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EMPIRICAL PROCESSES FOR RECURRENT AND TRANSIENT

RANDOM WALKS IN RANDOM SCENERY∗

Nadine Guillotin-Plantard1,∗∗, Françoise Pène2

and Martin Wendler3

Abstract. In this paper, we are interested in the asymptotic behaviour of the sequence of processes
(Wn(s, t))s,t∈[0,1] with

Wn(s, t) :=

bntc∑
k=1

(
1{ξSk≤s}

− s
)

where (ξx, x ∈ Zd) is a sequence of independent random variables uniformly distributed on [0, 1] and
(Sn)n∈N is a random walk evolving in Zd, independent of the ξ’s. In M. Wendler [Stoch. Process. Appl.

126 (2016) 2787–2799], the case where (Sn)n∈N is a recurrent random walk in Z such that (n−
1
α Sn)n≥1

converges in distribution to a stable distribution of index α, with α ∈ (1, 2], has been investigated. Here,
we consider the cases where (Sn)n∈N is either:

(a) a transient random walk in Zd,

(b) a recurrent random walk in Zd such that (n−
1
d Sn)n≥1 converges in distribution to a stable distribution of

index d ∈ {1, 2}.
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1. Introduction and main results

The sequential empirical process has been studied under various assumptions, starting with Müller [33]
under independence. In this paper, we will study the asymptotic behaviour of the sequence of processes

∗Supported by ANR MALIN ANR-16-CE93-0003.

Keywords and phrases: Random walk, random scenery, empirical process.
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(Wn(s, t))s,t∈[0,1] with

Wn(s, t) :=

bntc∑
k=1

(
1{ξSk≤s} − s

)
(1.1)

where (Sn)n is either:

(a) a transient random walk in Zd,

(b) a recurrent random walk in Zd such that (n−
1
dSn)n≥1 converges in distribution to a stable distribution of

index d ∈ {1, 2}

and (ξx)x∈Zd is a sequence or random field of independent random variables uniformly distributed on [0, 1],
independent of (Sn)n. The process (ξSk)k≥1 can be viewed as the increments of a random walk in random
scenery (RWRS, in short) (Zn)n≥1. In other words,

∀n ≥ 1, Zn =

n∑
k=1

ξSk .

To simplify we will assume that the random walk is aperiodic in the sense of Spitzer [34], which amounts to
requiring that ϕ(u) = 1 if and only if u ∈ 2πZd, where ϕ is the characteristic function of S1.

RWRS was first introduced in dimension one by Kesten and Spitzer [30] and Borodin [6, 7] in order to
construct new self-similar stochastic processes. For d = 1, Kesten and Spitzer [30] proved that when the random
walk and the random scenery belong to the domains of attraction of different stable laws of indices 1 < α ≤ 2
and 0 < β ≤ 2, respectively, then there exists δ > 1

2 such that
(
n−δZ[nt]

)
t≥0

converges weakly as n→∞ to a

continuous δ-self-similar process with stationary increments, δ being related to α and β by δ = 1−α−1 +(αβ)−1.
The limiting process can be seen as a mixture of β-stable processes, but it is not a stable process. When

0 < α < 1 and for arbitrary β, the sequence
(
n−

1
βZ[nt]

)
t≥0

converges weakly, as n → ∞, to a stable process

with index β (see [12]). Bolthausen [5] (see also [19]) gave a method to solve the case α = 1 and β = 2 and

especially, he proved that when (Sn)n∈N is a recurrent Z2-random walk, the sequence
(
(n log n)−

1
2Z[nt]

)
t≥0

satisfies a functional central limit theorem. More recently, the case d = α ∈ {1, 2} and β ∈ (0, 2) was solved in
[12], the authors prove that the sequence

(
n−1/β(log n)1/β−1Z[nt]

)
t≥0

converges weakly to a stable process with

index β. Finally for any arbitrary transient Zd-random walk, it can be shown that the sequence (n−
1
2Zn)n is

asymptotically normal (see for instance [34] page 53).
Far from being exhaustive, we can cite strong approximation results and laws of the iterated logarithm

[15, 16, 32], limit theorems for correlated sceneries or walks [14, 26, 27], large and moderate deviations results
[1, 10, 11, 22], ergodic and mixing properties (see the survey [20]).

