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NON-CENTRAL LIMIT THEOREMS FOR FUNCTIONALS
OF RANDOM FIELDS ON HYPERSURFACES

ANDRIY OLENKO® AND VOLODYMYR VASKOVYCH

Abstract. This paper derives non-central asymptotic results for non-linear integral functionals of
homogeneous isotropic Gaussian random fields defined on hypersurfaces in R%. We obtain the rate of
convergence for these functionals. The results extend recent findings for solid figures. We apply the
obtained results to the case of sojourn measures and demonstrate different limit situations.
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1. INTRODUCTION

In this article we study real-valued homogeneous isotropic Gaussian random fields with long-range depen-
dence. Long-range dependence is a well-established empirical phenomenon which appears in various fields, such
as physics, hydrology, signal processing, network traffic analysis, telecommunications, finance, econometrics,
just to name a few. See [11, 15, 33] for more details.

Various functionals of random fields have been a topic of interest in recent years, see, for example,
[3, 20, 24, 26]. In this research, we focus on non-linear integral functionals of Gaussian random fields defined
on hypersurface sets. These functionals play an important role in various fields, for example, in cosmology,
meteorology and image analysis. It was shown, see [10, 31, 32], that these functionals can produce non-Gaussian
limits and require normalizing coefficients different from those in central limit theorems. For the more detailed
overview of the problem, history of development, various approaches and existing results one can refer to [2]
and references therein.

In this research we use results from [2, 6, 18] and obtain analogous asymptotics for the case of hypersurfaces.
Most of the research conducted in this area considered only random fields defined on solid figures. Limit distribu-
tions for the functionals on spheres, which are a particular case of hypersurfaces, were studied in [15]. However,
there were no results about the rate of convergence for the case of hypersurfaces. In this article we consider
a general case of hypersurface sets. We are interested in both limit distributions, and rates of convergence to
these limits. We prove that, analogously to the solid figure situation, the limit distribution is a Hermite-type
distribution and it depends only on the Hermite rank of the integrands. However, while for all integrands with
the same Hermite rank the limit distribution remains the same, we demonstrate that the rate of convergence
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can be different. To prove the results we need some fine geometric properties of hypersurfaces. Specifically, we
use the rates of the average decay of the Fourier transform of surface measures, see [12, 13].

Geometric properties of random fields on hypersurfaces are of interest in many applied areas, such as medical
imaging, meteorology, and astrophysics. Many of these properties can be studied by the use of sojourn measures.
Extensive literature is available concerning this topic, for some examples see [1, 6, 22, 25]. Recently, non-Gaussian
limits for the first Minkowski functional of random fields defined on 3-dimensional spheres were discussed in [19].
In this article we obtain limits for sojourn measures of random fields defined on arbitrary hypersurfaces. We
provide examples when these limits are Gaussian and Hermite-type of the rank 2, 3, and 4.

Various authors, see [9, 23, 35] and the references therein, studied a distance between two Wiener-Ito integrals
of the same rank. These results can be used to estimate the rate of convergence when the integrands are Hermite
polynomials of Gaussian random fields. We estimate the Kolmogorov’s distance between two Wiener-Ito integrals
of the same rank and provide a small comparison of the existing results.

The article is organized as follows. In Section 2 we recall some basic definitions and assumptions that are
required to present our main results. Section 3 studies the asymptotic behavior of the considered functionals.
Section 4 demonstrates how results from Section 3 can be applied in the case of sojourn measures. Section 5
provides the results on the rate of convergence.

2. DEFINITIONS AND ASSUMPTIONS

In this section we provide main definitions and assumptions that are used in this work.

In what follows |- | and || - || denote the Lebesgue measure and the Euclidean distance in R?, d > 2, respectively.
Let B(y, s) be a d-dimensional ball with centre y and radius s, and let Sq_1(r) be a sphere in R? with the radius
r. We use the symbols C' and § to denote constants which are not important for our exposition. Moreover, the
same symbol may be used for different constants appearing in the same proof.

Let A be a bounded set in R?, d > 2. Let A(r), 7 > 0, be the homothetic image of the set A with the centre
of homothety at the origin and the coefficient > 0, that is |A(r)| = 7¢|A|. We denote boundaries of sets A
and A(r) as A and OA(r) correspondingly. Let OA be an Ahlfors-David regular hypersurface in R?. One can
find more information about Ahlfors-David regular sets in [29] and references therein.

Definition 2.1. [29] A closed hypersurface OA is called Ahlfors-David regular if there exists a constant C' such
that for any y € 0A and s > 0

15?7t < / do(z) < Os71, (2.1)
OANB(y,s)
where do(+) is the d — 1-dimensional Lebesgue measure on the hypersurface set.

Remark 2.2. Any manifold in R? (i.e. a topological space with each point having a neighborhood that is
topologically equal to the open unit ball in R4~1) is Ahlfors-David regular.

Remark 2.3. The reason that only Ahlfors-David regular hypersurfaces are considered is to ensure that the
surface area of the studied hypersurfaces cangnot increase “too” fast.

Let A be a convex set, a polyhedron, or have a smooth boundary. Let
K(x) = /ei<”’77“>da(u)7 r € RY
oA

be the Fourier transform of the constant function equals 1 over the hypersurface 9A. The limit random variables
in this paper are presented as multiple Wiener-1t6 stochastic integrals with /C(+) as their kernel.
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In [12, 13] the rate of convergence was given for the average decay of the Fourier transforms K(+)

IK(wr)?dw < Cr @+, (2.2)

Sa—1(1)

In the discussion authors even hypothesized that this result should also hold for Lipschitz boundaries of compact
sets, which is a much weaker condition.

The proof of the main results of our paper also remains valid for other hypersurfaces satisfying conditions
(2.1) and (2.2).

