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NON-CENTRAL LIMIT THEOREMS FOR FUNCTIONALS

OF RANDOM FIELDS ON HYPERSURFACES

Andriy Olenko* and Volodymyr Vaskovych

Abstract. This paper derives non-central asymptotic results for non-linear integral functionals of
homogeneous isotropic Gaussian random fields defined on hypersurfaces in Rd. We obtain the rate of
convergence for these functionals. The results extend recent findings for solid figures. We apply the
obtained results to the case of sojourn measures and demonstrate different limit situations.
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1. Introduction

In this article we study real-valued homogeneous isotropic Gaussian random fields with long-range depen-
dence. Long-range dependence is a well-established empirical phenomenon which appears in various fields, such
as physics, hydrology, signal processing, network traffic analysis, telecommunications, finance, econometrics,
just to name a few. See [11, 15, 33] for more details.

Various functionals of random fields have been a topic of interest in recent years, see, for example,
[3, 20, 24, 26]. In this research, we focus on non-linear integral functionals of Gaussian random fields defined
on hypersurface sets. These functionals play an important role in various fields, for example, in cosmology,
meteorology and image analysis. It was shown, see [10, 31, 32], that these functionals can produce non-Gaussian
limits and require normalizing coefficients different from those in central limit theorems. For the more detailed
overview of the problem, history of development, various approaches and existing results one can refer to [2]
and references therein.

In this research we use results from [2, 6, 18] and obtain analogous asymptotics for the case of hypersurfaces.
Most of the research conducted in this area considered only random fields defined on solid figures. Limit distribu-
tions for the functionals on spheres, which are a particular case of hypersurfaces, were studied in [15]. However,
there were no results about the rate of convergence for the case of hypersurfaces. In this article we consider
a general case of hypersurface sets. We are interested in both limit distributions, and rates of convergence to
these limits. We prove that, analogously to the solid figure situation, the limit distribution is a Hermite-type
distribution and it depends only on the Hermite rank of the integrands. However, while for all integrands with
the same Hermite rank the limit distribution remains the same, we demonstrate that the rate of convergence
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can be different. To prove the results we need some fine geometric properties of hypersurfaces. Specifically, we
use the rates of the average decay of the Fourier transform of surface measures, see [12, 13].

Geometric properties of random fields on hypersurfaces are of interest in many applied areas, such as medical
imaging, meteorology, and astrophysics. Many of these properties can be studied by the use of sojourn measures.
Extensive literature is available concerning this topic, for some examples see [1, 6, 22, 25]. Recently, non-Gaussian
limits for the first Minkowski functional of random fields defined on 3-dimensional spheres were discussed in [19].
In this article we obtain limits for sojourn measures of random fields defined on arbitrary hypersurfaces. We
provide examples when these limits are Gaussian and Hermite-type of the rank 2, 3, and 4.

Various authors, see [9, 23, 35] and the references therein, studied a distance between two Wiener-Ito integrals
of the same rank. These results can be used to estimate the rate of convergence when the integrands are Hermite
polynomials of Gaussian random fields. We estimate the Kolmogorov’s distance between two Wiener-Ito integrals
of the same rank and provide a small comparison of the existing results.

The article is organized as follows. In Section 2 we recall some basic definitions and assumptions that are
required to present our main results. Section 3 studies the asymptotic behavior of the considered functionals.
Section 4 demonstrates how results from Section 3 can be applied in the case of sojourn measures. Section 5
provides the results on the rate of convergence.

2. Definitions and assumptions

In this section we provide main definitions and assumptions that are used in this work.
In what follows | · | and ‖ ·‖ denote the Lebesgue measure and the Euclidean distance in Rd, d ≥ 2, respectively.

Let B(y, s) be a d-dimensional ball with centre y and radius s, and let Sd−1(r) be a sphere in Rd with the radius
r. We use the symbols C and δ to denote constants which are not important for our exposition. Moreover, the
same symbol may be used for different constants appearing in the same proof.

Let ∆ be a bounded set in Rd, d ≥ 2. Let ∆(r), r > 0, be the homothetic image of the set ∆ with the centre
of homothety at the origin and the coefficient r > 0, that is |∆(r)| = rd|∆|. We denote boundaries of sets ∆
and ∆(r) as ∂∆ and ∂∆(r) correspondingly. Let ∂∆ be an Ahlfors-David regular hypersurface in Rd. One can
find more information about Ahlfors-David regular sets in [29] and references therein.

Definition 2.1. [29] A closed hypersurface ∂∆ is called Ahlfors-David regular if there exists a constant C such
that for any y ∈ ∂∆ and s > 0

C−1sd−1 <

∫
∂∆∩B(y,s)

dσ(x) < Csd−1, (2.1)

where dσ(·) is the d− 1-dimensional Lebesgue measure on the hypersurface set.

Remark 2.2. Any manifold in Rd (i.e. a topological space with each point having a neighborhood that is
topologically equal to the open unit ball in Rd−1) is Ahlfors-David regular.

Remark 2.3. The reason that only Ahlfors-David regular hypersurfaces are considered is to ensure that the
surface area of the studied hypersurfaces cangnot increase “too” fast.

Let ∆ be a convex set, a polyhedron, or have a smooth boundary. Let

K(x) :=

∫
∂∆

ei<x,u>dσ(u), x ∈ Rd,

be the Fourier transform of the constant function equals 1 over the hypersurface ∂∆. The limit random variables
in this paper are presented as multiple Wiener-Itô stochastic integrals with K(·) as their kernel.
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In [12, 13] the rate of convergence was given for the average decay of the Fourier transforms K(·)∫
Sd−1(1)

|K(ωr)|2 dω ≤ Cr−d+1. (2.2)

In the discussion authors even hypothesized that this result should also hold for Lipschitz boundaries of compact
sets, which is a much weaker condition.

The proof of the main results of our paper also remains valid for other hypersurfaces satisfying conditions
(2.1) and (2.2).

We consider a measurable mean-square continuous zero-mean homogeneous isotropic real-valued random
field, see [15], η(x), x ∈ Rd, defined on a probability space (Ω,F , P ). By a classical result, see, for example,
(1.2.4) in [15], the covariance function of such random field can be written as

B(r) := Cov (η(x), η(y)) =

∫ ∞
0

Yd(rz) dΦ(z), x, y ∈ Rd,

where r := ‖x− y‖ , Φ(·) is the isotropic spectral measure, the function Yd(·) is defined by

Yd(z) := 2(d−2)/2Γ

(
d

2

)
J(d−2)/2(z) z(2−d)/2, z ≥ 0,

and J(d−2)/2(·) is the Bessel function of the first kind of order (d− 2)/2.

Definition 2.4. The random field η(x), x ∈ Rd, defined above is said to possess an absolutely continuous
spectrum if there exists a positive function f(·) such that

Φ(z) = 2πd/2Γ−1 (d/2)

∫ z

0

ud−1f(u) du, z ≥ 0, ud−1f(u) ∈ L1(R+),

where Γ(·) is the Gamma function.
The function f(·) is called the isotropic spectral density function of the field η(x). The field η(x) with an

absolutely continuous spectrum has the isonormal spectral representation

η(x) =

∫
Rd
ei<λ,x>

√
f (‖λ‖)W (dλ),

where W (·) is the complex Gaussian white noise random measure on Rd.

Let U and V be two independent and uniformly distributed on the hypersurface ∂∆(r) random vectors.
We denote by ψ∆(r)(ρ), ρ ≥ 0, the pdf of the distance ‖U − V ‖ between U and V. Note that ψ∆(r)(ρ) = 0 if
ρ > diam {∆(r)} . Using the above notations, we obtain the representation∫

∂∆(r)

∫
∂∆(r)

G(‖x− y‖) dσ(x) dσ(y) = |∂∆|2 r2d−2E G(‖U − V ‖)

= |∂∆|2 r2d−2

∫ diam{∆(r)}

0

G(ρ) ψ∆(r)(ρ)dρ. (2.3)
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Remark 2.5. [15] If ∂∆(r) = Sd−1(r), then

ψ∆(r)(ρ) =
1√
π

Γ

(
d

2

)
Γ−1

(
d− 1

2

)
r1−dρd−2

(
1− ρ2

4u2

) d−3
2

, 0 < ρ < 2r.

