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QUANTIFYING THE CLOSENESS TO A SET OF RANDOM CURVES

VIA THE MEAN MARGINAL LIKELIHOOD

Cédric Rommel1, J. Frédéric Bonnans1,*, Baptiste Gregorutti2

and Pierre Martinon3

Abstract. In this paper, we tackle the problem of quantifying the closeness of a newly observed curve
to a given sample of random functions, supposed to have been sampled from the same distribution.
We define a probabilistic criterion for such a purpose, based on the marginal density functions of an
underlying random process. For practical applications, a class of estimators based on the aggregation of
multivariate density estimators is introduced and proved to be consistent. We illustrate the effectiveness
of our estimators, as well as the practical usefulness of the proposed criterion, by applying our method
to a dataset of real aircraft trajectories.
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1. Introduction

Functional Data Analysis (FDA) has received an increasing amount of attention in the last years [26], this kind
of data being present in many fields of application, such as speech recognition [9], radar waveforms classification
[6] and aircraft trajectories classification [13, 19]. In this paper we are interested in the general problem of
quantifying how close some newly observed random curve is to a set of random functions, being mainly motivated
by the practical task of assessing optimized aircraft trajectories, see Section 4.

One way to address this problem is by using the concept of functional depths [17], which usually assumes
the existence of a central function around which the random curves of the data set can be ordered (see e.g. [20]
for an overview of several functional depth proposals). This intrinsic notion of centrality may be a caveat when
the data distribution is multi-modal. In order to handle this multi-modal aspect, we choose instead to adopt
a probabilistic point of view, interpreting the original problem as the estimation of the likelihood of observing
the new curve, given the sample of previously observed functions. This viewpoint extends in some sense to the
functional setting the likelihood depth proposed for multivariate data in [10]. This problem is hence related to
the estimation of the probability density of a random variable valued on a function space.
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Density estimation has been a longstanding problem in statistics and machine learning. Many parametric
and nonparametric techniques have been proposed ever since to address it in a finite-dimensional setting.

For functional data, density estimation has been studied for example by [5], who proposed an extension of the
well-known kernel density estimator. Similarly, reference [24] developed a delta-sequence method for functional
density estimation.

As the distribution of a functional random variable is hard to grasp and does not present good topological
properties because it is defined on sets of a space which is “too large” (see e.g. [2, 15]), alternatives were
proposed for casting this problem into a finite-dimensional setting. For example, reference [25] proposed to
project the random curves on basis functions, while [14] suggested to study the structure of the distribution
of a functional random variable by estimating its modes and density ascent lines. We propose another finite-
dimensional approach, by estimating an aggregation of the marginal densities, which reduces to a finite sequence
of multivariate density estimation problems.

1.1. Core contributions

After introducing our method in Section 2.1, an empirical version of it is presented for practical applications
(Sect. 2.2). The obtained statistic is built using marginal density estimators which are shown to be consistent
in Section 2.3. In Section 3, we propose an implementation of our approach using the self-consistent kernel
density estimator from [1] and extending it to the functional data context. We illustrate the effectiveness of our
method, as well as its usefulness as an exploratory analysis tool for functional data, on a dataset of real aircraft
trajectories and compare it to more standard approaches (Sect. 4).

The code used for the experimental part can be found in the following link: https://github.com/cedricrommel/
mean marginal likelihood

2. Mean marginal likelihood estimator

2.1. Mean marginal likelihood

Let (Ω,F ,P) be a probability space and T = [0; tf ] be an interval of R. We denote by E a compact subset
of Rd, d ∈ N∗, endowed with the Borel σ-field B. Let Z = (Zt)t∈T be a random variable valued in C(T, E), the
set of continuous functions from T to E, and suppose that a training set of m observations of Z is available:
T = {z1, . . . ,zm} ⊂ C(T, E). We denote by µt the marginal distribution of Zt for any t ∈ T, and we assume
that it has a density ft relative to the Lebesgue measure on Rd. We assume that (t, z) ∈ T × E 7→ ft(z) is
continuous. Let y ∈ C(T, E) be some arbitrary new curve that we would like to assess.

Given t ∈ T, we can interpret the quantity ft(y(t)) as the likelihood of observing Zt = y(t).
By summarizing in some way the infinite collection {ft(y(t)) : t ∈ T}, which we call the marginal likelihoods

of y hereafter, we hope to build a global and simple likelihood indicator.
The first idea for aggregating these quantities is to average them with respect to time:

1

tf

∫ tf

0

ft(y(t))dt. (2.1)

The main problem with this criterion is that it mixes elements from densities which may have very different
shapes. Indeed, density values of likely observations at two times t1, t2 ∈ T may have completely different orders
of magnitude. For this reason, we propose to use some continuous scaling map ψ : L1(E,R+)×E → [0; 1] prior
to averaging:

MML(Z,y) =
1

tf

∫ tf

0

ψ [ft,y(t)] dt, (2.2)

and we call the obtained quantity the mean marginal likelihood of y given Z.

https://github.com/cedricrommel/mean_marginal_likelihood
https://github.com/cedricrommel/mean_marginal_likelihood
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Figure 1. Illustration of the confidence level in the case of a univariate bimodal distribution.

A natural choice for ψ is simply the function that normalizes ft(y(t)) over E:

ψ[ft,y(t)] =
ft(y(t))

max
z∈E

ft(z)
. (2.3)

However, we can also consider more meaningful scaling maps, such as the confidence level at y(t):

Definition 2.1. Let X be a random variable on E with continuous density function f . We call the confidence
level of f at a ∈ E the probability that f(X) lies in the region of density lower or equal to f(a):

ψ[f, a] =

∫
E

f(x)1{f(x)≤f(a)}dx = P (f(X) ≤ f(a)) . (2.4)

In this case, ψ[ft,y(t)] corresponds to the probability of Zt falling outside the smallest confidence region
containing y(t), as illustrated in Figure 1.

A numerical comparison of these two scalings can be found in Section 4, while a class of estimators of the
mean marginal likelihood is presented in the next section.

2.2. Empirical version

Usually in FDA, one only has access to discrete observations of the random functions under study. We
assume to be in this context: for 1 ≤ r ≤ m, each path zr of the training set T is assumed to be observed at
n ∈ N∗ discrete times {tr1 < tr2 < · · · < trn} ⊂ T, drawn independently from some random variable T , supposed
independent of Z. Note that the sample sizes are the same for all curves zr, but the sampling times trj are

different. Hence, we denote by T D the set of all discrete observations:

T D = {(trj , zrj )}1≤j≤n
1≤r≤m

⊂ T× E, (2.5)

where zrj = zr(trj). Likewise, we assume that the new curve y is observed at ñ ∈ N discrete times {t̃j}ñj=1 ⊂ T
and we denote these observations by

Y = {(t̃j , yj)}ñj=1 ⊂ T× E, (2.6)

where yj = y(t̃j).
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Had we enough observations of y, we could approximate the integral in (2.2) by a Riemann sum:

1

tf

ñ∑
j=1

ψ[fj , yj ]∆t̃j , (2.7)

where fj := ft̃j , ∆t̃j := t̃j − t̃j−1 and t̃0 = 0. Yet, the marginal densities {fj}ñj=1 are unknown and need to be
estimated for practical use.

Our approach is based on the idea of partitioning T into qm intervals, or bins, of same length bm = tf/qm. For
1 ≤ ` ≤ qm, let τ` := τ0 + `bm, where τ0 = inf T = 0. Denote by B` := [τ`−1; τ`) the `th bin for ` = 1, . . . , qm − 1
and Bqm := [τqm−1; τqm ]. Similarly, T` = {(trj , zrj ) : trj ∈ B`} ⊂ T D denotes the set of observations whose sam-

pling time fall into B`. For some m and 1 ≤ j ≤ ñ, let ` be such that t̃j ∈ B`. For bm small enough, we estimate
fj by building a density estimator with the partial data contained in T`.

This is done by applying a common statistic Θ : S → L1(E,R+) to T`, where S{(zk)Nk=1 ∈ EN : N ∈ N∗}
denotes the set of finite sequences valued on E ⊂ Rd: f̂j := Θ[T`]. Hence, we consider a single density estimator

per bin, averaging along the times in it. We denote this estimated quantities {f̂j}ñj=1 and by summing them we
can build the following plug-in estimator, called the Empirical Mean Marginal Likelihood hereafter:

EMMLm(Z,y) :=
1

tf

ñ∑
j=1

ψ[f̂j , yj ]∆t̃j . (2.8)

In Section 2.3, sufficient conditions are given for the consistent estimation of the marginal densities ft, while
Section 3 presents a possible class of kernel density estimators to compute {f̂j}ñj=1.