We consider a measurable mean-square continuous zero-mean homogeneous isotropic real-valued random
field, see [15], n(x), = € R%, defined on a probability space (€2, F, P). By a classical result, see, for example,
(1.2.4) in [15], the covariance function of such random field can be written as

B(r) i= Cov (n(a),n(w) = [ Ya(r2)d(), oy € B,
0
where r := ||z — y||, ®(-) is the isotropic spectral measure, the function Yy(-) is defined by
d
Yy(z) := 21722 <2) J—z)2(2) 2272 2 >0,

and J(q_2)/2(-) is the Bessel function of the first kind of order (d —2)/2.
Definition 2.4. The random field n(x), z € R%, defined above is said to possess an absolutely continuous
spectrum if there exists a positive function f(-) such that

®(z) = 202071 (d/2) / wl  f(u)du, 2>0, ullf(u) e Li(Ry),
0

where I'() is the Gamma function.
The function f(-) is called the isotropic spectral density function of the field n(z). The field n(z) with an
absolutely continuous spectrum has the isonormal spectral representation

) = [ =TT,

where W(-) is the complex Gaussian white noise random measure on R%.

Let U and V be two independent and uniformly distributed on the hypersurface OA(r) random vectors.
We denote by 1ay(p), p > 0, the pdf of the distance ||U — V|| between U and V. Note that ¢ay(p) = 0 if
p > diam {A(r)} . Using the above notations, we obtain the representation

[ [ 6=l dota)asty) = oaf =28 (v - vi)
OA(r) OA(r)

2 99 diam{A(r)}
~ loaf e | Glp) gy (p)dp. (2.3)
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Remark 2.5. [15] If OA(r) = Sq_1(r), then

1 (d\ ey (d=1\ |, 4 2\ 7
¢A(7)(p)ﬁr(2>rl<2>rl dpd2(14u2) 7O<p<27’

Let Hi(u), k > 0, u € R, be the “probabilists” Hermite polynomials, see [27]. These polynomials form a
complete orthogonal system in the Hilbert space

1 w?

La(R, g(w) { [ 6o dw<oo} o) i= =%

An arbitrary function G(w) € La(R, ¢(w) dw) admits the mean-square convergent expansion

G(w) :ZM, C; ::/RG(w)Hj(w)rj)(w)dw.

=

By Parseval’s identity

o0 CQ /G2

Definition 2.6. [31] Let G(w) € L2(R, ¢(w) dw) and assume there exists an integer x € N such that C; = 0,
for all 0 < j <k —1, but Cx # 0. Then k is called the Hermite rank of G(-) and is denoted by Hrank G.

We investigate the random variables

= [ Gae)iot) wd K= S [ )0,

AA(r) OA(r)

where C is the kth coefficient of the Hermite series of the function G(-).

Remark 2.7. If (&1, ...,&2,) is a 2p-dimensional zero-mean Gaussian vector with

1, ifk=j
E¢é=qr;, ifk=j+pand1<j<p,

0, otherwise,

then
E HHk (&) Hom, (&4p) = Hé”“k'rj,
j=1

where 6} is the Kronecker symbol.

If G(w) € La(RP, ¢(|lw||) dw) and EG(n(z)) = 0 then the integral functional K, can be represented as

K= G [ oo

= DA(r)
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Therefore EK,. = 0 and by Remark 2.7 the variance is equal
> C? ,
VarK, =) 7{ / B (|| — y|))do(x)do(y). (2.4)
j=1

- OA(r) OA(r)

Definition 2.8. [4] A measurable function L : (0,00) — (0, 00) is said to be slowly varying at infinity if for all
t>0,

lim w =1.

A—00 L()\)

By the representation theorem ([4], Thm. 1.3.1), there exists C' > 0 such that for all » > C' the function L(-)
can be written in the form

L(r) = exp (Cl (r)+ / Ca(w) du) :
e} u
where (31(-) and (»(+) are measurable and bounded functions such that {>(r) — 0 and (;(r) — Cy (|Co| < o0),
when r — oo.
If L(-) varies slowly, then r*L(r) — oo, r=*L(r) — 0 for an arbitrary a > 0 when r — oo, see Proposition
1.3.6 [4].

Definition 2.9. [4] A measurable function g : (0,00) — (0, 00) is said to be regularly varying at infinity, denoted
g(+) € R, if there exists 7 such that, for all ¢ > 0, it holds that

ogAt)
A oy T

Definition 2.10. [4] Let g : (0,00) — (0,00) be a measurable function and g(z) — 0 as z — co. A slowly
varying function L(+) is said to be slowly varying with remainder of type 2, or that it belongs to the class SR2,
if

L(Ax)
L(x)

VA>1: —1~EkNg(z), z— oo,

for some function k(-).
If there exists A such that k(\) # 0 and k(Au) # k(p) for all p, then g(-) € R, for some 7 <0 and k(A\) =
ch-(X), where

In(A if 7=
he(X) = { S (2.5)

Remark 2.11. An example of a function that satisfies Definition 2.10 for 7 = 0 is L(z) = In(z). Indeed,
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Assumption 2.12. Let n(x), z € R be a homogeneous isotropic Gaussian random field with En(z) = 0 and
a covariance function B(z) such that

B(0) =1, B(x)=EnO)n(z) = [lz[I™* Lo(llz]),

where Lo(||-||) is a function slowly varying at infinity.

For o € (0,(d — 1)/k), k > 1, the covariance functions of random fields satisfying Assumption 2.12 are non-
integrable. Therefore, such random fields are long-range dependent.

Assumption 2.13. The random field 7(z), x € R?, has the spectral density

ﬂMM—@waMMH”LQ&Q, (2.6)

where

r(%52)
ca(d, @) = m;

and L(||-]]) is a locally bounded function which is slowly varying at infinity and satisfies for sufficiently large r
the condition

h < Cylrha(t), t> 1, (2.7)

where g(-) € R;,7 <0, such that g(z) — 0,  — oo, and h,(¢) is defined by (2.5).

Remark 2.14. By Tauberian and Abelian theorems, see [17], for Lo(-) and L(-) given in Assumptions 2.12 and
2.13 it holds Lo(r) ~ L(r), r — +o0.

Remark 2.15. [2] If L satisfies (2.7), then for any k € N, § > 0, and sufficiently large r

LF/2(tr)

- < O t>1.
L0y | S Cyg(r)h-(t)t°, t > 1

:

Definition 2.16. Let Y7 and Y5 be arbitrary random variables. The uniform (Kolmogorov) metric for the
distributions of Y7 and Y5 is defined by the formula

p(V1.¥2) =sup| P (¥i < ) = P (¥, < 7).
z€

The next result follows from Lemma 1.8 [28].
Lemma 2.17. If X|Y and Z are arbitrary random variables, then for any e > 0

p(X+Y,2)<p(X,2)+p(Z+e,Z)+P(|Y|>¢).

