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NEW ERROR BOUNDS FOR LAPLACE APPROXIMATION VIA

STEIN’S METHOD

Robert E. Gaunt*

Abstract. We use Stein’s method to obtain explicit bounds on the rate of convergence for the Laplace
approximation of two different sums of independent random variables; one being a random sum of
mean zero random variables and the other being a deterministic sum of mean zero random variables
in which the normalisation sequence is random. We make technical advances to the framework of Pike
and Ren [ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014) 571–587] for Stein’s method for Laplace
approximation, which allows us to give bounds in the Kolmogorov and Wasserstein metrics. Under
the additional assumption of vanishing third moments, we obtain faster convergence rates in smooth
test function metrics. As part of the derivation of our bounds for the Laplace approximation for the
deterministic sum, we obtain new bounds for the solution, and its first two derivatives, of the Rayleigh
Stein equation.
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1. Introduction

The central limit theorem states that for a sequence of independent and identically distribution (i.i.d.) ran-
dom variables, X1, X2, . . ., with zero mean and variance σ2 ∈ (0,∞), the standardised sum Wn = 1

σ
√
n

∑n
i=1Xi

convergences in distribution to the standard normal distribution, as n→∞. By modifying the sum Wn appro-
priately such that either the number of terms in the sum is random or the normalisation is random we can
instead naturally arrive at an asymptotic Laplace distribution. Studying the rate of convergence to the Laplace
distribution in these two settings, via Stein’s method, is the subject of this paper.

More precisely, consider the Laplace distribution with parameters a ∈ R and b ∈ (0,∞) with probability
density function

fW (x) =
1

2b
e−
|x−a|

b , x ∈ R. (1.1)

If a random variable W has density (1.1), then we write W ∼ Laplace(a, b). It is readily checked that E[W ] = a
and Var(W ) = 2b2. For a comprehensive account of the properties and applications of the Laplace distribution,
see [28].
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The first limit theorem we consider concerns geometric sums, which arise in a variety of settings [26]. Let
X1, X2, . . . be a sequence of i.i.d. random variables with zero mean and variance σ2 ∈ (0,∞) and let Np ∼ Geo(p)
be independent of the Xi with probability mass function P (Np = k) = p(1−p)k−1, k = 1, 2, . . ., 0 < p < 1. Then,
with an obvious abuse of notation,

Sp :=
√
p

Np∑
i=1

Xi →d Laplace(0,
σ√
2

), p→ 0.

This result is proved under the stronger assumption of symmetric Xi in [28], whilst weaker Lindeberg-type
conditions for the existence of the distributional limit are given by [47].

The second limit theorem considered in this paper concerns the case in which the sum
∑n
i=1Xi is normalised

by a random variable. Let Bn be a beta random variable with parameters 1 and n ≥ 1 and probability density
function

fBn(x) = n(1− x)n−1, 0 < x < 1.

We write Bn ∼ Beta(1, n). As in the first limit theorem, let X1, X2, . . . be a sequence of i.i.d. random variables
with zero mean and variance σ2 ∈ (0,∞). For n ≥ 2, let Bn−1 ∼ Beta(1, n− 1) be independent of the Xi. Then,
Proposition 2.2.12 of [28] states that

Tn := B
1/2
n−1

n∑
i=1

Xi →d Laplace(0,
σ√
2

), n→∞.

For characterisations of the Laplace distribution involving the random variables Sp and Tn, see [25, 33, 34],
respectively.

In this paper, we give explicit bounds on the distance, with respect to certain probability metrics, between the
distributions of Sp and Tn and their limiting Laplace distributions via Stein’s method, a powerful probabilistic
technique that was introduced in 1972 by Charles Stein [45] for normal approximation. For a given target
distribution q, the first step in Stein’s method is to find a suitable operator A acting on a class of functions F
such that E[Af(Y )] = 0 for all f ∈ F if and only if the random variable Y has distribution q. For the N(µ, σ2)
distribution, the classical Stein operator is Af(x) = σ2f ′(x)− (x− µ)f(x). This leads to the Stein equation

Afh(x) = h(x)− E[h(Y )], (1.2)

where the test function h is real-valued. The second step is to solve (1.2) for fh (for which we require fh ∈ F)
and obtain suitable bounds for the solution. Finally, to approximate the distribution of a random variable of
interest W by the target distribution q, one may evaluate both sides of (1.2) at W , take expectations, absolute
values, and suprema of both sides over a class of functions H to obtain

dH(W,Y ) := sup
h∈H
|E[h(W )]− E[h(Y )]| = sup

h∈H
|E[Afh(W )]|.

This is of interest because many important probability metrics are of the form dH(W,Y ), and in many settings
bounding the expectation E[Afh(W )] is relatively tractable. In particular, taking

HK = {1(· ≤ z) | z ∈ R},
HW = {h : R→ R |h is Lipschitz, ‖h′‖ ≤ 1},
HBW = {h : R→ R |h is Lipschitz, ‖h‖ ≤ 1 and ‖h′‖ ≤ 1},
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H2 = {h : R→ R |h′ is Lipschitz, ‖h′′‖ ≤ 1},
H1,2 = {h : R→ R |h′ is Lipschitz, ‖h′‖ ≤ 1 and ‖h′′‖ ≤ 1}

gives the Kolmogorov, Wasserstein and bounded Wasserstein distances, which we denote by dK, dW and dBW,
respectively, as well as two smooth test function metrics, which we denote by d2 and d1,2, respectively. (Here and
throughout the paper ‖g‖ := ‖g‖∞ = supx∈R |g(x)|.) The d2 and d1,2 and similar smooth test function metrics
are often found in applications of Stein’s method in which ‘fast’ convergence rates are sought, see, for example,
[3, 13, 21, 23].

Stein’s method was adapted to the Laplace distribution by [38] (a number of their contributions are outlined in
Sect. 2), and as an application they derived an explicit bound on the bounded Wasserstein distance between the
distribution of Sp and its limiting Laplace distribution. Their approach, which involves the introduction of the
so-called centered equilibrium transformation for Laplace approximation, mirrored that of [35], who used Stein’s
method for exponential approximation to give explicit bounds on the rate of convergence in a generalisation of a
well-known result of Rényi [40] concerning the convergence of geometric sums of positive random variables to the
exponential distribution. In this paper, we make technical improvements on the work of [38] (through Lem. 2.1
and Thm. 2.5) that allow for their framework of Laplace approximation by Stein’s method to yield optimal
order Kolmogorov and Wasserstein distance bounds, as well as faster convergence rates in the d2 distance. As
an application we are able to obtain the following theorem.

Theorem 1.1. Suppose X1, X2, . . . is a sequence of independent random variables with E[Xi] = 0 and E[X2
i ] =

σ2 ∈ (0,∞). Let Np ∼ Geo(p), 0 < p < 1, be independent of the Xi. Define Sp =
√
p
∑Np

i=1Xi and let Z ∼
Laplace(0, σ√

2
). Then

dK(Sp, Z) ≤
√

2

(
7

2
+
√

10

)√
p

σ
sup
i≥1
‖F−1

Xi
− F−1

XL
i

‖. (1.3)

Suppose additionally that ρ3 = supi≥1 E[|Xi|3] <∞. Then

dW(Sp, Z) ≤ 2σ
√
p

(
1 +

ρ3

3σ3

)
. (1.4)

Let k ≥ 1. Suppose that ρk+2 = supi≥1 E[|Xi|k+2] <∞. Then

dK(Sp, Z) ≤ 11.56 · 2
k−1
k+1 (2p)

k
2(k+1)

(
ρk
σk

+
2ρk+2

(k + 1)(k + 2)σk+2

) 1
(k+1)

. (1.5)

Finally, suppose that X1, X2, . . . are identically distributed and that E[X3
1 ] = 0, E[X4

1 ] <∞. Then

d2(Sp, Z) ≤ σ2p

[
2− p
1− p

+
E[X4

1 ]

6σ4
+

√
p log(1/p)
√

2(1− p)

(
2 +

E[|X1|3]

σ3

)]
. (1.6)

Remark 1.2. The dependence on p in (1.5) is worse than in (1.3), but the bound may be preferable if
supi≥1 ‖F−1

Xi
− F−1

XL
i

‖ is difficult to compute or large. Note, though, that as k increases the exponent k
2(k+1)

of p in (1.5) approaches the exponent 1
2 of (1.3).