The problem we investigate in the present paper has already been studied in [36] in the case where (Sn)n∈N
is a recurrent random walk in Z such that (n−

1
αSn)n≥1 converges in distribution to a stable distribution of

index α, with α ∈ (1, 2]. In [36], the limit process differed from the limit process of the sequential empirical
process of independent random variables. We will show that in other cases, we obtain the classical limit process
for the sequential empirical process (as under independence). Let us recall that a Kiefer-Müller process W :=(
W (s, t)

)
s,t∈[0,1]

is a centered two-parameter Gaussian process with covariances

E [W (s, t)W (s′, t′)] = t ∧ t′(s ∧ s′ − ss′).

The study of this sequential process has been initiated independently by Müller in [33] and by Kiefer in [31].

Theorem 1.1. Assume that one of the following assumptions holds
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(a) (Sn)n is a transient random walk on Zd, with d ∈ N∗, an :=
√
n,

(b1) d = 1, (Sn/n)n converges in distribution to a random variable with characteristic function t 7→ exp(−A|t|)
with A > 0, an :=

√
n log n,

(b2) d = 2, the random walk increment S1 is centered and square integrable with invertible covariance matrix
Σ and A := 2

√
det Σ, an :=

√
n log n.

Then
(
a−1
n (Wn(s, t))s,t∈[0,1]

)
n

converges in distribution in the Skorohod space D
(
[0, 1]2,R

)
of càdlàg functions

in both variables to (
√
cW (s, t))s,t∈[0,1], where W is a Kiefer-Müller process and

• c = 1 + 2

∞∑
k=1

P(Sk = 0) in case (a).

• c =
2

πA
in cases (b1) and (b2).

Note that the limit process is the same as under independence of the observables ξSn (e.g. when Sn = n),
even if the norming is different in the cases (b1) and (b2). In contrast, for intermittent maps, Dedecker, Dehling
and Taqqu [17] have shown that the same

√
n log n norming is needed, but the limit process behaves drastically

different and is degenerate: As in the long range dependent case (see Dehling and Taqqu [18]), the limit is
degenerate, meaning that it can be expressed as (c(s)Z(t))s,t∈[0,1], where c(s) is a deterministic function and
(Z(t))t∈[0,1] is a stochastic process. Note that even under short range dependence, the limit might be distorted,
see Berkes and Philipp [2]. In the case of a random walk in random scenery with α > 1 = d, a much stronger
norming is needed, but the limit is also not degenerate.

If we consider a random walk in random scenery (XSk)k∈N with random variables (Xx)x∈Zd not uniformly
distributed on the interval [0, 1], the limit distribution of the sequential empirical process can still be deduced
from Theorem 1.1. Let FX be the distribution function of the random variables Xx. Furthermore, let (ξx)x∈Zd be
independent and uniformly distributed on [0, 1] as before. Then the sequential empirical process (Vs,t)s∈R,t∈[0,1]

with

Vn(s, t) :=

bntc∑
k=1

(
1{XSk≤s} − FX(s)

)

has the same distribution as (Wn(FX(s), t))s∈R,t∈[0,1] with Wn defined in (1.1). To see this, define the quantile
function

F−1
X (s) := inf

{
x
∣∣FX(x) ≥ s

}
.

