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EMPIRICAL PROCESSES FOR RECURRENT AND TRANSIENT
RANDOM WALKS IN RANDOM SCENERY™

NADINE GUILLOTIN-PLANTARD"**, FRANCOISE PENE?
AND MARTIN WENDLER?

Abstract. In this paper, we are interested in the asymptotic behaviour of the sequence of processes
(Wn(s,t))s7t6[071] with

Lnt]
Wa(s t) i= > (Lies, <sy — 9)

k=1

where (&;,2 € Z%) is a sequence of independent random variables uniformly distributed on [0,1] and
(Sn)nen is a random walk evolving in Z¢, independent of the £’s. In M. Wendler [Stoch. Process. Appl.

126 (2016) 2787-2799], the case where (S )nen is a recurrent random walk in Z such that (rfi Sn)n>1
converges in distribution to a stable distribution of index o, with « € (1, 2], has been investigated. Here,
we consider the cases where (S, )nen is either:

(a) a transient random walk in Z¢
(b) a recurrent random walk in Z such that (niéSn)nzl converges in distribution to a stable distribution of
index d € {1, 2}.
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1. INTRODUCTION AND MAIN RESULTS

The sequential empirical process has been studied under various assumptions, starting with Miiller [33]
under independence. In this paper, we will study the asymptotic behaviour of the sequence of processes
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(Wa(s,t))s,tef0,1) With

where (S, is either:

(a) a transient random walk in Z9,

(b) a recurrent random walk in Z¢ such that (n‘éSn)nzl converges in distribution to a stable distribution of
index d € {1,2}

and (&;),cze is a sequence or random field of independent random variables uniformly distributed on [0, 1],
independent of (S,),. The process (£s,)r>1 can be viewed as the increments of a random walk in random
scenery (RWRS, in short) (Z,),>1. In other words,

Vn>1, Z,= ngk.
k=1

To simplify we will assume that the random walk is aperiodic in the sense of Spitzer [34], which amounts to
requiring that o(u) = 1 if and only if u € 27Z¢, where ¢ is the characteristic function of S;.

RWRS was first introduced in dimension one by Kesten and Spitzer [30] and Borodin [6, 7] in order to
construct new self-similar stochastic processes. For d = 1, Kesten and Spitzer [30] proved that when the random
walk and the random scenery belong to the domains of attraction of different stable laws of indices 1 < o < 2
and 0 < B < 2, respectively, then there exists § > % such that (n";Z[m])DO converges weakly as n — oo to a

continuous d-self-similar process with stationary increments, § being related to « and S by § = 1 —a ! + (a3) L.
The limiting process can be seen as a mixture of S-stable processes, but it is not a stable process. When
0 < a < 1 and for arbitrary 3, the sequence (n_%Z[nt])Do converges weakly, as n — oo, to a stable process
with index 3 (see [12]). Bolthausen [5] (see also [19]) gave a method to solve the case a = 1 and 8 = 2 and
especially, he proved that when (S,)nen is a recurrent Z2-random walk, the sequence ((n log n)_%Z[nt]) >0
satisfies a functional central limit theorem. More recently, the case d = « € {1,2} and j € (0,2) was solved in

[12], the authors prove that the sequence (n_l/ﬂ (log n)l/'B_lZ[m])Do converges weakly to a stable process with

index 8. Finally for any arbitrary transient Z?-random walk, it can be shown that the sequence (n=22,), is
asymptotically normal (see for instance [34] page 53).

Far from being exhaustive, we can cite strong approximation results and laws of the iterated logarithm
[15, 16, 32|, limit theorems for correlated sceneries or walks [14, 26, 27|, large and moderate deviations results
[1, 10, 11, 22], ergodic and mixing properties (see the survey [20]).

The problem we investigate in the present paper has already been studied in [36] in the case where (Sy,)nen
is a recurrent random walk in Z such that (n‘éSn)nzl converges in distribution to a stable distribution of
index «, with « € (1,2]. In [36], the limit process differed from the limit process of the sequential empirical
process of independent random variables. We will show that in other cases, we obtain the classical limit process
for the sequential empirical process (as under independence). Let us recall that a Kiefer-Miiller process W :=
(W(s, t))& te[0.1] is a centered two-parameter Gaussian process with covariances

E[W(s, )W (s, )] =t At/ (sAs —ss).

The study of this sequential process has been initiated independently by Miiller in [33] and by Kiefer in [31].