Let Hk(u), k ≥ 0, u ∈ R, be the “probabilists” Hermite polynomials, see [27]. These polynomials form a
complete orthogonal system in the Hilbert space

L2(R, φ(w) dw) =

{
G :

∫
R
G2(w)φ(w) dw <∞

}
, φ(w) :=

1√
2π
e−

w2

2 .

An arbitrary function G(w) ∈ L2(R, φ(w) dw) admits the mean-square convergent expansion

G(w) =

∞∑
j=0

CjHj(w)

j!
, Cj :=

∫
R
G(w)Hj(w)φ(w) dw.

By Parseval’s identity

∞∑
j=0

C2
j

j!
=

∫
R
G2(w)φ(w) dw.

Definition 2.6. [31] Let G(w) ∈ L2(R, φ(w) dw) and assume there exists an integer κ ∈ N such that Cj = 0,
for all 0 ≤ j ≤ κ− 1, but Cκ 6= 0. Then κ is called the Hermite rank of G(·) and is denoted by HrankG.

We investigate the random variables

Kr :=

∫
∂∆(r)

G(η(x))dσ(x) and Kr,κ :=
Cκ
k!

∫
∂∆(r)

Hκ(η(x))dσ(x),

where Cκ is the κth coefficient of the Hermite series of the function G(·).

Remark 2.7. If (ξ1, . . . , ξ2p) is a 2p-dimensional zero-mean Gaussian vector with

Eξjξk =


1, if k = j,

rj , if k = j + p and 1 ≤ j ≤ p,
0, otherwise,

then

E

p∏
j=1

Hkj (ξj)Hmj (ξj+p) =

p∏
j=1

δ
mj
kj

kj ! r
kj
j ,

where δmk is the Kronecker symbol.

If G(w) ∈ L2(Rp, φ(‖w‖) dw) and EG(η(x)) = 0 then the integral functional Kr can be represented as

Kr =

∞∑
j=1

Cj
j!

∫
∂∆(r)

Hj(η(x)) dσ(x).
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Therefore EKr = 0 and by Remark 2.7 the variance is equal

VarKr =

∞∑
j=1

C2
j

j!

∫
∂∆(r)

∫
∂∆(r)

Bj(‖x− y‖)dσ(x)dσ(y). (2.4)

Definition 2.8. [4] A measurable function L : (0,∞)→ (0,∞) is said to be slowly varying at infinity if for all
t > 0,

lim
λ→∞

L(λt)

L(λ)
= 1.

By the representation theorem ([4], Thm. 1.3.1), there exists C > 0 such that for all r ≥ C the function L(·)
can be written in the form

L(r) = exp

(
ζ1(r) +

∫ r

C

ζ2(u)

u
du

)
,

where ζ1(·) and ζ2(·) are measurable and bounded functions such that ζ2(r)→ 0 and ζ1(r)→ C0 (|C0| <∞),
when r →∞.

If L(·) varies slowly, then raL(r) → ∞, r−aL(r) → 0 for an arbitrary a > 0 when r → ∞, see Proposition
1.3.6 [4].

Definition 2.9. [4] A measurable function g : (0,∞)→ (0,∞) is said to be regularly varying at infinity, denoted
g(·) ∈ Rτ , if there exists τ such that, for all t > 0, it holds that

lim
λ→∞

g(λt)

g(λ)
= tτ .

Definition 2.10. [4] Let g : (0,∞) → (0,∞) be a measurable function and g(x) → 0 as x → ∞. A slowly
varying function L(·) is said to be slowly varying with remainder of type 2, or that it belongs to the class SR2,
if

∀λ > 1 :
L(λx)

L(x)
− 1 ∼ k(λ)g(x), x→∞,

for some function k(·).
If there exists λ such that k(λ) 6= 0 and k(λµ) 6= k(µ) for all µ, then g(·) ∈ Rτ for some τ ≤ 0 and k(λ) =

chτ (λ), where

hτ (λ) =

{
ln(λ), if τ = 0,
λτ−1
τ , if τ 6= 0.

(2.5)

Remark 2.11. An example of a function that satisfies Definition 2.10 for τ = 0 is L(x) = ln(x). Indeed,

L(λx)

L(x)
− 1 =

ln(λ) + ln(x)

ln(x)
− 1 = ln(λ) · 1

ln(x)
.
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Assumption 2.12. Let η(x), x ∈ Rd, be a homogeneous isotropic Gaussian random field with Eη(x) = 0 and
a covariance function B(x) such that

B(0) = 1, B(x) = Eη(0)η(x) = ‖x‖−α L0(‖x‖),

where L0(‖·‖) is a function slowly varying at infinity.

For α ∈ (0, (d− 1)/κ), κ ≥ 1, the covariance functions of random fields satisfying Assumption 2.12 are non-
integrable. Therefore, such random fields are long-range dependent.

Assumption 2.13. The random field η(x), x ∈ Rd, has the spectral density

f(‖λ‖) = c2(d, α) ‖λ‖α−d L
(

1

‖λ‖

)
, (2.6)

where

c2(d, α) :=
Γ
(
d−α

2

)
2απd/2Γ

(
α
2

) ,
and L(‖·‖) is a locally bounded function which is slowly varying at infinity and satisfies for sufficiently large r
the condition ∣∣∣∣1− L(tr)

L(r)

∣∣∣∣ ≤ C g(r)hτ (t), t ≥ 1, (2.7)

where g(·) ∈ Rτ , τ ≤ 0, such that g(x)→ 0, x→∞, and hτ (t) is defined by (2.5).

Remark 2.14. By Tauberian and Abelian theorems, see [17], for L0(·) and L(·) given in Assumptions 2.12 and
2.13 it holds L0(r) ∼ L(r), r → +∞.

Remark 2.15. [2] If L satisfies (2.7), then for any k ∈ N, δ > 0, and sufficiently large r∣∣∣∣1− Lk/2(tr)

Lk/2(r)

∣∣∣∣ ≤ C g(r)hτ (t)tδ, t ≥ 1.

Definition 2.16. Let Y1 and Y2 be arbitrary random variables. The uniform (Kolmogorov) metric for the
distributions of Y1 and Y2 is defined by the formula

ρ (Y1, Y2) = sup
z∈R
|P (Y1 ≤ z)− P (Y2 ≤ z)| .

The next result follows from Lemma 1.8 [28].

Lemma 2.17. If X,Y and Z are arbitrary random variables, then for any ε > 0

ρ (X + Y, Z) ≤ ρ(X,Z) + ρ (Z + ε, Z) + P (|Y | ≥ ε) .

3. Results on the asymptotic behavior

In this section we are interested in the asymptotic distribution of the random variable Kr =∫
∂∆(r)

G(η(x))dσ(x). First, we prove Theorem 3.1, which is an analogue of the so called reduction theorem,
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see Theorem 4 in [18], in the case of hypersurface integrals. Using this result, in Theorem 3.3 we derive normal-
izing coefficients and limit distributions of the random variable Kr that depend on the Hermite rank κ of the
function G(·).

Theorem 3.1. Suppose that HrankG = κ ∈ N and η(x), x ∈ Rd, satisfies Assumption 2.12 for α ∈ (0, (d −
1)/κ). If at least one of the following random variables

Kr√
Var Kr

,
Kr√

Var Kr,κ

and
Kr,κ√

Var Kr,κ

,

has a limit distribution, then the limit distributions of the other random variables also exist and they coincide
when r →∞.

Proof. Let

Vr :=
∑
j≥κ+1

Cj
j!

∫
∂∆(r)

Hj(η(x))dσ(x),

then by Remark 2.7

VarKr = VarKr,κ + VarVr.

By (2.3) and (2.4)

VarKr,κ =
C2
κ

κ!

∫
∂∆(r)

∫
∂∆(r)

‖x− y‖−ακ Lκ0 (‖x− y‖) dσ(x) dσ(y)

= |∂∆|2r2d−2−ακC
2
κ

κ!

diam{∆}∫
0

z−ακLκ0 (rz)ψ∆(z)dz.

If α ∈ (0, (d − 1)/κ) then by asymptotic properties of integrals of slowly varying functions (see [30], Thm.
2.7) we get

VarKr,κ = c1(κ, α,∆) |∂∆|2C
2
κ

κ!
r2d−2−καLκ0 (r)(1 + o(1)), r →∞,

where

c1(κ, α,∆) :=

diam{∆}∫
0

z−ακψ∆(z)dz.

