arise from the lack of a natural ordering of points in two or higher dimensions, and when Ym partitions
the space into cells, the balls are not necessarily restricted to the particular cell their center reside in. CCCDs
were generalized to proximity catch digraphs (PCDs) in [4] where distribution of the domination number of
PCDs is more tractable than that of CCCDs. The current work also suggests that domination number of CCCDs
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might have asymptotic normality, so a CLT result is also a topic of prospective research. Moreover, this prospect
is also highly contingent on finding the explicit forms of the limiting function, gd(r), at least for d = 2, which
is also an open problem.

Appendix A.

A.1 Proof of Lemma 4.1

For any δ > 0 and ε > 0, by the law of total probability, we have

P

(
|∆n,Mn |

n
> ε

)
=
∑
ρn>δn

P

(
|∆n,Mn |

n
> ε

∣∣∣ |m−Mn| = ρn

)
P (|m−Mn| = ρn)

+
∑

1≤ρn≤δn

P

(
|∆n,Mn |

n
> ε

∣∣∣ Mn −m = ρn

)
P (Mn −m = ρn) + P

(
|∆n,Mn |

n
> ε

∣∣∣ Mn −m = 0

)
P (Mn −m = 0)

+
∑

1≤ρn≤δn

P

(
|∆n,Mn |

n
> ε

∣∣∣ m−Mn = ρn

)
P (m−Mn = ρn) .

Observe that the first term in the right hand side is for the case of m and Mn differing by more than
δn from each other, the second term is for deleting ρn Y -points, the third term is when there is no need
of change in the number of Y -points, and finally the last term is for adding ρn Y -points. Observe that if

m = Mn, then ∆n,Mn
= 0, thus P

(
|∆n,Mn |

n > ε
∣∣∣ Mn −m = 0

)
= 0, hence the third term above vanishes. Since

P
(
|∆n,Mn |

n > ε
∣∣∣ |m−Mn| = ρn

)
≤ 1 and

∑
ρn>δn

P (|m−Mn| = ρn) = P (|m−Mn| > δn) the probability

above can be bounded as follows:

P

(
|∆n,Mn

|
n

> ε

)
≤ P (|Mn −m| > δn) +

∑
1≤ρn≤δn

P

(
|∆n,Mn

|
n

> ε
∣∣∣ Mn −m = ρn

)
P (Mn −m = ρn)

+
∑

1≤ρn≤δn

P

(
|∆n,Mn

|
n

> ε
∣∣∣ m−Mn = ρn

)
P (m−Mn = ρn) . (A.1)

We bound the first term in the right hand side of equation (A.1) as follows. Since m/n → r, when n is
sufficiently large, we have

|m− rn|
n

< δ/2, (A.2)

thus, by triangle inequality and using equation (A.2)

P (|Mn −m| > δn) = P

(
|Mn −m|

n
> δ

)
≤ P

(
|Mn − rn|

n
+
|m− rn|

n
> δ

)
≤ P

(
|Mn − rn|

n
≥ δ

2

)
= P (|Mn − rn| ≥ δn/2) .

Applying a similar argument as in page 432 of [10], which uses Chernoff’s Theorem, the above is further
bounded as follows:

P (|Mn −m| > δn) ≤ P
(
|Mn − rn| ≥

δn

2

)
≤ Ke−kδn (A.3)
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Figure A.1. The result of adding one new point Ya.

for some constants K, k > 0 and sufficiently large n. Next, we bound the second and third terms in (A.1) by
considering the cases of adding and deleting up to δn Y -points.

Case 1: Adding up to δn Y -Points. We first consider the case of adding one new Y -point: Ya, i.e.,
m−Mn = 1.

As illustrated in Figure A.1, if Ya falls into the covering ball B(Xi) of some point Xi, the covering ball B(Xi)
will decrease to B′(Xi) so that the domination number may increase (but never decreases). Such an increase can
be at most the number of X-points in B(Xi).

Note that it is possible for Ya to fall into more than one covering ball. To take this into account, define the
random variable Ba as the maximum radius of all balls that contain Ya but contain no other Y -points. We
know that given Ba = b > 0, the covering balls into which Ya could fall must be contained in the ball B(Ya, 2b),
which is the ball centered at Ya with radius 2b. Otherwise, if there exists a covering ball that contains Ya but is
not contained in B(Ya, 2b), then that covering ball must have a radius greater than b but contains no Y -points,
which contradicts Ba = b. Therefore, ∆n,Mn

is bounded above by the number of X-points in B(Ya, 2b), thus

0 ≤ ∆n,Mn
≤ NX(B(Ya, 2b)) =

n∑
i=1

I{Xi∈B(Ya,2b)}. (A.4)
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Figure A.2. The affected region of an added point Ya.