Theorem 1.1. Assume that one of the following assumptions holds
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(a) (Sp)n is a transient random walk on Z%, with d € N*, a,, := \/n,
(b1) d =1, (Sp/n)n converges in distribution to a random variable with characteristic function t — exp(—Alt|)

with A > 0, a, := v/nlogn,

(b2) d = 2, the random walk increment Sy is centered and square integrable with invertible covariance matrix

Y and A :=2vdetX, a, := /nlogn.

Then (a;l(Wn(s,t))&te[m])n converges in distribution in the Skorohod space D ([O, 1), IR) of cadlag functions
in both variables to (v/cW(s,t)), 1e(0,1), where W is a Kiefer-Miiller process and

o c= 1+221P(Sk =0) in case (a).
k=1

e c= % in cases (b1) and (b2).

Note that the limit process is the same as under independence of the observables &g, (e.g. when S, = n),
even if the norming is different in the cases (bl) and (b2). In contrast, for intermittent maps, Dedecker, Dehling
and Taqqu [17] have shown that the same y/nlogn norming is needed, but the limit process behaves drastically
different and is degenerate: As in the long range dependent case (see Dehling and Taqqu [18]), the limit is
degenerate, meaning that it can be expressed as (c(s)Z(t))se0,1], Where c(s) is a deterministic function and
(Z(t))tejo,1) is a stochastic process. Note that even under short range dependence, the limit might be distorted,
see Berkes and Philipp [2]. In the case of a random walk in random scenery with o > 1 = d, a much stronger
norming is needed, but the limit is also not degenerate.

If we consider a random walk in random scenery (Xg, )gen with random variables (X, ),cz¢ not uniformly
distributed on the interval [0, 1], the limit distribution of the sequential empirical process can still be deduced
from Theorem 1.1. Let F'x be the distribution function of the random variables X,,. Furthermore, let (§;),cza be
independent and uniformly distributed on [0, 1] as before. Then the sequential empirical process (Vs ¢)seRr,tefo,1]
with

Lnt)

Val(s,t) i= Y (Iixs, <5} — Fx(s))
k=1

has the same distribution as (W, (Fx (s),t))ser,tef0,1) With W, defined in (1.1). To see this, define the quantile
function

Fyt(s) := inf {z|Fx(z) > s}.

It is well known that the quantile function satisfies Fi;'(s) < s’ if and only if s < Fx(s') (see e.g. the book of
Billingsley [4], Chap. 14). So

[nt] [nt]

Wi (Fx (5),t) = Y (e, <y (e)y — Fx(s)) = > (Lt es, ) <oy — Fx(5))
k=1 k=1

and P(F'(&,) < s) = P(& < Fx(s)) = Fx(s) = P(X < s), so the random variables (Fiy'(£,))zeze are inde-
pendent with distribution function F'x. So it suffices to study the case where the scenery is uniformly distributed
on [0,1].
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2. APPLICATIONS

2.1. Degenerate U-statistics

There is a substantial amount of work for U-statistics indexed by a random walk, starting with Cabus and
Guillotin-Plantard [8] for a degenerate U-statistic and a two-dimensional random walk. Also in the degenerate
case, Guillotin-Plantard and Ladret [24] study one dimensional random walks with a > 1. Non-degenerate
U-statistics are investigated by Franke, Péne and Wendler [21]. Theorem 1.1 gives an alternative proof of
Theorems 1.1 and 5.1 in [8] in the case of degenerate U-statistics indexed by a random walk if the kernel has
bounded total variation. The arguments can be found in Dehling, Taqqu [18]. For sake of completeness, we
give the proof of the convergence of the one-dimensional distributions. Convergence of the finite-dimensional
distributions and tightness are omitted.

Let h:[0,1] x [0,1] — R be a symmetric function with bounded total variation. We study the statistic

Un(h) = % Z h(fsiﬂgsj‘)

ij=1

where (S,,), is a Z?-random walk satisfying either (a) or (b2) from Theorem 1.1 and (£,),cz« is defined as

in the introduction. If h is degenerate, meaning that Eh(z,&;) fo z,y)dy = 0 for all x € R, we get the
following expansion using the distribution function F(s) = s and the empirical distribution function F,(s) :=

i Les <ay

Un(h) — B [h(&1,62)]

// (z,y)dF, (z)dF,( // (z,y)dF(z)dF(y)

- / / W, y)A(Fy — F)(2)d(F, —F)(y) + 2 / / Wz, y)AF (2)A(F, — F)(y).
0J0 0J0

The second integral equals 0 because of the degeneracy, and using integration by parts, we obtain

1,1
Uu() ~ B [(e1&)) = [ [ (R~ F)@)(E - ) )ana.y)
0J0
a2 (it
% [ [t W Ve Wy, DathGe. )
0Jo
So we conclude that the U-statistic converges in distribution.