Similar to Var Kr,κ we obtain

VarVr = |∂∆|2r2d−2
∑
j≥κ+1

C2
j

j!

r·diam{∆}∫
0

z−αjLj0 (z)ψ∆(r)(z)dz.
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It follows from z−αL (z) ∈ [0, 1], z ≥ 0, that

VarVr ≤ |∂∆|2r2d−2−(κ+1)α
∑
j≥κ+1

C2
j

j!

diam{∆}∫
0

z−α(κ+1)Lκ+1
0 (rz)ψ∆(z)dz

= |∂∆|2r2d−2−καLκ0 (r)
∑
j≥κ+1

C2
j

j!

diam{∆}∫
0

z−ακ
Lκ0 (rz)

Lκ0 (r)

L0 (rz)

(rz)α
ψ∆(z)dz.

Let us split the above integral into two parts I1 and I2 with the ranges of integration [0, r−β ] and
(r−β , diam {∆}] respectively, where β ∈ (0, 1).

As z−αL0 (z) ∈ [0, 1], z ≥ 0, we can estimate the first integral as follows

I1 ≤
r−β∫
0

z−ακ
Lκ0 (rz)

Lκ0 (r)
ψ∆(z)dz ≤

sup0≤s≤r1−β s
δLκ0 (s)

rδLκ0 (r)

r−β∫
0

z−(δ+ακ)ψ∆(z)dz

≤

(
sup0≤s≤r s

δ/kL0 (s)

rδ/kL0(r)

)κ r−β∫
0

z−(δ+ακ)ψ∆(z)dz. (3.1)

By Theorem 1.5.3 [4] and the definition of slowly varying functions

lim
r→∞

sup0≤s≤r s
δ/kL0 (s)

rδ/kL0(r)
= 1.

By (2.3) we can rewrite the integral in (3.1) as follows

r−β∫
0

z−(δ+ακ)ψ∆(z)dz = |∂∆|−2
∫
∂∆

∫
∂∆

χ(‖x− y‖ ≤ r−β) ‖x− y‖−(δ+ακ)
dσ(x) dσ(y)

≤ |∂∆|−2
∫
∂∆

max
y

∫
∂∆

χ(‖x− y‖ ≤ r−β) ‖x− y‖−(δ+ακ)
dσ(x)

dσ(y)

= |∂∆|−1
max
y

∫
∂∆

χ(‖x− y‖ ≤ r−β) ‖x− y‖−(δ+ακ)
dσ(x)



= |∂∆|−1
max
y

 ∫
∂∆∩B(y,r−β)

‖x− y‖−(δ+ακ)
dσ(x)

 .
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Since ∂∆ is Ahlfors-David regular, applying upper-bound from (2.1) we get∫
∂∆∩B(y,r−β)

‖x− y‖−(δ+ακ)
dσ(x) =

∞∑
i=0

∫
∂∆∩[B(y,r−β2−i)\B(y,r−β2−i−1]

‖x− y‖−(δ+ακ)
dσ(x)

≤
∞∑
i=0

∫
∂∆∩[B(y,r−β2−i)\B(y,r−β2−i−1]

rβ(δ+ακ)2(i+1)(δ+ακ) dσ(x) ≤
∞∑
i=0

rβ(δ+ακ)2(i+1)(δ+ακ)

×
∫

∂∆∩B(y,r−β2−i)

dσ(x) ≤ Crβ(δ+ακ)
∞∑
i=0

2(i+1)(δ+ακ)r−β(d−1)2−i(d−1)

=
C2δ+ακ

1− 2−(d−(1+δ+ακ))
r−β(d−(1+δ+ακ)).

Thus, we have

r−β∫
0

z−(δ+ακ)ψ∆(z)dz ≤ Cr−β(d−(1+δ+ακ)). (3.2)

For the second integral we obtain

I2 ≤
supr1−β≤s≤r·diam{∆} s

δLκ0 (s)

rδLκ0 (r)
· sup
r1−β≤s≤r·diam{∆}

L0 (s)

sα
·
diam{∆}∫

0

z−(δ+ακ)ψ∆(z)dz.

Using Theorem 1.5.3 [4] we conclude that

lim
r→∞

supr1−β≤s≤r·diam{∆} s
δLκ0 (s)

rδLκ0 (r)
≤ lim
r→∞

sup0≤s≤r·diam{∆} s
δLκ0 (s)

(r · diam {∆})δLκ0 (r · diam {∆})

× lim
r→∞

diamδ {∆}Lκ0 (r · diam {∆})
Lκ0 (r)

= diamδ {∆} .

By Proposition 1.3.6 and Theorem 1.5.3 [4] it follows that

sup
r1−β≤s≤r·diam{∆}

L0 (s)

sα
≤

sups≥r1−β s
−αL0 (s)

r−α(1−β)L0 (r1−β)
·
L0

(
r1−β)

rδ(1−β)
· r(δ−α)(1−β)

= o(r(δ−α)(1−β)). (3.3)

We can choose β = 1/2 and make δ arbitrary close to 0. Then by (3.2), (3.3) we obtain

lim
r→∞

VarVr
VarKr

= 0 and lim
r→∞

VarKr

VarKr,κ
= 1.
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Thus

lim
r→∞

E

(
Kr√

Var Kr

− Kr,κ√
Var Kr,κ

)2

= lim
r→∞

E
(
Vr +

(
1−

√
VarKr
VarKr,κ

)
Kr,κ

)2

VarKr
= 0,

and

lim
r→∞

E

(
Kr√

Var Kr,κ

− Kr,κ√
Var Kr,κ

)2

= lim
r→∞

E
(
Vr
√

VarKr
VarKr,κ

)2

VarKr
= 0

which completes the proof.

Lemma 3.2. If τ1, ..., τκ, κ ≥ 1, are such positive constants, that
∑κ
i=1 τi < d− 1, then∫

Rdκ

|K(λ1 + · · ·+ λκ)|2 dλ1 . . . dλκ

‖λ1‖d−τ1 · · · ‖λκ‖d−τκ
<∞. (3.4)

Proof. For κ = 1 we get d− τ1 > 1. Using integration formula for polar coordinates, and the fact that |K(λ)| ≤
|∂∆| for all λ ∈ Rd we get

∫
Rd

|K(λ)|2 dλ

‖λ‖d−τ1
=

∞∫
0

rd−1

∫
Sd−1(1)

|K(ωr)|2

rd−τ1
dωdr =

r0∫
0

rd−1

∫
Sd−1(1)

|K(ωr)|2

rd−τ1
dωdr

+

∞∫
r0

rd−1

∫
Sd−1(1)

|K(ωr)|2

rd−τ1
dωdr ≤ |∂∆|2

r0∫
0

rd−1dr

rd−τ1
+

∞∫
r0

rd−1

∫
Sd−1(1)

|K(ωr)|2

rd−τ1
dωdr.

By (2.2) we obtain

∫
Rd

|K(λ)|2 dλ

‖λ‖d−τ1
≤ |∂∆|2

r0∫
0

dr

r1−τ1
+ C

∞∫
r0

r−d+1

r1−τ1
dr = |∂∆|2

r0∫
0

dr

r1−τ1
+ C

∞∫
r0

dr

rd−τ1
<∞.

For κ > 1 we can obtain (3.4) by the recursive estimation routine and the change of variables λ̃κ−1 =
λκ−1/‖u‖ : ∫

Rdκ

|K(λ1 + · · ·+ λκ)|2dλ1 . . . dλκ

‖λ1‖d−τ1 · · · ‖λκ‖d−τκ
= |u = λκ−1 + λκ| =

∫
Rd(κ−1)

|K(λ1 + · · ·+ λκ−2 + u)|2

×
∫
Rd

dλκ−1

‖λκ−1‖d−τκ−1 ‖u− λκ−1‖d−τκ
· dλ1 . . . dλκ−2 du

‖λ1‖d−τ1 · · · ‖λκ−2‖d−τκ−2

=

∫
Rd(κ−1)

|K(λ1 + · · ·+ λκ−2 + u)|2dλ1 . . . dλκ−2

‖λ1‖d−τ1 · · · ‖λκ−2‖d−τκ−2 ‖u‖d−τκ−1−τκ

∫
Rd

dλ̃κ−1du∥∥∥λ̃κ−1

∥∥∥d−τκ−1
∥∥∥ u
‖u‖ − λ̃κ−1

∥∥∥d−τκ
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≤ C
∫

Rd(κ−1)

|K(λ1 + · · ·+ λκ−2 + u)|2 dλ1 . . . dλκ−2 du

‖λ1‖d−τ1 · · · ‖λκ−2‖d−τκ−2 ‖u‖d−τκ−1−τκ

≤ ... ≤ C
∫
Rd

|K(u)|2 du

‖u‖d−
∑κ
i=1 τi

<∞.