We are also able to obtain a similar theorem for the deterministic sum Tn:
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Theorem 1.3. Let n ≥ 2 and suppose that X1, . . . , Xn are independent random variables with E[Xi] = 0,
E[X2

i ] = σ2 ∈ (0,∞) and E[|Xi|3] <∞, for all 1 ≤ i ≤ n. Then

dK(Tn, Z) ≤ 0.5600

σ3n3/2

n∑
i=1

E[|Xi|3] +
1

n

(
1 + 2

(
1− 2

n

)n−2)
.

and

dW(Tn, Z) ≤ 2
√

2σ

3n3/2

n∑
i=1

(
2 +

E[|Xi|3]

σ3

)
+

9.168σ

n
.

In addition to the above assumptions, suppose that E[X3
i ] = 0 and E[X4

i ] <∞, for all 1 ≤ i ≤ n. Then

d1,2(Tn, Z) ≤ σ2

n2

n∑
i=1

(
1 +

E[X4
i ]

3σ4

)
+

9.168σ

n
.

Written in the notation of Theorem 1.1, the bounded Wasserstein distance bound of [38] reads dBW(Sp, Z) ≤
σ
√
p
(
1 + 2

√
2

σ

)(
1 + ρ3

3σ3

)
. We see that in addition to being given in a stronger metric, the Wasserstein distance

bound (1.4) of Theorem 1.1 has a better dependence on σ (the bound of [38] has an extra factor of
(
1 + 2

√
2

σ

)
meaning that the bound has a worse dependence on σ if σ is ‘small’) and a smaller numerical constant if
σ < 2

√
2 (the bound of [38] has the smaller numerical constant if σ > 2

√
2). The bound (1.4) also improves on

the recent Wasserstein distance bound given in Theorem 5.10 of [18], in which Laplace approximations were
obtained as part of a more general work on variance-gamma approximation. By working in a specialist Laplace
framework, it is no surprise that we outperform the results of [18], and our Kolmogorov distance bound (1.3) is
also an improvement on the analogous bound in Theorem 5.10 of that work. The O(p) bound (1.6) is the first
faster than O(p1/2) bound for the random sum Sp in the literature. The faster convergence rate is a result of
the vanishing third moment assumption, and as such complements a number of other ‘matching moments’ limit
theorems that are found in the Stein’s method literature, see, for example, [5, 13, 16, 19, 22, 29]. Theorem 1.3
gives the first bounds in the literature on the rate of convergence of the deterministic sum Tn to its asymptotic
Laplace distribution. Again, under the assumption of vanishing third moments, we obtain a faster convergence
rate. As part of our proof of the theorem, we obtain the first bounds in the literature for the solution, and its
first two derivatives, of the Rayleigh Stein equation, which may be useful in future applications.

The rest of the paper is organised as follows. In Section 2, we obtain new bounds for the solution of the
Laplace Stein equation (Lem. 2.1) and give general bounds for Laplace approximation involving the centered
equilibrium distribution (Thm. 2.5). In Sections 3 and 4, we prove Theorems 1.1 and 1.3, respectively. In
Section 5, we obtain new bounds for the solution of the Rayleigh Stein equation that are used in the proof of
Theorem 1.3.

2. Stein’s method for the Laplace distribution

In this section, we recall some of the theory developed by [38] for Stein’s method for Laplace approximation
and make some technical improvements that allow their framework for Laplace approximation to be applied in
the Kolmogorov and Wasserstein metrics, as well as the d2 metric when faster convergence rates are sought. We
begin by recalling the following characterisation of the Laplace distribution ([38], Thm. 1.1).

Let W be a real-valued random variable. Then W follows the Laplace(0, b) distribution if and only if

E
[
b2f ′′(W )− f(W ) + f(0)

]
= 0 (2.1)



NEW ERROR BOUNDS FOR LAPLACE APPROXIMATION VIA STEIN’S METHOD 329

for all f : R → R such that f and f ′ are locally absolutely continuous and E|f ′(Z)| < ∞ and E|f ′′(Z)| < ∞,
for Z ∼ Laplace(0, b). Based on this characterisation, [38] were led to the initial value problem

b2f ′′(x)− f(x) = h̃(x), f(0) = 0, (2.2)

where h̃(x) = h(x)− E[h(Z)], Z ∼ Laplace(0, b).
At this point it is worth noting that an alternative Stein equation for the Laplace(0, b) distribution is given

by

b2xf ′′(x) + 2b2f ′(x)− xf(x) = h̃(x), (2.3)

which is a special case of the variance-gamma Stein equation of [15] (it is noted in Proposition 1.2 of [15]
that the Laplace distribution is a special case of the variance-gamma distribution). A framework for variance-
gamma approximation by Stein’s method in the Kolmogorov and Wasserstein metrics was developed by [18],
and a special case of this general framework gives a framework for Laplace approximation. However, the Stein
equation (2.3) is more difficult to work with than (2.2) and it is therefore not surprising that all the comparable
results for Laplace approximation obtained in this paper outperform those of [18]. We also remark that another
Stein characterisation of the Laplace distribution is given by [1], as a special case of a general characterisation
concerning infinitely divisible distributions, although the quantitative limit theorems derived in their work are
quite different to ours.

Let us now focus on the initial value problem (2.2). The solution

f(x) =
1

2b

(
ex/b

∫ ∞
x

e−t/bh̃(t) dt+ e−x/b
∫ x

−∞
et/bh̃(t) dt

)
(2.4)

was obtained by [38], as well as bounds for f and its first three derivatives. In the following lemma, we improve
on Lemma 2.2 of [38] by obtaining bounds for f and its derivatives (of arbitrary order) that have smaller
constants and hold for a larger class of functions. The latter improvement is crucial in enabling us to later
obtain Kolmogorov and Wasserstein distance bounds for Laplace approximation.