3. RESULTS ON THE ASYMPTOTIC BEHAVIOR

In this section we are interested in the asymptotic distribution of the random variable K, =

| G(n(z))do(x). First, we prove Theorem 3.1, which is an analogue of the so called reduction theorem,
OA(r)
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see Theorem 4 in [18], in the case of hypersurface integrals. Using this result, in Theorem 3.3 we derive normal-
izing coeflicients and limit distributions of the random variable K, that depend on the Hermite rank  of the
function G(-).

Theorem 3.1. Suppose that Hrank G = k € N and n(z), © € R?, satisfies Assumption 2.12 for a € (0, (d —
1)/k). If at least one of the following random variables

Kr Kr Kr,n

and

VVar K, /Var K, \/ Var K,w’

has a limit distribution, then the limit distributions of the other random wvariables also exist and they coincide
when r — 0.

Proof. Let

V= Y S [ @),

I
then by Remark 2.7
Var K, = Var K, , + Var V..

By (2.3) and (2.4)

Cg —ak 1K
Var ko =5 [ [ o=l L (e ) dofe)doty

OA(r) OA(r)

) CQ diam{A}
= |0A|*r? *2*"‘”&—': / 27 LE (rz) Ya(z)dz.
0

If « € (0,(d — 1)/k) then by asymptotic properties of integrals of slowly varying functions (see [30], Thm.
2.7) we get

2
Var K, ,, = c1(k, a, A) |8A|2C—’: p2A=2=re R () (14 0(1)), 7 — oo,
k!

where

diam{A}
c1(k,a,A) = / 27 ha(2)dz.

Similar to Var K., we obtain

r-diam{A}

VarV, = [0A[*r?772 Z
j>k+1

Cc? o
7{ / 27V (2) YAy (2)dz.
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It follows from z~“L (z) € [0, 1], z > 0, that

diam{A}
2
Var V;" < |8A|2r2d—2—(n+1)a Z 7{ Z—a(n-l—l)Lngl (TZ) ’Q/JA(Z)dZ
jZr+1 J: 0
diam{A}

c? .
— |8A|2T‘2d727'€aLS(T) Z J / Lok LO (TZ) LO (TZ) 1/)A(Z)d2
0

Rl L5 (rz)

Let us split the above integral into two parts I; and I, with the ranges of integration [0,77 7] and
(r=P,diam {A}] respectively, where 3 € (0, 1).
As z7%Ly (2) € [0,1], z > 0, we can estimate the first integral as follows

r=f r=A

—an LG (12) SUPg<s<1-5 5° L (5) _
I < ak 0 < <s< (6+ak)
s [y v = BRI [ s

-8

) 6/kL KT
SUPp<s<r 0 (S) / —(6+ak)
< == an dz. 1
= ( /K Lo (r) ) / z Ya(z)dz (3.1)

By Theorem 1.5.3 [4] and the definition of slowly varying functions

. SUPp<s<r s9/% Ly (s)
lim

=1
r—00 Té/kLo(’I“)

By (2.3) we can rewrite the integral in (3.1) as follows

r—#

[ erna@z =108 [ [ e = ol <77z " dote) doty)

0 8A OA

< oA / max / x(lz =yl <P e =y 7 do(z) | do(y)
oA A

= [0A[™" max / X(lz =yl <7 P)[lz =y~ do(x)
A

oA | [ eyl dofa)

OANB(y,r=F)
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Since OA is Ahlfors-David regular, applying upper-bound from (2.1) we get

o=y~ do(a) = / o =yl do(a)

0ANB(y,r—#) =09An[B(y,r~#2-1)\B(y,r~#2-i-1]

< Z TB(5+OLN)2(7L+1)(6+04/$) dO’(I’) < Zrﬁ(5+an)2(i+1)(5+am)

=09AN[B(y,r—B2- )\ B(y,r—A2—i-1] i=0

~ / dO’((E) < CrB0+ar) Z 9(i+1)(5+ak),.—B(d—1)g—i(d—1)
OANB(y,r—B2-1) =0

Stak
_ o2t - Bld—(1+6+ar))
1 — 9—(d—(1+o+ar))

Thus, we have

B

/ 2= OFam)y\ (2)dz < Op~Ald=(1+d+ar) (3.2)
0

For the second integral we obtain

Srr diam{A}
Suprl—ffgsgr-diam{A} $ Ly (S) . sup LO (S) Zi(dJran)wA(z)dz.

§
r LS(T) ri=8<s<r-diam{A} 5

I, <

Using Theorem 1.5.3 [4] we conclude that

lim SUPr1-8<s<r-diam{A} SéLS (S) < lim SUPo<s<r-diam{A} SéLS (S)
ro0 rOLE(r) = r—oo (r-diam {A})OL5(r - diam {A})

jam® {A} LE(r - di A
x lim diam” {A} L (r - diam {A}) = diam® {A} .
= Z50)
By Proposition 1.3.6 and Theorem 1.5.3 [4] it follows that

su Lo(s) _ sWPszri-s 5 "Lo(s) Lo (") 5 a)a-p)
rlfﬂgsgr;c)liam{A} s@ T pral=f[, (Tl_ﬁ) ré(1-8)

— o(rF=e)(1=B)). (3.3)
We can choose 8 = 1/2 and make ¢ arbitrary close to 0. Then by (3.2), (3.3) we obtain

VarV, 0 FEET Var K, 1
im = n im ——— =1.
r—oo Var K, & r—oo Var K, ,;
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Thus
2 VarK. 2
. Kr KT.K, . E (V;‘ + (1 - VarKrT,i> KT’K)
lim E — : = lim =0,
r—00 VVar K, /Var K, r—00 VarK,
and
2 VarK. 2
. K, K, . . E (V;" VarK7.TN)
lim E — 2 = lim =0
r—00 V/Var K,,, /Var K, r—o0 VarK,
which completes the proof. O

Lemma 3.2. If 1,..., 7, k > 1, are such positive constants, that > %, 7, < d—1, then

dhp...d\.
(AL + - )2 - — < oo0. (3.4)
/ AL AT

Proof. For k =1 we get d — 71 > 1. Using integration formula for polar coordinates, and the fact that [K(A)| <
|OA] for all A € RY we get

i 2 ? 2
/| 2 — — /,r,dfl / |]CSUT')| dewdr = /Td71 / |ICSUT)| dewdr
iy i i

Sa—1(1) 0 Sa_1(1)