2.2. Testing for stationarity of the scenery

There is a growing interest in change point analysis and there are various tests for the hypothesis of station-
arity against the alternative of a change of the distribution of a time series. While most of the test prespecify
the type of change, e.g. a change in location or in scale, various authors have proposed more general change
point tests, which can detect any possible change in the distribution function.

Carlstein [9] proposed different tests for change in distribution of independent random variables. A test under
short range dependence was developed by Inoue [29]. Giraitis, Leipus and Surgailis [23] and Tewes [35] have
studied this problem under long range dependence. In the long range dependent case, an interesting phenomenon
can appear: The general test for a change in distribution can have the same asymptotic power under a change
in mean as the classical CUSUM test, which is specialized to detect a shift in mean, see [35]. If the scenery is
not stationary, the random walk in random scenery might be non-stationary. Especially in the transient case,
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if the distribution of the scenery is different in different regions, this should be observable, because the random
walk will pass this different regions. Following Inoue [29], we propose the test statistic

k

k/’ n
T, := max su 1 —72 1
" 1§k§n SE]II; 1221 {Xs; <s} n P {Xs,<s}

This statistic compares the empirical distribution function of the first k observed values with the empirical
distribution function of all observed values (taking the maximum over all k& < n). Under the alternative, it is
sensitive to a change of the distribution when the random walk goes to different regions. Under the hypothesis
of a stationary scenery, we get the asymptotic distribution of the test statistic by using the continuous mapping
theorem:

a;'T, = sup sup |a, 'V, (s,t) —a;ltVn(s,l)‘
te[0,1] s€R
= +/c sup sup |W(Fx(s),t) —tW(FX(s),l)’
t€(0,1] s€R

A continuous distribution function Fx takes every value x € [0, 1] by the intermediate value theorem. So in this
case, we recognize that the supremum above is the supremum of the Brownian pillow (W (s, t) —tW (s, 1)) e[0,1]-

3. PROOF

3.1. Recalls and auxiliary results

We define the occupation times as N, (z) := > 1, 1(s,—4)- Assume that the random walk satisfies one of the
hypotheses of Theorem 1.1, then for any € > 0,

sup N, (z) = o(n®) a.s. (3.1)
z€Z

(see the proof of Lem. 2.5 in [5]). Moreover
lim N2 (z) =
nl_)rr;oa—% Z () =c as., (3.2)
" rezd

where

ec=1+2) .,P(S, =0)in Case (a) (see the introduction of [30]),
e ¢c=2/mA in Case (b) (see [8, 13, 19]).

Lemma 3.1. Under the assumptions of Theorem 1.1, for every a < b,

lan]  [bn]

Yo Y Ls=sy=o(a) as (3.3)

k=0 l=|an]+1

Proof. See Proposition 2.3 in [8]. O
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As a consequence of (3.2) and of Lemma 3.1, we obtain

Vs,t >0, lim a2 Z Nint) ()N ps)(z) = c min(s,t) a.s. (3.4)

n—-+o0o
TEZ

We will proceed with some moment bounds for the occupation times:

Lemma 3.2. Let (S,)nen be a transient random walk in 72, then there exists some constant C, such that for
alln > 1

IE[ > Nf;(x)] < Cn.

reZ4

B (X wiw) | <o

z€Z4

Proof. We can follow the proof of item (i) of Proposition 2.3 in [25] using the fact that, for all
k € N, sup, E[N,(0)*] = E[Nw(0)¥] < +o0o since No(0) has Geometric distribution with parameter
P(S, # 0 forall n > 1) > 0 (see also Lems. 7 and 8 in [28]).

O

Lemma 3.3. Let (S,)nen be a recurrent random walk in Z24 such that (n_ésn)n converges in distribution to
a stable distribution of index d € {1,2}, then for some constants Cy,Cs € (0,00)

E[ > Ng(x)] < Cinlog?(n).

€74

E[( 3 Ng(x))z] < Cyn? log?(n).

z€Z?
Proof. See Proposition 2.3 in [25]. O

As usual, our proof will be divided in two steps: we will prove the convergence of the finite-dimensional
distributions in Section 3.2 and, then, we will prove the tightness in Section 3.3.

3.2. Convergence of the finite-dimensional distributions

We introduce the following notation for € Z? and s € [0, 1]:

Cs(l') = ]lfmés — 8.