Lemma 2.1. Let h : R → R be a measurable function with E|h(Z)| < ∞, where Z ∼ Laplace(0, b). Let f be
the solution (2.4) to the Stein equation (2.2). If h is bounded, then this is the unique bounded solution to (2.2).
Moreover, the solution f and its first two derivatives satisfy the bounds

‖f‖ ≤ ‖h̃‖, ‖f ′‖ ≤ 1

b
‖h̃‖, ‖f ′′‖ ≤ 2

b2
‖h̃‖. (2.5)

Suppose that h is Lipschitz. Then

|f(x)| ≤ (2b+ |x|)‖h′‖, x ∈ R,

Now suppose that h(k) is Lipschitz, where h(0) ≡ h. Then, for k ≥ 0,

‖f (k+1)‖ ≤ ‖h(k+1)‖, ‖f (k+2)‖ ≤ 1

b
‖h(k+1)‖, ‖f (k+3)‖ ≤ 2

b2
‖h(k+1)‖. (2.6)

Proof. It is easily verified that there is at most one bounded solution to (2.2). Suppose that u and v are solutions
to (2.2). Then w = u− v satisfies w(0) = 0 and solves the differential equation b2w′′(x)−w(x) = 0, the general
solution to which is given by w(x) = Aex/b + Be−x/b. For w(x) to be bounded for all x ∈ R, we must take
A = B = 0, from which we conclude that w = 0, so that u = v.
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Now we establish the bounds in (2.5). Suppose h is bounded. We first note that, for all x ∈ R,∣∣∣∣ex/b ∫ ∞
x

e−t/bh̃(t) dt

∣∣∣∣ ≤ ‖h̃‖ex/b ∫ ∞
x

e−t/b dt = b‖h̃‖,

and ∣∣∣∣e−x/b ∫ x

−∞
et/bh̃(t) dt

∣∣∣∣ ≤ ‖h̃‖e−x/b ∫ x

−∞
et/b dt = b‖h̃‖.

Applying these inequalities into (2.4) gives the bound

‖f‖ ≤ 1

2b

(
b‖h̃‖+ b‖h̃‖

)
= ‖h̃‖. (2.7)

Differentiating both sides of (2.4) gives that

f ′(x) =
1

2b

(
1

b
ex/b

∫ ∞
x

e−t/bh̃(t) dt− 1

b
e−x/b

∫ x

−∞
et/bh̃(t) dt

)
, (2.8)

and so

‖f ′‖ ≤ 1

2b

(
‖h̃‖+ ‖h̃‖

)
=

1

b
‖h̃‖.

From (2.2) and formula (2.4) we have that, for all x ∈ R,

|f ′′(x)| = 1

b2
|h̃(x) + f(x)|

=

∣∣∣∣ 1

b2
h̃(x) +

1

2b3

(
ex/b

∫ ∞
x

e−t/bh̃(t) dt+ e−x/b
∫ x

−∞
et/bh̃(t) dt

)∣∣∣∣
≤ 1

b2
‖h̃‖+

1

2b3
(
b‖h̃‖+ b‖h̃‖

)
=

2

b2
‖h̃‖.

Now we suppose that h is Lipschitz. We shall now prove the non-uniform bound for |f(x)|. By the mean
value theorem, |h̃(x)| ≤ ‖h′‖(|x|+ E|Z|), where Z ∼ Laplace(0, b). Note that E|Z| = b. Also, in anticipation of
bounding |f(x)| we note two integral inequalities: for λ > 0 and x ∈ R,

eλx
∫ ∞
x

|t|e−λt dt <
2

λ2
(1 + λ|x|), e−λx

∫ x

−∞
|t|eλt dt <

2

λ2
(1 + λ|x|).

We verify the first inequality; the second inequality is proved similarly. For x ≥ 0,

eλx
∫ ∞
x

|t|e−λt dt =
1

λ2
(1 + λx)

and, for x < 0,

eλx
∫ ∞
x

|t|e−λt dt = eλx
(
−
∫ 0

x

te−λt dt+

∫ ∞
0

te−λt dt

)
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=
1

λ2

(
2eλx − 1− λx

)
<

1

λ2
(1− λx).

Putting all of the above together, we obtain, for x ∈ R,

|f(x)| ≤ ‖h
′‖

2b

(
ex/b

∫ ∞
x

e−t/b(|t|+ b) dt+ e−x/b
∫ x

−∞
et/b(|t|+ b) dt

)
≤ 1

2b

(
2b2
(

1 +
|x|
b

)
+ 2b2

)
= ‖h′‖(2b+ |x|).

Finally, we prove the uniform bounds. We note that applying integration by parts to (2.8) gives that

f ′(x) =
1

2b

{
1

b
ex/b

[
be−x/bh̃(x) + b

∫ ∞
x

e−t/bh′(t) dt

]
− 1

b
e−x/b

[
bex/bh̃(x)− b

∫ x

−∞
et/bh′(t) dt

]}
=

1

2b

(
ex/b

∫ ∞
x

e−t/bh′(t) dt+ e−x/b
∫ x

−∞
et/bh′(t) dt

)
.

We recognise this representation of f ′(x) as being the same as the representation (2.4) of f(x), with h̃(t)
replaced by h′(t), and so we can immediately deduce the bounds in (2.6) for ‖f ′‖, ‖f ′′‖ and ‖f (3)‖. Repeating
the procedure inductively yields the bounds for ‖f (k+1)‖, ‖f (k+2)‖ and ‖f (k+3)‖, k ≥ 0.

The following distributional transformation, introduced by [38], is very natural in the context of Stein’s
method for Laplace approximation. Let W have mean zero and non-zero finite variance. Then we say that the
random variable WL has the centered equilibrium distribution with respect to W if

E[f(W )]− f(0) =
1

2
E[W 2]E[f ′′(WL)] (2.9)

for all twice differentiable f : R → R such that E|f(W )| <∞ and E|Wf ′(W )| <∞. Stronger conditions were
imposed on f by [38], but on examining the proof of their Theorem 3.2 it can be seen that the weaker conditions
presented here are sufficient to ensure WL exists and is unique. We also refer the reader to [7] for a generalisa-
tion of (2.9) to all random variables W with finite second moment, and we note that the centered equilibrium
distribution is itself the Laplace analogue of the equilibrium distribution that is used in Stein’s method for expo-
nential approximation by [35]. Some useful properties of the centered equilibrium transformation are collected
in Section 3 of [38] and Proposition 4.6 of [18]. In the sequel, the following moment relations will be important:
assuming E[W 2] = 2b2, we have that, for r ≥ 0,

E[(WL)r] =
E[W r+2]

(r + 1)(r + 2)b2
, E[|WL|r] =

E[|W |r+2]

(r + 1)(r + 2)b2
. (2.10)

The formulas in (2.10) are obtained by substituting f1(w) = wr+2 and f2(w) = |w|r+2, respectively, into (2.9)
and using that E[W 2] = 2b2.

Theorem 2.5 below gives general bounds for Laplace approximation involving the centered equilibrium trans-
formation. Bounds (2.15)–(2.19) of the theorem are the Laplace analogues of the bounds of Theorem 2.1 of [35],
which give Kolmogorov and Wasserstein distance bounds in terms the absolute difference between a random
variable W and its W -equilibrium transformation. We additionally provide a bound in the weaker d2 metric,
which is used to obtain the O(p−1) bound (1.6) of Theorem 1.1. We mostly follow the approach of [35], but the
approach used to obtain the d2 metric bound is similar to that used by ([22], Thm. 3.1) to prove an analogous
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bound for the zero bias transformation. We begin by stating three lemmas. The proofs of Lemmas 2.2 and 2.4 are
simple and hence omitted, and the proof of Lemma 2.3 follows immediately from the estimates of Lemma 2.1.

Lemma 2.2. Let Z ∼ Laplace(0, b). Then, for any random variable W ,

P(α ≤W ≤ β) ≤ β − α
2b

+ 2dK(W,Z). (2.11)

Lemma 2.3. For any a ∈ R and any ε > 0, define

ha,ε(x) := ε−1

∫ ε

0

1(x+ s ≤ a) ds. (2.12)

Let fa,ε be the solution (2.4) with test function ha,ε. Let ha,0(x) = 1(x ≤ a) and define fa,0 accordingly. Then

‖fa,ε‖ ≤ 1, (2.13)

‖f ′a,ε‖ ≤
1

b
, (2.14)

‖f ′′a,ε‖ ≤
2

b2
.