It is well known that the quantile function satisfies F−1
X (s) ≤ s′ if and only if s ≤ FX(s′) (see e.g. the book of

Billingsley [4], Chap. 14). So

Wn(FX(s), t) =

bntc∑
k=1

(
1{ξSk≤FX(s)} − FX(s)

)
=

bntc∑
k=1

(
1{F−1

X (ξSk )≤s} − FX(s)
)

and P(F−1
X (ξx) ≤ s) = P(ξx ≤ FX(s)) = FX(s) = P(X ≤ s), so the random variables (F−1

X (ξx))x∈Zd are inde-
pendent with distribution function FX . So it suffices to study the case where the scenery is uniformly distributed
on [0, 1].
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2. Applications

2.1. Degenerate U-statistics

There is a substantial amount of work for U -statistics indexed by a random walk, starting with Cabus and
Guillotin-Plantard [8] for a degenerate U -statistic and a two-dimensional random walk. Also in the degenerate
case, Guillotin-Plantard and Ladret [24] study one dimensional random walks with α > 1. Non-degenerate
U -statistics are investigated by Franke, Pène and Wendler [21]. Theorem 1.1 gives an alternative proof of
Theorems 1.1 and 5.1 in [8] in the case of degenerate U -statistics indexed by a random walk if the kernel has
bounded total variation. The arguments can be found in Dehling, Taqqu [18]. For sake of completeness, we
give the proof of the convergence of the one-dimensional distributions. Convergence of the finite-dimensional
distributions and tightness are omitted.

Let h : [0, 1]× [0, 1]→ R be a symmetric function with bounded total variation. We study the statistic

Un(h) :=
1

n2

n∑
i,j=1

h(ξSi , ξSj )

where (Sn)n is a Zd-random walk satisfying either (a) or (b2) from Theorem 1.1 and (ξx)x∈Zd is defined as

in the introduction. If h is degenerate, meaning that Eh(x, ξ1) =
∫ 1

0
h(x, y) dy = 0 for all x ∈ R, we get the

following expansion using the distribution function F (s) = s and the empirical distribution function Fn(s) :=
1
n

∑n
i=1 1{ξSi≤s}:

Un(h)− E
[
h
(
ξ1, ξ2

)]
=

∫ 1

0

∫ 1

0

h(x, y)dFn(x)dFn(y)−
∫ 1

0

∫ 1

0

h(x, y)dF (x)dF (y)

=

∫ 1

0

∫ 1

0

h(x, y)d(Fn−F )(x)d(Fn−F )(y) + 2

∫ 1

0

∫ 1

0

h(x, y)dF (x)d(Fn−F )(y).

The second integral equals 0 because of the degeneracy, and using integration by parts, we obtain

Un(h)− E
[
h
(
ξ1, ξ2

)]
=

∫ 1

0

∫ 1

0

(Fn−F )(x)(Fn−F )(y)dh(x, y)

=
a2
n

n2

∫ 1

0

∫ 1

0

a−1
n Wn(x, 1)a−1

n Wn(y, 1)dh(x, y).

So we conclude that the U -statistic converges in distribution.

2.2. Testing for stationarity of the scenery

There is a growing interest in change point analysis and there are various tests for the hypothesis of station-
arity against the alternative of a change of the distribution of a time series. While most of the test prespecify
the type of change, e.g. a change in location or in scale, various authors have proposed more general change
point tests, which can detect any possible change in the distribution function.

Carlstein [9] proposed different tests for change in distribution of independent random variables. A test under
short range dependence was developed by Inoue [29]. Giraitis, Leipus and Surgailis [23] and Tewes [35] have
studied this problem under long range dependence. In the long range dependent case, an interesting phenomenon
can appear: The general test for a change in distribution can have the same asymptotic power under a change
in mean as the classical CUSUM test, which is specialized to detect a shift in mean, see [35]. If the scenery is
not stationary, the random walk in random scenery might be non-stationary. Especially in the transient case,



EMPIRICAL PROCESSES FOR RECURRENT AND TRANSIENT RANDOM WALKS IN RANDOM SCENERY 131

if the distribution of the scenery is different in different regions, this should be observable, because the random
walk will pass this different regions. Following Inoue [29], we propose the test statistic