2.3. Consistency of the marginal density estimations

2.3.1. General case

In this section we state that by using some well chosen statistic to build density estimators in the bins
described in Section 2.2 we obtain pointwise consistent estimations of the marginal densities of Z. We describe
the main ideas of the proof here, while the technical details can be found in the supplementary material. Our
consistency result is summarized in Theorem 2.6 and relies on the following 4 assumptions:

Assumption 2.2. The random variable T is absolutely continuous and ν ∈ L∞(E,R+), its density relative to
the Lebesgue measure, satisfies:

ν+ := ess sup
t∈T

ν(t) <∞, ν− := ess inf
t∈T

ν(t) > 0. (2.9)

Assumption 2.3. The function defined by

(t, z) ∈ T× E 7→ ft(z) (2.10)

is continuous on both variables and Lipschitz in time with constant L > 0: for any z ∈ E and t1, t2 ∈ T

|ft1(z)− ft2(z)| ≤ L|t1 − t2|. (2.11)

Assumption 2.4. The homogeneous partition {Bm` }
qm
`=1 of T = [0; tf ], where the bins have size bm := tf/qm,

is such that

lim
m→∞

bm = 0, (2.12)
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lim
m→∞

mbm =∞. (2.13)

Let S = {(zk)Nk=1 ∈ EN : N ∈ N∗} be the set of finite sequences with values in the compact set E ⊂ Rd. We
also need to assume that the statistic Θ : S → L1(E,R+) used to build the density estimators leads to uniformly
consistent density estimations in a standard i.i.d setting, which is summarized in the following assumption:

Assumption 2.5. Let G be an arbitrary family of probability density functions on E. Given a density ρ ∈ G,
let SNρ be an i.i.d sample of size N valued in S. The estimator obtained by applying Θ to SNρ , denoted by

ρ̂N := Θ[SNρ ] ∈ L1(E,R+), (2.14)

is a (pointwise) consistent density estimator, uniformly in ρ:

For all z ∈ E, ε > 0, α1 > 0, there is Nε,α1 > 0 such that, for any ρ ∈ G,
N ≥ Nε,α1

⇒ P
(∣∣ρ̂N (z)− ρ(z)

∣∣ < ε
)
> 1− α1.

(2.15)

For m ∈ N∗, let `m : T → N∗ be the function mapping any point t ∈ T = [0; tf ] to the index of the bin
containing it:

`m(t) :=

⌈
t

bm

⌉
. (2.16)

We denote by f̂m`m(t) the estimator obtained by applying Θ to the subset of data points T m`m(t) whose sampling
times fall in the bin containing t.

Theorem 2.6. Under assumptions 2.2 to 2.5, for any z ∈ E and t ∈ T, f̂m`m(t)(z) consistently approximates the

marginal density ft(z) as the number of curves m grows:

∀ε > 0, lim
m→∞

P
(
|f̂m`m(t)(z)− ft(z)| < ε

)
= 1. (2.17)

Important Remark Assumption 2.5 does not lead directly to Theorem 2.6, whose proof is technically involv-
ing and presented in details in Appendix A. Indeed note that, unlike Assumption 2.5, the convergence in
Theorem 2.6 is written in terms of m. This is a key difference since the number of observation points used is
supposed to be controlled in the multivariate setting of Assumption 2.5, while it is a random variable in Theo-
rem 2.6 (number of observations falling in the bin T m`m(t)). Moreover, while Assumption 2.5 lies in the classical
i.i.d framework, this is not the case in Theorem 2.6. Finally, although Assumption 2.5 might seem strong, we
show later on Theorem 2.8 that the consistency of EMML holds with standard kernel density estimators.

Before explaining the proof of such a theorem, notice that the observations falling into a certain bin for a
given number of curves m follow some distribution whose density function can be explicitly derived. Indeed, for
V ⊂ E and B ⊂ T two compact sets, we have

P (ZT ∈ V|T ∈ B) =
P ({ZT ∈ V}

⋂
{T ∈ B})

P (T ∈ B)
=

∫
V
∫
B
ft(z)ν(t)dt dz∫
B
ν(t)dt

. (2.18)
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This shows that the set {ZT |ZT ∈ T m`m(t)}, identical to the set {ZT |T ∈ Bm`m(t)}, follows a distribution of density

fm`m(t)(z) :=

∫ τm`m(t)

τm
`m(t)−1

ft(z)ν(t)dt∫ τm
`m(t)

τm
`m(t)−1

ν(t)dt
. (2.19)

The proof of Theorem 2.6 relies on the fact that f̂m`m(t) converges pointwise to the marginal density ft as m
tends to infinity. It is indeed quite straightforward to show this by using the assumptions that ft is Lipschitz in
time (2.11) and that the bin sizes bm tend to 0 (2.12). From there, the idea is to try to apply the consistency

result from assumption 2.5 to show that f̂m`m(t) converges pointwise in probability to fm`m(t). However, two main
difficulties arise here:

1. f̂m`m(t) is trained using the observations from T m`m(t) and the number of elements contained in this subset,
denoted by Nm

`m(t), is random;

2. we need to train f̂ on i.i.d observations whose number tend to infinity in order to apply (2.15).

The first difficulty can be tackled by conditioning on Nm
`m(t). For the second one, we use the fact that, as the

bin size tend to 0 and as the number n of observations per curve is fixed with respect to m, than each training
subset has, with high probability, at most one observation per curve asymptotically. Hence, because the curves
are independent observations of Z, the observations contained in T m`m(t) for m large enough will be independently
drawn from fm`m(t) with probability 1. Furthermore, we can show that if the bin size does not decrease too fast,

as required by (2.13), than Nm
`m(t) diverges to +∞ in probability. The detailed proof of Theorem 2.6 can be

found in the supplementary material.

2.3.2. Specific case: example of a kernel estimator with deterministic kernel

In this paragraph we state a stronger consistency result for this particular setting.

f̂m`m(t)(z) =
1

σNm
`m(t)

∑
zk∈T m`m(t)

K

(
zk − z
σ

)
=

1

Nm
`m(t)

∑
zk∈Tm`m(t)

Kσ(zk − z). (2.20)

where K : Rd → R is symmetric kernel summing to 1 and σ > 0 is the bandwidth, chosen to be scalar here for
simplicity. More details on this type of estimators are given in Section 3.

We denote the second moments of the random variables of density Kσ and K2
σ respectively by

σ2
Kσ =

∫
w2Kσ(w)dw = σ2

∫
w2K(w)dw = σ2σ2

K , (2.21)

σ2
K2
σ

=

∫
w2Kσ(w)2dw = σ

∫
w2K(w)2dw = σσ2

K2 , (2.22)

and we denote the kernel risk by

R(Kσ) =

∫
Kσ(w)2dw =

1

σ

∫
K(w)2dw =

1

σ
R(K). (2.23)

For this particular setting, we state in Theorem 2.8 that, under certain conditions, f̂m`m(t)(z) approximates

ft(z) consistently in expected squared-error, which is stronger than the convergence in probability stated in
Theorem 2.6:
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Assumption 2.7. The function (t, z) ∈ T × E 7→ ft(z) has continuous partial derivatives, up to order 4 in z
and order 1 in t; the Lipschitz constant of the function

t 7→ d2ft
dz2

(z) := f ′′t (z) (2.24)

is denoted by L′′ > 0: for any z ∈ E and t1, t2 ∈ T,

|f ′′t1(z)− f ′′t2(z)| ≤ L′′|t1 − t2|. (2.25)

Theorem 2.8. Under assumptions 2.2, 2.4 and 2.7, if f̂m`m(t) is a kernel estimator of the form (2.20) where

the kernel K and the bandwidth σ := σm are deterministic (i.e. do not depend on the data), such that σK <∞,
σK2 <∞, R(K) <∞ and if

lim
m→∞

σm = 0, lim
m→∞

mbmσm = +∞, (2.26)

then

lim
m→∞

E(f̂m`m(t)(z)− ft(z))
2 = 0. (2.27)

The previous result applies to any kernel density estimator with a symmetric deterministic kernel. As an
example, according to (2.13) from assumption 2.4, Theorem 2.8 applies to the case of a Gaussian kernel and a
bandwidth σm = 1/

√
mbm. Unfortunately, it does not apply to the marginal density estimator presented in the

next section, whose kernel is random.

3. Possible choice of density estimator: the self-consistent
estimator

In the previous section we presented a general estimator of some discrepancy used to quantify how close
a certain curve is to a set of other curves, called the Mean Marginal Likelihood. As explained, such plug-in
estimator is based on the aggregation of other consistent density estimators trained on uniform bins. One may
wonder what local density estimator to use in this situation.

As most statistical learning problems, density estimation can be tackled in a parametric or a nonparametric
setting. In the first case, a specific class of density functions has to be fixed a priori, a finite set of unknown
parameters needing to be tuned using information contained in the data. Such approaches, as for example
Maximum Likelihood estimation, are known to be fast to train and evaluate, they have the best learning
rate attainable and are usually very scalable and accurate if the model assumptions are correct. However, the
nonparametric density learning techniques make little to no assumptions on the shape of the density to be
estimated. As explained in Section 2.1, the marginal densities at different times may greatly vary in shape,
which is why we preferred to consider nonparametric estimators in this article and more precisely the popular
kernel density estimators.