Lemma 2.4. Let W be a real-valued random variable and let Z ∼ Laplace(0, b). Then, for any ε > 0,

dK(W,Z) ≤ ε

2b
+ sup
a∈R
|E[ha,ε(W )]− E[ha,ε(Z)]|,

with ha,ε defined as in Lemma 2.3.

Theorem 2.5. Let W be random variable with zero mean and variance 2b2 ∈ (0,∞), and let WL have the
W -centered equilibrium distribution. Then, for any β > 0,

dK(W,Z) ≤ (7/2 +
√

10)β

b
+ 3

(
1 +

√
2

5

)
P(|W −WL| > β), (2.15)

dK(WL, Z) ≤ β

b
+ 2P(|W −WL| > β). (2.16)

Suppose further that E[|W |3] <∞. Then

dW(W,Z) ≤ 2E|W −WL|, (2.17)

dW(WL, Z) ≤ E|W −WL|, (2.18)

dK(WL, Z) ≤ 1

b
E|W −WL|. (2.19)

Suppose now that E[W 4] <∞. Then

d2(W,Z) ≤ bE[|E[W −WL |W ]|] + E[(W −WL)2]. (2.20)

Remark 2.6. Analogues of inequalities (2.15)–(2.19) for variance-gamma approximation were given in Theorem
4.10 of [18], which as special cases give bounds for Laplace approximation in terms of the centered equilibrium
distribution. In all cases, our bounds improve on the bounds of [18].
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Proof. For ease of notation, we let κ = dK(W,Z). We also let ∆ := W −WL and I1 := 1(|∆| ≤ β). Let f be the
solution of the Laplace(0, b) Stein equation with test function ha,ε, as given in (2.12). Note that the expectation
E[f ′′(WL)] is well defined, since ‖f ′′‖ <∞ (see Lem. 2.3). By the Laplace Stein equation (2.2), we have

E[h(W )]− E[h(Z)] = E[b2f ′′(W )− f(W )]

= b2E[I1(f ′′(W )− f ′′(WL))] + b2E[(1− I1)(f ′′(W )− f ′′(WL))]

=: J1 + J2.

Using the bound (2.13) we have

|J2| = |E[(1− I1)(f(W )− f(WL) + h̃a,ε(W )− h̃a,ε(WL))]|
= |E[(1− I1)(f(W )− f(WL) + ha,ε(W )− ha,ε(WL))]|
≤ (2‖f‖+ 1)P(|∆| > β)

≤ 3P(|∆| > β).

We also have

J1 = E
[
I1

∫ −∆

0

b2f (3)(W + t) dt

]
= E

[
I1

∫ −∆

0

{
f ′(W + t)− ε−11(a− ε ≤W + t ≤ a)

}
dt

]
≤ ‖f ′‖E|I1∆|+ ε−1

∫ 0

−β
P(a− ε ≤W + t ≤ a) dt

≤ β

b
+
β

2b
+ 2βε−1κ =

3β

2b
+ 2βε−1κ,

where we used inequality (2.14) and Lemma 2.2 to obtain the last inequality. By a similar argument,

J1 ≥ −
3β

2b
− 2βε−1κ,

and so we conclude that

|J1| ≤
3β

2b
+ 2βε−1κ.

We now apply Lemma 2.4 and take the convenient choice ε = ηβ, η > 2, to obtain

κ ≤ 3P(|∆| > β) +
3β + ε

2b
+ 2βε−1κ = 3P(|∆| > β) +

(3 + η)β

2b
+

2κ

η
,

which on rearranging yields

κ ≤ 3η

η − 2
P(|∆| > β) +

(3η + η2)β

2b(η − 2)
. (2.21)

Choosing η = 2 +
√

10 minimises the second term in (2.21) and yields the bound (2.15). We elected to min-
imise the second term because in some applications the first term vanishes; as an example, see the proof of
inequality (3.2).
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Now we prove inequality (2.16). We have

E[b2f ′′(WL)− f(WL)] = E[f(W )− f(WL)]

= E[I1(f(W )− f(WL))] + E[(1− I1)(f(W )− f(WL))].

By the mean value theorem, applying the triangle inequality and then using the bounds (2.13) and (2.14) we
obtain

E[b2f ′′(WL)− f(WL)] ≤ ‖f ′‖E|I1∆|+ 2‖f‖P(|∆| > β)

≤ β

b
+ 2P(|∆| > β),

yielding inequality (2.16).
Now suppose that E[|W |3] < ∞. By the absolute moment relation (2.10), this assumption guarantees that

E|WL| <∞. Let h ∈ HW. We have

|E[h(W )]− E[h(Z)]| = |E[b2f ′′(W )− f(W )]| = b2|E[f ′′(W )− f ′′(WL)]|
≤ b2‖f (3)‖E|W −WL| ≤ 2E|W −WL|,

where we used the bound ‖f (3)‖ ≤ 2
b2 ‖h

′‖ of Lemma 2.1 in the final step. This proves inequality (2.17). Also,

∣∣E[b2f ′′(WL)− f(WL)
]∣∣ =

∣∣Ef(W )− Ef(WL)
∣∣

≤ ‖f ′‖E|W −WL|. (2.22)

Using inequality ‖f ′‖ ≤ ‖h′‖ of Lemma 2.1 to (2.22) gives (2.18). Suppose now that h ∈ HK. Then using the
bound ‖f ′‖ ≤ 1

b‖h̃‖ gives us (2.19).
Finally, let h ∈ H2. Suppose that E[W 4] <∞, which, by the moment relation (2.10), ensures that E[(WL)2] <

∞. By Taylor expansion we have

|E[b2f ′′(W )− f(W )]| = b2|E[f ′′(W )− f ′′(WL)]|

≤ b2|E[f (3)(W )(W −WL)]|+ b2

2
‖f (4)‖E[(W −WL)2]

= b2|E[f (3)(W )E[W −WL |W ]]|+ b2

2
‖f (4)‖E[(W −WL)2]

≤ b2‖f (3)‖|E[|E[W −WL |W ]|] +
b2

2
‖f (4)‖E[(W −WL)2].

Applying the bounds ‖f (3)‖ ≤ 1
b‖h
′′‖ and ‖f (4)‖ ≤ 2

b2 ‖h
′′‖ from Lemma 2.1 then yields the bound (2.20), as

required.

Corollary 2.7. Let k ≥ 1 and suppose that E[|W |k+2] <∞. Then

dK(W,Z) ≤ 11.56

(
E[|W −WL|k]

bk

)1/(k+1)

. (2.23)
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Proof. Applying Markov’s inequality to (2.15) gives

dK(W,Z) ≤ (7/2 +
√

10)β

b
+ 3

(
1 +

√
2

5

)
E[|W −WL|k]

βk
,

whence on setting β = (bE[|W −WL|k])1/(k+1) we obtain (2.23).

3. Proof of Theorem 1.1

We begin by proving the following general theorem, which improves on Theorem 4.4 of [38] and Theorem 5.9
of [18]. The improvement comes from smaller constants than in both of those theorems and by giving the bounds
in metrics stronger than the bounded Wasserstein metric bounds of [38]. Very recently, [37] have obtained an
optimal order Wasserstein distance bound for a multivariate generalisation of the following theorem. In their
result X1, X2, . . . are i.i.d. random vectors, the limiting distribution is a centered multivariate symmetric Laplace
distribution (see [28]) and an explicit constant is not given in their bound.