Tn := max
1≤k<n

sup
s∈R

∣∣∣∣ k∑
i=1

1{XSi≤s} −
k

n

n∑
i=1

1{XSi≤s}

∣∣∣∣.
This statistic compares the empirical distribution function of the first k observed values with the empirical
distribution function of all observed values (taking the maximum over all k ≤ n). Under the alternative, it is
sensitive to a change of the distribution when the random walk goes to different regions. Under the hypothesis
of a stationary scenery, we get the asymptotic distribution of the test statistic by using the continuous mapping
theorem:

a−1
n Tn = sup

t∈[0,1]

sup
s∈R

∣∣∣a−1
n Vn(s, t)− a−1

n tVn(s, 1)
∣∣∣

⇒
√
c sup
t∈[0,1]

sup
s∈R

∣∣∣W (FX(s), t)− tW (FX(s), 1)
∣∣∣

A continuous distribution function FX takes every value x ∈ [0, 1] by the intermediate value theorem. So in this
case, we recognize that the supremum above is the supremum of the Brownian pillow (W (s, t)− tW (s, 1))s,t∈[0,1].

3. Proof

3.1. Recalls and auxiliary results

We define the occupation times as Nn(x) :=
∑n
i=1 1{Si=x}. Assume that the random walk satisfies one of the

hypotheses of Theorem 1.1, then for any ε > 0,

sup
x∈Zd

Nn(x) = o(nε) a.s. (3.1)

(see the proof of Lem. 2.5 in [5]). Moreover

lim
n→∞

1

a2
n

∑
x∈Zd

N2
n(x) = c a.s., (3.2)

where

• c = 1 + 2
∑
n≥1P(Sn = 0) in Case (a) (see the introduction of [30]),

• c = 2/πA in Case (b) (see [8, 13, 19]).

Lemma 3.1. Under the assumptions of Theorem 1.1, for every a < b,

banc∑
k=0

bbnc∑
l=banc+1

1{Sk=Sl} = o
(
a2
n

)
a.s. (3.3)

Proof. See Proposition 2.3 in [8].
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As a consequence of (3.2) and of Lemma 3.1, we obtain

∀s, t > 0, lim
n→+∞

a−2
n

∑
x∈Zd

Nbntc(x)Nbnsc(x) = c min(s, t) a.s. (3.4)

We will proceed with some moment bounds for the occupation times:

Lemma 3.2. Let (Sn)n∈N be a transient random walk in Zd, then there exists some constant C, such that for
all n ≥ 1

E

[ ∑
x∈Zd

N4
n(x)

]
≤ Cn.

E

[( ∑
x∈Zd

N2
n(x)

)2
]
≤ Cn2.

Proof. We can follow the proof of item (i) of Proposition 2.3 in [25] using the fact that, for all
k ∈ N, supnE[Nn(0)k] = E[N∞(0)k] < +∞ since N∞(0) has Geometric distribution with parameter
P(Sn 6= 0 forall n ≥ 1) > 0 (see also Lems. 7 and 8 in [28]).

Lemma 3.3. Let (Sn)n∈N be a recurrent random walk in Zd such that (n−
1
dSn)n converges in distribution to

a stable distribution of index d ∈ {1, 2}, then for some constants C1, C2 ∈ (0,∞)

E

[ ∑
x∈Zd

N4
n(x)

]
≤ C1n log3(n).

E

[( ∑
x∈Zd

N2
n(x)

)2
]
≤ C2n

2 log2(n).

Proof. See Proposition 2.3 in [25].

As usual, our proof will be divided in two steps: we will prove the convergence of the finite-dimensional
distributions in Section 3.2 and, then, we will prove the tightness in Section 3.3.

3.2. Convergence of the finite-dimensional distributions

We introduce the following notation for x ∈ Zd and s ∈ [0, 1]:

ζs(x) := 1ξx≤s − s.