For d-dimensional data, kernel density estimators (KDE) have the following general form when trained on N
i.i.d observations {xk}Nk=1 of a random variable X of density f :

f̂N (x) =
1

N detH

N∑
k=1

K
(
H−1(x− xk)

)
. (3.1)

In (3.1), the function K : Rd → R+ is called a smoothing kernel and H, invertible d× d matrix, is the kernel’s
bandwidth matrix.
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In general, the main drawback of kernel density estimators (3.1) lies on the subjective choice of the kernel K
and bandwidth H. However, it is well-known folklore in the density estimation literature ([34], Chap. 20.3) that
KDE’s accuracy is not really sensitive to the choice of K and depends mainly on the bandwidth H used. Several
rules and heuristics have been suggested since then to choose such a parameter, but they are usually based
on quite strict assumptions, such as Silverman’s rule of thumb for the estimation of a 1-dimensional Gaussian
density [30]. Another possibility is to select H through cross-validation [31] but this approach is computationally
intensive, specially if d is larger than 1. For these reasons, we decided to consider a similar method proposed
by [1], called the self-consistent density estimator. It consists indeed in a KDE whose kernel incorporates the
bandwidth and is learned directly from the data, hence not requiring any parameter tuning. Its derivation is
based on the use of a fixed-point equation to approximate the optimal kernel estimator in the sense of the
Mean Integrated Squared-Error (MISE). The obtained estimator takes the form of the Fourier transform of the
following characteristic function estimator:

Φ̂sc(s) :=
N∆(s)

2(N − 1)

(
1 +

√
1−

(∆min
N )2

|∆(s)|2

)
1AN (s),

where s is the Fourier variable, N is the number of training observations {xk}Nk=1, ∆ is the empirical
characteristic function

∆(s) :=
1

N

N∑
k=1

eixk·s, ∆min
N :=

√
4(N − 1)

N2
, (3.2)

i =
√
−1 and 1AN denotes the indicator function over an arbitrary subset AN ⊂ SN of the frequencies in

SN :=
{
s : |∆(s)|2 ≥ (∆min

N )2
}
. (3.3)

Reference [1] proved for 1D data that, under mild assumptions on AN , the self-consistent estimator converges
almost-surely to the true density f as the number of observations N grows and is hence (strongly) consistent.
This result is summarized in the following theorem:

Theorem 3.1 ([1]). Let [−t∗; t∗] = AN ⊂ SN be an interval of frequencies in R. Assuming that f is L2(E,R+)
and its Fourier transform Φ = F [f ] is L1(R,R+), if the bounds of AN are such that

lim
N→∞

t∗ =∞, lim
N→∞

t∗√
N

= 0, (3.4)

then the density estimator defined by

f̂Nsc (x) := F−1[Φ̂sc](x), ∀x ∈ E (3.5)

converges almost surely to f as N tends to infinity:

P
(

lim
N→∞

f̂Nsc (x) = f(x)
)

= 1, ∀x ∈ E. (3.6)

It has been demonstrated through extensive numerical experiments in [1, 21, 22] that the self-consistent
estimator achieves state-of-the-art MISE accuracy for many types of underlying densities. Furthermore, modern
implementations of this estimator proposed by [21, 22] are shown to be several times faster to compute than
a regular KDE. This is achieved thanks to the smart use of the Non Uniform Fast Fourier Transform [12] to
compute the empirical characteristic function ∆. This property is particularly important in our case because of
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the potentially large number of trainings needed to compute the EMML, which is equal to the number of bins
of T’s partition.

For all these reasons, all EMML numerical experiments presented in Section 4 make use of this density
estimator. More details concerning its derivation and implementation can be found in the supplementary
material.

4. Application to the assessment of optimized aircraft
trajectories

4.1. Experiments motivation

In this section we illustrate our approach on real data recorded from m = 424 flights of the same medium
haul aircraft T = {z1, . . . ,zm}, which corresponds to 334 531 observation points. These trajectories are used
to estimate the differential system describing the aircraft dynamics. Then, by numerically solving an optimal
control problem defined using the estimated aircraft dynamics, a new trajectory y is obtained, supposed to
minimize the overall fuel consumption for some future flight [27].

Note that:

– The dynamics model is not guaranteed to be valid outside of the region occupied by the data used to
estimate it. Hence, it is natural to want the optimized trajectory to avoid going too far from its validity
region.

– Furthermore, it is desirable for the proposed trajectory not to be too unusual compared to standard climb
profiles for better acceptance by the pilots and Air Traffic Control.

The two previous points motivate the need for an indicator of closeness between the optimized trajectory and
the set of recorded flights.

4.2. Experiments design

4.2.1. Training set

The training data used for our experiments were extracted from the Quick Access Recorder (QAR) of the
same aircraft, whose sampling rate is of one measurement per second. We only used the recordings of 5 variables,
which are the altitude h, the true airspeed V , the path angle γ, the angle of attack α and the rotational engine
speed N1. These variables are not all directly accessible and some were computed from other measurements
using standard formulas from flight mechanics [27].

Only the portion corresponding to the climb phase of these signals was kept for our experiments, i.e. data
corresponding to altitudes between 1524 and 12000 m. The training set of curves obtained by the described
procedure is displayed in Figure 2a.

4.2.2. Test set

In order to evaluate the estimated mean marginal likelihood on relevant examples, the following test flights
were considered:

– “Real”: 50 real flights, extracted from the training set before training;
– “Opt1”: 50 simulated trajectories which were optimized as described in Section 4.1, with constraints

limiting the speed V (typically 250kt below 10000ft) and a N1 fixed to a standard climb profile;
– “Opt2”: and 50 simulated trajectories optimized without the constraints on V and N1.

We evaluated the likelihood of these 150 test trajectories using the EMML and the competing methods described
in the following section in order to assess and compare their discriminative power and computation efficiency.
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4.3. Alternative approaches based on standard methods

The problem of quantifying how close a newly observed random curve is with respect to a set of observations
from the same stochastic process has not been treated by the statistical learning literature to our knowledge.
However, this problem is related to other more standard approaches from Functional Data Analysis and Condi-
tional Density Estimation, which could be adapted quite straightforwardly for this purpose. For this reason, we
discuss in the following paragraphs the characteristics of two of these other existing methods, before comparing
them to our approach in the numerical results of Section 2.

4.3.1. Functional principal components analysis

Functional Principal Components Analysis (FPCA) is a standard tool in FDA capable of building a small
number of descriptors which summarize the structure of a set of random functions. As explained for example
in [19], this dimension reduction method can be used to project the train set of infinite-dimensional random
trajectories into a finite (low) dimensional space.

Following the same reasoning used to derive the MML, our idea here consists in estimating the density
function of these low dimensional representations of the training set. Then, after projecting the new trajectory
y into the same descriptors, we can evaluate the density estimate at it and obtain an approximation of its
likelihood. This approach was originally proposed in [7].

4.3.2. Least-squares conditional density estimation

From a completely different point of view, we could forget for a moment that we are considering a random
process Z and look at (T,ZT ) as a pair of standard random variables valued on the finite dimensional space
T× E. In this case, we could see the marginal densities ft as the conditional probability density functions

fZT |T (t, z) =
f(T,ZT )(t, z)

fT (t)
, (t, z) ∈ T× E. (4.1)

We could hence estimate (4.1) at the observed points of the new trajectory y and use them to compute the
EMML indicator (2.8). It is however well-known in density ratio estimation that approximating f(T,ZT )(t, z)
and fT (t) separately before building the ratio in (4.1) is not a good idea because it magnifies the errors. For
this reason, reference [32] proposed to use a linear model for this purpose

fZT |T (t, z) = θ>φ(t, z), (4.2)

where θ = (θ1, . . . , θp) is a vector of scalar parameters and φ(t, z) = (φ1(t, z), . . . , φp(t, z)) is a family of non-
negative basis functions. The parameters θ are then chosen so as to minimize a L2-penalized least-squares
criterion, which is shown to have a closed-form solution. This method was coined Least-Squares Conditional
Density Estimation (LS-CDE) by the authors, and is also known as Unconstrained Least-Squares Importance
Fitting (uLSIF) in the density ratio estimation literature [16]. The extensive numerical results presented in [32]
indicate that this approach have state-of-the-art accuracy in conditional density estimation.

4.4. Algorithms settings

For all the methods tested, the altitude h played the role of “time”. This is a natural assumption made when
optimizing the climb profile of a civil airliner, since the altitude is an increasing function of the time and every
other variable depends on it. This allowed us to reduce the dimension of our problem from 5 to 4.
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4.4.1. MML with self-consistent kernel estimator settings

The python library fastKDE [21, 22] was used to compute the marginal densities from the bins data. It
contains the implementation of the Self-Consistent kernel estimator described in Section 3. The precision of the
density estimations were set to single. The confidence levels were approximated by numerical integration using
the trapezoidal rule over a fine grid of approximately 300 points per bin. Concerning bin sizes, we chose to use an
uneven partition in our experiments. The reason for this are the climb-steps visible in the trajectories between
3000 and 4000 m, which correspond to phases during which the aircraft decreases considerably its ascent speed,
leading to slowly increasing altitudes. Such behaviors translate into rapidly increasing speeds V with respect to
the altitude, as well as into plummeting values of γ and N1 (see Fig. 2a). This brought us to consider tighter
bins around these climb-step altitudes:

– between 1524 and 3000m and between 4000 and 12000m, we partitioned the altitudes homogeneously into

bins of size b
(1)
m = 20m;

– between 3000 and 4000m, we used a bin size twice smaller b
(2)
m = 10m ' b(1)m /2;

4.4.2. FPCA settings

Concerning the Functional Principal Components Analysis method, all training and testing flights were
resampled on an equispaced grid of altitudes, using a step size of 5m. The trajectories were then centered and
decomposed into a basis of 128 cubic B-splines. The SVD decomposition was carried using the PCA class from
scikit-learn python library [23]. We kept 4 components for each variable (V, γ, α and N1), which was enough
to explain more than 90%, 65%, 60% and 75% of their respective variance. The relatively low gain in explained
variance obtained by using a higher dimension did not seem to be worth it here, as it was observed in Section
5.1 of [7] that good results can be obtained with this method even with a small number of components. The
density estimation was then carried using Gaussian mixture models, in order to try to avoid overfitting. Indeed,
as FPCA transforms each training curve into a single point in the 4-dimensional space spanned by the principal
functions, other nonparametric density estimation approaches, such as kernel density estimation, may overfit to
each point of the data set if the number of curves is not large (see eg. [7]). The Gaussian mixtures models were
trained using a standard EM algorithm, implemented in scikit-learn as well. The number of components was
selected between 1 and 5 using the Bayesian information criterion (BIC).