The following theorem presents asymptotics of non-linear functionals of long-range dependent random fields
observed on hypersurfaces in terms of multiple stochastic Wiener-Itô integrals. For properties of these integrals
one can refer to [21].

Theorem 3.3. Let η(x), x ∈ Rd, be a homogeneous isotropic Gaussian random field with Eη(x) = 0. If
Assumptions 2.12 and 2.13 hold, α ∈ (0, (d− 1)/κ), and HrankG = κ ∈ N, then for r →∞ the random variable

Xκ,r(∆) := r(κα)/2−d+1L−κ/2(r)

∫
∂∆(r)

G(η(x)) dσ(x)

converge weakly to

Xκ(∆) := c
κ/2
2 (d, α)

∫
Rdκ

′
K(λ1 + · · ·+ λκ)

W (dλ1) . . .W (dλκ)

‖λ1‖(d−α)/2 · · · ‖λκ‖(d−α)/2
, (3.5)

where
∫

Rdκ

′
denotes the multiple stochastic Wiener-Itô integral.

Remark 3.4. Note, that from the following proof it is clear that it is sufficient to use only (2.6) instead of
Assumption 2.13.

Proof. Using Itô formula (2.3.1) in [16] we obtain

∫
∂∆(r)

Hκ(η(x))dσ(x) =

∫
∂∆(r)

∫
Rdκ

′
ei<λ1+···+λκ,x>

κ∏
j=1

√
f(‖λj‖)W (dλ1) . . .W (dλκ)dσ(x).

As
κ∏
j=1

√
f(‖λj‖) ∈ L2(Rdκ) then a stochastic Fubini theorem, see Theorem 5.13.1 in [27], can be used to

interchange the integrals which results in

Xκ,r(∆)
D
= c

κ/2
2 (d, α)

∫
Rdκ

′K(λ1 + · · ·+ λκ)Qr(λ1, . . . , λκ)W (dλ1) . . .W (dλκ)

‖λ1‖(d−α)/2 · · · ‖λκ‖(d−α)/2
, (3.6)

where

Qr(λ1, . . . , λκ) := rκ(α−d)/2L−κ/2(r) c
−κ/2
2 (d, α)

 κ∏
j=1

‖λj‖d−α f
(
‖λj‖
r

)1/2

. (3.7)
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By the isometry property of multiple stochastic integrals

Rr :=
E |Xκ,r(∆)−Xκ(∆)|2

cκ2 (d, α)
=

∫
Rdκ

|K(λ1 + · · ·+ λκ)|2 (Qr(λ1, . . . , λκ)− 1)
2

‖λ1‖d−α · · · ‖λκ‖d−α
dλ1 . . . dλκ.

Using (2.6) and properties of slowly varying functions we conclude that Qr(λ1, . . . , λκ) converges pointwise
to 1, when r →∞. Hence, by Lebesgue’s dominated convergence theorem the integral converges to zero if there
is some integrable function which dominates integrands for all r.

Let us split Rdκ into the regions

Bµ := {(λ1, ..., λκ) ∈ Rdκ : ||λj || ≤ 1, if µj = −1, and ||λj || > 1, if µj = 1, j = 1, ..., κ},

where µ = (µ1, ..., µκ) ∈ {−1, 1}κ is a binary vector of length κ. Then we can represent the integral Rr as

Rr :=
⋃

µ∈{−1,1}κ

∫
Bµ

|K(λ1 + · · ·+ λκ)|2 (Qr(λ1, . . . , λκ)− 1)
2 dλ1 . . . dλκ

‖λ1‖d−α · · · ‖λκ‖d−α
.

If (λ1, ..., λκ) ∈ Bµ we estimate the integrand as follows

|K(λ1 + · · ·+ λκ)|2 (Qr(λ1, . . . , λκ)− 1)
2

‖λ1‖d−α · · · ‖λκ‖d−α
≤ 2 |K(λ1 + · · ·+ λκ)|2

‖λ1‖d−α · · · ‖λκ‖d−α
(
Q2
r(λ1, . . . , λκ) + 1

)

=
2 |K(λ1 + · · ·+ λκ)|2

‖λ1‖d−α · · · ‖λκ‖d−α

 κ∏
j=1

||λj ||µjδ ·
κ∏
j=1

(
r
||λj ||

)µjδ
L
(

r
||λj ||

)
rµjδL(r)

+ 1



≤ 2 |K(λ1 + · · ·+ λκ)|2

‖λ1‖d−α · · · ‖λκ‖d−α

1 +

κ∏
j=1

‖λ1‖µjδ · sup
(λ1,...,λκ)∈Bµ

κ∏
j=1

(
r
||λj ||

)µjδ
L
(

r
||λj ||

)
rµjδL(r)

 ,

where δ is an arbitrary positive number. By Theorem 1.5.3 [4]

lim
r→∞

sup||λj ||≤1

(
r
||λj ||

)−δ
L
(

r
||λj ||

)
r−δL(r)

= lim
r→∞

supz≥r z
−δL (z)

r−δL(r)
= 1;

lim
r→∞

sup||λj ||>1

(
r
||λj ||

)δ
L
(

r
||λj ||

)
rδL(r)

= lim
r→∞

supz∈[0,r] z
δL (z)

rδL(r)
= 1.

Therefore, there exists r0 > 0 such that for all r ≥ r0 and (λ1, ..., λκ) ∈ Bµ

|K(λ1 + · · ·+ λκ)|2 (Qr(λ1, . . . , λκ)− 1)
2

‖λ1‖d−α · · · ‖λκ‖d−α
≤ 2 |K(λ1 + · · ·+ λκ)|2

‖λ1‖d−α · · · ‖λκ‖d−α

+ 2C
|K(λ1 + · · ·+ λκ)|2

‖λ1‖d−α−µ1δ · · · ‖λκ‖d−α−µκδ
. (3.8)
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By Lemma 3.2, if we chose δ ∈ (0,min (α, (d− 1)/κ− α)) , the upper bound in (3.8) is an inte-
grable function on each Bµ and hence on Rdκ too. By Lebesgue’s dominated convergence theorem

limr→∞E |Xκ,r(∆)−Xκ(∆)|2 = 0, which completes the proof.

4. Application to sojourn measures

An important example of Theorem 3.3 is sojourn measures of random fields defined on hypersurfaces,
see [1, 19]. Namely, consider an application of Theorem 3.3 to the functionals∫

∂∆(r)

χ(S(η(x)) > b)dσ(x),

where S : R→ R is a function such that the set {t : S(t) > b} can be represented as a finite union of intervals
(t1, t2), −∞ ≤ t1 < t2 ≤ +∞. Examples of the function S(·) are polynomials or other smooth functions having
finite number of zeros.

Remark 4.1. As particular cases, this construction includes
∫

Sd−1(r)

χ(η(x) > b)dσ(x) and
∫

Sd−1(r)

χ(|η(x)| >

b)dσ(x) considered in [15].

As for some N ≥ 1 it holds {t : S(t) > b} =
N⋃
i=1

(ti, ti+1), where the intervals (ti, ti+1) are disjoint, we have

to study

∫
∂∆(r)

χ

(
η(x) ∈

N⋃
i=1

(ti, ti+1)

)
dσ(x) =

N∑
i=1

∫
∂∆(r)

χ (η(x) ∈ (ti, ti+1)) dσ(x).

Note, that the indicator function χ(ω > t), ω, t ∈ R, can be expanded in the Hermite series as

χ(ω > t) =

∞∑
j=0

C
(t)
j Hj(ω)

j!
,

where

C
(t)
j =

{
1− Φ(t), j = 0,

φ(t)Hj−1(t), j ≥ 1,

and Φ(·) and φ(·) are the cdf and pdf for N (0, 1) respectively.
Then,

χ (ω ∈ (ti, ti+1)) = χ (ω > ti)− χ (ω > ti+1) = Φ(ti+1)− Φ(ti)

+

∞∑
j=1

φ(ti)Hj−1(ti)− φ(ti+1)Hj−1(ti+1)

j!
Hj(w),

where φ(±∞) = 0.
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Hence,

N∑
i=1

χ(ω ∈ (ti, ti+1)) =

N∑
i=1

(Φ(ti+1)− Φ(ti))

+

∞∑
j=1

N∑
i=1

φ(ti)Hj−1(ti)− φ(ti+1)Hj−1(ti+1)

j!
Hj(w).