We have to prove for any m, k ∈ N∗, s1, . . . , sk ∈ [0, 1] and t1, . . . , tm ∈ [0, 1] the convergence in distribution of 1

an

∑
x∈Zd

Nbntjc(x)ζsi(x)


i=1,...,k
j=1,...,m


n

to the random vector (W (si, tj))i=1,...,k, j=1,...,m. Let us fix s1, . . . , sk ∈ [0, 1], t1, . . . , tm ∈ [0, 1] and θi,j ∈ R for
i = 1, . . . , k, j = 1, . . . ,m. Let ϕn denote the characteristic function of the previous vector and F the σ−field
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generated by the random walk. Using the independence between the random scenery and the random walk, a
simple computation gives

ϕn
(
(θi,j)i=1,...,k,j=1,...,m

)
= E

 ∏
x∈Zd

E

exp

i 1

an

k∑
i=1

m∑
j=1

θi,jNbntjc(x)ζsi(x)

∣∣∣F


= E

 ∏
x∈Zd

ϕs1,...,sk

 1

an

m∑
j=1

θ1,jNbntjc(x), . . . ,
1

an

m∑
j=1

θk,jNbntjc(x)

 ,
with ϕs1,...,sk the characteristic function of (ζs1(0), . . . , ζsk(0)). Denote by Un(x) the random vectors defined by

1

an

 m∑
j=1

θ1,jNbntjc(x), . . . ,

m∑
j=1

θk,jNbntjc(x)

 , x ∈ Zd

and Σ = (σi,i′)i,i′=1,...,k the covariance matrix of (ζs1(0), . . . , ζsk(0)). We firstly prove that

E

[ ∏
x∈Zd

ϕs1,...,sk

(
Un(x)

)]
− E

[ ∏
x∈Zd

e−
1
2 〈ΣUn(x),Un(x)〉

]
n→∞−−−−→ 0.

Note that the above products, although indexed by x ∈ Zd, have only a finite number of factors different from
1. And furthermore, all factors are complex numbers in D̄ = {z ∈ C | |z| ≤ 1}. We use the following inequality:
Let (zi)i∈I and (z′i)i∈I be two families of complex numbers in D̄ such that all terms are equal to one, except a
finite number of them. Then ∣∣∣∣∣∏

i∈I
z′i −

∏
i∈I

zi

∣∣∣∣∣ ≤∑
i∈I
|z′i − zi|.

This yields ∣∣∣∣E[ ∏
x∈Zd

ϕs1,...,sk

(
Un(x)

)]
− E

[ ∏
x∈Zd

e−
1
2 〈ΣUn(x),Un(x)〉

]∣∣∣∣
≤
∑
x∈Zd

E

[∣∣∣ϕs1,...,sk(Un(x)
)
− e− 1

2 〈ΣUn(x),Un(x)〉
∣∣∣]. (3.5)

Note that the random variables ζs1(0), . . . , ζsk(0) are bounded and therefore ϕs1,...,sk(u) = e−
1
2 〈Σu,u〉 + o(|u|2∞)

as u→ 0, with |u|∞ = max{|u1|, . . . , |uk|}. We denote by g the continuous and bounded function defined on Rk

by g(0) = 0 and

g(u) = |u|−2
∞

∣∣∣ϕs1,...,sk(u)− e− 1
2 〈Σu,u〉

∣∣∣ ≤ 2/|u|2∞

so that ∣∣∣∣ϕs1,...,sk(Un(x)
)
− e− 1

2 〈ΣUn(x),Un(x)〉
∣∣∣∣ = |Un(x)|2∞ g(Un(x)).
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Let us define Un = maxx∈Zd |Un(x)|∞ and the function g̃ : [0,+∞)→ [0,+∞) by g̃(u) = sup|v|∞≤u |g(v)|. Note

that g̃ is continuous, vanishes at 0 and is bounded. Then, for any x ∈ Zd,

∣∣∣∣ϕs1,...,sk(Un(x)
)
− e− 1

2 〈ΣUn(x),Un(x)〉
∣∣∣∣ ≤ |Un(x)|2∞ g̃(Un). (3.6)