4.4.3. LS-CDE settings

For the Least-Squares Conditional Density Estimation, the python package densratio, due to [18], imple-
menting the uLSIF method from [16] was used and adapted. The basis functions chosen were p = 100 Gaussian
kernels with the same variance σ and different centers. These centers were randomly drawn from the training
data points using a uniform distribution, as suggested in [32]. The variance σ, as well as the L2 penalty weight
λ needed for minimizing the least-squares criterion were selected by cross-validation. These seemed like fair
settings here as all 23 different experiments conducted in [32] were carried this way.

4.5. Results and comments

Figures 2b and 2c show heatmaps encoding the estimated marginal likelihoods using the normalized density
(2.3) and the confidence level (2.4). We notice that both figures are similar and seem to catch the shape of the
plot from Figure 2a, including the multi-modalities visible for N1 below h = 4000 m for example.

Table 1a contains the estimated Mean Marginal Likelihood scores averaged over each test flight category.
The training was carried on each dimension separately and the average total training time was of 5 seconds on
a laptop (2.30 GHz, 7.7 GB). As expected from Figures 2b and 2c, the performances of both confidence level
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Figure 2. Estimated marginal densities using two types of scaling functions.

and normalized density based MML are comparable in terms of discrimination power and seem adequate for
the task of assessing optimized aircraft climb trajectories.

We notice indeed for both types of scaling functions that the test flight categories are nicely separated by
three clearly distinct ranges of scores. Looking more closely at the scores, the higher differences between the
two types of optimized flights can be seen for the variables V and N1, which makes sense since those are the
variables which are left free for Opt2 flights and constrained for Opt1 flights (see Sect. 4.2.2). We can also see
that the scores of α are particularly low for Opt1 and Opt2 when compared to Real. The same can be seen for
the N1 score of Opt2 flights when compared to Opt1 and Real flights. This also makes sense as α and N1 are
control variables in the optimization problems which generated trajectories in Opt1 and Opt2. As a matter of
fact, it happens that these optimal controls tend to be rather non smooth, with many discontinuities, unless
explicitly constrained otherwise (such as N1 for Opt1 ).

Table 1b contains the estimated Mean Marginal Likelihood scores in a 2-dimensional setting, where the
pairs (V, γ) and (α,N1) have been treated together. The average training time needed here was 16 times larger
than in the 1D case, i.e. 1 minute 20 seconds. The scores observed are globally really low and the test flight
categories are not well separated. Moreover, we expected to obtain large scores for the real flights, since we
used the marginal densities of their category to build the criterion, but this is not the case here. It appears
that in our case, the MML criteria based on the self-consistent estimator is less efficient in 2D than 1D. It is
well-known ([34], Chap. 21.3) that as the dimension grows, the amount of data needed to attain a given accuracy
with kernel density estimators skyrockets, which may explain this poor performance. We investigated in [28] a
possible remedy based on Gaussian mixture models, which are more robust to an increase in dimension than
kernel density estimators.
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Table 1. Average and standard deviation of the Mean Marginal Likelihood scores using
confidence level and normalized density for 50 real flights (Real), 50 optimized flights with
operational constraints (Opt1 ) and 50 optimized flights without constraints (Opt2 ).tab:MML-
table

(A) 1-dimensional case

Var. Confidence level Normalized Density

Real Opt1 Opt2 Real Opt1 Opt2
V 0.52 ± 0.16 0.38 ± 0.14 0.15 ± 0.09 0.63 ± 0.16 0.45 ± 0.16 0.17 ± 0.10
γ 0.54 ± 0.09 0.24 ± 0.12 0.22 ± 0.09 0.67 ± 0.09 0.33 ± 0.17 0.29 ± 0.11
α 0.53 ± 0.06 0.08 ± 0.05 0.02 ± 0.01 0.65 ± 0.07 0.10 ± 0.06 0.02 ± 0.01
N1 0.47 ± 0.24 0.71 ± 0.00 0.03 ± 0.01 0.57 ± 0.27 0.83 ± 0.01 0.04 ± 0.02
Mean 0.52 ± 0.07 0.35 ± 0.06 0.10 ± 0.02 0.63 ± 0.07 0.43 ± 0.08 0.13 ± 0.02

(B) 2-dimensional case

Var. Confidence level Normalized Density
Real Opt1 Opt2 Real Opt1 Opt2

(V, γ) 0.09 ± 0.05 0.11 ± 0.05 0.03 ± 0.03 0.05 ± 0.03 0.06 ± 0.03 0.01 ± 0.01
(α,N1) 0.03 ± 0.02 0.01 ± 3e-3 0.01 ± 2e-3 0.02 ± 0.01 4e-3 ± 2e-3 3e-3 ± 1e-3
Mean 0.06 ± 0.03 0.06 ± 0.02 0.02 ± 0.01 0.03 ± 0.02 0.03 ± 0.02 0.01 ± 0.01

Table 2. Leave-one-out cross-validated MML scores of the training trajectories.

Var. Confidence level Normalized density

V 0.50 ± 0.19 0.60 ± 0.22
γ 0.51 ± 0.13 0.63 ± 0.15
α 0.51 ± 0.15 0.62 ± 0.17
N1 0.51 ± 0.22 0.61 ± 0.24
Mean 0.51 ± 0.21 0.62 ± 0.22

From a practical point of view, a reference value or threshold is needed if one wanted to use our method to
determine automatically whether a given optimized flight should be accepted or not. In such a context, a quite
straightforward solution would be to use a leave-one-out cross-validation approach: compute the MML score of
each real flight leaving it out of the training data and then averaging over the obtained scores. These reference
values have been computed for our dataset and are summarized in Table 2. We note that the values obtained
are very close to the average scores of the real flights showed in Table 1a.

Table 3a contains the scores obtained using the Functional PCA based method presented in Section 4.3.1.
The training time needed here was of 20 seconds in average. As for the MML in 2D, the real flights’ scores
are surprisingly low and the two types of simulated trajectories are not well discriminated by the criterion.
This might be caused by the fact that this method encodes each training trajectory by a single point in the
4-dimensional space spanned by the principal functions. The training set obtained is hence of m = 424 points,
which might be too small too attain sufficient accuracy from the Gaussian mixture density estimator in such a
high dimension, as already encountered in [7]. The principal functions used and scatter plots of the projected
trajectories can be found in the online version.

Concerning the LS-CDE approach, because the algorithm needs large Gram matrices (of size O(nm2)) to be
stored, we encountered several memory problems when trying to run it on our dataset of 334 531 observation
points. For this reason, our results were obtained by applying it to 100 uniform batches. These batches were
obtained by partitioning the data according to the altitude. Although the three categories are well-separated
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Table 3. Average and standard deviation of the normalized density scores using Functional
PCA and Least-Squares Conditional Density Estimation of 50 real flights (Real), 50 optimized
flights with operational constraints (Opt1 ) and 50 optimized flights without constraints (Opt2 ).

(A) FPCA

Var. Real Opt1 Opt2

V 0.15 ± 0.22 4.9e-04 ± 9.0e-04 2.1e-05 ± 8.1e-05
γ 0.20 ± 0.22 9.3e-03 ± 1.5e-02 1.4e-02 ± 2.2e-02
α 0.28 ± 0.28 1.2e-05 ± 1.8e-05 7.0e-08 ± 1.7e-07
N1 7.6e-03 ± 6.1e-03 1.6e-02 ± 2.3e-04 1.3e-06 ± 6.7e-07
Mean 0.16 ± 0.12 6.4e-03 ± 3.8e-03 3.6e-03 ± 5.4e-03

(B) LS-CDE

Var. Real Opt1 Opt2
V 0.81 ± 0.13 0.63 ± 0.11 0.40 ± 0.23
γ 0.65 ± 0.05 0.55 ± 0.10 0.53 ± 0.08
α 0.91 ± 0.02 0.74 ± 0.03 0.68 ± 0.01
N1 0.72 ± 0.10 0.79 ± 0.01 0.35 ± 0.05
Mean 0.77 ± 0.05 0.68 ± 0.04 0.49 ± 0.06

by this method, as shown in Table 3b, the variances are a bit larger so that the groups overlap. Also, the total
time needed to train the estimators on every batch was much longer, approximately 14 hours.

We didn’t test both alternate methods in the 2D setting since the problems observed in 1D (dimension 4 for
FPCA and memory/time for LS-CDE) would be aggravated.