Theorem 3.1. Suppose that X1, X2, . . . is a sequence of independent random variables, with E[Xi] = 0
and E[X2

i ] = σ2
i ∈ (0,∞). Let N be a positive, integer-valued random variable with finite mean µ, which

is independent of the Xi. Define σ2 = 1
µE
[(∑N

i=1Xi

)2]
= 1

µE
[∑N

i=1 σ
2
i

]
. Also, let M be a random variable

satisfying

P(M = m) =
σ2
m

µσ2
P(N ≥ m), m = 1, 2, . . . .

Define Wµ = 1√
µ

∑N
i=1Xi and let Z ∼ Laplace(0, σ√

2
). Then

dW(Wµ, Z) ≤ 2µ−1/2
{
E|XM −XL

M |+ sup
i≥1

σiE
[
|N −M | 12

]}
. (3.1)

Now suppose that |Xi| ≤ C for all i and |N −M | ≤ K. Then we have

dK(Wµ, Z) ≤
√

2(7/2 +
√

10)

σ
√
µ

{
sup
i≥1
‖F−1

Xi
− F−1

XL
i

‖+ CK
}
, (3.2)

and if K = 0 the bound also holds for unbounded Xi.

Proof. It was shown in the proof of Theorem 4.4 of [38] that WL
µ = µ−1/2

(∑M−1
i=1 Xi +XL

M

)
. We take XL

m to
be independent of M , N , and Xk for all k. Therefore

WL
µ −Wµ = µ−1/2

{
(XL

M −XM ) + sgn(M −N)

N∨M∑
i=(M∧N)+1

Xi

}
.

Substituting into (2.17) and bounding E
∣∣∑N∨M

i=(M∧N)+1Xi

∣∣ ≤ supi≥1 σiE
[
|N −M |1/2

]
(see the proof of Theorem

4.4 of [38]) gives us (3.1). Recall from (2.15) that

dK(Wµ, Z) ≤ (7/2 +
√

10)β

b
+

15 + 3
√

10

5
P(|Wµ −WL

µ | > β). (3.3)
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On setting β = µ−1/2
{

supi≥1 ‖F−1
Xi
− F−1

XL
i

‖+ CK
}

, and using Strassen’s theorem we deduce (3.2) from (3.3)

(recalling that b = σ√
2
). The assertion after inequality (3.2) follows similarly.

Proof of Theorem 1.1. To ease notation, in this proof we drop the subscripts from Sp and Np. As noted by
[38], the assumptions imposed on N and the Xi imply that L(M) = L(N), meaning that we can take M = N .
Inequality (1.3) now follows from inequality (3.2). To prove inequality (1.4), we note the following simple
inequality (see [38])

E|XN −XL
N | ≤ sup

i≥1
E|Xi|+ sup

i≥1
E|XL

i | = sup
i≥1

E|Xi|+ sup
i≥1

E[|Xi|3]

3σ2
≤ σ +

ρ3

3σ2
,

where in the final step the Cauchy-Schwarz inequality was applied. We are now able to obtain (1.4) from (3.1).
To prove inequality (1.5), we apply inequality (2.23) of Corollary 2.7. We use the assumption that

supi≥1 E[Xk+2
i ] < ∞, the moment relation (2.10) and the simple inequality |a + b|r ≤ 2r−1(|a|r + |b|r), r ≥ 1,

to obtain the bound

E[|S − SL|k] = pk/2E[|XN −XL
N |k]

≤ 2k−1pk/2(E[|XN |k] + E[|XL
N |k])

≤ 2k−1pk/2
(
ρk +

2ρk+2

(k + 1)(k + 2)σ2

)
. (3.4)

Substituting into (2.23) then yields inequality (1.5).
We end by establishing inequality (1.6). We now assume that X1, X2, . . . are identically distributed with

E[X3
1 ] = 0 and E[X4

1 ] <∞. We prove inequality (1.6) by applying inequality (2.20) of Theorem 2.5. We proceed
similarly to we did in obtaining (3.4), but this time use the independence of XN and XL

N to obtain

E[(S − SL)2] = pE[(XN −XL
N )2] = p(E[X2

N ] + E[(XL
N )2]) = p

(
σ2 +

E[X4
1 ]

6σ2

)
. (3.5)

We now bound E[|E[S − SL |S]|]. We have

E[S − SL |S] =
√
pE[XN −XL

N |S] =
√
p
(
E[XN |S]− E[XL

N ]
)
,

as XL
N and S are independent. Also, due to the assumption that E[X3

i ] = 0 for all i ≥ 1, we have, by (2.10),
that E[XL

N ] = 1
3σ2E[X3

N ] = 0. By the tower property of conditional expectation we then have

E[S − SL |S] =
√
pE[E[XN |S,N ] |S]

= E
[
S

N

∣∣∣S],
where we used that because the Xi are i.i.d., and therefore exchangeable, E[XN |S,N ] = S/(

√
pN). Therefore

E[|E[S − SL |S]|] = E
[∣∣∣∣E[ SN ∣∣∣S]∣∣∣∣]

≤ E
[
E
[
|S|
N

∣∣∣S]]
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= E
[
|S|
N

]
=
√
p

∞∑
n=1

1

n
E
∣∣∣∣ n∑
i=1

Xi

∣∣∣∣P(N = n). (3.6)

Taking h(x) = |x| in inequality (4.4) (note that h ∈ HW) gives the inequality∣∣∣∣ 1√
n
E
∣∣∣∣ n∑
i=1

Xi

∣∣∣∣−
√

2

π
σ

∣∣∣∣ ≤ σ√
n

(
2 +

E[|X1|3]

σ3

)

(see [4] for a similar bound), and on applying this inequality to (3.6) we obtain the bound

E[|E[S − SL |S]|] ≤
√

2p

π
σE[N−1/2] +

√
pσ

(
2 +

E[|X1|3]

σ3

)
E[N−1]. (3.7)

The expectation E[N−1] is easily evaluated:

E[N−1] =

∞∑
n=1

p(1− p)n−1

n
=
p log(1/p)

1− p
.

We can bound E[N−1/2] through an application of the integral test:

1− p
p

E[N−1/2] =

∞∑
n=1

(1− p)n√
n

<

∫ ∞
0

(1− p)x√
x

dx =

∫ ∞
0

exp(x log(1− p))√
x

dx

=

√
2

− log(1− p)

∫ ∞
0

e−t
2/2 dt =

√
π

− log(1− p)
<

√
π

p
,

where we used the standard inequality log(1 + x) < x, for x > −1, in the last step. Plugging the estimates for
E[N−1/2] and E[N−1] into (3.7) then yields the bound

E[|E[S − SL |S]|] <
√

2σp

1− p
+
σp3/2 log(1/p)

1− p

(
2 +

E[|X1|3]

σ3

)
. (3.8)

Finally, inserting (3.5) and inequality (3.8) into (2.20) yields the desired bound. �

4. Proof of Theorem 1.3

Let Z ∼ Laplace(0, σ√
2
) and recall that Tn = B

1/2
n−1

∑n
i=1Xi, where the X1, . . . , Xn are independent random

variables with zero mean and variance σ2 ∈ (0,∞). Then we have the representations

Tn =d UnVn,

Z =d UV,

where Un =
√
nBn−1, Vn = 1√

n

∑n
i=1Xi, U follows the Rayleigh distribution with density function fU (x) =

2xe−x
2

, x > 0, and V ∼ N(0, σ2) are mutually independent random variables. This representation of the Laplace
distribution is given in ([28], Prop. 2.2.1). In the limit n → ∞, Un converges in distribution to U , and, by
the central limit theorem, Vn converges in distribution to V . Indeed, P(Un ≤ u) = 1 − (1 − u2/n)n−1, u ∈
(0,
√
n), which converges to 1 − e−u

2

as n → ∞. We prove Theorem 1.3 by obtaining explicit bounds on the
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distance between the distributions of Un and U and the distributions of Vn and V with respect to suitable
probability metrics and then combine these bounds to bound the distance between L(Tn) and the Laplace(0, σ√

2
)

distribution. We combine these bounds through the following lemma.