Next, we calculate an upper bound for P (Ba > b). Define E(Ya, b) to be the event that “there exists a ball
in B(Ya, 2b) with radius b which contains no Y -point.” Note that in the definition above, the ball is a subset
of B(Ya, 2b), but is not necessarily centered at an X-point or a Y -point. From the definition of Ba, we have
{Ba > b} ⊂ E(Ya, b).

Thus, we will find an upper bound for P (E(Ya, b)). As shown in Figure A.2, suppose we equally divide the
square centered at Ya — with sides parallel to the coordinate axes — with side length 4b into 82 = 64 smaller
squares, and refer to the 64 small balls inscribed in the squares with radius b/4 as grid balls. If E(Ya, b) occurs,
i.e., there exists a ball in B(Ya, 2b) with radius b which contains no Y -points, then that ball must contain a grid
ball that covers no Y -point (as illustrated in Fig. A.2).

Therefore, if E(Ya, b) occurs, there must be a grid ball containing no Y -point. Since the Poisson process Y
has rate λY , we know the probability that a particular grid ball covers no Y -point is exp(−π(b/4)2λY ). Since
λY = r, and by Boole’s inequality, P (Ba > b) ≤ P (E(Ya, b)) ≤ 64 exp(−πr(b/4)2). Applying (A.4), we have

P

(
|∆n,Mn

|
n

> ε
∣∣∣ m−Mn = 1, Ba = b

)
≤ P

(
NX(B(Ya, 2b)) > nε

∣∣ m−Mn = 1, Ba = b
)
.

Since the X-points are independent of the Y -points, all Xi are identically distributed, and Ba is defined indepen-
dently of the X-points, the right side of this inequality equals the unconditional probability. Then, by Markov’s
Inequality, we have

P (NX(B(Ya, 2b)) > nε) ≤
E
[∑n

i=1 I{Xi∈B(Ya,2b))}
]

nε
=
P (X1 ∈ B(Ya, 2b))

ε
.

Note that if B(Ya, 2b) is contained in JT (n), then P (X1 ∈ B(Ya, 2b)) = π(2b)2/|JT (n)|. However, if Ya is near the
boundary of JT (n), then it is possible that only part of B(Ya, 2b) is contained in JT (n), so P (X1 ∈ B(Ya, 2b)) ≤
π(2b)2/|JT (n)|. Summarizing the discussion above, we obtain

P

(
|∆n,Mn |

n
> ε
∣∣∣m−Mn = 1, Ba = b

)
≤ π(2b)2

|JT (n)| · ε
. (A.5)
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Hence, given T (n),

P

(
|∆n,Mn |

n
> ε

∣∣∣ m−Mn = 1

)
=

∫ √2T (n)

b=0

P

(
|∆n,Mn |

n
> ε

∣∣∣ m−Mn = 1, Ba = b

)
dFBa

(b)

≤
∫ √2T (n)

b=0

π(2b)2

|JT (n)| · ε
d
(
1− P (Ba > b)

)
≤
∫ √2T (n)

b=0

P (Ba > b)d

(
π(2b)2

|JT (n)| · ε

)
.

since d(1 − P (Ba > b)) = −d(P (Ba > b)) and P (Ba >
√

2T (n)) = 0. Recalling that P (Ba > b) ≤
64 exp(−πr(b/4)2), we further bound the above as follows:

P

(
|∆n,Mn |

n
> ε

∣∣∣ m−Mn = 1

)
≤
∫ √2T (n)

b=0

64 exp(−πr(b/4)2)d

(
π(2b)2

|JT (n)| · ε

)
≤ C

|JT (n)|
,

where C > 0 is a constant. Therefore, without conditioning on T (n), we have

P

(
|∆n,Mn

|
n

> ε
∣∣∣ m−Mn = 1

)
≤ C ·E

[
1

|JT (n)|

]
.

Next, we consider the case of adding one or more new Y -points: Y 1
a , . . . , Y

m−Mn
a , when m −Mn > 1. Simi-

larly define Bla as the radius of the covering balls containing Y la , l = 1, . . . ,m −Mn. Given m −Mn = ρn ∈
{1, 2, . . . , δn} and Bla = bl > 0, by applying the same arguments to obtain (A.5), we have

P

(
|∆n,Mn |

n
> ε

∣∣∣ m−Mn = ρn, B
l
a = bl

)
≤

P
(
Xi ∈ ∪ρnl=1B(Y la , 2bl)

)
ε

≤
ρn∑
l=1

π(2bl)
2

|JT (n)| · ε
.