In conclusion, our numerical results indicate that the MML criterion has better discriminative power than
FPCA and LS-CDE for the task of assessing curves relatively to a set of “good” examples. Furthermore, the
training time and memory needed for using LS-CDE in datasets of this size seems crippling. Concerning the
FPCA method, it does not seem to be applicable to datasets with so few curves and present a higher training
time than MML.

5. Conclusions

In this paper we proposed a new approach for the problem of quantifying the closeness from a curve to a set
of random functions. We introduced a class of probabilistic criteria for this context called the Mean Marginal
Likelihood (MML), and analyzed two possible scaling functions used to build them. We also derived a class of
estimators of our criteria, which make use of local density estimators proved to consistently approximate the
marginal densities of a random process. For practical applications, we suggested a particular flexible density
estimator believed to have the right properties needed in this setting, called the self-consistent kernel estimator.

Numerical experiments using real aircraft data were carried to compare the MML with other well-established
approaches from Functional Data Analysis and Conditional Density Estimation. The results show that, although
the MML does not take into account the temporal structure of the data as other standard functional data analysis
methods, it is a good candidate for the type of applications suggested. This seems to be especially the case if
the number of training trajectories is too small for using FPCA or if the total number of observation points
is too large for conditional density estimation. Moreover, the training times obtained for MML are by far the
shortest among the compared methods, which confirms the relevance of the self-consistent kernel estimator.
Furthermore, the ease to visualize, localize and interpret discrepancy zones allowed by MML make it a good
exploratory analysis tool for functional data (see e.g. Fig. 2). We also note that our method does not perform
as well in a multidimensional setting, but that the training time should not be an obstacle. In future work
we intend to test the MML with parametric density estimators, which should be less affected by the curse of
dimensionality.
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Appendix A. Marginal densities consistency proof

In this section we prove Theorem 2.6 from Section 2.3. It relies on 5 lemmas stated and proved hereafter.

Lemma A.1. Let t ∈ T and z ∈ E. Under assumptions 2.3 and 2.4, fm`m(t)(z) converges to ft(z):

lim
m→∞

|ft(z)− fm`m(t)(z)| = 0. (A.1)

Proof.

|ft(z)− fm`m(t)(z)| =

∣∣∣∣∣∣ft(z)−
∫
Bm
`m(t)

fs(z)ν(s)ds∫
Bm
`m(t)

ν(s)ds

∣∣∣∣∣∣ ,

=

∣∣∣∣∫Bm
`m(t)

(ft(z)− fs(z))ν(s)ds

∣∣∣∣∫
Bm
`m(t)

ν(s)ds
,

≤

∫
Bm
`m(t)

|ft(z)− fs(z)|ν(s)ds∫
Bm
`m(t)

ν(s)ds
.

(A.2)

According to assumption 2.3,

|ft(z)− fs(z)| ≤ L|t− s| ≤ L|τm`m(t) − τ
m
`m(t)−1| = Lbm. (A.3)

Hence,

|ft(z)− fm`m(t)(z)| ≤ Lbm

∫
Bm
`m(t)

ν(s)ds∫
Bm
`m(t)

ν(s)ds
= Lbm. (A.4)

Since bm → 0 by assumption 2.4, the conclusion follows.

Lemma A.2. Let m ∈ N∗ and t ∈ T. Under assumption 2.4, the probability that T m`m(t) (the subset of training

points whose sampling time fall in the bin containing t) contains at most one observation point per curve is
asymptotically equal to 1, meaning that for large enough m, the observations in T m`m(t) will be independent with
high probability:

lim
m→∞

P(Nm
r,`m(t) ≤ 1) = 1, r = 1, . . . ,m, (A.5)

where Nm
r,`m(t) denotes the number of observations of zr in T m`m(t).

Proof. Let 1 ≤ r ≤ m and

T mr,`m(t) := {(trk, zrk) : trk ∈ Bm`m(t); 1 ≤ k ≤ n} (A.6)

be the set of observations of the rth curve with times lying in the `m(t)th bin Bm`m(t). Let Nm
r,`m(t) be the number

of elements in T m`m(t). The random variable Nm
r,`m(t) follows a binomial law B(n, Pm`m(t)), where

Pm`m(t) =

∫
Bm
`m(t)

ν(t)dt (A.7)
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is the probability of a new observation of the rth curve falling in T mr,`m(t). The probability of Nm
r,`m(t) being at

most equal to 1 writes

P(Nm
r,`m(t) ≤ 1) =

1∑
k=0

(
n
k

)
(Pm`m(t))

k(1− Pm`m(t))
n−k,

= (1− Pm`m(t))
n + nPm`m(t)(1− P

m
`m(t))

n−1,

= (1− Pm`m(t))
n−1(1 + (n− 1)Pm`m(t)).

(A.8)

As

Pm`m(t) =

∫
Bm
`m(t)

ν(t)dt ≤ bmν+, (A.9)

we have

P(Nm
r,`m(t) ≤ 1) ≥ (1− Pm`m(t))

n−1 ≥ (1− bmν+)n−1. (A.10)

Since bm → 0 according to assumption 2.4, we obtain

lim
m→∞

P(Nm
r,`m(t) ≤ 1) = 1, r = 1, . . . ,m. (A.11)

Lemma A.3. Under assumption 2.4 and for any t ∈ T, the number Nm
`m(t) of observations falling in T m`m(t)

diverges in probability to +∞:

∀M > 0, lim
m→∞

P
(
Nm
`m(t) > M

)
= 1. (A.12)

Proof. Let M > 0. As in the proof of Lemma A.2, we have Nm
`m(t) ∼ B(mn,Pm`m(t)) and hence,

P
(
Nm
`m(t) ≤M

)
=

bMc∑
k=1

(
nm

k

)
(Pm`m(t))

k(1− Pm`m(t))
nm−k. (A.13)

As the sum has is finite when we fix M , the limit of expression (A.13) when m tends to infinity is the sum of
the limits of its terms. (

nm

k

)
(Pm`m(t))

k(1− Pm`m(t))
nm−k

≤
(
nm

k

)
(ν+bm)k(1− ν−bm)nm−k,

∼
m→∞

(ν+nmbm)k(1− ν−bm)nm,

= (nmbm)k exp [nm log (1− ν−bm)] ,

∼
m→∞

(nmbm)k exp [−ν−nmbm + o(mbm)] .

(A.14)
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Using (2.13) from assumption 2.4, we obtain that (A.14) tends to 0 which proves that

lim
m→∞

P
(
Nm
`m(t) > M

)
= 1− lim

m→∞
P
(
Nm
`m(t) ≤M

)
= 1.

In what follows, for any M > 0 we denote CM the following event:

CM := {Nm
`m(t) > M}

m⋂
r=1

{Nm
r,`m(t) ≤ 1}. (A.15)

Lemma A.4. For any t ∈ T, if assumption 2.4 holds,

∀M > 0, lim
m→∞

P (CM ) = 1. (A.16)

Proof. Let M > 0. We have by definition of the conditional probability

P (CM ) = P
(
Nm
`m(t)

∣∣∣Nm
r,`m(t) ≤ 1; r = 1, . . . ,m

)
× P

(
Nm
r,`m(t) ≤ 1; r = 1, . . . ,m

)
. (A.17)

As the variables Nm
r,`m(t) are independent

P
(
Nm
r,`m(t) ≤ 1; r = 1, . . . ,m

)
=

m∏
r=1

P
(
Nm
r,`m(t) ≤ 1

)
(A.18)

which tends to 1 when m grows according to Lemma A.2.
Furthermore, as Nm

`m(t) =
∑m
r=1N

m
r,`m(t) ∼ B(nm,Pm`m(t)), we know that the random variable

(Nm
`m(t)|N

m
r,`m(t) ≤ 1; r = 1, . . . ,m)

is also a binomial random variable where at least m(n− 1) Bernouilli have failed, leaving m trials. Hence, we
know that (Nm

`m(t)|N
m
r,`m(t) ≤ 1; r = 1, . . . ,m) ∼ B(m,Pm`m(t)). As in the proof of Lemma A.3,

P
(
Nm
`m(t) ≤M

∣∣∣Nm
r,`m(t) ≤ 1; r = 1, . . . ,m

)
=

bMc∑
k=1

(
m

k

)
(Pm`m(t))

k(1− Pm`m(t))
m−k,

(A.19)

whose limit is the sum of the limits of the sum terms. As in the proof of Lemma A.3, we have(
m

k

)
(Pm`m(t))

k(1− Pm`m(t))
nm−k ' (mbm)k exp [−ν−mbm + o(mbm)] , (A.20)

and hence, by using (2.13) from assumption 2.4,

lim
m→∞

P
(
Nm
`m(t) ≤M

∣∣∣Nm
r,`m(t) ≤ 1; r = 1, . . . ,m

)
= 0. (A.21)

Combining (A.17), (A.18) and (A.21) we obtain (A.16).
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Lemma A.5. For any z ∈ E and t ∈ T, if assumptions 2.4 and 2.5 hold for some function Θ used to compute
f̂m`m(t), then

∀ε > 0, lim
m→∞

P
(
|f̂m`m(t)(z)− f

m
`m(t)(z)| < ε

)
= 1. (A.22)

Proof. The randomness of f̂m`m(t)(z) comes from both the sample of observations drawn from the bin’s density
fm`m(t) and the random number of observations falling in the bin Nm

`m(t). Hence, the idea here is to separate these
two sources of randomness by conditioning on one of them. As we would like to use the result from assumption
2.5, it makes sense to condition on Nm

`m(t) here.