Lemma 4.1. Let Y1, Y2, Z1, Z2 be real-valued random variables. Then

dK(Y1Z1, Y2Z2) ≤ dK(Y1, Y2) + dK(Z1, Z2),

dW(Y1Z1, Y2Z2) ≤ E|Z1|dW(Y1, Y2) + E|Y2|dW(Z1, Z2),

d1,2(Y1Z1, Y2Z2) ≤ E|Z1|dW(Y1, Y2) + E[Y 2
2 ]d2(Z1, Z2), (4.1)

where each inequality holds provided the expectations in the the right-hand side of the inequality exist.

Proof. We prove the bound for d1,2; the bounds for dK and dW are obtained through similar and slightly simpler
arguments. Let h ∈ H1,2. Then, by the triangle inequality and conditioning,

|E[h(Y1Z1)]− E[h(Y2Z2)]|
≤ |E[h(Y1Z1)]− E[h(Y2Z1)]|+ |E[h(Y2Z1)]− E[h(Y2Z2)]|
= |E[E[h(Y1Z1)− h(Y2Z1)] |Z1]]|+ |E[E[h(Y2Z1)− h(Y2Z2)] |Y2]]|
≤ E[|E[h(Y1Z1)− h(Y2Z1)] |Z1]|] + E[|E[h(Y2Z1)− h(Y2Z2)] |Y2]|]. (4.2)

Now, for a ∈ R \ {0} and real-valued random variables X and Y we have that

|E[h(aX)]− E[h(aY )]| ≤ dW(aX, aY ) = adW(X,Y ),

|E[h(aX)]− E[h(aY )]| ≤ d2(aX, aY ) = a2d2(X,Y ),

since H1,2 ⊂ HW and H1,2 ⊂ H2. Applying these inequalities to (4.2) we obtain that, for h ∈ H1,2,

|E[h(Y1Z1)]− E[h(Y2Z2)]| ≤ E[|Z1dW(Y1, Y2)|] + E[|Y 2
2 d2(Z1, Z2)|]

= E|Z1|dW(Y1, Y2) + E[Y 2
2 ]d2(Z1, Z2) (4.3)

The bound (4.3) holds for all h ∈ H1,2, and as d1,2(Y1Z1, Y2Z2) = suph∈H1,2
|E[h(Y1Z1)]−E[h(Y2Z2)]| it follows

that inequality (4.1) holds.

There is a vast literature on bounds for dH(Vn, V ). We will make use of three bounds from the literature for
the cases HK, HW and H2.

Theorem 4.2 (Shevtsova [43]). Let X1, . . . , Xn be independent random variables with E[Xi] = 0, Var(Xi) =
σ2 ∈ (0,∞) and E[|Xi|3] <∞, for all 1 ≤ i ≤ n. Denote Vn = 1√

n

∑n
i=1Xi and let V ∼ N(0, σ2). Then

dK(Vn, V ) ≤ C0

σ3n3/2

n∑
i=1

E[|Xi|3],

where C0 = 0.5600.

Theorem 4.3 (Reinert [39]). Under the same assumptions as Theorem 4.2, we have that, for h ∈ HW,

|E[h(Vn)]− E[h(V )]| ≤ σ

n3/2

n∑
i=1

(
2 +

E[|Xi|3]

σ3

)
. (4.4)
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Consequently,

dW(Vn, V ) ≤ σ

n3/2

n∑
i=1

(
2 +

E[|Xi|3]

σ3

)
. (4.5)

Theorem 4.4 (Gaunt [16]). Let X1, . . . , Xn be independent random variables with E[Xi] = 0, Var(Xi) = σ2 ∈
(0,∞), E[X3

i ] = 0 and E[X4
i ] <∞, for all 1 ≤ i ≤ n. Then

d2(Vn, V ) ≤ σ2

n2

n∑
i=1

(
1 +

E[X4
i ]

3σ4

)
. (4.6)

Remark 4.5. The Berry-Esseen Theorem 4.2, with a larger constant C0, was proved independently by Berry
[2] and Esseen [12] in the early 1940s, and since then several works have improved on the constant with the
best estimate of C0 = 0.5600 due to [43]. For i.i.d. random variables X1, . . . , Xn, the constant improves to
C0 = 0.4748 [44]. The assumption of bounded third absolute moments can also be reduced at the expense of
a slightly more complicated bound with bigger constants [14]. Theorem 4.3 is formulated slightly differently in
Theorem 2.1 of [39], but by re-scaling we obtain the bound (4.5). This is also the case for Theorem 4.4, and
we additionally obtain an improved constant in (4.6) by using the bound ‖f (4)‖ ≤ 2‖h′′‖ (due to [5]) for the
solution of the standard normal Stein equation f ′′(x) − xf ′(x) = h(x) − E[N ], N ∼ N(0, 1), rather than the
bound ‖f (4)‖ ≤ 3‖h′′‖ that was used in proof of Theorem 3.1 of [16].

As the Rayleigh distribution is a special case of the generalized gamma distribution, the following lemma
follows as a special case of Proposition 2.3 of [17].

Lemma 4.6. Let U denote a Rayleigh random variable with probability density function pU (x) = 2xe−x
2

, x > 0.
Suppose that f : (0,∞)→ R is differentiable and such that E|Uf ′(U)| <∞, E|f(U)| <∞ and E|U2f(U)| <∞.
Then

E[AUf(U)] = 0,

where AUf(x) = xf ′(x) + (2− 2x2)f(x).

Lemma 4.7. Let Un =
√
nBn−1, where Bn−1 ∼ Beta(1, n− 1). Suppose that f : (0,

√
n)→ R is differentiable

and such that E|Unf ′(Un)| <∞, E|U3
nf
′(Un)| <∞, E|f(Un)| <∞ and E|U2

nf(Un)| <∞. Then

E[AUnf(Un)] = 0. (4.7)

where AUn
f(x) = x(1− x2/n)f ′(x) + (2− 2x2)f(x).

Proof. Define the operator Tr by Try(x) = xy′(x) + ry(x), r ∈ R. In this notation, the classical Stein operator

for the Beta(1, n − 1) distribution is given by ABn−1
y(x) = T1y(x) − xTny(x) [6, 23]. Let Cn = B

1/2
n−1 and let

g : (0, 1) → R by such that E|Cng′(Cn)| < ∞, E|C3
ng
′(Cn)| < ∞, E|g(Cn)| < ∞ and E|C2

ng(Cn)| < ∞. Then,
by equation (15) of [20],

E[T2g(Cn)− C2
nT2ng(Cn)] = 0. (4.8)

(The conditions on g that are stated above are not specified in [20], but on examining their analysis one can
see that these conditions ensure that (4.8) holds.) That is

E
[
Cn(1− C2

n)g′(Cn) + (2n− 2nC2
n)g(Cn)

]
= 0. (4.9)
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We have that Un =d
√
nCn, and on rescaling we deduce (4.7) from (4.9).