Using P (Bla > bl) ≤ 64 exp(−πr(bl/4)2) for each l as before, and recalling we have chosen ρn ≤ δn, we can
finally get the following bound:

P

(
|∆n,Mn

|
n

> ε
∣∣∣ m−Mn = ρn

)
≤ ρn · C ·E

[
1

|JT (n)|

]
≤ δn · C ·E

[
1

|JT (n)|

]
.

Hence,

∑
1≤ρn≤δn

P

(
|∆n,Mn |

n
> ε

∣∣∣ m−Mn = ρn

)
P (m−Mn = ρn) ≤

∑
1≤ρn≤δn

δn · C ·E
[

1

|JT (n)|

]
P (m−Mn = ρn)

= δn · C ·E
[

1

|JT (n)|

] ∑
1≤ρn≤δn

P (m−Mn = ρn) (since summation equals P (1 ≤ m−Mn ≤ δn))

≤ δn · C ·E
[

1

|JT (n)|

]
(since P (1 ≤ m−Mn ≤ δn) ≤ 1)

≤ δC1 (since E

[
n

|JT (n)|

]
is bounded). (A.6)

for some constant C1 > 0.
Case 2: Deleting up to δn Y -Points. In contrast to adding a point, deleting an existing point, Yd, can

only decrease the domination number or leave it unchanged.
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Figure A.3. The result of deleting one existing point Yd.

As illustrated in Figure A.3, if Yd is on the boundary of B(Xi) of some Xi, then deleting Yd will cause B(Xi)
to increase to B′′(Xi), which we refer to as the enlarged covering ball. The enlarged covering ball B′′(Xi) has
a radius equal to the distance between Xi and the second nearest Y -point, Yj . It is worth noting that the
domination number can decrease by at most the number of X-points in B′′(Xi) \B(Xi).

It is also possible for Yd to fall into more than one enlarged covering ball. Refer to the original Y -points
except Yd as Y ′-points. Define the random variable Bd as the maximum radius of all balls that contain Yd but
contain no Y ′-points. Given Bd = b > 0, the enlarged covering balls into which Yd could fall must be contained
in the ball B(Yd, 2b). Otherwise, if there exists an enlarged covering ball that contains Yd but is not contained
in B(Yd, 2b), then that enlarged covering ball must have a radius greater than b but contain no Y ′-point, which
contradicts Bd = b. Therefore, |∆n,Mn

| is bounded above by the number of X-points in B(Yd, 2b), thus

−
n∑
i=1

I{Xi∈B(Yd,2b)} ≤ ∆n,Mn
≤ 0.

Define the event E′(Yd, b) = {∃ a ball in B(Yd, 2b) with radius b which contains no Y ′-point}. As in the case of
adding one point, it is easy to see that {Bd > b} ⊂ E′(Yd, b). Hence, conditioning on T (n), we can get the
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following upper bound for P (Bd > b):

P (Bd > b) ≤ P (E′(Yd, b)) ≤ 64× P (a grid ball contains no Y ′-point) = 64

(
1− π(b/4)2

T (n)2

)m
.

Therefore, using the same argument as in the case of adding points, for any ρn ∈ {1, 2, . . . , δn}, we obtain

P

(
|∆n,Mn |

n
> ε

∣∣∣ Mn −m = ρn

)
≤ δn · E

[∫ √2T (n)

b=0

64

(
1− π(b/4)2

T (n)2

)m
d

(
π(2b)2

T (n)2 · ε

)]

≤ δnC
′

m
≤ δC2

for some constant C2 > 0. Therefore,

∑
1≤ρn≤δn

P

(
|∆n,Mn

|
n

> ε
∣∣∣ Mn −m = ρn

)
P (Mn −m = ρn) ≤ δC2

∑
1≤ρn≤δn

P (Mn −m = ρn)

= δC2P (1 ≤Mn −m ≤ δn) ≤ δC2. (A.7)

Substituting the bounds found in equations (A.3), (A.6), and (A.7) into Inequality (A.1), it follows that

P

(
|∆n,Mn

|
n

> ε

)
≤ Ke−kδn + (C1 + C2)δ. (A.8)

For any fixed δ > 0, the first term Ke−kδn goes to 0 as n→∞. Also, since δ > 0 can be arbitrarily small, we

conclude that P
(
|∆n,Mn |

n > ε
)
→ 0, so

∆n,Mn

n → 0 in probability. �

Remark A.1. Notice that when adding points, P (Ba > b) has an exponentially decaying bound, while when
deleting points, P (Bd > b) has a polynomially decaying bound. The main difference between these two cases is
that when adding points, we add from a Poisson process with rate λY , while deleting points we delete from a
uniform distribution in the region of interest.

A.2 Proof of Corollary 4.2

– g2(r) is bounded: To prove this, we show that g2(r) ∈ [0, 1]. For integer n, we showed that lim
n→∞

ΓJn

|Jn| =

g2(r) a.s., where λX = 1 and λY = r are assumed.