7 1 7 2
+/rd*1 / “CS‘”’)' dwdr < |6A\2/ dr +/rd*1 / WD gar
ré—T rd—m1 ré—T1

To Sdfl(l) 0 To Sdfl(l)

By (2.2) we obtain

Tod
/| 2/\d7'17‘ |2/TT+C/
Al /

To

To

—d+1
dr—\8A|2/ — +c/ —

For k > 1 we can obtain (3.4) by the recursive estimation routine and the change of variables Aeo1 =

As—1/lull -

KA +- 2dAy .. d),
A d—T A d1 7, =|u= o1+ As| = / |/C(>\1+~~+)\,{_2+u)|2
|A1|| e Al
RA(x—1)
% / d/\N,1 ) d)\l N d)\H,Q du
It 77 = X 77 AT AT
_ KA1+ -+ 4 Aoz + 1) |2dAy .. d Ao dA._1du
- d—71 d—Tr—2 d—Trk—1—Tk - d—Tr—1 u - d—Tx
I P e PR e E TR TP S
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d)\l N d)\,{,g du
d— d— K— d— K—1""Tk
AT A7 T

<C / |’C()\1+--~+)\,¢72+U)|2

Rd(k—1)

C’/| ‘||dztl7-l<oo. O

The following theorem presents asymptotics of non-linear functionals of long-range dependent random fields
observed on hypersurfaces in terms of multiple stochastic Wiener-It6 integrals. For properties of these integrals
one can refer to [21].

Theorem 3.3. Let n(x), v € R%, be a homogeneous isotropic Gaussian random field with En(x) = 0. If
Assumptions 2.12 and 2.13 hold, a € (0,(d —1)/k), and Hrank G = k € N, then for r — oo the random variable

X (&) s= 21520 [ Gn(a)) doa)
OA(r)
converge weakly to

W(dA;) ... W(d\.)
N N R

I
Xo(8) 1= 5 (d,a) [0+ 0

where f/ denotes the multiple stochastic Wiener-Ité integral.
Rdr

Remark 3.4. Note, that from the following proof it is clear that it is sufficient to use only (2.6) instead of
Assumption 2.13.

Proof. Using It6 formula (2.3.1) in [16] we obtain

/ H,:(n(z) / / <At “m”]‘[ FUNIDW (A ... W (dA,)do(z).
OA(T) r) Rdrs

As TT V/f(IAj]) € La(R9%) then a stochastic Fubini theorem, see Theorem 5.13.1 in [27], can be used to
=1

interchange the integrals which results in

KA+ 4+ 2)Qr (A1, .., X)W (dAy) ... W (dA,)
Xn,r(A / |)\1” d-ay/z ”)\E”(dfa)/z ) (3.6)
where
1/2
_ _ w £ Cu s
Qr()\l,- C Ag) = prla=d)/2 K/Q(r) Cy /2(d7 a) H H)\j”d f (H TJH) ) (3.7)

Jj=1
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By the isometry property of multiple stochastic integrals

E|X,(A) - (A 2(Qr(A1y- oy M) — 1)
R, = EXer(B) /"C b PR AL A 2
C2(d @) ||/\1|| Al
Using (2.6) and properties of slowly varying functions we conclude that Q,(A1,...,\,) converges pointwise

to 1, when 7 — oo. Hence, by Lebesgue’s dominated convergence theorem the integral converges to zero if there
is some integrable function which dominates integrands for all r.
Let us split R% into the regions

B = {(M, - As) ER¥ N < 1, if gy = —1, and ||Nj|] > 1, if gy = 1,5 = 1,..., s},
where = (1, ..., ptrs) € {—1,1}" is a binary vector of length k. Then we can represent the integral R, as

dA;...d)\,
d—a d—a’
AL [ A

R, /|/C Mt AP Qe A) = 1)°

If (A1,...,A\x) € B, we estimate the integrand as follows

KL+ -+ AP (@Qr (- A) = 1) 2[K AL+ + A
(BT K W I DYy P K

(Q2(M\,... A) +1)

2[K( A f[IIAjH” ﬁ(f)ujéL(n;n)

+1
d—a« d—a S
AL [ A rhs®L(r)

j=1 j=1

njé -
2|IC()\1+ )2 1+ﬁ”)\1”m6_ ﬁ (H/\J‘”) L(”’\J‘H)

sup -
||A ||d a ||)\ ||d « i ()\1,---,>\~)€Buj:1 T‘FLJ(;L(T) )

where 4 is an arbitrary positive number. By Theorem 1.5.3 [4]

-5
Y (vin) 2 (kn) i Sz 2L (2)
r—00 7‘—5[/(7“) T oo r—‘sL(r)

s
SUP I 1>1 (IIA ||) L( ) L 2L (2)
r—00 T‘SL ) r—00 r5L(r)

=1

Therefore, there exists 7o > 0 such that for all » > r¢ and (A, ..., A\s) € B,

O+ 4 AP Qe -, M) — 1)° 2|IC(>\1+ A
A A H>\1||d RERRY PV

KL+ -+ X2
(R e W L
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By Lemma 3.2, if we chose ¢ € (0,min(«,(d —1)/k —«)), the upper bound in (3.8) is an inte-
grable function on each B, and hence on RY too. By Lebesgue’s dominated convergence theorem
lim, 00 E | X, (A) — X,.(A)]* = 0, which completes the proof. O

4. APPLICATION TO SOJOURN MEASURES

An important example of Theorem 3.3 is sojourn measures of random fields defined on hypersurfaces,
see [1, 19]. Namely, consider an application of Theorem 3.3 to the functionals

/ X(S(n(x)) > bdo(z),
AA(r)

where S : R — R is a function such that the set {¢t: S(¢) > b} can be represented as a finite union of intervals
(t1,t2), —00 < t1 < to < +o0. Examples of the function S(-) are polynomials or other smooth functions having
finite number of zeros.

Remark 4.1. As particular cases, this construction includes [ x(n(z) > b)do(z) and [ x(n(z)| >

Sa-1(r) Sa_1(r)
b)do(x) considered in [15].