In the following lemma, the bound (4.10) is proved purely for reasons of exposition, as an improved bound
will be stated in Remark 4.9. Proving both the Kolmogorov and Wasserstein distance bounds requires very little
more work than only proving the Wasserstein distance bound.

Lemma 4.8. Let the random variables Un and U be defined as above. Then, for n ≥ 2,

dK(Un, U) ≤ 2

n
, (4.10)

dW(Un, U) ≤ 11.49

n
. (4.11)

Proof. Let the Stein operators AU and AUn be defined as in Lemmas 4.6 and 4.7, respectively. Suppose that
h : (0,∞) → R is either bounded or Lipschitz. Let f be the solution of the Rayleigh(1/

√
2) Stein equation

AUf(x) = h(x)− E[h(U)], which by Lemma 5.4, we know satisfies the bounds

‖xf ′(x)‖ ≤ 2

2−1
× 1

2
‖h− E[h(U)]‖ ≤ 2, h ∈ HK, (4.12)

‖f ′‖ ≤ 6.11

2−3/2
× 1

2
‖h′‖ ≤ 8.6408, h ∈ HW. (4.13)

Then

|E[h(Un)]− E[h(U)]| = |E[AUf(Un)]| = |E[AUf(Un)−AUn
f(Un)]|

=
1

n
|E[U3

nf
′(Un)]|

≤ 1

n
min

{
‖xf ′(x)‖E[U2

n], ‖f ′‖E[U3
n]
}
. (4.14)

That E[AUnf(Un)] = 0 follows from the assumptions on h and the estimates of Lemma 5.4 for the solution of
the Rayleigh Stein equation. Now, E[U2

n] = 1 and

E[U3
n] = n3/2E[B

3/2
n−1] = n3/2

∫ 1

0

(n− 1)x3/2(1− x)n−2 dt = n3/2(n− 1)B
(

5
2 , n− 1

)
= n3/2(n− 1)

Γ(5/2)Γ(n− 1)

Γ(n+ 3/2)
=

3
√
πn3/2Γ(n)

4Γ(n+ 3/2)
, (4.15)

where B(a, b) =
∫ 1

0
xa−1(1− x)b−1 dx is the beta function, and we used the standard formulas uΓ(u) = Γ(u+ 1)

and Γ(5/2) = 3
√
π/4. Now n3/2Γ(n)/Γ(n + 3/2) is an increasing function of n on (0,∞) [24]. Therefore, for

n ≥ 2,

E[U3
n] ≤ 3

√
π

4
lim
n→∞

n3/2Γ(n)

Γ(n+ 3/2)
=

3
√
π

4
,

where the limit follows from [32, formula (5.6.4)]. Applying the bounds (4.12) and (4.13) together with the
bounds for E[U2

n] and E[U3
n] to (4.14) then yields the bounds (4.10) and (4.11).
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Remark 4.9. The following bounds will appear in the supplementary material of the arXiv version of the
preprint [11]. For n ≥ 2,

dK(Un, U) ≤ 1

n

(
1 + 2

(
1− 2

n

)n−2)
, (4.16)

and

dW(Un, U) ≤ −
√
πΓ(n)

4
√
nΓ(n+ 1/2)

+ 2
√

2
n− 1

nn
·

(n− 2)nn(40 + 11(n− 4)n) + (n− 2)3nn2F1(− 1
2 , 3− n; 1

2 ; 2
n )

(n− 2)2(2n− 5)(2n− 3)(2n− 1)
, (4.17)

where 2F1(a, b; c;x) is the Gaussian hypergeometric function. (We define 00 := 1, but this is irrelevant because
the bound (4.16) is greater than 1 in this case.) These bounds were obtained using a recent technique of [11]
for bounding distances between distributions that builds upon the formalism of [10] for new representations of
solutions to Stein equations. For another recent approach to bounding distances between distributions, see [9].

Our Kolmogorov distance bound (4.10) outperforms (4.16) when n = 2 (although in this case the upper
bound of 1 is trivial), but for all n ≥ 3 the reverse is true. Numerical calculations carried using Mathematica
suggest that the Wasserstein bound (4.17) improves on our bound (4.11) for all n ≥ 2, although verifying this
assertion analytically seems to be difficult. Our bound is of course much simpler and the dependence on n is
very clear. For this reason, we will use the bound (4.11) in our proof of Theorem 1.3.

Proof of Theorem 1.3. Recall that Tn =d UnVn and Z =d UV . Then, by Lemma 4.1,

dK(Tn, Z) ≤ dK(Un, U) + dK(Vn, V ), (4.18)

dW(Tn, Z) ≤ E|V |dW(Un, U) + E[Un]dW(Vn, V ), (4.19)

d1,2(Tn, Z) ≤ E|V |dW(Un, U) + E[U2
n]d2(Vn, V ). (4.20)

By standard formulas for the moments and absolute moments of the beta and normal distributions, we have
that E[U2

n] = 1 and E|V | = σ
√

2/π. Also, by a similar calculation to the one used to obtain the formula (4.15)
we have, for n ≥ 2,

E[Un] =

√
π
√
nΓ(n)

2Γ(n+ 1/2)
≤
√
π
√

2Γ(2)

2Γ(5/2)
=

2
√

2

3
,

where we used that
√
nΓ(n)/Γ(n + 1/2) is a decreasing function of n on (0,∞) [24]. Theorems 4.2–4.4 give

bounds for dK(Vn, V ), dW(Vn, V ) and d2(Vn, V ), respectively, and dK(Un, U) is bounded by inequality (4.16)
and dW(Un, U) is bounded by inequality (4.11). Substituting all of these estimates into (4.18), (4.19) and (4.20)
then yields the bounds as stated in Theorem 1.3. �

5. The Rayleigh Stein equation

Let R ∼ Rayleigh(σ), σ > 0, follow the Rayleigh distribution with density function

ρR(x) =
x

σ2
e−x

2/(2σ2), x > 0.
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The Rayleigh distribution is a special case of the chi distribution (up to scaling). A random variable K following
the chi distribution with k > 0 degrees of freedom, denoted by χ(k), has probability density function

ρk(x) =
1

2k/2−1Γ(k/2)
xk−1e−x

2/2, x > 0.

We proceed by obtaining bounds for the solution of the chi distribution Stein equation, before specialising to
the solution of the Rayleigh Stein equation.

We first note that the density ρk satisfies the differential equation(
s(x)ρ(x)

)′
= τ(x)ρ(x), (5.1)

where s(x) = x and τ(x) = k− x2. It therefore follows from Theorem 1 of [42] that a Stein equation for the χ(k)

distribution is given by

xf ′(x) + (k − x2)f(x) = h(x)− E[h(K)], (5.2)

where K ∼ χ(k). It is straightforward to solve (5.2) (see Prop. 1 of [42]):

f(x) =
1

xρk(x)

∫ x

0

(h(t)− E[h(K)])ρk(t) dt, (5.3)

= − 1

xρk(x)

∫ ∞
x

(h(t)− E[h(K)])ρk(t) dt. (5.4)

In order to bound the solution (5.3) and its first derivative, it will be useful to note the following
straightforward extension of Lemmas 1 and 3 of [41].