Equations (3.5) and (3.6) together yield

∣∣∣∣E[ ∏
x∈Zd

ϕs1,...,sk

(
Un(x)

)]
− E

[ ∏
x∈Zd

e−
1
2 〈ΣUn(x),Un(x)〉

]∣∣∣∣
≤E
[
g̃(Un)

∑
x∈Zd

|Un(x)|2∞
]

≤m2 max
i,j
|θi,j |2E

[
g̃(Un)

(
1

a2
n

∑
x∈Zd

Nn(x)2

)]
. (3.7)

Due to (3.1), Un converges almost surely to 0 as n goes to infinity. Since g̃ is continuous and vanishes at 0,
g̃(Un) converges almost surely to 0. Using (3.2), the second term in the expectation of (3.7) converges almost
surely to some constant. Moreover, from Lemma 3.2 respectively Lemma 3.3, we know that this term is also
bounded in L2. Since g̃ is bounded, we can conclude that

ϕn
(
(θi,j)i,j

)
− E

[ ∏
x∈Zd

e−
1
2 〈ΣUn(x),Un(x)〉

]
n→∞−−−−→ 0.

Now, due to (3.4), we obtain

lim
n→∞

ϕn((θi,j)i,j) = exp

− c
2

k∑
i,i′=1

m∑
j,j′=1

θi,jθi′,j′ (tj ∧ tj′)σi,i′


= E

[
exp

(
i

k∑
i=1

m∑
j=1

θi,j
√
cW (si, tj)

)]

by remarking that σi,i′ = si ∧ si′ − sisi′ .

3.3. Tightness

The proof of the tightness follows in the same way as in [36]. Recall that we assume that (ξx)x∈Zd are
uniformly distributed on the interval [0, 1]. In this situation, we have for all x ∈ Zd and s1, s2 ∈ [0, 1]

E
[(
ζs1(x)− ζs2(x)

)2] ≤ |s1 − s2|,

E
[(
ζs1(x)− ζs2(x)

)4] ≤ |s1 − s2|.

Now, using inequalities from Lemmas 3.2 and 3.3, we obtain the following moment bound for all n1 < n2 ≤ n
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and s1, s2 ∈ [0, 1] with |s1 − s2| ≥ 1/n:

E

[(
a−1
n

n2∑
i=n1+1

(
ζs1(Si)− ζs2(Si)

))4
]

=E

(a−1
n

∑
x∈Zd

Nn2−n1(x)
(
ζs1(x)− ζs2(x)

))4


≤E
[(
ζs1(0)− ζs2(0)

)4]
E

[
a−4
n

∑
x∈Zd

N4
n2−n1

(x)

]

+ E

[(
ζs1(0)− ζs2(0)

)2]2

E

[(
a−2
n

∑
x∈Zd

N2
n2−n1

(x)

)2]
≤C1

a4
n

[
a2
n2−n1

log2(n2 − n1)|s1 − s2|+ a4
n2−n1

(s1 − s2)2
]

≤C1

[
n2 − n1

n2
log(n2 − n1)|s1 − s2|+

(
n2 − n1

n

)2

(s1 − s2)2

]

≤2C1

(n2 − n1

n

)3/2

|s1 − s2|3/2.

If s1 < s2 and |s1 − s2| ≤ 2/n, we have by monotonicity that for any s ∈ (s1, s2)

∣∣∣∣ 1

an

n2∑
i=n1+1

ζs(Si)−
1

an

n2∑
i=n1+1

ζs1(Si)

∣∣∣∣
≤
∣∣∣∣ 1

an

n2∑
i=n1+1

1{ξSi≤s} −
1

an

n2∑
i=n1+1

1{ξSi≤s1}

∣∣∣∣+
n2 − n1

an
|s− s1|

≤
∣∣∣∣ 1

an

n2∑
i=n1+1

1{ξSi≤s2} −
1

an

n2∑
i=n1+1

1{ξSi≤s1}

∣∣∣∣+
n2 − n1

an
|s2 − s1|

≤
∣∣∣∣ 1

an

n2∑
i=n1+1

ζs2(Si)−
1

an

n2∑
i=n1+1

ζs1(Si)