N
As for some N > 1 it holds {¢: S(¢t) > b} = U (ti,tix+1), where the intervals (¢;,t;+1) are disjoint, we have
i=1
to study

N

/ X <77(I) € U(tivtwl)) do(z) =) / x (n(z) € (ti,tit1)) do(z).
OA(r) =1 =laa()

Note, that the indicator function x(w > t), w,t € R, can be expanded in the Hermite series as

>, )V H;(w)

Xw>1t) =Y

. )
=7

where

o _ ) 1= @), j=0,
! p(t)Hj-1(t), j=>1,

and ®(-) and ¢(-) are the cdf and pdf for A/(0, 1) respectively.
Then,

X (W€ (tirtit1)) = x (w>1t) — X (w>tig1) = S(tiy1) — D(t:)

5 o) Hj(t:) — ?!(ti“)Hjl(tHl)Hj(w)a

where ¢(+o00) = 0.
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Hence,

N

N
DX € (tistin)) = D (B(tirr) — B(t:)
i=1 =1
N Z Z o(ti)Hj—1(t:) — ?!(tHl)Hj—l(ti-&-l) H,(w).

Therefore, the Hermite rank of the function x(S(x) > b) is such j* > 1 that it is the smallest number for
which

N
Cin = Z¢(ti)Hj*—1(ti) — ¢(tigr)Hj—1(tip1) #0.
N
Theorem 4.2. Let j* =min{j € N: > ¢(t;)Hj—1(t;) — ¢(tix1)Hj—1(tiv1) # 0}. Then, under assumptions of
i=1
Theorem 3.3

X (A) = k) /2dHL L=/ / X(8(n(z)) > b) do(z)
OA(T)

converges to <2 X, (A), where X,.(A) is given by (3.5), and r = j*.

k!

Example 4.3. Let us study [ x(n'(z) > b)do(x). If [ is odd, then x (w' >b) =y (w > bl/l) . In this case
OA(r)
C1p = ¢(b*") # 0 and the asymptotic is given by ¢(b'/")X;(A) which has a Gaussian distribution.
If [ is even, then for b > 0 it holds X(wl > b) =X (w > bl/l) +X(w < fbl/l) =1 fx(fbl/l <w < bl/l) . In
this case, Oy = ¢(—b'/!) — ¢(b'/!) = 0. However, for j = 2 we obtain

Cop = ¢(_bl/l)(_b1/l) _ ¢(bl/l)b1/l _ —2b1/l¢(b1/l) £ 0.

Therefore, the asymptotic is the Rosenblatt-type distribution of —b'/ ¢ (b*/!) X5(A).

Example 4.4. Now, let us study [ x(S(n(z)) > 0)do(x), where S(z) = —z® + b*z and b = (2 1n(2))1/2.
AOA(r)
Since

[ xst@) > 0da@) = [ o) € (~e,-) U O.5) doo)

AA(T) OA(r)

we can compute coefficients C; 5 as follows

Crp = —¢(=b)Ho(=b) + ¢(0)Ho(0) — d(b) Ho(b) = #(0) — 26(b) = 0,

Cap = =¢(=b)H1(=b) + ¢(0)H1(0) — ¢(b) H1(b) = b(=b) — b (=b) = 0,
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Csp = —¢(=b) Ha(~b) + ¢(0)H2(0) — $(b) H2(b) = —(~b)(b* — 1)

—6(0) = d(=b)(b* — 1) = —4(0) — $(0)(b* — 1) = —b%¢(0) # 0,
because b = (2 111(2))1/2 .
Thus, in this case the limit distribution has H rank = 3.
Example 4.5. In this example we show how to obtain the Hermite limit distribution with Hrank = 4.
Lemma 4.6. For each p € (0,1) there exist ¢ > 1, such that pp(p) = qp(q).

Proof. Note that (z¢(z)) = ¢(z) — 22¢(x) = ¢(x)(1 — 2?). Thus, x¢(z) is an increasing function on (0,1) and
it is decreasing on (1,00). As x¢(x) = 0 for £ = 0 and = = 400, then 0 < po(p) < ¢(1). Because xp(x) is a
continuous function there is ¢ > 1 such that po(p) = qé(q). O

Note, that po(p) = qo(q), p,q > 0 is equivalent to p?¢*(p) = ¢>¢*(q), i-e. q is a positive solution of the
equation

_n2 a2
—pleP = —¢?e 7.

Thus, ¢ = \/ —LambertW_; ( %22), where lambertW_;(+) is the branch of LambertW function satisfying

LambertW(x) < —1, —1/e < & < 0, see [7].
Let S(z) = —(2* — p*)(2? — ¢*). Then, {z € R: S(z) > 0} = (—¢,—p) U (p, ).
Let us compute the coefficient C} o.

Cro = ¢(=q) — ¢(=p) + é(p) — d(q) =0,

Ca0 = ¢(=q)(—q) — ¢(=p)(=p) + o(p)p — ¢(q)q = 2(¢(p)p — d(q)q) = 0,
C30 = 0(=q)(@* = 1) = o(=p)(P* = 1) + ¢(p) (P* — 1) — #(q)(¢* — 1) = 0,
Ca0 = 0(=q) (=4’ + 3q) — ¢(=p)(=p” + 3p) + &(p) (1° — 3p) — H(9)(¢* — 3q)
= ¢(=0)(=¢") — ¢(=p)(=p°) + 6(p)P* — 6(a)a® = 2(¢(p)p” — ¥(a)g°)

< 2¢*(¢(p)p — (q)q) = 0.

Therefore, Cy 9 # 0 and the asymptotic of [ x(S(n(z)) > 0)do(xz) when r — oo is the random variable
OA(r)

CL X4 (A).

4!
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5. RATE OF CONVERGENCE

In this section we investigate rates of convergence of random variables K, and K, , to their asymptotic
distribution derived in Theorem 3.3. For readability we will denote Wiener-It6 integrals of rank s by I.(f),
where f(-) is an integrand. For more details about Wiener-It6 integrals and properties of function f(-) one can
refer to [14, 21]. To obtain rates of convergence we will use some fine properties of Hermite-type distributions.
The following result was obtained in [2] for X;(A). Since the proof does not rely on the specific form of X,;(A),
this theorem can be easily generalized as follows

Theorem 5.1. [2] For any x € N and an arbitrary positive ¢ it holds

p(L@(f%L{(f) + E) < Ce?,

wherea=1if Kk <3 and a = 1/k if Kk > 3.