Therefore, the Hermite rank of the function χ(S(x) > b) is such j∗ ≥ 1 that it is the smallest number for
which

Cj∗,b =

N∑
i=1

φ(ti)Hj∗−1(ti)− φ(ti+1)Hj∗−1(ti+1) 6= 0.

Theorem 4.2. Let j∗ = min{j ∈ N :
N∑
i=1

φ(ti)Hj−1(ti)− φ(ti+1)Hj−1(ti+1) 6= 0}. Then, under assumptions of

Theorem 3.3

Xκ,r(∆) = r(κα)/2−d+1L−κ/2(r)

∫
∂∆(r)

χ(S(η(x)) > b) dσ(x)

converges to
Cκ,b
κ! Xκ(∆), where Xκ(∆) is given by (3.5), and κ = j∗.

Example 4.3. Let us study
∫

∂∆(r)

χ(ηl(x) > b) dσ(x). If l is odd, then χ
(
ωl > b

)
=χ

(
ω > b1/l

)
. In this case

C1,b = φ(b1/l) 6= 0 and the asymptotic is given by φ(b1/l)X1(∆) which has a Gaussian distribution.
If l is even, then for b > 0 it holds χ

(
ωl > b

)
= χ

(
ω > b1/l

)
+ χ

(
ω < −b1/l

)
= 1− χ

(
−b1/l < ω < b1/l

)
. In

this case, C1,b = φ(−b1/l)− φ(b1/l) = 0. However, for j = 2 we obtain

C2,b = φ(−b1/l)(−b1/l)− φ(b1/l)b1/l = −2b1/lφ(b1/l) 6= 0.

Therefore, the asymptotic is the Rosenblatt-type distribution of −b1/lφ(b1/l)X2(∆).

Example 4.4. Now, let us study
∫

∂∆(r)

χ(S(η(x)) > 0) dσ(x), where S(x) = −x3 + b2x and b = (2 ln(2))
1/2

.

Since ∫
∂∆(r)

χ(S(η(x)) > 0) dσ(x) =

∫
∂∆(r)

χ(η(x) ∈ (−∞,−b) ∪ (0, b)) dσ(x),

we can compute coefficients Cj,b as follows

C1,b = −φ(−b)H0(−b) + φ(0)H0(0)− φ(b)H0(b) = φ(0)− 2φ(b) = 0,

C2,b = −φ(−b)H1(−b) + φ(0)H1(0)− φ(b)H1(b) = bφ(−b)− bφ(−b) = 0,
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C3,b = −φ(−b)H2(−b) + φ(0)H2(0)− φ(b)H2(b) = −φ(−b)(b2 − 1)

−φ(0)− φ(−b)(b2 − 1) = −φ(0)− φ(0)(b2 − 1) = −b2φ(0) 6= 0,

because b = (2 ln(2))
1/2

.
Thus, in this case the limit distribution has H rank = 3.

Example 4.5. In this example we show how to obtain the Hermite limit distribution with Hrank = 4.

Lemma 4.6. For each p ∈ (0, 1) there exist q > 1, such that pφ(p) = qφ(q).

Proof. Note that (xφ(x))′ = φ(x)− x2φ(x) = φ(x)(1− x2). Thus, xφ(x) is an increasing function on (0, 1) and
it is decreasing on (1,∞). As xφ(x) = 0 for x = 0 and x = +∞, then 0 < pφ(p) < φ(1). Because xφ(x) is a
continuous function there is q > 1 such that pφ(p) = qφ(q).

Note, that pφ(p) = qφ(q), p, q > 0 is equivalent to p2φ2(p) = q2φ2(q), i.e. q is a positive solution of the
equation

−p2e−p
2

= −q2e−q
2

.

Thus, q =

√
−LambertW−1

(
− p2

ep2

)
, where lambertW−1(·) is the branch of LambertW function satisfying

LambertW(x) ≤ −1, −1/e < x < 0, see [7].
Let S(x) = −(x2 − p2)(x2 − q2). Then, {x ∈ R : S(x) > 0} = (−q,−p) ∪ (p, q).
Let us compute the coefficient Cj,0.

C1,0 = φ(−q)− φ(−p) + φ(p)− φ(q) = 0,

C2,0 = φ(−q)(−q)− φ(−p)(−p) + φ(p)p− φ(q)q = 2(φ(p)p− φ(q)q) = 0,

C3,0 = φ(−q)(q2 − 1)− φ(−p)(p2 − 1) + φ(p)(p2 − 1)− φ(q)(q2 − 1) = 0,

C4,0 = φ(−q)(−q3 + 3q)− φ(−p)(−p3 + 3p) + φ(p)(p3 − 3p)− φ(q)(q3 − 3q)

= φ(−q)(−q3)− φ(−p)(−p3) + φ(p)p3 − φ(q)q3 = 2(φ(p)p3 − φ(q)q3)

< 2q2(φ(p)p− φ(q)q) = 0.

Therefore, C4,0 6= 0 and the asymptotic of
∫

∂∆(r)

χ(S(η(x)) > 0) dσ(x) when r → ∞ is the random variable

C4,0

4! X4(∆).
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5. Rate of convergence

In this section we investigate rates of convergence of random variables Kr and Kr,κ to their asymptotic
distribution derived in Theorem 3.3. For readability we will denote Wiener-Itô integrals of rank κ by Iκ(f),
where f(·) is an integrand. For more details about Wiener-Itô integrals and properties of function f(·) one can
refer to [14, 21]. To obtain rates of convergence we will use some fine properties of Hermite-type distributions.
The following result was obtained in [2] for Xκ(∆). Since the proof does not rely on the specific form of Xκ(∆),
this theorem can be easily generalized as follows

Theorem 5.1. [2] For any κ ∈ N and an arbitrary positive ε it holds

ρ (Iκ(f), Iκ(f) + ε) ≤ Cεa,

where a = 1 if κ < 3 and a = 1/κ if κ ≥ 3.

The corollary of Theorem 3.1 is that the limit distribution of the functional Kr does not depend on the “tail”
Vr in the Hermite expansion of the function G(r). However, in this section we will show that although Vr does
not affect the limit distribution it does affect the rate of convergence.

First, let us consider the case where G(·) = Cκ
κ! Hκ(·). Then, Vr = 0 and the Hermite rank of G(·) is κ. We

are interested in

ρ

(
κ!Kr,κ

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)
= ρ (Xκ,r(∆), Xκ(∆)) .

By (3.6)

Xκ,r(∆) = c
κ/2
2 (d, α)

∫
Rdκ

′K(λ1 + · · ·+ λκ)Qr(λ1, . . . , λκ)W (dλ1) . . .W (dλκ)

‖λ1‖(d−α)/2 · · · ‖λκ‖(d−α)/2
,

where Q(·) is defined by (3.7). Therefore, ρ (Xκ,r(∆), Xκ(∆)) is the Kolmogorov’s distance between two multiple
Wiener-Itô integrals of the rank κ.

For the total variation distance ρTV (·) it was stated in [9] that

ρTV (Iκ(f1), Iκ(f2)) ≤ C‖f1 − f2‖
1
κ . (5.1)

This result holds in our case since the Kolmogorov’s distance can be estimated by the total variation distance
(for any random variables ξ and η it holds ρ(ξ, η) ≤ ρTV (ξ, η)). In [9], only a sketch proof was provided, but in
recent papers [8, 34] this result was fully proven.

Recently, for the case of κ = 2, it was shown in [35] that ρTV (I2(f1), I2(f2)) ≤ C‖f1 − f2‖. This result is
an obvious improvement of the existing results and can be combined with (5.1) to further sharpen our upper
bound to become

ρTV (Iκ(f1), Iκ(f2)) ≤ C‖f1 − f2‖a, (5.2)

where a is the parameter from Theorem 5.1.
However, it is not obvious how the methods in [35] can be used to obtain similar results for an arbitrary κ as

they heavily rely on the Chi-square expansion of the second order Wiener-Itò integrals, which is not available
for κ > 2.