We have to prove for any m,k € IN*, s1,...,s; € [0,1] and t1,...,t, € [0, 1] the convergence in distribution of
1
" \zezd i=1,....k
j=1,....m

n

to the random vector (W (s;,t;))i=1,... .k, j=1,..,m- Let us fix s1,...,s, € [0,1], t1,...,tm € [0,1] and 6; ; € R for
t1=1,...,k, j=1,...,m. Let ¢, denote the characteristic function of the previous vector and F the o—field
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generated by the random walk. Using the independence between the random scenery and the random walk, a
simple computation gives

on((0i)i=1,...kj=1,....m)

k. m

- F H]E exp Z%ZZ&JNWJ z)(s, (v ‘]'-

|z€Zd i=1j=1

=E H Ps1,...,5% Zale[nt] 72916]]\7[77,1‘, j ,

|z€Zd

with s, . s, the characteristic function of (s, (0), ..., s, (0)). Denote by U, (x) the random vectors defined by

m

1

? Gl,jN\_ntJ Zﬁk jNI_nt 1z , T E Zd
n i=1

and X = (0y,4)ii=1,...r the covariance matrix of ({5, (0),..., (s, (0)). We firstly prove that

E|: H Ps1,eeny8k (Un(x)>:| _E|: H e—%(EU”(z),U”(m)) —>n~>oo 0.

z€Zd zEZd

.....

Note that the above products, although indexed by = € Z?, have only a finite number of factors different from
1. And furthermore, all factors are complex numbers in D = {z € C | |z < 1}. We use the following inequality:
Let (2i)ier and (2});cr be two families of complex numbers in I such that all terms are equal to one, except a
finite number of them. Then

I1+- 11~

i€l i€l

SZ\zg—zl

iel

This yields

‘E[ I oo (Unmﬂ —]E[ 11 e%<zvn<m>vvn<r>>”

zE€Z? TEZ4

<ZE{

€74

_1 T (T
P (Uala)) — e HEU 0 >>”, (3.5)

Note that the random variables (s, (0),. .., s, (0) are bounded and therefore ¢, ., (u) = e~ 2w 4 o(jul2 )
as u — 0, with |u|eo = max{|ui|, ..., |ux|}. We denote by g the continuous and bounded function defined on R*
by ¢(0) =0 and

g(u) = [ul3Z sy (w) — e 2500 <2/l

so that

1
P (Unta)) = BB 0, 0) (01 )
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Let us define U, = max,cza |Un(z)|, and the function g : [0, +00) — [0, +00) by g(u) = supy,__ <, [9(v)|. Note
that § is continuous, vanishes at 0 and is bounded. Then, for any = € Z¢,

‘%17._,% (Un(a:)) _ e%(EUn(z),Un(z»‘ < |U”(x)|io G(Uy). (3.6)

Equations (3.5) and (3.6) together yield

‘E{ H Osyr5h (Un(x))} E[ H eé(EUn(:r),U"(w)):H
zezd VA
<E {g}(Un) 3 Un(a:)&}
r€Z

<o max|fy, " B|g(0) (2 3 Malo?) | (37)

" xezd

Due to (3.1), U,, converges almost surely to 0 as n goes to infinity. Since § is continuous and vanishes at 0,
g(U,,) converges almost surely to 0. Using (3.2), the second term in the expectation of (3.7) converges almost
surely to some constant. Moreover, from Lemma 3.2 respectively Lemma 3.3, we know that this term is also
bounded in Ls. Since g is bounded, we can conclude that

@n((ai,j)i,j)*E{ e" 2 (EUn@,Un(@)| 1220, o
reZ4

Now, due to (3.4), we obtain

k m
. C
nh~>n;o cpn((ﬂm)i,j) = exp 75 Z Z gi,joi/,j’ (tj /\tj/)a—i,i’
i,4'=17,7'=1
k. m
=1 |:6Xp (Z Z Z 0¢,j\/EW(s,;, tj)>:|
i=1 j=1

by remarking that o; = s; A sy — 5;540.

