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A LAW OF LARGE NUMBERS FOR BRANCHING MARKOV
PROCESSES BY THE ERGODICITY OF ANCESTRAL LINEAGES

ALINE MARGUET"

Abstract. We are interested in the dynamic of a structured branching population where the trait
of each individual moves according to a Markov process. The rate of division of each individual is a
function of its trait and when a branching event occurs, the trait of a descendant at birth depends on
the trait of the mother. We prove a law of large numbers for the empirical distribution of ancestral
trajectories. It ensures that the empirical measure converges to the mean value of the spine which is
a time-inhomogeneous Markov process describing the trait of a typical individual along its ancestral
lineage. Our approach relies on ergodicity arguments for this time-inhomogeneous Markov process. We
apply this technique on the example of a size-structured population with exponential growth in varying
environment.
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1. INTRODUCTION

We are interested in the asymptotic behavior of a continuous-time structured branching Markov process.
Each individual in the population is characterized by a trait which follows a Markovian dynamic and which
influences the branching events. This trait may describe the position of an individual, its size, the number of
parasites inside a cell, etc. The purpose of this article is to prove a law of large numbers i.e. the convergence of
the empirical measure to a deterministic limit.

The law of large numbers has already been proved in many different cases. For the convergence in discrete
time of the proportions of individuals with a certain type in the population, we refer to [2, 3] with respectively a
discrete or continuous set of types. The generalization of the law of large numbers to general branching Markov
processes has been obtained by Asmussen and Hering in [1] in both discrete and continuous time. Their proof
relies on a specific decomposition of the first moment semigroup which applies to the case of branching diffusions.
In the context of cellular aging, Guyon [17] proved the convergence of the empirical measure for bifurcating
Markov chains using the ergodicity of the spine. A generalization of those results to binary Galton—Watson
processes can be found in [10]. For results in varying environment, we mention [4, 6]. In continuous-time, we
refer to [16] for asymptotic results in the case of a finite number of types, to [19] for a strong law of large
numbers in the case of local branching and to [24] for central limit theorems. The specific case of branching
diffusions, popularized by Asmussen and Hering [1], is addressed in [12]. We also mention [11, 13] for the study
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of the case of superdiffusions. For nonlocal branching results in continuous-time, we refer to [7] for the study of
the proportion of infected cells in a population, to [5] for the case of a general Markov branching process with a
constant division rate and to [8] for the convergence of an empirical measure in the general case. Some of those
results rely on spectral theory. Here, we will follow another approach which requires no use of eigenelements as
in [5] or [17]. In particular, it can be applied to time-inhomogeneous dynamics.

The question of the asymptotic behavior of structured branching processes appears in many different situa-
tions and in particular in the modeling of cell population dynamics. In this context, the law of large numbers is
a key result for the construction of an estimating procedure for the parameters of the model. We refer to [20]
for the estimation of the division rate in the case of an age-structured population.

In this article, we prove the convergence of the empirical measure for a class of general branching Markov
processes, using spinal techniques. More precisely, we use the characterization of the trait along a typical
ancestral lineage introduced in [21]. We adapt the techniques of [18] and we prove that under classical conditions
([22], Chaps. 15, 16), the semigroup of the auxiliary process, which is a time-inhomogeneous Markov process,
is ergodic. Using this property, we prove a law of large numbers for the empirical distribution of ancestral
trajectories. We also apply this technique to an example in varying environment where the law of large numbers
result holds.

We describe briefly the branching process (Z;,t = 0) and we refer to [21] for its rigorous construction. We
assume that individuals behave independently and that for each individual w in the population:

— its trait (X}*,t > 0) follows a Markov process on X with infinitesimal generator and domain (G, D(G));
— it dies at time t at rate B(t, X}*) and is replaced by 2 individuals;
— the trait of the two children are both distributed according to Q(X},-).

Remark 1.1. Two remarks are in order:

(1) For the sake of clarity, we consider only binary division but the model can easily be extended to a random
number of descendants as in [21]. The choice of equal marginal distribution for the traits at birth simplifies
calculation but is not mandatory.

(2) The reason why we choose to make the time-dependence of the division rate explicit is twofold. First, it is
the case in the example we choose to develop in the last section of this article in order to tackle environment
changes. Second, it highlights the (possible) time-inhomogeneity of the measure-valued branching process
Z. We emphasize that this case is covered by the study in [21] where the trait lives on X = Y x R,..

We focus on the empirical measure which describes the current state of the population

where V; denotes the set of individuals alive at time ¢ and Ny its cardinal. A crucial quantity for the study of
this probability measure is the first moment semigroup applied to the constant function equal to 1 given by

m(x,s,t):=E [Nt|Zs = 596] .