The corollary of Theorem 3.1 is that the limit distribution of the functional K, does not depend on the “tail”
V, in the Hermite expansion of the function G(r). However, in this section we will show that although V; does
not affect the limit distribution it does affect the rate of convergence.

First, let us consider the case where G(-) = %HH() Then, V;, = 0 and the Hermite rank of G(-) is k. We
are interested in

k! K,
P <C,§ ,rdl'“”zo"Lg(,,,)7Xﬁ(A)> =p (XH,T(A)aXR(A)) .

By (3.6)

)

/

k)2 KA+ -+ 2)Qr (A1, ., X)W (dAL) ... IV (dAg)

Xir(A) = cy (d,a)/ A ||(d—o¢)/2“'||>\ ”(d—a)/z ’
Rdx 1 K

where Q(-) is defined by (3.7). Therefore, p (X, »(A), X (A)) is the Kolmogorov’s distance between two multiple
Wiener-It6 integrals of the rank k.
For the total variation distance prvy (-) it was stated in [9] that

prv (In(f1), In(f2)) < Cllf1 — foll = (5.1)

This result holds in our case since the Kolmogorov’s distance can be estimated by the total variation distance
(for any random variables £ and 7 it holds p(£§,m) < prv(&,n)). In [9], only a sketch proof was provided, but in
recent papers [8, 34] this result was fully proven.

Recently, for the case of kK = 2, it was shown in [35] that prv (I2(f1), I2(f2)) < C||f1 — f2|. This result is
an obvious improvement of the existing results and can be combined with (5.1) to further sharpen our upper
bound to become

prv (Ls(f1), 1s(f2)) < Clfr = fal% (5.2)

where a is the parameter from Theorem 5.1.

However, it is not obvious how the methods in [35] can be used to obtain similar results for an arbitrary « as
they heavily rely on the Chi-square expansion of the second order Wiener-Ito integrals, which is not available
for k > 2.

The results in [8, 34, 35] were obtained by using rather complex approaches. For the Kolmogorov distance
Lemma A.1 proves that p (L(f1), Is(f2)) < Cllf — fol| 7772, if 5 > 3, and p (Le(f1), Le(f2)) < Cllf1 — fol F, if
k < 3. This result is weaker than (5.2), but is obtained by using only elementary methods.
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Now, we apply (5.2) to obtain the rate of convergence in Theorem 3.3.

Theorem 5.2. Let Hrank G = k € N, Assumptions 2.12 and 2.13 hold for « € (0, %) and a be the parameter
from Theorem 5.1.

If r e (*d}’w‘,O) then for any » < amin ((2+a(;((;l1:i:zi:—)1)a) , =T, %)

k! K
X (A) ) =0o(r™), r— oo,
p (Cﬁ Td_l_TLE(T') ( )) ( )
o 1
where 1 1= g
If 7 =0 then

k! K, u
p(CKTd_l_ﬁ;L;(T)’XK(A)> =g (T’), r — O0.

Remark 5.3. If k =1, then s, =d—1— .

Remark 5.4. Note, that for 7 = 0 the rate of convergence does not depend on « or d. This is due to the reason
that parameters « and d affect the power of r in the rate of convergence, but, in the case 7 = 0, the function
g(r) converges to 0 slower than any power of 7.

Proof. Since Hrank G = k, it follows that K, can be represented in the space of squared-integrable random
variables Lo(2) as

Ko =Kot Veim 0 [ @) dote)+ 3 S [ @) do),

AA(r) NG

where C; are coefficients of the Hermite series of the function G(-).
By the proof of Theorem 3.1 (specifically estimates (3.2) and (3.3)), for sufficiently large r

VarV, < CTZd—Q—KaLK,(T) (T—Bl(d—l—na—@ +o (T—(a—é)(l—ﬁl))) .

Since, by Remark 2.14, Lo(-) ~ L(-), we can replace Lo(-) by L(:) in the above estimate. Thus, choosing

B = m to minimize the upper bound we get

a(d—1—ra)

Var V, < Cr2d=2=re [f(p)p~ a-1=(e=Da 0,
It follows from Theorem 5.1 that
p(X.(A)+¢e, X, (A)) < Ce”.

Applying Chebyshev’s inequality and Lemma 2.17 to X = X, .(A), Y = %

we get

< p(Xur(A), Xu(A)) + C (5“ s +5) ,
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for a sufficiently large r.
a(d—1—krka

Choosing ¢ := r~ @Fa)(@-1=(+-Da) to minimize the second term we obtain

k! K, __—ao(d-l-ro)
’ (c,@ Td_l_ﬂ;Ls(r)’XKm)) < P (X (), Xu(B)) 4 Cremm@ e im 72, (53)

Remark 5.5. As we can see from (5.3), for a sufficiently large r, the upper bound in (5.3) can be estimated
—1—ka)

_ aa(d—1—ra) _ ao(d
by C'max (p (Xpr(A), X (A)), r <2+a><d*1*<ﬁfl>‘1)+5>. Here, the part r @Fa)(d=—1-(e=Da) 10 appears only when

V.. #0, ie G(-) %HH() Depending on the values of parameters d, k and « it can considerably affect the
rate of convergence. We will discuss it in more details at the end of this section.

Using (5.2) we get

P (-XK,,T(A)’ XR(A))

a

KO+ 4+ 2)2(Qr(A, s M) = D2 dAg ... dAs
co| [ IO AR QO ) - , 5.4
/| AL [l
where
1/2
“x d o A
Qr( A,y ) = T”(o‘fd)/zL*”/Q(r) Cy /Q(d, a) H H)\de S (”7‘]”)
j=1

Let us rewrite the integral in (5.4) as the sum of two integrals I3 and I with the integration regions
A(r) == {(M\1,.. -, ) € R max(||\]]) < 77} and R*4\ A(r) respectively, where v € (0,1). Our intention is
=1,k

to use the monotone equivalence property of regularly varying functions in the regions A(r).
First we consider the case of (A1,...\;) € A(r). By Assumption 2.13 and the inequality

we obtain

|QT(A17"'7A2) - 1| =

At AL N N pRalt N
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o(mr) (L))
& N 6 A Ml Tl
X X1 R (A1) = C I R (1A 1D g(r) e I ~