Indeed, for any m > 0, f̂m`m(t)(z) = Θ[T m`m(t)](z), where T m`m(t) is a sample of Nm
`m(t) observations drawn from

fm`m(t). Hence, according to assumption 2.5, for any ε > 0, for any α1 > 0, there is some Nε,α1,m such that,

defining CNε,α1,m
by (A.15):

P
(
|f̂m`m(t)(z)− f

m
`m(t)(z)| < ε

∣∣∣CNε,α1,m

)
> 1− α1. (A.23)

As seen in Lemma A.2, the conditioning on Nm
r,`m(t) ≤ 1 comes from the fact that when T m`m(t) contains at

most one observation per curve, those observations are independent. Furthermore, for ε, α1 fixed, let M :=
sup
m′
{Nε,α1,m′} (which exists according to assumption 2.5). In this case, when assumption 2.4 holds, we have

from Lemma A.4 that for any α2 > 0,there is some mε,α1,α2
such that,

m ≥ mε,α1,α2
⇒ P (CM ) > 1− α2. (A.24)

Hence, as Nm
`m(t) > M ⇒ Nm

`m(t) > Nε,α1,m, we have

m ≥ mε,α1,α2
⇒ P

(
CNε,α1,m

)
> 1− α2. (A.25)

Moreover, we can also write the following useful inequality:

P
(
|f̂m`m(t)(z)− f

m
`m(t)(z)| < ε

)
> P

(
{|f̂m`m(t)(z)− f

m
`m(t)(z)| < ε}

⋂
CNε,α1,m

)
= P

(
|f̂m`m(t)(z)− f

m
`m(t)(z)| < ε

∣∣∣CNε,α1,m

)
× P

(
CNε,α1,m

)
.

(A.26)

By combining (A.23), (A.25) and (A.26) we get that for any ε, α1, α2 > 0, there is mε,α1,α2
such that

m ≥ mε,α1,α2 ⇒ P
(
|f̂m`m(t)(z)− f

m
`m(t)(z)| < ε

)
> 1− α3, (A.27)

with α3 = α1 + α2 − α1α2.

Using these lemmas we can finally prove Theorem 2.6:

Proof of Theorem 2.6 Let (t, z) ∈ T × E and let ε > 0. According to Lemma A.1, under assumptions 2.3
and 2.4, there is mε ∈ N∗ such that for any m ≥ mε,

|fm`m(t)(z)− ft(z)| < ε (A.28)



QUANTIFYING THE CLOSENESS TO A SET OF RANDOM CURVES 19

As

|f̂m`m(t)(z)− ft(z)| ≤ |f̂
m
`m(t)(z)− f

m
`m(t)(z)|+ |f

m
`m(t)(z)− ft(z)|,

≤ |f̂m`m(t)(z)− f
m
`m(t)(z)|+ ε,

(A.29)

we have

{|f̂m`m(t)(z)− ft(z)| > 2ε} ⊂ {|f̂m`m(t)(z)− f
m
`m(t)(z)| > ε},

and

P
(
|f̂m`m(t)(z)− ft(z)| > 2ε

)
≤ P

(
|f̂m`m(t)(z)− f

m
`m(t)(z)| > ε

)
. (A.30)

According to Lemma A.5 we have that

lim
m→∞

P
(
|f̂m`m(t)(z)− f

m
`m(t)(z)| > ε

)
= 0, (A.31)

which allow us to obtain (2.17) from (A.30).

In the following section we prove an even stronger convergence (in the L2 sense) for standard kernel density
estimators.

Appendix B. L2 consistency for kernel density estimators

We assume here that f̂m`m(t) is a standard kernel density estimator of the form (2.20).

Remark Such an estimator is only defined for Nm
`m(t) > 0. This is why, in the remaining section, we consider

the conditioned random variables (Nm
`m(t)|N

m
`m(t) > 0) and (f̂m`m(t)|N

m
`m(t) > 0), which are still denoted Nm

`m(t)

and f̂m`m(t) for simplicity. Furthermore,

P
(
·|Nm

`m(t) > 0
)

=
P
(
·
⋂
{Nm

`m(t) > 0}
)

P
(
Nm
`m(t) > 0

) , (B.1)

and, according to Lemma A.3, lim
m→∞

P
(
Nm
`m(t) > 0

)
= 1.

In the following, we use the following notations for the conditional expectation and variance:

Ẽ [·] := E
[
·|Nm

`m(t) > 0
]
, Ṽar [·] := Var

[
·|Nm

`m(t) > 0
]
. (B.2)

In the remaining of this section we derive the conditions under which f̂m`m(t) converges in expected squared-
error to ft. We recall that a sufficient condition for this is having its bias and variance tending to 0. The proof
was greatly inspired by the derivations presented in [29] for the standard multivariate case.

Similarly to Lemma A.1, we can prove the following convergence result:

Lemma B.1. Under assumption 2.7, for any (t, z) ∈ T× E,

d2fm`m(t)

dz2
(z) :=

(
fm`m(t)

)′′
(z) =

∫ τm`
τm`−1

f ′′t (z)ν(t)dt∫ τm`
τm`−1

ν(t)dt
, (B.3)
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and

lim
m→∞

∣∣∣∣(fm`m(t)

)′′
(z)− f ′′t (z)

∣∣∣∣ = 0. (B.4)

Proof. Similar argument to Lemma A.1.

Furthermore, the following bounds of the estimator’s bias and variance hold under the same assumption:

Lemma B.2. If assumption 2.7 holds,

∣∣∣Ẽ [f̂m`m(t)(z)
]
− fm`m(t)(z)

∣∣∣ ≤ 1

2

∥∥∥∥(fm`m(t)

)′′∥∥∥∥
∞

Ẽ
[
σ2
Kσ

]
, (B.5)

Ṽar
[
f̂m`m(t)(z)

]
≤ fm`m(t)(z)Ẽ

[
R(Kσ)

Nm
`m(t)

]

+
1

2

∥∥∥∥(fm`m(t)

)′′∥∥∥∥
∞

Ẽ

[
σ2
K2
σ

Nm
`m(t)

]
+

1

4

∥∥∥∥(fm`m(t)

)′′∥∥∥∥2
∞

Ẽ
[
(σ2
Kσ )2

]
. (B.6)

Proof. From the law of total expectation [34](p55)

Ẽ
[
f̂m`m(t)(z)

]
= Ẽ

[
Ẽ
[
f̂m`m(t)(z)|N

m
`m(t)

]]
. (B.7)

For large enough m, f̂m`m(t) writes as an empirical average of independent identically distributed random variables
Zm,t of density fm`m(t) and hence

Ẽ
[
f̂m`m(t)(z)|N

m
`m(t)

]
= Ẽ

[
Kσ(z − Zm,t)|Nm

`m(t)

]
= Ẽ [Kσ(z − Zm,t)] ,

=

∫
Kσ(z − x)fm`m(t)(x)dx =

∫
Kσ(w)fm`m(t)(z − w)dw.

(B.8)

The second order integral Taylor expansion of fm`m(t) around z gives

fm`m(t)(z − w) = fm`m(t)(z)−
(
fm`m(t)

)′
(z)w +

∫ 1

0

(1− x)
(
fm`m(t)

)′′
(z − xw)w2dx, (B.9)

which leads to

Ẽ
[
f̂m`m(t)(z)|N

m
`m(t)

]
= fm`m(t)(z)

∫
Kσ(w)dw −

(
fm`m(t)

)′
(z)

∫
wKσ(w)dw

+

∫ ∫ 1

0

(1− x)
(
fm`m(t)

)′′
(z − xw)w2Kσ(w)dx dw.

(B.10)

As Kσ is a symmetric probability density function, we have∫
Kσ(w)dw = 1,

∫
wKσ(w)dw = 0, (B.11)
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which leads to

Ẽ
[
f̂m`m(t)(z)|N

m
`m(t)

]
= fm`m(t)(z) +

∫ ∫ 1

0

(1− x)
(
fm`m(t)

)′′
(z − xw)w2Kσ(w)dx dw. (B.12)

By combining (B.7) and (B.12) we obtain the following bias expression

Ẽ
[
f̂m`m(t)(z)

]
− fm`m(t)(z) = Ẽ

[∫ ∫ 1

0

(1− x)
(
fm`m(t)

)′′
(z − xw)w2Kσ(w)dx dw

]
, (B.13)

proving bound (B.5).
Concerning the variance, we apply the law of total variance [34](p55):

Ṽar
[
f̂m`m(t)(z)

]
= Ẽ

[
Ṽar

[
f̂m`m(t)(z)|N

m
`m(t)

]]
+ Ṽar

[
Ẽ
[
f̂m`m(t)(z)|N

m
`m(t)

]]
. (B.14)

As in (B.8), we may express the conditional variance of f̂m`m(t)(z) using the conditional variance of the kernel,

which brings the first term in (B.14) to

Ẽ
[
Ṽar

[
f̂m`m(t)(z)|N

m
`m(t)

]]
= Ẽ

[
1

Nm
`m(t)

Ṽar
[
Kσ(z − Zm,t)|Nm

`m(t)