The results in [8, 34, 35] were obtained by using rather complex approaches. For the Kolmogorov distance

Lemma A.1 proves that ρ (Iκ(f1), Iκ(f2)) ≤ C‖f1 − f2‖
1

κ+1/2 , if κ ≥ 3, and ρ (Iκ(f1), Iκ(f2)) ≤ C‖f1 − f2‖
2
3 , if

κ < 3. This result is weaker than (5.2), but is obtained by using only elementary methods.
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Now, we apply (5.2) to obtain the rate of convergence in Theorem 3.3.

Theorem 5.2. Let HrankG = κ ∈ N,Assumptions 2.12 and 2.13 hold for α ∈ (0, d−1
κ ) and a be the parameter

from Theorem 5.1.

If τ ∈
(
−d−κα2 , 0

)
then for any κ < amin

(
α(d−1−κα)

(2+a)(d−1−(κ−1)α) ,−τ,
κ1

2

)
ρ

(
κ!Kr

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)
= o(r−κ), r →∞,

where κ1 := 1
1

d−2α+···+ 1
d−κα+ 1

d−1−κα
.

If τ = 0 then

ρ

(
κ!Kr

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)
= ga(r), r →∞.

Remark 5.3. If κ = 1, then κ1 = d− 1− α.

Remark 5.4. Note, that for τ = 0 the rate of convergence does not depend on α or d. This is due to the reason
that parameters α and d affect the power of r in the rate of convergence, but, in the case τ = 0, the function
g(r) converges to 0 slower than any power of r.

Proof. Since HrankG = κ, it follows that Kr can be represented in the space of squared-integrable random
variables L2(Ω) as

Kr = Kr,κ + Vr :=
Cκ
κ!

∫
∂∆(r)

Hκ(η(x)) dσ(x) +
∑
j≥κ+1

Cj
j!

∫
∂∆(r)

Hj(η(x)) dσ(x),

where Cj are coefficients of the Hermite series of the function G(·).
By the proof of Theorem 3.1 (specifically estimates (3.2) and (3.3)), for sufficiently large r

VarVr ≤ C r2d−2−καLκ(r)
(
r−β1(d−1−κα−δ) + o

(
r−(α−δ)(1−β1)

))
.

Since, by Remark 2.14, L0(·) ∼ L(·), we can replace L0(·) by L(·) in the above estimate. Thus, choosing
β1 = α

d−1−(κ−1)α to minimize the upper bound we get

VarVr ≤ Cr2d−2−καLκ(r)r−
α(d−1−κα)
d−1−(κ−1)α

+δ.

It follows from Theorem 5.1 that

ρ (Xκ(∆) + ε,Xκ(∆)) ≤ Cεa.

Applying Chebyshev’s inequality and Lemma 2.17 to X = Xκ,r(∆), Y = κ!Vr
Cκ r

d−1−κα
2 L

κ
2 (r)

, and Z = Xκ(∆),

we get

ρ

(
κ!Kr

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)
= ρ

(
Xκ,r(∆) +

κ!Vr

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)

≤ ρ (Xκ,r(∆), Xκ(∆)) + C
(
εa + ε−2 r−

α(d−1−κα)
d−1−(κ−1)α

+δ
)
,
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for a sufficiently large r.

Choosing ε := r−
α(d−1−κα)

(2+a)(d−1−(κ−1)α) to minimize the second term we obtain

ρ

(
κ!Kr

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)
≤ ρ (Xκ,r(∆), Xκ(∆)) + C r

−aα(d−1−κα)
(2+a)(d−1−(κ−1)α)

+δ. (5.3)

Remark 5.5. As we can see from (5.3), for a sufficiently large r, the upper bound in (5.3) can be estimated

by C max
(
ρ (Xκ,r(∆), Xκ(∆)) , r−

aα(d−1−κα)
(2+a)(d−1−(κ−1)α)

+δ
)

. Here, the part r−
aα(d−1−κα)

(2+a)(d−1−(κ−1)α)
+δ appears only when

Vr 6= 0, i.e. G(·) 6= Cκ
κ! Hκ(·). Depending on the values of parameters d, κ and α it can considerably affect the

rate of convergence. We will discuss it in more details at the end of this section.

Using (5.2) we get

ρ (Xκ,r(∆), Xκ(∆))

≤ C

∫
Rκd

|K(λ1 + · · ·+ λκ)|2 (Qr(λ1, . . . , λκ)− 1)
2

dλ1 . . . dλκ

‖λ1‖d−α . . . ‖λκ‖d−α

 a
2

, (5.4)

where

Qr(λ1, . . . , λκ) := rκ(α−d)/2L−κ/2(r) c
−κ/2
2 (d, α)

 κ∏
j=1

‖λj‖d−α f
(
‖λj‖
r

)1/2

.

Let us rewrite the integral in (5.4) as the sum of two integrals I3 and I4 with the integration regions
A(r) := {(λ1, . . . , λκ) ∈ Rκd : max

i=1,κ
(||λi||) ≤ rγ} and Rκd \A(r) respectively, where γ ∈ (0, 1). Our intention is

to use the monotone equivalence property of regularly varying functions in the regions A(r).
First we consider the case of (λ1, . . . λκ) ∈ A(r). By Assumption 2.13 and the inequality∣∣∣∣∣∣

√√√√ κ∏
i=1

xi − 1

∣∣∣∣∣∣ ≤
κ∑
i=1

∣∣∣xκ2i − 1
∣∣∣

we obtain

|Qr(λ1, . . . , λ2)− 1| =

∣∣∣∣∣∣∣∣
√√√√√ κ∏
j=1

L
(

r
‖λj‖

)
L(r)

− 1

∣∣∣∣∣∣∣∣ ≤
κ∑
j=1

∣∣∣∣∣∣
L
κ
2

(
r
‖λj‖

)
L
κ
2 (r)

− 1

∣∣∣∣∣∣ .
By Remark 2.15, if ||λj || ∈ (1, rγ), j = 1, κ, then for arbitrary δ1 > 0 and sufficiently large r we get∣∣∣∣∣∣1−

L
κ
2

(
r
‖λj‖

)
L
κ
2 (r)

∣∣∣∣∣∣ =
L
κ
2

(
r
‖λj‖

)
L
κ
2 (r)

·

∣∣∣∣∣∣1− L
κ
2 (r)

L
κ
2

(
r
‖λj‖

)
∣∣∣∣∣∣ ≤ C

L
κ
2

(
r
‖λj‖

)
L
κ
2 (r)

g

(
r

‖λj‖

)
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×‖λj‖δ1 hτ (‖λj‖) = C ‖λj‖δ1 hτ (‖λj‖)g(r)
g
(

r
‖λj‖

)
g(r)

L
(

r
‖λj‖

)
L(r)


κ
2

.

For any positive β2 and β3, applying Theorem 1.5.6 from [4] to g(·) and L(·) and using the fact that hτ
(

1
t

)
=

− 1
tτ h(t) we obtain∣∣∣∣∣∣1−

L
κ
2

(
r
‖λj‖

)
L
κ
2 (r)

∣∣∣∣∣∣ ≤ C ‖λj‖δ1+
κβ2
2 +β3

hτ (‖λj‖)
‖λj‖τ

g(r) = C ‖λj‖δ hτ
(

1

‖λj‖

)
g(r). (5.5)

By Remark 2.15 for ||λj || ≤ 1, j = 1, κ, and arbitrary δ > 0, we obtain∣∣∣∣∣∣1−
L
κ
2

(
r
‖λj‖

)
L
κ
2 (r)

∣∣∣∣∣∣ ≤ C ‖λj‖−δ hτ
(

1

‖λj‖

)
g(r). (5.6)

Hence, by (5.5) and (5.6)

|Qr(λ1, . . . λκ)− 1|2 ≤ k
κ∑
j=1

∣∣∣∣∣∣
L
κ
2

(
r
‖λj‖

)
L
κ
2 (r)

− 1

∣∣∣∣∣∣
2

≤ C
κ∑
j=1

h2
τ

(
1

‖λj‖

)
g2(r) max

(
‖λj‖−δ , ‖λj‖δ

)
,

for (λ1, . . . λκ) ∈ A(r).
Notice, that in the case τ = 0 for any δ > 0 there exists C > 0 such that h0(x) = ln(x) < Cxδ, x ≥ 1, and

h0(x) = ln(x) < Cx−δ, x < 1. Hence, by Lemma 3.2 for −τ ≤ d−κα
2 we get

∫
A(r)∩[0,1]κd

h2
τ

(
1
‖λj‖

)
max

(
‖λj‖−δ , ‖λj‖δ

) ∣∣∣∣K( κ∑
i=1

λi

)∣∣∣∣2 dλ1 . . . dλκ

‖λ1‖d−α . . . ‖λκ‖d−α
<∞.