For any positive 82 and 3, applying Theorem 1.5.6 from [4] to g(-) and L(-) and using the fact that h, (1) =
—+h(t) we obtain

L () st B ) 1
1- AP <o o) = ¢ 1P (5 ) 9o (5:5)

By Remark 2.15 for ||A;|| <1, j =1, k, and arbitrary 6 > 0, we obtain

1- L('“) <C NI he <|)\1]||> g(r). (5.6)

Hence, by (5.5) and (5.6)

1Qr( A, X)) — 12 < kZ

1 2 ) 5
i) 2 oma (1),

<C§:h3(
j=1

for (A1,...Ax) € A(r).
Notice, that in the case 7 = 0 for any § > 0 there exists C' > 0 such that ho(x) = In(z) < Cz°, > 1, and
ho(z) = In(z) < Cz~%, z < 1. Hence, by Lemma 3.2 for —7 < 4252 we get

. 2
-5 s
r2 () max (17 1211 ‘/c <21 )\Z-) dAr...d),
/ d—a T < 0.
i A
(r)N[o, 1]~
Therefore, we obtain for sufficiently large r
. 12 (g ) -max (170, I41°
RN J 17
I3 < CQQ(T)Z / ( ) s ( —a )
=S SR P N P
2 ()
KK+ - AP A - A < C g2(r) / - _
Y e P
(r)NR~d

X max (||A1||*5 , \|)\1||5) O+ M)Ay ... d)y < Cg2(r). (5.7)
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It follows from Assumption 2.13 and the specification of the estimate (3.8) in the proof of Theorem 3.3 that
for each positive ¢ there exists o > 0 such that for all » > 7o, (A1,..., ) € B y,.on) = 1(A15--, M) €
RA ||\l < 1, if gy = —1, and [|Aj]| > 1, if g; = 1,5 = 1, k}, and ; € {—1,1}, it holds

KO+ 4+ AP (Qr s M) = 1) CIEOL A+ + M)
(ST A PP I ST AR P

(AL 4+ X)) 2 _
(R il P v [ BN P Lt

Since the integrands are non-negative, we can estimate I, as it is shown below

KO+ -+ X)) (Qr(A, - Ae) — 1)ZdAg .. dA,
d—a d—«
ALl

I4§K)

R(x=1d || Xy ||>r7

|IC(/\1 —|-—|—)\2)|2d/\1d/\,/v

<C
B Ml
TN - [ Al [[Ax]]
KA1 4+ A)[PdA .. d),
+C Z d—a—9 d—a—pu2d d—a—pgd
jieom,—1) [ 1P kPO P VW (L

ieTr  ROETDAAq][>r7
e 2
<(C max (A1 + + A [FdA L dA,

pui€{0,1,—1} d—oa—9 d—a—p2d d—a—pgd”
P€2R Re—1)d || Aq||>rY ”)‘1” ”)‘2H ”)‘nH

Replacing A1 + Ay by u we obtain

I, <C max

ni€{0,1,-1}
€3F  R(s-1)d || A]|>r

/ IK(u+ A3+ -+ X)) |?
A0 = Ag |20

dAdud)s ... d\, -c . / o
IAa | T A T G ][ @20 k2 ¥ D8
[K(utAs + -+ Ao Aadudrs ... dA
”)‘3Hd_a_#36 . ||>\n||d_a_M6Hx\1H> T ||)\1||d*a*5 ‘ HuTH a AlHd_a_uQé
Taking into account that for § € (0, min(«, d/k — «))
Sup / dh <C,
O I - T
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we obtain

Ku+ A3+ -+ A2
I, <C max / max / | (u+d_32+—( —_&-'_1);)‘
ni€{0,1,-1} u2€{0,1,—1} ||UH K2
EEE L R(s-2d llull<rg
» dAz...d\ dA1du
A dfafp,35.“ A d—a—pgd dea—s d—a—p20
sl el e Y i [t
N . / IK(uw—+ A3+ 4+ Ag)|?dud)s ... A\,
max
e A ] e e P O P

[l [>rg

where vy € (0,7).
By Lemma 3.2, there exists rg > 0 such that for all > r( the first summand is bounded by

C wma / (w4 A3+ -4 o) PdudAs . .. d).
e (I A N [ O [P W [
Hullgro
d\;

—(v— d—2a—26
2d—2a—90—p2d < Cr (y=0)( )

[|A1]]|>r7Y="0

Therefore, for sufficiently large r,
I, < Cr—(r—70)(d—2a-25)
O max (w4 Ag + -+ + Ao PdudAs ... dA,

ni€{0,1,—1} d—2a—26 d—a—p3é d—a—j1ed
€3, R(==2)d [|u|[>r70 HUH H)\?’H H)‘NH

335

Notice that the second summand here coincides with (5.8) if & is replaced by x — 1. Thus, we can repeat the

above procedure x — 2 more times and get the result

|KC(u)|? du

Iy < Cp~(r=0)(d=2a=20) 4 Op=(—s=Tn—2)(d=ra—rd) L y <,
- (7 .

fluf|>r7n=2

where v > v9 > 71 > -+ > V2.
Using integration formula for polar coordinates and estimate (2.2) we obtain

K@Pdu [ 4 K (wt))? [t
/ = = J ¢ e WSO [ Gmersy
Hu”>’l’"yﬁ*2 rir—2 Sd_l(l) r7e—2

S C T*’y,ﬁ,g(dflfn(oz+5)) )

(5.9)

(5.10)
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Now let us consider the case 7 < 0. In this case by Theorem 1.5.6 from [4] for any § > 0 we can estimate g(r)
as follows

g(r) < Crmte. (5.11)

Combining estimates (5.3), (5.4), (5.7), (5.9), (5.10),(5.11) we obtain

p <C d_lj'_IS:LK( ),XK(A)> <C (T*%Jﬂs + (7,27'-{-25 + ,r,—(’y—vg)(d—Qa—2§)
T 7 L3 (r

R T—(’Y»a—s—"mfz)(d—ﬁa—"ié) _H«—’mez(d—l—ﬁa—ms)) ;) )