]]
. (B.15)

Furthermore, the kernel variance can be developped as follows

Ṽar
[
Kσ(z − Zm,t)|Nm

`m(t)

]
= Ẽ

[
Kσ(z − Zm,t)2|Nm

`m(t)

]
− Ẽ

[
Kσ(z − Zm,t)|Nm

`m(t)

]2
, (B.16)

which is hence smaller than the first term, i.e. the kernels second moment. Using integral Taylor expansion of
fm`m(t) around z (B.9) truncated to the first order, such a quantity can be written as follows:

Ẽ
[
Kσ(z − Zm,t)2|Nm

`m(t)

]
=

∫
Kσ(z − λ)2fm`m(t)(λ)dλ

=

∫
Kσ(w)2fm`m(t)(z − w)dw

= fm`m(t)(z)R(Kσ)−
(
fm`m(t)

)′
(z)

∫
wKσ(w)2dw︸ ︷︷ ︸

=0

+

∫ ∫ 1

0

(1− x)w2
(
fm`m(t)

)′′
(z − xw)Kσ(w)2dx dw,

(B.17)

where we used the fact that K2
σ is an even function. By using (B.15)-(B.16) and (B.17) we get

Ẽ
[
Ṽar

[
f̂m`m(t)(z)|N

m
`m(t)

]]
≤ fm`m(t)(z)Ẽ

[
R(Kσ)

Nm
`m(t)

]
+

1

2

∥∥∥∥(fm`m(t)

)′′∥∥∥∥
∞

Ẽ

[
σ2
K2
σ

Nm
`m(t)

]
. (B.18)
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We still need to bound the second term in (B.14). We have

Ṽar
[
Ẽ
[
f̂m`m(t)(z)|N

m
`m(t)

]]
= E

[(
Ẽ
[
f̂m`m(t)(z)|N

m
`m(t)

]
− Ẽ

[
Ẽ
[
f̂m`m(t)(z)|N

m
`m(t)

]]
︸ ︷︷ ︸

Ẽ
[
f̂m
`m(t)

(z)
]

)2
]
. (B.19)

By denoting

Gm =

∫ ∫ 1

0

(1− x)
(
fm`m(t)

)′′
(z − xw)w2Kσ(w)dx dw (B.20)

and plugging (B.12)-(B.13) in (B.19), we obtain

Ṽar
[
Ẽ
[
f̂m`m(t)(z)|N

m
`m(t)

]]
= Ẽ

[(
Gm − Ẽ [Gm]

)2]
≤ Ẽ

[
G2
m

]
. (B.21)

Furthermore,

Ẽ
[
G2
m

]
= Ẽ

[(∫ ∫ 1

0

(1− x)
(
fm`m(t)

)′′
(z − xw)w2Kσ(w)dx dw

)2
]
,

≤ 1

4

∥∥∥∥(fm`m(t)

)′′∥∥∥∥2
∞

Ẽ

[(∫
w2Kσ(w)dw

)2
]
,

(B.22)

which leads to the following bound of the second term in (B.14)

Ṽar
[
Ẽ
[
f̂m`m(t)(z)|N

m
`m(t)

]]
≤ 1

4

∥∥∥∥(fm`m(t)

)′′∥∥∥∥2
∞

Ẽ
[
(σ2
Kσ )2

]
, (B.23)

and proves inequality (B.6).

As a direct consequence, we get the following bounds for the simpler case where kernel and bandwidth are
deterministic:

Lemma B.3. If σ = σm depends on m and K is fixed, both deterministic (do not depend on the sample), then
under assumption 2.7:

∣∣∣Ẽ [f̂m`m(t)(z)
]
− fm`m(t)(z)

∣∣∣ ≤ 1

2

∥∥∥∥(fm`m(t)

)′′∥∥∥∥
∞
σ2
Kσ

2
m, (B.24)

Ṽar
[
f̂m`m(t)(z)

]
≤ Ẽ

[
1

Nm
`m(t)

](
fm`m(t)(z)R(K)

σm
+

∥∥∥∥(fm`m(t)

)′′∥∥∥∥
∞

σ2
K2σm

2

)

+
1

4

∥∥∥∥(fm`m(t)

)′′∥∥∥∥2
∞

(σ2
Kσ

2
m)2. (B.25)

Proof. Obtained directly by using (2.21)-(2.23) together with Lemma B.2.
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We know from lemmas A.1 and B.1 that, under assumptions 2.4 and 2.7:

lim
m→∞

fm`m(t)(z) = ft(z) <∞, (B.26)

lim
m→∞

(
fm`m(t)

)′′
(z) = f ′′t (z) <∞. (B.27)

Hence, by looking at expressions (B.24) and (B.25), it seems clear that the convergence of the bias and the

variance to zero will strongly depend on the asymptotics of Ẽ
[
1/Nm

`m(t)

]
. This motivates the following lemma:

Lemma B.4. If assumption 2.2 to 2.4 hold, as m→∞

Ẽ

[
1

Nm
`m(t)

]
= O

(
1

nmPm`m(t)

)
= O

(
1

mbm

)
. (B.28)

Proof. We recall that Nm
`m(t) ∼ B(nm,Pm`m(t)), with Pm`m(t) =

∫
Bm
`m(t)

ν(t)dt. According to the main theorem

proved in [4],

S1 := E

[
1

1 +Nm
`m(t)

]
=

nm∑
k=0

(
nm

k

)
(Pm`m(t))

k(1− Pm`m(t))
nm−k

1 + k

= O

(
1

nmPm`m(t)

)
.

(B.29)

As noted in remark B, f̂m`m(t) is not defined for Nm
`m(t) = 0. This motivates the conditioning of the variable 1

Nm
`m(t)

by the event Nm
`m(t) > 0 and we have

S0 := E

[
1

Nm
`m(t)

∣∣∣∣∣Nm
`m(t) > 0

]
=

nm∑
k=1

(
nm

k

)
(Pm`m(t))

k(1− Pm`m(t))
nm−k

k
. (B.30)

By computing the difference between the S1 and S0 we obtain the following bound:

S0 − S1 = −
(
nm

0

)
(1− Pm`m(t))

nm +
nm∑
k=1

(
nm

k

)
(Pm`m(t))

k(1− Pm`m(t))
nm−k

k(k + 1)

≤
nm∑
k=1

(
nm

k

)
(Pm`m(t))

k(1− Pm`m(t))
nm−k

k + 1
≤ S1.

(B.31)

We conclude that S0 ≤ 2S1 and hence

E

[
1

Nm
`m(t)

∣∣∣∣∣Nm
`m(t) > 0

]
= O

(
1

nmPm`m(t)

)
. (B.32)

Finally, the last equality in (B.28) comes from the fact that Pm`m(t) ≥ ν−bm.

In conclusion, we can now prove Theorem 2.8 stating that the kernel marginal density estimator will be
consistent in expected squared-error (which implies convergence in probability stated in theorem (2.6)).
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Proof of Theorem 2.8 By (B.24) and (2.26), the bias of f̂m`m(t)(z) converges to 0:

lim
m→∞

∣∣∣Ẽ [f̂m`m(t)(z)
]
− fm`m(t)(z)

∣∣∣ = 0. (B.33)

Similarly, as σm converges to 0, the two last terms in (B.25) shrink. Concerning the first term, we can conclude
from Lemma B.4 and from condition (2.26) that

lim
m→∞

Ẽ

[
1

Nm
`m(t)

]
1

σm
= 0, (B.34)

which means that the variance of f̂m`m(t)(z) also converges to 0:

lim
m→∞

Ṽar
[
f̂m`m(t)(z)

]
= 0. (B.35)

From the bias-variance decomposition of the expected squared-error between f̂m`m(t)(z) and fm`m(t)(z) we have

Ẽ
[
(f̂m`m(t)(z)− f

m
`m(t)(z))

2
]

= Ẽ
[(
f̂m`m(t)(z)− Ẽ

[
f̂m`m(t)(z)

]
+Ẽ

[
f̂m`m(t)(z)

]
− fm`m(t)(z)

)2]
,

= Ẽ
[(
f̂m`m(t)(z)− Ẽ

[
f̂m`m(t)(z)

])2]
+ Ẽ

[(
Ẽ
[
f̂m`m(t)(z)

]
− fm`m(t)(z)

)2]
.

Furthermore, by Jensen inequality we have that,

1

2
Ẽ
[
(f̂m`m(t)(z)− ft(z))

2
]
≤ Ẽ

[
(f̂m`m(t)(z)− f

m
`m(t)(z))

2
]

+ (fm`m(t)(z)− ft(z))
2. (B.36)

Finally, by using Lemma A.1 in conjunction with (B.33), (B.35) and (B.36), we obtain that both terms in (B.36)
tend to 0, leading to result (2.27).

Appendix C. Derivation of the self-consistent density
estimator

In this section we present in more details the self-consistent estimator proposed by [1] and extended by
[21, 22].

C.1 Optimal kernel density estimator

Let SN = {zk}Nk=1 ⊂ E be a sample of N observations drawn from a common density function f . We suppose
that f ∈ L2(E,R+) and that N > 0 is deterministic. We consider a kernel estimator of f

f̂(z) :=
1

N

N∑
k=1

K(z − zk), ∀z ∈ E, (C.1)
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where K : Rd → R is a smoothing kernel in L2(Rd,R). One can interpret (C.1) as a kernel density estimator with
an implicit bandwidth H, invertible d × d matrix hidden inside the kernel function K(z) = K̃(H−1z)/ detH,
∀z ∈ Rd.