It is the mean number of individuals in the population at time ¢ starting at time s with a single individual with
trait £ € X. In fact, the behavior of the empirical measure is linked with the behavior of a uniformly chosen
individual in the population and the mean number of individuals in the population. More precisely, we have
the following result, referred to as a many-to-one formula ([21], Thm. 3.1), which holds under Assumptions 2.1
and 2.3 given below: for all non-negative measurable functions F' on the space of cadlag processes, for all
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0<s<tand zge X,

E

N P (XY s <t)]2 = 5%] = m(z0,0,t)E [F (Ys(t),s < t) v = xo] : (1.1)

ueVy

where (Ys(t), s < t) is a time-inhomogeneous Markov process, called the auxiliary process, whose infinitesimal

generators (.Agt), s < t) are given for all suitable functions f and x € X by

g(m(, s t)f) (@) = f(2)G(m(, s, 1)) (x)

m(x,s,t)

AD () = +280s.2) [ (1) - Fe) WD o0 ay.  (12)

pe m(x,s,t)

The auxiliary process corresponds to the trait of a typical individual in the population [21]. More precisely, the
family of operators (Pr(ts) ,0 <7 < s <t) defined for all measurable functions f by

Rr,s(fm('7 S, t))(x)

() = m(z,r,t)

T8

b

where R, f(x) = B[, ey, f(X¥)|Z, = 6,] forms a time-inhomogeneous semigroup (i.e. B%Pyg = P,gts) for all
r < u < s <t), which is the semigroup of the auxiliary process. It can also be exhibited using a change of
probability measure. Indeed, by Feynman-Kac’s formula (see [9], Sect. 1.3), we have

P f(z) = m(z,r, t)"'E [eSi BXodvn (X, 8,t) f(Xs)| X, = x] :

r,s

where (X, 7 < s < t) is a Markov process with infinitesimal generator M given by

Mf(z) = Gf(x) + 2B(x) j () - (2) Qe dy).

X

Then, the change of probability measure given by the o(X;,l < s)-martingale

eSiB(XS)dSm(XS,s,t)

m(x,r,t)

MO =

s , forr<s<t

exhibits the probability measure corresponding to the auxiliary process.
The auxiliary process and its asymptotic behavior are the keys to obtain the main result of this article which
is the following law of large numbers for the empirical distribution of ancestral trajectories:

F (X} ,,s<T
(Z“GV‘+T N(H;*S ) g 7 (v s < 7)) = x1]> ——— 0, in Ly(6s,),
for all xp, 21 € X and T > 0, where the Ly (05, )-convergence is the Lg-convergence with initial measure d,.
This result ensures that the behavior of the whole population becomes deterministic asymptotically and that
this behavior is given by the limit behavior of the auxiliary process. This weak law of large numbers gives
information on the ancestral lineages in the population. To establish this result, we prove in particular that
under the classical drift and minorization conditions ([22], Chaps. 15, 16) adapted to the time-inhomogeneous
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case, the auxiliary process is ergodic in the sense that there exists ¢ > 0 such that for all z,y € X', T > 0, for
all bounded measurable functions F : D([0,7], X) — R and all 0 < r < ¢, we have

|PrarF () = Pryr F(y)| < Cemd(,y) |F,
where d is a distance on X', C is a positive constant and
PurF(@)=E[F (YD, s <T) [0 =] (1.3)

We also apply our method to study a size-structured population with a division rate that depends both on
the trait and the time. This example models the dynamic of size-structured cell population. Hence, the trait of
interest is the size of each individual, increasing exponentially at rate a. We assume that each cell divides at
rate B(t,z) = zp(t), where ¢ is a positive function which describes environment changes. At division, a cell of
size x splits into two daughter cells of size fx and (1 — @)z, where 6 is uniformly distributed on [e,1 — €] for
some € > 0. In this case, the infinitesimal generator of the auxiliary process is given by

(1—e)x

ADF(@) = azf'(z) + 200(s) j (F) ~ f(@)) Zgi 3 q - e

for all f: R, — R continuously differentiable, s,t € R, such that s <t and z € R,.

Spectral techniques fall apart in this case because of the time dependence of the division rate whereas our
method works. We prove the law of large for the distribution of ancestral trajectories in this special case. In
particular, we exhibit a Lyapunov function, i.e. a function V satisfying the first condition of Assumption 3.1
below, for the time-inhomogeneous auxiliary process associated with this population dynamic and we establish
the minorization condition 3.1(2) detailed in Section 3.

Outline. In Section 2, we detail the structured branching process and the assumptions considered for its
existence and uniqueness. Then, in Section 3, we study the asymptotic behavior of the empirical measure: first,
in Section 3.1, we give our result on the ergodicity of the auxiliary process, then, in Section 3.2, we state the law
of large numbers for the empirical distribution of ancestral trajectories for the structured branching process.
Section 3.3 is dedicated to proofs. Finally, in Section 4, we apply the techniques developed in the previous
sections to study the asymptotic behavior of a size-structured population in a fluctuating environment.