Therefore, for any 3z € (0, »9) one can choose a sufficiently small 6 > 0 such that

p <CK rdj!fé:Lg(r)’X“(AO <cr’ (7"7% + 77+ r*%)
< promin( St ) | (5.12)
where
0 = 1>V>A{0§?.p>%71:0 min ((y — 70)(d — 2a), .. .,
(s — 2)(d — ), (res — yo_1) (d — 1 — a)
Lemma 5.6. Let x = (zg,...,7,) € R} be some fired vector and T = {y=(v1,...,Ynt1)]

b:’}/o >y > > Yyl :0}
The function G(v) = min (y; — viy1) T; reaches its mazimum at ¥ = (Jo,...,Yn+1) € I' such that for any
3

0 <i<n it holds

(Vi = Viv1) i = (Vir1 — Viv2) Tit1- (5.13)

Proof. Let us show that any deviation of v from 7 leads to a smaller result. Consider a vector 4 such that for
some i € 1,n and some € > 0 the following relation is true

Vi — Yit1 =Y — Vi1 T €.
n
Since Y i — Yi+1 = Yo — Yn+1 = b we can conclude that there exist some j # i, j € 1,n, and €1 > 0 such that
i=0
Vi = Yi+1 =T — Vj+1 — €1
Obviously, in this case

G() < (3 =Y+ e = (T — W —e) &g = (T — V1) 75 — €15
Since 1 > 0 and z; > 0 it follows from (5.13) that

GY) < (7 —vj+1) @5 — a1y < (77 — Y1) 75 = G(7).
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So it’s clearly seen that any deviation from % will yield a smaller result. O

Note, that for fixed v € (0,1) by Lemma 5.6

sup min (('Y - 70)(d - 20[), (RN (7&—3 - 7&—2)((1 - KO‘)7 (7&—2 - ’Yﬁ—l) (d - KJO())
Y>v0>: >k —1=0

y
1 1 1
d—2a +ot d—Kko + d—1—ka

and

y 1
Sup —3 1 T - 1 1 T
7€(0,1) =24 +-t d—ka + d—1—ka d—2a +o d—kKa + d—1—ka

Thus, s9 = 51 and from (5.12) the first statement of the theorem follows.
Now let us consider the case 7 = 0. In this case by Theorem 1.5.6 [4] for any s > 0 and sufficiently large r

o(r) > . (5.14)

By combining estimates (5.3), (5.4), (5.7), (5.9), (5.10) and using (5.14) to replace all powers of r by g(r) we
obtain

k! K, .
g (CK rdl?LS(r)’X”(A)) < C(g*(r) +°(r)) -

Since a < 1, it follows that

This proves the second statement of the theorem. O

Remark 5.7. For example, for g(z) = ﬁ in Remark 2.11 we obtain

Ii'K 1
X, (A) ) <Cln~ = (r).
g <cnrd12Lz<r) ( )) n

Let us study how the upper bounds in the rate of convergence perform depending on their parameters. When
7 =0 it is quite straightforward to see that for g(r) close to 0 the upper bound decreases as k increases.
For the case 7 < 0, let us investigate the upper bound of s as a function of a.

%<amin<

ald—1—ka) . }q) ) 1/(2+a) o
2+a)(d-1—(k—-1Da) "k /) L L 2 7

« d—1—ka

Since s, > 0, it is obvious that if « — 0 or a — d—;l the upper bound decreases to 0. Thus, as expected, for
these values of a our estimate does not provide a good rate of convergence.
Let us compare

1/2

1/(2
1 /( +1a) and  — d — (5.15)
a + d—1—ka d—2a toe Tt d—ka + d—1—ka
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Notice, that i is a decreasing function of «, but dfh 4+ -+ dflm is an increasing function of a on (0, %)
Also, for o — % we get é — 779, and
! + et ! — L +- 1+ !
d -2« d—ra ~ (d=1)(1-2)+1 (d—1)(1—-2)+1"
Thus, if
Kk(2+a) 2 2
> IS , 5.16
d—1 ~—(d-1)(1-2)+1 (d—1)(1-%2)+1 (5.16)
then the first term in (5.15) is always smaller than the second one and
. 1 n 1 d—1
rgmin | — =
ai(%)d;l) a d—1-ka K+ kK
provides the best possible bound
d—1
» < amin 5, T | - (5.17)
(2+a)(14++/k)

Example 5.8. For x = 2 the inequality (5.16) becomes 31“; > 1 which holds true for d = 2 and 3. Therefore,
in these cases one can use the upper bound (5.17) for s.

However, for other cases of d and x the first term in (5.15) is not always smaller than the second one. For
example, for £ =2, d = 39 and o* = 18 < =1 =19 it holds

1/3 1/2

1 1 1 1 :
o T 38=2ar 39-2ar T 383-2a*

In such cases (5.15) requires additional investigations.

APPENDIX A. KOLMOGOROV’S DISTANCE BETWEEN TWO MULTIPLE
WIENER-ITO INTEGRALS

Lemma A.1. Let I,(f1) and L.(f2) be two Wiener-Ito integrals of order k, and f1, fao be symmetric functions
in Ly(RY), d > 1. Then,

p(Le(f1), 1o f2) < Cllfr = RllFF72, if 5> 3,
and
p(Ie(f1), Is(£2)) < Clf = fall 5, if 5 <3.
Proof. By applying Lemma 2.17 to X = I.(f2), Y = L.(f1) — I.(f2), and Z = I.(f2) we obtain

p(Le(f1), 1s(f2)) < p (Iu(f2) + & L(f2)) + P{|L:(f1) = Is(f2)| = €}
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Using Theorem 5.1 we get

p(L(f1): 1e(f2)) < Ce* + P{|1:(f1) — L:(f2)| > €}

< Ce®+e ?Var (I.(f1) — I.(f2)) S C (" + 2|1 — f2IP),

where a is defined in Theorem 5.1. By choosing & = || f; — fa||? we get

Since sup min(af,2 — 28) =
B

p (L), Le(f2)) < C (11 = LI + 11 = faI2729).
we have

2a
24+a’

p(L(f1), Iu(f2)) < Cllfr = fol| 5.

Note, that a = 1 when x < 3, thus

p(L(f1): Ie(f2)) < C|lfs = fol 3, w=1,2.

Furthermore, in the case of general x, a = 1/x and therefore

p(Lo(f1), I f2) < Clf1 — ol 7577 = |\ f1 — fol| 772 0
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