Denote by E the expectation relative to the random sample SN , defined for any deterministic function
ϕ : EN → R by

E
[
ψ(SN )

]
:=

∫
E

· · ·
∫
E

ϕ(z1, . . . , zN )f(z1) . . . f(zN )dz1 . . . dzN . (C.2)

In this context, a common quality measure of density estimators is the Mean Integrated Squared Error:

MISE := E
[∫

E

(f̂(z)− f(z))2dz

]
. (C.3)

As we will show, it becomes relatively easy to minimize such a criterion with regard to the choice of the kernel
K once we’ve shifted it to the Fourier domain. Hence, for any function v ∈ L2(Rd,R), we define its Fourier
transform hereafter with the following convention

F [v](s) :=

∫
Rd
v(z)eiz·sdz, ∀s ∈ Rd, (C.4)

where i =
√
−1, its inverse being defined by

F−1[v](z) :=
1

2π

∫
Rd
v(s)e−iz·sds, ∀z ∈ Rd. (C.5)

As f, f̂ ∈ L2, Plancherel’s theorem gives that

MISE =
1

2π
E
[∫

Rd
|Φ̂(s)− Φ(s)|2ds

]
, (C.6)

where Φ := F [f ], usually called the characteristic function, and Φ̂ := F [f̂ ]. By noticing that f̂ can be seen as
the convolution between the kernel and a sum of Dirac functions centered on the data points

f̂(z) =

(
K ∗

(
1

N

N∑
k=1

δzk

))
(z), (C.7)

it follows that

Φ̂(s) = κ(s)∆(s), (C.8)

where

κ(s) := F [K](s) (C.9)

∆(s) := F

[
1

N

N∑
k=1

δzk

]
(s) =

1

N

N∑
k=1

eizk·s ∈ C. (C.10)

The function ∆ is commonly called the empirical characteristic function (ECF).
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Plugging (C.8) in the MISE expression (C.6) and expanding the square gives:

MISE =
1

2π

∫
Rd

[
|κ|2 E

[
|∆|2

]
+ |Φ|2

−κ(E [∆] Φ∗ + E [∆∗] Φ)

]
ds,

(C.11)

the arguments s being omitted for lighter notation and c∗ denoting the complex conjugate of any c ∈ C.
Furthermore, as shown in Section 1.3 and Lemma 1.2 of [33] for example, the ECF is an unbiased estimator

of the characteristic function

E [∆(s)] =
1

N

N∑
k=1

E
[
eis·zk

]
=

1

N

N∑
k=1

∫ +∞

−∞
eis·zkf(zk)dzk

= Φ(s),

(C.12)

and its second moment is

E
[
|∆(s)|2

]
= E [∆(s)∆(s)∗] = E [∆(s)∆(−s)] (C.13)

= E

 1

N2

∑
j,k:j 6=k

eis·(zj−zk)

+
1

N
(C.14)

=
1

N2

∑
j,k:j 6=k

E
[
eis·zje−is·zk

]
+

1

N
(C.15)

=
1

N2

∑
j,k:j 6=k

E
[
eis·zj

]
E
[
e−is·zk

]
+

1

N
(C.16)

=
1

N2

∑
j,k:j 6=k

Φ(s)Φ(−s) +
1

N
(C.17)

=
N − 1

N
Φ(s)Φ(−s) +

1

N
(C.18)

=
N − 1

N
|Φ(s)|2 +

1

N
. (C.19)

Passing from line (C.15) to (C.16) is based on the assumption that the random variables {zk}Nk=1 are
independent.

Replacing (C.12) and (C.19) in (C.11), we obtain

MISE =
1

2π

∫
Rd

|κ|2

N
(1− |Φ|2) + |Φ|2(1− κ)2ds. (C.20)

As initially shown in [35], expression (C.20) can be minimized with respect to the transformed kernel κ. Indeed,
for any s ∈ Rd, we get the following first order optimality condition by differentiating the quadratic integrand
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in (C.20) relative to κ(s):

1

N
κ(1− |Φ|2)− |Φ|2(1− κ) = 0, (C.21)

leading to the optimal transformed kernel

κopt(s) :=
N

N − 1 + |Φ(s)|−2
, ∀s ∈ Rd. (C.22)

Hence the optimal density estimator relative to the MISE is given by

f̂opt(z) = F−1[Φ̂opt](z), (C.23)

where

Φ̂opt(s) = κopt(s)∆(s) =
N∆(s)

N − 1 + |Φ(s)|−2
. (C.24)

C.2 Self-consistent estimator

The practical problem with estimator (C.24) is that it depends on the true characteristic function Φ, which
is unknown. Hence, the solutions to the fixed-point equation (C.25) was suggested by [1] to approximate Φ̂opt:

Φ̂Nsc =
N∆

N − 1 + |Φ̂Nsc|−2
. (C.25)

This is justified by the fact that the optimal estimator Φ̂opt should be very close to the true characteristic
function Φ, as illustrated by the MISE criterion (C.6).

Equation (C.25) can be transformed into a second order equation in |Φ̂Nsc|,

(N − 1)|Φ̂Nsc|2 −N |∆||Φ̂Nsc|+ 1 = 0, (C.26)

which admits a solution in R+ provided that

|∆(s)|2 ≥ (∆min
N )2 :=

4(N − 1)

N2
. (C.27)

When inequality (C.27) holds, the two possible solutions of (C.26) are

|Φ̂+| := N |∆|
2(N − 1)

(
1 +

√
1−

(∆min
N )2

|∆|2

)
, (C.28)

|Φ̂−| := N |∆|
2(N − 1)

(
1−

√
1−

(∆min
N )2

|∆|2

)
. (C.29)
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After some analysis, we can show that Φ̂+ is a stable fixed-point, while Φ̂− is unstable. [1] suggest to keep
only the stable one, which brings us to the self-consistent estimator of the characteristic function:

Φ̂Nsc(s) :=
N∆(s)

2(N − 1)

(
1 +

√
1−

(∆min
N )2

|∆(s)|2

)
1AN (s), (C.30)

where 1AN denotes the indicator function over an arbitrary subset AN ⊂ SN of the frequencies in

SN :=
{
s : |∆(s)|2 ≥ (∆min

N )2
}
. (C.31)

Hence our new density estimator writes

f̂Nsc (z) := F−1
[
Φ̂Nsc

]
(z), ∀z ∈ E. (C.32)

C.3 Practical considerations

Heuristics for choosing AN were proposed in [1, 21] for the univariate case and in [22] in a multivariate
setting.

One practical problem with the self-consistent estimator is that f̂Nsc = F−1[Φ̂Nsc] is not lower-bounded by zero.

This can be corrected by translating f̂Nsc downwards until the positive part integrates to one and then setting
the negative part to 0. Indeed, it was proven by [11] that such a transformation induces no cost in terms of
MISE accuracy.

Another practical drawback with estimator Φ̂Nsc is that the direct computation of the empirical characteristic
function ∆ can be expensive: O(N ·M) exponential evaluations, where M is the number of frequency points
s ∈ Rd. Noting from definition (C.10) that the expression of ∆ is equivalent to some Discrete Fourier Transform

∆(s) =
1

N

N∑
k=1

ake
is·zk , (C.33)

where the Fourier coefficients ak are all equal to 1, the idea of using the Fast Fourier Transform algorithm
(FFT) proposed by [3] seems natural. However, the latter only applies to the case of uniformly spaced data,
which is not the case of {zk}Nk=1. For this reason, [21] proposed to use an implementation of Nonuniform Fast
Fourier Transform (NUFFT) developped by [12].

It consists in interpolating the original data points {zk}Nk=1 on a new equispaced grid {z̃j}Ñ`j=1 by using another
Gaussian kernel density estimator:

f̃(z̃j) :=
1

N

N∑
k=1

KG(zk − z̃j),

= KG ∗

(
1

N

N∑
k=1

δzk

)
(z̃j),

(C.34)

with KG(z) := exp
(
− z2

σ2

)
, ∀z ∈ Rd, and σ ∈ R∗+. The FFT can than be used to approximate Φ̃(s) := F [f̃ ](s),

and by dividing it by the transformed Gaussian kernel κG(s) := F [KG](s), we obtain the ECF evaluation:

∆(s) = Φ̃(s) · [κG(s)]
−1
. (C.35)
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As computing {f̃(z̃j)}Ñ`j=1 still takes O(Ñ` · N) operations, [8] suggested to use only N c < N surrounding

points from {zk}Nk=1 to evaluate each new grid point z̃j . We obtain an overall complexity of O(N c · Ñ`+M logM)
which, in the case where N c < M ≤ N , is better than the original DFT formulation O(N ·M).

The analysis conducted in [12] indicates that simple precision can be achieved in (C.35) by normalizing
the data {zk}Nk=1 to the range [0, 2π] and setting 2N c = 12, Ñ` = 2N` and σ2 = 24/N2. Hence, for a desired
precision, this step of the algorithm introduces no additional hyperparameter to be tuned (see [12] for the
double-precision settings).
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