Lemma 5.1. Let ρ be the probability density function of a random variable Y , supported on (a, b), which satisfies
the differential equation (5.1), where s(x) is a polynomial of degree no greater than two and τ(x) is monotonic
in (a, b) with exactly one sign change at the point m ∈ (a, b). Let h : (a, b)→ R be bounded. Then, the solution of
the Stein equation s(x)f ′(x) + τ(x)f(x) = h(x)− Eh(Y ), as given by f(x) = 1

s(x)ρ(x)

∫ x
a

(h(t)− E[h(Y )])ρ(t) dt,

satisfies the bounds

‖f‖ ≤M‖h− E[h(Y )]‖, (5.5)

‖s(x)f ′(x)‖ ≤ 2‖h− E[h(Y )]‖, (5.6)

where

M =
1

s(m)ρ(m)
max{F (m), 1− F (m)},

with F denoting the distribution function of Y .

Remark 5.2. The bound (5.5) is a generalisation of the corresponding bound of Lemma 1 of [41], which is only
given for the case that τ(x) = a(E[Y ]− x), where a 6= 0. The crucial feature of this function that is exploited
in the proof of [41] is that τ(x) is monotonic with exactly one sign change at x = E[Y ]. As noted by [27], we
can therefore extend the result of [41] to any τ(x) that is monotonic with only one change of sign.
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Lemma 5.3. Let f : (0,∞) → R denote the solution (5.3) of the Stein equation (5.2). Let h : (0,∞) → R be
bounded. Then

‖f‖ ≤ Γ(k/2)ek/2

2(k/2)k/2
‖h− E[h(K)]‖, (5.7)

‖xf ′(x)‖ ≤ 2‖h− E[h(K)]‖. (5.8)

Proof. Bounds (5.7) and (5.8) follow easily from Lemma 5.1; note that τ(x) = k − x2 satisfies the assumption
of the lemma. To apply the lemma, we note that here m =

√
k, being the positive solution to the equation

k − x2 = 0; s(x) = x; and we used the trivial bound max{F (m), 1− F (m)} ≤ 1.

We now specialise to the case k = 2, which corresponds to the Rayleigh distribution.

Lemma 5.4. Let f denote the solution of the Rayleigh Stein equation σ2xf ′(x) + (2σ2 − x)f(x) = h(x) −
E[h(R)], where R ∼ Rayleigh(σ). Let h : (0,∞)→ R be bounded. Then

‖f‖ ≤ e

2σ2
‖h− E[h(R)]‖, (5.9)

‖xf ′(x)‖ ≤ 2

σ2
‖h− E[h(R)]‖. (5.10)

Now suppose that h is Lipschitz. Then

‖xf(x)‖ ≤ 2.325

σ
‖h′‖, (5.11)

‖f ′‖ ≤ 6.11

σ3
‖h′‖, (5.12)

‖xf ′′(x)‖ ≤ 11.30

σ3
‖h′‖. (5.13)

Proof. For ease of notation, we consider the case σ = 1. The general case follows from rescaling. Bounds (5.9)
and (5.10) follow immediately from Lemma 5.3.

Now we prove inequality (5.11). Let h be Lipschitz. By the mean value theorem, for t > 0, |h(t)−E[h(R)]| ≤
‖h′‖(t+ E[R]) = ‖h′‖(t+

√
π/2). Therefore, for x > 0,

|xf(x)| ≤ ‖h′‖
ρR(x)

∫ x

0

(√
π
2 + t

)
ρR(t) dt =:

‖h′‖
ρR(x)

I1(x),

and

|xf(x)| ≤ ‖h′‖
ρR(x)

∫ ∞
x

(√
π
2 + t

)
ρR(t) dt =:

‖h′‖
ρR(x)

I2(x).

By integration by parts, the integrals I1(x) and I2(x) can be evaluated in terms of the error function erf(x) =
2√
π

∫ x
0

e−t
2

dt:

I1(x) =

√
π

2
(1− e−x

2/2) +

√
π

2
erf

(
x√
2

)
− xe−x

2/2,

I2(x) =

√
π

2
(1 + e−x

2/2)−
√
π

2
erf

(
x√
2

)
+ xe−x

2/2.
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It can be seen that I1(x)/ρR(x) and I2(x)/ρR(x) are increasing and decreasing functions of x, respectively, and
we used Mathematica to compute that the two functions intersect at the point x∗ = 1.360722 . . .. Therefore, for
all x > 0,

|xf(x)| ≤ I1(x∗)

p(x∗)
‖h′‖ = 2.325‖h′‖.

Lastly, we establish the bounds (5.12) and (5.13). Differentiating both sides of (5.2) and rearranging gives

xf ′′(x) + (3− x2)f ′(x) = h′(x) + 2xf(x), (5.14)

which we recognise as the χ(3) Stein equation with test function h′(x) + 2xf(x), applied to the function f ′. It
is important to note that the test function h′(x) + 2xf(x) has mean zero with respect to the random variable
K3 ∼ χ(3). This follows because xf ′′(x) + (3 − x2)f ′(x) is a Stein operator for the χ(3) distribution, meaning
that E[K3f

′′(Y ) + (3−K2
3 )f ′(K3)] = 0, and therefore from (5.14) we have that E[h′(K3) + 2K3f(K3)] = 0. We

can therefore use the iterative technique of [8] to deduce bounds for ‖f ′‖ and ‖xf ′′(x)‖ from our bounds (5.7)
and (5.8) with k = 3 and (5.11). We have

‖f ′‖ ≤ 2Γ(3/2)e3/2

(3/2)3/2
‖h′(x) + 2xf(x)‖ ≤ Γ(3/2)e3/2

2(3/2)3/2

(
‖h′‖+ 2‖xf(x)‖

)
≤ Γ(3/2)e3/2

2(3/2)3/2
(1 + 2 · 2.325)‖h′‖ = 6.11‖h′‖,

and

‖xf ′′(x)‖ ≤ 2‖h′(x) + 2xf(x)‖ ≤ 2(1 + 2 · 2.325)‖h′‖ = 11.30‖h′‖,

which completes the proof.

Acknowledgements. The author is supported by a Dame Kathleen Ollerenshaw Research Fellowship. The author would
like to thank Yvik Swan for generously sharing some results that will be added to the supplementary material of the
arXiv version of his preprint [11], which are stated in Remark 4.9. The author is grateful to the referees for their careful
reading of the manuscript and for identifying several typos and errors in the displayed equations.

References
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(2020) 1484–1513.

[20] R.E. Gaunt, G. Mijoule, and Y. Swan, An algebra of Stein operators. J. Math. Anal. Appl. 469 (2019) 260–279.
[21] R.E. Gaunt, A.M. Pickett and G. Reinert, Chi-square approximation by Stein’s method with application to Pearson’s statistic.

Ann. Appl. Probab. 27 (2017) 720–756.
[22] L. Goldstein and G. Reinert, Stein’s Method and the zero bias transformation with application to simple random sampling.

Ann. Appl. Probab. 7 (1997) 935–952.
[23] L. Goldstein and G. Reinert, Stein’s method for the Beta distribution and the Pólya-Eggenberger Urn. J. Appl. Probab. 50
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[37] E. Peköz, A. Röllin and N. Ross, Exponential and Laplace approximation for occupation statistics of branching random walk.
Electr. J. Probab. 25 (2020) 1–22.

[38] J. Pike and H. Ren, Stein’s method and the Laplace distribution. ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014) 571–587.
[39] G. Reinert, Couplings for normal approximations with Stein’s method, in Microsurveys in Discrete Probability, volume of

DIMACS series AMS (1998) 193–207.
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