3.3. Tightness

The proof of the tightness follows in the same way as in [36]. Recall that we assume that (£;),cze are
uniformly distributed on the interval [0, 1]. In this situation, we have for all = € Z% and sq, 59 € [0,1]

E | (G (@) = €0 (@)] < Is1 = 2],
E [(Csl(w) - CSQ(x))“] < |s1 — sal-

Now, using inequalities from Lemmas 3.2 and 3.3, we obtain the following moment bound for all n; < ns <n
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and $1, 82 € [0, 1] with |s; — so| > 1/n:

B (agl i:;ﬂ (Co1 (55) = G (S»)) ]
(12;Mwm (€10~ Gu(e)

B (6 0) - €. (0)'| [%2; Nl 0)]
Ekg()c&)}2[(*2; 2l )T

<, g — s — sal i (51— 527

<Cy [Z T log(n —m)lst — s + (”2 . ”1)2 (51 — 52)2]

<o, (B2 ) oy g

If 51 < s2 and |s1 — s3] < 2/n, we have by monotonicity that for any s € (s1,s2)

1 & 1 &
; Z Cs(Sz) - ai Z Cs1(S)
" i=ni+1 " i=ni+1
1 2 1 2 Ng — N1
S|= D0 Mz = D Mes<an| + |s =1
™ i=ny+1 " oi=ni+1
1 & 1 & Ng —n
2 — N
Sl > Lgs, <0} — D g <o + |s2 — s1]
" i=ni+1 " i—n1+1 "
1 T2 — N1
< ; Z CSQ(S Z CSI |82 _31|
n i=ni+1 i= n1+1 n
1 &
D SRR AT
(079 - Ay, (7%
i=ni+1 i=ni+1

135

(3.8)

Following Bickel and Wichura [3], we introduce for a two-parameter stochastic process (V'(s,t))ste(0,1) the

notation

w5 (V)
= max{ sup  min{[|V (-, t2) =V (-, 8)[lco, V() = V(- t1) [l oo}
0<t; <t<t2<1
to—1t1<6

sup min {|V(s22) = Vs, )lloes [V (5,) = Vst o} -
0<s1<s<s3<1
S2—S81 §6
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where || - || denotes the supremum norm. For (W, (s,1))s teo,12 With

nt)

[
Wals,t) = = > G(S)
" i=1

and the index set D,, := {0, %, %, cee 1}2, we have by (3.8)

4
wg(Wn) < wg(Wn\Dn) + P

n

where wj (W, p, ) is calculated by restricting all suprema to the set D,,. Now by Theorem 3 (and the remarks
following their theorem) of Bickel and Wichura [3] together with our moment bound

379
|51 — sa[%/2,

E (1 Z (<51<Si>—<52<5i>)>4 <20, (%)

a
" i=ni+1

we can conclude that for any € > 0

P <lim supws (Wyp, ) > e) 2200

n— oo

and consequently

P <limsupwg(Wn) > e> 2200,

n— oo

Thus the process is tight by Corollary 1 of [3].

[1]

(10]
(11]
(12]

(13]

REFERENCES

A. Asselah and F. Castell, Random walk in random scenery and self-intersection local times in dimensions d > 5. Prob.
Theory Relat. Fields 138 (2007) 1-32.

I. Berkes and W. Philipp, An almost sure invariance principle for the empirical distribution function of mixing random
variables. Prob. Theory Relat. Fields 41 (1977) 115-137.

P.J. Bickel and M.J. Wichura, Convergence criteria for multiparameter stochastic processes and some applications. Ann.
Math. Statist. 42 (1971) 1656-1670.

P. Billingsley, Convergence of probability measures. John Wiley & Sons (1999).

E. Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989)
108-115.

A.N. Borodin, A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad.
Nauk SSSR 246 (1979) 786-787.

A.N. Borodin, Limit theorems for sums of independent random variables defined on a transient random walk. In Vol. 85 of
Investigations in the theory of probability distributions, IV (1979) 17-29.

P. Cabus and N. Guillotin-Plantard, Functional limit theorems for U-statistics indexed by a random walk. Stoch. Process.
Appl. 101 (2002) 143-160.

E. Carlstein, Nonparametric change-point estimation. Ann. Stat. 16 (1988) 188-197.

F. Castell and F. Pradeilles, Annealed large deviations for diffusions in a random Gaussian shear flow drift. Stoch. Process.
Appl. 94 (2001) 171-197.

F. Castell, Moderate deviations for diffusions in a random Gaussian shear flow drift. Ann. Inst. Henri Poincaré 40 (2004)
337-366.

F. Castell, N. Guillotin-Plantard and F. Péne, Limit theorems for one and two-dimensional random walks in random scenery.
Ann. Inst. Henri Poincaré 49 (2013) 506-528.

J. Cerny, Moments and distribution of the local time of a two-dimensional random walk. Stoch. Process. Appl. 117 (2007)
262-270.