Therefore, we obtain for sufficiently large r

I3 ≤ C g2(r)

κ∑
j=1

∫
A(r)∩Rκd

h2
τ

(
1
‖λj‖

)
·max

(
‖λj‖−δ , ‖λj‖δ

)
‖λ1‖d−α . . . ‖λκ‖d−α

×|K(λ1 + . . . λκ)|2 dλ1 . . . dλκ ≤ C g2(r)

∫
A(r)∩Rκd

h2
τ

(
1
‖λ1‖

)
‖λ1‖d−α . . . ‖λκ‖d−α

×max
(
‖λ1‖−δ , ‖λ1‖δ

)
|K(λ1 + . . . λκ)|2 dλ1 . . . dλκ ≤ C g2(r). (5.7)
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It follows from Assumption 2.13 and the specification of the estimate (3.8) in the proof of Theorem 3.3 that
for each positive δ there exists r0 > 0 such that for all r ≥ r0, (λ1, . . . , λκ) ∈ B(1,µ2,...,µκ) = {(λ1, . . . , λκ) ∈
Rκd : ||λj || ≤ 1, if µj = −1, and ||λj || > 1, if µj = 1, j = 1, k}, and µj ∈ {−1, 1}, it holds

|K(λ1 + · · ·+ λκ)|2 (Qr(λ1, . . . λκ)− 1)
2

‖λ1‖d−α . . . ‖λκ‖d−α
≤ C |K(λ1 + · · ·+ λκ)|2

‖λ1‖d−α . . . ‖λκ‖d−α

+C
|K(λ1 + · · ·+ λκ)|2

‖λ1‖d−α−δ ‖λ2‖d−α−µ2δ . . . ‖λκ‖d−α−µκδ
.

Since the integrands are non-negative, we can estimate I4 as it is shown below

I4 ≤ κ
∫

R(κ−1)d

∫
||λ1||>rγ

|K(λ1 + · · ·+ λκ)|2 (Qr(λ1, . . . , λκ)− 1)
2

dλ1 . . . dλκ

‖λ1‖d−α . . . ‖λκ‖d−α

≤ C
∫

R(κ−1)d

∫
||λ1||>rγ

|K(λ1 + · · ·+ λ2)|2 dλ1 . . . dλκ

‖λ1‖d−α . . . ‖λκ‖d−α

+C
∑

µi∈{0,1,−1}
i∈1,κ

∫
R(κ−1)d

∫
||λ1||>rγ

|K(λ1 + · · ·+ λκ)|2dλ1 . . . dλκ

‖λ1‖d−α−δ ‖λ2‖d−α−µ2δ . . . ‖λκ‖d−α−µκδ

≤ C max
µi∈{0,1,−1}

i∈2,κ

∫
R(κ−1)d

∫
||λ1||>rγ

|K(λ1 + · · ·+ λκ)|2dλ1 . . . dλκ

‖λ1‖d−α−δ ‖λ2‖d−α−µ2δ . . . ‖λκ‖d−α−µκδ
. (5.8)

Replacing λ1 + λ2 by u we obtain

I4 ≤ C max
µi∈{0,1,−1}

i∈2,κ

∫
R(κ−1)d

∫
||λ1||>rγ

|K(u+ λ3 + · · ·+ λκ)|2

‖λ1‖d−α−δ ‖u− λ1‖d−α−µ2δ

× dλ1dudλ3 . . . dλκ

‖λ3‖d−α−µ3δ . . . ‖λκ‖d−α−µκδ
≤ C max

µi∈{0,1,−1}
i∈2,κ

∫
R(κ−1)d

1

‖u‖d−2α−(µ2+1)δ

× |K(u+ λ3 + · · ·+ λκ)|2

‖λ3‖d−α−µ3δ . . . ‖λκ‖d−α−µκδ

∫
‖λ1‖> rγ

‖u‖

dλ1dudλ3 . . . dλκ

‖λ1‖d−α−δ
∥∥∥ u
‖u‖ − λ1

∥∥∥d−α−µ2δ
.

Taking into account that for δ ∈ (0,min(α, d/κ− α))

sup
u∈Rd\{0}

∫
Rd

dλ1

‖λ1‖d−α−δ
∥∥∥ u
‖u‖ − λ1

∥∥∥d−α−µ2δ
≤ C,
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we obtain

I4 ≤ C max
µi∈{0,1,−1}

i∈3,κ

∫
R(κ−2)d

 max
µ2∈{0,1,−1}

∫
||u||≤rγ0

|K(u+ λ3 + · · ·+ λκ)|2

‖u‖d−2α−(µ2+1)δ

× dλ3 . . . dλκ

‖λ3‖d−α−µ3δ . . . ‖λκ‖d−α−µκδ

∫
||λ1||>rγ−γ0

dλ1du

‖λ1‖d−α−δ
∥∥∥ u
‖u‖ − λ1

∥∥∥d−α−µ2δ

+ max
µi∈{0,1,−1}

∫
||u||>rγ0

|K(u+ λ3 + · · ·+ λκ)|2dudλ3 . . . dλκ

‖u‖d−2α−(µ2+1)δ ‖λ3‖d−α−µ3δ . . . ‖λκ‖d−α−µκδ

 ,
where γ0 ∈ (0, γ).

By Lemma 3.2, there exists r0 > 0 such that for all r ≥ r0 the first summand is bounded by

C max
µ2∈{0,1,−1}

∫
||u||≤rγ0

|K(u+ λ3 + · · ·+ λκ)|2dudλ3 . . . dλκ

‖u‖d−2α−(µ2+1)δ ‖λ3‖d−α−µ3δ . . . ‖λκ‖d−α−µκδ

×
∫

||λ1||>rγ−γ0

dλ1

‖λ1‖2d−2α−δ−µ2δ
≤ Cr−(γ−γ0)(d−2α−2δ).

Therefore, for sufficiently large r,

I4 ≤ Cr−(γ−γ0)(d−2α−2δ)

+C max
µi∈{0,1,−1}

i∈3,κ

∫
R(κ−2)d

∫
||u||>rγ0

|K(u+ λ3 + · · ·+ λκ)|2dudλ3 . . . dλκ

‖u‖d−2α−2δ ‖λ3‖d−α−µ3δ . . . ‖λκ‖d−α−µκδ
.

Notice that the second summand here coincides with (5.8) if κ is replaced by κ− 1. Thus, we can repeat the
above procedure κ− 2 more times and get the result

I4 ≤ Cr−(γ−γ0)(d−2α−2δ) + · · ·+ Cr−(γκ−3−γκ−2)(d−κα−κδ) + C

∫
‖u‖>rγκ−2

|K(u)|2 du

‖u‖d−κα−κδ
, (5.9)

where γ > γ0 > γ1 > · · · > γκ−2.
Using integration formula for polar coordinates and estimate (2.2) we obtain

∫
‖u‖>rγκ−2

|K(u)|2 du

‖u‖d−κα−κδ
≤

∞∫
rγκ−2

td−1

∫
Sd−1(1)

|K(ωt)|2

td−κα−κδ
dωdt ≤ C

∞∫
rγκ−2

dt

td−κ(α+δ)

≤ C r−γκ−2(d−1−κ(α+δ)). (5.10)
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Now let us consider the case τ < 0. In this case by Theorem 1.5.6 from [4] for any δ > 0 we can estimate g(r)
as follows

g(r) ≤ C rτ+δ. (5.11)

Combining estimates (5.3), (5.4), (5.7), (5.9), (5.10),(5.11) we obtain

ρ

(
κ!Kr

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)
≤ C

(
r−

aα(d−1−κα)
(2+a)(d−1−(κ−1)α)

+δ +
(
r2τ+2δ + r−(γ−γ0)(d−2α−2δ)

+ · · ·+ r−(γκ−3−γκ−2)(d−κα−κδ) +r−γκ−2(d−1−κα−κδ)
) a

2

)
.