∣∣∣∣+ 2
n2 − n1

an
|s2 − s1|

≤
∣∣∣∣ 1

an

n2∑
i=n1+1

ζs2(Si)−
1

an

n2∑
i=n1+1

ζs1(Si)

∣∣∣∣+
4

an
. (3.8)

Following Bickel and Wichura [3], we introduce for a two-parameter stochastic process (V (s, t))s,t∈[0,1] the
notation

w′′δ (V )

:= max
{

sup
0≤t1≤t≤t2≤1
t2−t1≤δ

min {‖V (·, t2)− V (·, t)‖∞, ‖V (·, t)− V (·, t1)‖∞} ,

sup
0≤s1≤s≤s2≤1
s2−s1≤δ

min {‖V (s2, ·)− V (s, ·)‖∞, ‖V (s, ·)− V (s1, ·)‖∞}
}
,
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where ‖ · ‖∞ denotes the supremum norm. For (Wn(s, t))s,t∈[0,1]2 with

Wn(s, t) :=
1

an

[nt]∑
i=1

ζs(Si)

and the index set Dn :=
{

0, 1
n ,

2
n , . . . , 1

}2
, we have by (3.8)

w′′δ (Wn) ≤ w′′δ (Wn|Dn) +
4

an
,

where w′′δ (Wn|Dn) is calculated by restricting all suprema to the set Dn. Now by Theorem 3 (and the remarks
following their theorem) of Bickel and Wichura [3] together with our moment bound

E

[(
1

an

n2∑
i=n1+1

(
ζs1(Si)− ζs2(Si)

))4
]
≤ 2C1

(n2 − n1

n

)3/2

|s1 − s2|3/2,

we can conclude that for any ε > 0

P

(
lim sup
n→∞

w′′δ (Wn|Dn) > ε

)
δ→0−−−→ 0

and consequently

P

(
lim sup
n→∞

w′′δ (Wn) > ε

)
δ→0−−−→ 0.

Thus the process is tight by Corollary 1 of [3].

References
[1] A. Asselah and F. Castell, Random walk in random scenery and self-intersection local times in dimensions d ≥ 5. Prob.

Theory Relat. Fields 138 (2007) 1–32.

[2] I. Berkes and W. Philipp, An almost sure invariance principle for the empirical distribution function of mixing random
variables. Prob. Theory Relat. Fields 41 (1977) 115–137.

[3] P.J. Bickel and M.J. Wichura, Convergence criteria for multiparameter stochastic processes and some applications. Ann.
Math. Statist. 42 (1971) 1656–1670.

[4] P. Billingsley, Convergence of probability measures. John Wiley & Sons (1999).
[5] E. Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989)

108–115.
[6] A.N. Borodin, A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad.

Nauk SSSR 246 (1979) 786–787.
[7] A.N. Borodin, Limit theorems for sums of independent random variables defined on a transient random walk. In Vol. 85 of

Investigations in the theory of probability distributions, IV (1979) 17–29.
[8] P. Cabus and N. Guillotin-Plantard, Functional limit theorems for U-statistics indexed by a random walk. Stoch. Process.

Appl. 101 (2002) 143–160.
[9] E. Carlstein, Nonparametric change-point estimation. Ann. Stat. 16 (1988) 188–197.

[10] F. Castell and F. Pradeilles, Annealed large deviations for diffusions in a random Gaussian shear flow drift. Stoch. Process.
Appl. 94 (2001) 171–197.

[11] F. Castell, Moderate deviations for diffusions in a random Gaussian shear flow drift. Ann. Inst. Henri Poincaré 40 (2004)
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