Since 0 ≤ ΓJn

|Jn| ≤
NX(Jn)
|Jn| and NX(Jn)

|Jn|
a.s−→ λX = 1, it follows that 0 ≤ g2(r) = limn→∞

ΓJn

|Jn| ≤ 1.

– g2(r) is an increasing function of r: Next, we show that g2(r) increases as r increases. We first suppose
that, for any 0 < r1 < r2, there is a Poisson process X with rate 1, a Poisson process Y1 with rate r1,
and another Poisson process Y2−1 with rate r2 − r1. For any integer n > 0, let T (n) be the smallest real
number such that there are n+ 1 X-points in JT (n). Suppose next that M1(n) is the (random) number of
Y1-points in JT (n), and M2−1(n) is the (random) number of Y2−1-points in JT (n). We refer to the merged
Y1-points and Y2−1-points as Y2-points. We define Γn,M1(n) as the domination number generated by the
X-points and Y1-points in JT (n), and Γn,M2(n) as the domination number generated by the X-points
and Y2-points in JT (n). Basically, we have just added M2−1(n) Y2−1-points to those M1(n) Y1-points to
allow us to study the change from Γn,M1(n) to Γn,M2(n). Since adding Y -points can never decrease the
domination number, we know that Γn,M2(n) is larger than or equal to Γn,M1(n). Recall that Y1-points are
generated from a Poisson process with rate r1, and Y2−1-points are generated from a Poisson process with
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rate r2 − r1, hence Y2-points are generated from a Poisson process with rate r2. Therefore, by previous
results, we have

lim
n→∞

Γn,M1(n)

|JT (n)|
= g2(r1) a.s. and lim

n→∞

Γn,M2(n)

|JT (n)|
= g2(r2) a.s.

Recalling Γn,M2(n) is larger than or equal to Γn,M1(n), we conclude that g2(r2) ≥ g2(r1).
– g2(r) is continuous: For any r1, r2 > 0 and ε > 0, we must show that there exists a δ = δ(ε) > 0 such

that if |r2− r1| < δ, then |g2(r2)− g2(r1)| ≤ ε. Suppose there is a Poisson process X with rate 1, a Poisson
process Y1 with rate r1, and another Poisson process Y2 with rate r2. Then for any integer n > 0, we let
T (n) be the smallest real number such that there are n+ 1 X-points in JT (n). Suppose next that M1(n)
is the (random) number of Y1-points in JT (n), and M2(n) is the (random) number of Y2-points in JT (n).
Taking into consideration that almost sure convergence implies convergence in probability, we have

lim
n→∞

Γn,M1(n)

|JT (n)|
= g2(r1) in probability and lim

n→∞

Γn,M2(n)

|JT (n)|
= g2(r2) in probability.

We will prove the continuity of g2(r) by contradiction. Suppose that |r1 − r2| < δ and that |g2(r2) −
g2(r1)| > ε, i.e. |g2(r2)− g2(r1)| = ε+ α for some α > 0. By the definition of convergence in probability,
we know that when n is sufficiently large,

P

(∣∣∣∣Γn,M1(n)

|JT (n)|
− g2(r1)

∣∣∣∣ < α/2

)
> 1− δ and P

(∣∣∣∣Γn,M2(n)

|JT (n)|
− g2(r2)

∣∣∣∣ < α/2

)
> 1− δ.

The events in the above probabilities together with |g2(r2)− g2(r1)| = ε+ α imply that

P

(∣∣∣∣Γn,M1(n)

|JT (n)|
−

Γn,M2(n)

|JT (n)|

∣∣∣∣ > ε

)
> 1− 2δ. (A.9)

On the other hand, applying the same techniques used in the proof of Lemma 4.1, we can prove the
following result similar to Inequality (A.8). If |r2 − r1| < δ, then when n is sufficiently large,

P

(∣∣∣∣Γn,M1(n)

|JT (n)|
−

Γn,M2(n)

|JT (n)|

∣∣∣∣ > ε

)
≤ P (|M2(n)−M1(n)| ≥ δn) + (C ′1 + C ′2)δ,

where C ′1, C
′
2 > 0 are two constants determined by ε.

Applying Chernoff’s Theorem as before, for any fixed δ > 0, the probability P (|M2(n)−M1(n)| ≥ δn)
converges to 0 as n goes to ∞. Therefore, when δ is sufficiently small, the inequality above can be further
bounded as follows: For some constant C > 0,

P

(∣∣∣∣Γn,M1(n)

|JT (n)|
−

Γn,M2(n)

|JT (n)|

∣∣∣∣ > ε

)
≤ Cδ ≤ 1− 2δ,

which contradicts Inequality (A.9). �
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