(14]

[15]
(16]

(17]
(18]
(19]
20]
(21]
(22]
23]
[24]
[25]
[26]
27)
28]

29]
30]

(31]
(32]

(33]
(34]
(35)
(36]

EMPIRICAL PROCESSES FOR RECURRENT AND TRANSIENT RANDOM WALKS IN RANDOM SCENERY 137

S. Cohen and C. Dombry, Convergence of dependent walks in a random scenery to fBm-local time fractional stable motions.
J. Math. Kyoto Univ. 49 (2009) 267-286.

E. Cséki and P. Révész, Strong invariance for local times. Z. Wahrsch. Verw. Gebiete 62 (1983) 263-278.

E. Csaki, W. Konig and Z. Shi, An embedding for the Kesten-Spitzer random walk in random scenery. Stoch. Process. Appl.
82 (1999) 283-292.

J. Dedecker, H. Dehling and M.S. Taqqu, Weak convergence of the empirical process of intermittent maps in L2 under
long-range dependence. Stoch. Dyn. 15 (2015) 1550008.

H. Dehling and M. Taqqu, The empirical process of some long-range dependent sequences with an application to U-statistics.
Ann. Stat. 17 (1989) 1767-1783.

G. Deligiannidis and S.A. Utev, Asymptotic variance of the self-intersections of stable random walks using Darboux-Wiener
theory. Siber. Math. J. 52 (2011) 639-650.

F. Den Hollander and J.E. Steif, Random walk in random scenery: a survey of some recent results. Dynamics & Stochastics.
In Vol. 48 of IMS Lect. Notes Monogr. Ser. (2006) 53-65.

B. Franke, F. Pene and M. Wendler, Stable limit theorem for U-statistic processes indexed by a random walk. FElectr.
Commun. Probab. 22 (2017).

N. Gantert, W. Konig and Z. Shi, Annealed deviations of random walk in random scenery. Ann. Inst. Henri Poincaré Probab.
Statist. 43 (2007) 47-76.

L. Giraitis, R. Leipus and D. Surgailis, The change-point problem for dependent observations. J. Statist. Plann. Inference
53 (1996) 297-310.

N. Guillotin-Plantard and V. Ladret, Limit theorems for U-statistics indexed by a one dimensional random walk. ESAIM:
PS 9 (2005) 95-115.

N. Guillotin-Plantard and J. Poisat, Quenched central limit theorems for random walks in random scenery. Stoch. Process.
Appl. 123 (2013) 1348-1367.

N. Guillotin-Plantard and C. Prieur, Limit theorem for random walk in weakly dependent random scenery. Ann. Inst. Henri
Poincaré Prob. Stat. 46 (2010) 1178-1194.

N. Guillotin-Plantard and C. Prieur, Central limit theorem for sampled sums of dependent random variables. ESAIM: PS
14 (2010) 299-314.

N. Guillotin-Plantard and R.S. Dos Santos, The quenched limiting distributions of a charged-polymer model. Ann. Inst.
Henri Poincaré Probab. Stat. 2 (2016) 703-725.

A. Inoue, Testing for distributional change in time series. Econometric theory 17 (2001) 156-187.

H. Kesten and F. Spitzer, A limit theorem related to a new class of self similar processes. Z. Wahrsch. Verw. Gebiete 50
(1979) 5-25.

J.C. Kiefer, Skorohod embedding of multivariate RV’s, and the sample DF. Z. Wahrsch. Verw. Gebiete 24 (1979) 1-35.

D. Khoshnevisan and T.M. Lewis, A law of iterated logarithm for stable processes in random scenery. Stoch. Process. Appl.
74 (1998) 89-121.

D.W. Miiller, On Glivenko-Cantelli convergence. Z. Wahrsch. Verw. Gebiete 16 (1970) 195-210.

F. Spitzer, Principles of random walks. Vol. 34 of Graduate Texts Math. Springer-Verlag (1976).

J. Tewes, Change-point tests under local alternatives for long-range dependent processes. Electr. J. Stat. 11 (2017) 2461-2498.

M. Wendler, The sequential empirical process of a random walk in random scenery. Stoch. Process. Appl. 126 (2016) 2787—
2799.



	Empirical processes for recurrent and transient random walks in random scenery
	1 Introduction and main results
	2 Applications
	2.1 Degenerate U-statistics
	2.2 Testing for stationarity of the scenery

	3 Proof
	3.1 Recalls and auxiliary results
	3.2 Convergence of the finite-dimensional distributions
	3.3 Tightness


	References