Therefore, for any κ̃1 ∈ (0,κ0) one can choose a sufficiently small δ > 0 such that

ρ

(
κ!Kr

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)
≤ Crδ

(
r−

aα(d−1−κα)
(2+a)(d−1−(κ−1)α) + raτ + r−

aκ̃1
2

)
≤ r−amin( α(d−1−κα)

(2+a)(d−1−(κ−1)α)
,−τ, κ̃1

2 ), (5.12)

where

κ0 := sup
1>γ>γ0>···>γκ−1=0

min ((γ − γ0)(d− 2α), . . . ,

(γκ−3 − γκ−2)(d− κα), (γκ−2 − γκ−1) (d− 1− κα)) .

Lemma 5.6. Let x = (x0, . . . , xn) ∈ Rn+1
+ be some fixed vector and Γ = {γ=(γ1, . . . , γn+1) |

b = γ0 > γ1 > · · · > γn+1 = 0}.
The function G(γ) = min

i
(γi − γi+1)xi reaches its maximum at γ̄ = (γ̄0, . . . , γ̄n+1) ∈ Γ such that for any

0 ≤ i ≤ n it holds

(γ̄i − γ̄i+1)xi = (γ̄i+1 − γ̄i+2)xi+1. (5.13)

Proof. Let us show that any deviation of γ from γ̄ leads to a smaller result. Consider a vector γ̂ such that for
some i ∈ 1, n and some ε > 0 the following relation is true

γ̂i − γ̂i+1 = γ̄i − γ̄i+1 + ε.

Since
n∑
i=0

γ̂i − γ̂i+1 = γ̂0 − γ̂n+1 = b we can conclude that there exist some j 6= i, j ∈ 1, n, and ε1 > 0 such that

γ̂j − γ̂j+1 = γ̄j − γ̄j+1 − ε1.
Obviously, in this case

G(γ̂) ≤ (γ̂j − γ̂j+1)xj = (γ̄j − γ̄j+1 − ε1)xj = (γ̄j − γ̄j+1)xj − ε1xj

Since ε1 > 0 and xj > 0 it follows from (5.13) that

G(γ̂) ≤ (γ̄j − γ̄j+1)xj − ε1xj < (γ̄j − γ̄j+1)xj = G(γ̄).
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So it’s clearly seen that any deviation from γ̄ will yield a smaller result.

Note, that for fixed γ ∈ (0, 1) by Lemma 5.6

sup
γ>γ0>···>γκ−1=0

min ((γ − γ0)(d− 2α), . . . , (γκ−3 − γκ−2)(d− κα), (γκ−2 − γκ−1) (d− κα))

=
γ

1
d−2α + · · ·+ 1

d−κα + 1
d−1−κα

and

sup
γ∈(0,1)

γ
1

d−2α + · · ·+ 1
d−κα + 1

d−1−κα
=

1
1

d−2α + · · ·+ 1
d−κα + 1

d−1−κα
.

Thus, κ0 = κ1 and from (5.12) the first statement of the theorem follows.
Now let us consider the case τ = 0. In this case by Theorem 1.5.6 [4] for any s > 0 and sufficiently large r

g(r) > r−s. (5.14)

By combining estimates (5.3), (5.4), (5.7), (5.9), (5.10) and using (5.14) to replace all powers of r by g2(r) we
obtain

ρ

(
κ!Kr

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)
≤ C

(
g2(r) + ga(r)

)
.

Since a ≤ 1, it follows that

ρ

(
κ!Kr

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)
≤ Cga(r).

This proves the second statement of the theorem.

Remark 5.7. For example, for g(x) = 1
ln(x) in Remark 2.11 we obtain

ρ

(
κ!Kr

Cκ rd−1−κα2 L
κ
2 (r)

, Xκ(∆)

)
≤ C ln−

1
κ (r).

Let us study how the upper bounds in the rate of convergence perform depending on their parameters. When
τ = 0 it is quite straightforward to see that for g(r) close to 0 the upper bound decreases as κ increases.

For the case τ < 0, let us investigate the upper bound of κ as a function of α.

κ < amin

(
α(d− 1− κα)

(2 + a)(d− 1− (κ− 1)α)
,−τ, κ1

κ

)
= amin

(
1/(2 + a)

1
α + 1

d−1−κα
,−τ, κ1

2

)
.

Since κ1 > 0, it is obvious that if α→ 0 or α→ d−1
κ the upper bound decreases to 0. Thus, as expected, for

these values of α our estimate does not provide a good rate of convergence.
Let us compare

1/(2 + a)
1
α + 1

d−1−κα
and

1/2
1

d−2α + · · ·+ 1
d−κα + 1

d−1−κα
. (5.15)



338 A. OLENKO AND V. VASKOVYCH

Notice, that 1
α is a decreasing function of α, but 1

d−2α + · · ·+ 1
d−κα is an increasing function of α on (0, d−1

κ ).

Also, for α→ d−1
κ we get 1

α →
κ
d−1 , and

1

d− 2α
+ · · ·+ 1

d− κα
→ 1

(d− 1)(1− 2
κ ) + 1

+ · · ·+ 1

(d− 1)(1− κ
κ ) + 1

.

Thus, if

κ(2 + a)

d− 1
≥ 2

(d− 1)(1− 2
κ ) + 1

+ · · ·+ 2

(d− 1)(1− κ
κ ) + 1

, (5.16)

then the first term in (5.15) is always smaller than the second one and

argmin
α∈(0, d−1

κ )

(
1

α
+

1

d− 1− κα

)
=

d− 1

κ+
√
κ

provides the best possible bound

κ < amin

(
d− 1

(2 + a) (1 +
√
κ)

2 ,−τ

)
. (5.17)

Example 5.8. For κ = 2 the inequality (5.16) becomes 2+a
d−1 ≥ 1 which holds true for d = 2 and 3. Therefore,

in these cases one can use the upper bound (5.17) for κ.
However, for other cases of d and κ the first term in (5.15) is not always smaller than the second one. For

example, for κ = 2, d = 39 and α? = 18 < d−1
κ = 19 it holds

1/3
1
α? + 1

38−2α?

=
1/2

1
39−2α? + 1

38−2α?

.

In such cases (5.15) requires additional investigations.

Appendix A. Kolmogorov’s distance between two multiple
Wiener-Itô integrals

Lemma A.1. Let Iκ(f1) and Iκ(f2) be two Wiener-Itò integrals of order κ, and f1, f2 be symmetric functions
in L2(Rd), d ≥ 1. Then,

ρ (Iκ(f1), Iκ(f2)) ≤ C‖f1 − f2‖
1

κ+1/2 , if κ ≥ 3,

and

ρ (Iκ(f1), Iκ(f2)) ≤ C‖f1 − f2‖
2
3 , if κ < 3.

Proof. By applying Lemma 2.17 to X = Iκ(f2), Y = Iκ(f1)− Iκ(f2), and Z = Iκ(f2) we obtain

ρ (Iκ(f1), Iκ(f2)) ≤ ρ (Iκ(f2) + ε, Iκ(f2)) + P {|Iκ(f1)− Iκ(f2)| ≥ ε} .
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Using Theorem 5.1 we get

ρ (Iκ(f1), Iκ(f2)) ≤ Cεa + P {|Iκ(f1)− Iκ(f2)| ≥ ε}

≤ Cεa + ε−2Var (Iκ(f1)− Iκ(f2)) ≤ C
(
εa + ε−2‖f1 − f2‖2

)
,

where a is defined in Theorem 5.1. By choosing ε = ‖f1 − f2‖β we get

ρ (Iκ(f1), Iκ(f2)) ≤ C
(
‖f1 − f2‖βa + ‖f1 − f2‖2−2β

)
.

Since sup
β

min(aβ, 2− 2β) = 2a
2+a , we have

ρ (Iκ(f1), Iκ(f2)) ≤ C‖f1 − f2‖
2a

2+a .

Note, that a = 1 when κ < 3, thus

ρ (Iκ(f1), Iκ(f2)) ≤ C‖f1 − f2‖
2
3 , κ = 1, 2.

Furthermore, in the case of general κ, a = 1/κ and therefore

ρ (Iκ(f1), Iκ(f2)) ≤ C‖f1 − f2‖
2/κ

2+1/κ = C‖f1 − f2‖
1

κ+1/2 .
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