Notation. We use the classical Ulam—Harris—Neveu notation to identify each individual. Let

u=|J1".

neN

The first individual is labeled by . When an individual u € U dies, its descendants are labeled by u0,ul. If u
is an ancestor of v, we write u < v. With a slight abuse of notation, for all v € V; and s < t, we denote by X
the trait of the unique ancestor living at time s of u.

We also introduce the following notation for the time-inhomogeneous auxiliary process: for all measurable

functions f, we set
5 (1 (1) =20 () 157 =),

forallze X, 0<s<t.
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Finally, we recall that for all t > 0 and all 0 < r < s < t, Pr(ts) is also a linear operator from the set of
measures of finite mass into itself through the left action. In particular, for any x € X', we will denote the

measure 51P7§,ts) (dy) by Pr(tg) (x,dy).

2. THE STRUCTURED BRANCHING PROCESS

First, we introduce some useful notations and objects to characterize the branching process. Henceforth, we
work on a probability space denoted by (2, F,P).

2.1. Dynamic of the trait

Let X < R? be a measurable complete space for some d > 1. It is the state space of the Markov process
describing the trait of the individuals. Let G : D(G) < Cp(X) — Cp(X) be the infinitesimal generator associated
with a strongly continuous contraction semigroup where Cp(X) denotes the continuous bounded functions on
X. Then, (X¢,t > 0) is the unique X-valued cadlag strong Markov process solution of the martingale problem
associated with (G,D(G)) ([14], Thms. 4.4.1 and 4.4.2). We denote by (X7,t > 0) the corresponding process
starting from x € X.

2.2. Division events

An individual with trait = at time ¢ dies at an instantaneous rate B(t,x), where B is a continuous function
from Ry x X to Ry. It is replaced by two children. Their traits at birth are distributed according to the
probability measure Q(x,-) on X2. We suppose that the probability measures corresponding to the marginal
distributions are equal. By a slight abuse of notation, we will also denote them by Q.

We refer the reader to Remark 1.1 in the introduction for comments on the choice of model. In order to
ensure the non-explosion in finite time of such a process, we need to consider the following hypotheses.

Assumption 2.1. We suppose that

(1) there exist by, by : Ry — R¥ continuous and v > 1 such that for all (t,2) e Ry x X,
B(t,) < by () |2l + bat),
(2) for all z € X,
Yi(z) + Ya(z) < z,

where the law of the couple of random variables (Y7 (z), Y2(x)) is given by Q(x, dy,dy2),
(3) forallz e X,

t

lim B(s, X7)ds = 400, almost surely,
t—+0 Jq

(4) there exists a sequence of functions (A, - )nen such that for all n € N, h,, , € D(G) and limy,—, 1o by () =
|z|7 for all z € X and there exist ¢1, ¢y = 0 such that for all z € &

lim Ghy 4 (2) < cr]z]” + c2,
n—+o0

.
where 7 is defined in the first item and for x € R?, |z|Y = (Z?:1 |xz|) .
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Remark 2.2. We have slightly modified the first condition on the division rate compared to the one in [21] to
better fit the framework of this paper. The adaptation of the proof of the non-explosion of the population to
use this modified assumption is straightforward.

Under Assumption 2.1, we have the strong existence and uniqueness of the structured branching process Z
in the state of cadlag measure-valued processes, where for all ¢ > 0,

Zy= ) oxp, t=0.

ueVy

We refer to Theorem 2.3 in [21] for more details and to [15] for the study of cadlag measure-valued processes.

For the existence of the auxiliary process Y (¥ with infinitesimal generators given by (1.2), we need to consider
additional assumptions on the mean number of individuals in the population at a given time. Let us define the
domain of the infinitesimal generator of the auxiliary process by

D(A) ={f € D(G) s.t. m(-,s,t)f(s,z) € D(G) for all t > 0 and s < t}.

Assumption 2.3. We suppose that for all ¢ > 0:

— for all x € X, s — m(x, s,t) is continuously differentiable on [0, ¢];
— forallz e X, f € D(A), s — G(m(:,s,t)f)(z) is continuous;
— D(A) is dense in Cp(X) for the topology of uniform convergence.

This assumption allows us to derive the expression of the generator of the auxiliary process ([21], Lem. 3.4).
It is in particular satisfied in the example developed in Section 4 and in the examples of [21].

Assumption 2.4. For all ¢t > 0,

sup sup Q(z,dy) < +oo.

reX s<t

J m(y, s, t)

x m(z,s,t)

This assumption tells us that we control uniformly in x the benefit or the penalty of a division. In the general
case, the control of the ratio m(y, s,t)(m(z, s,t))~! seems difficult to obtain. We refer to [21] or to Section 4 for
examples where this assumption is satisfied.

3. ASYMPTOTIC BEHAVIOR OF THE STRUCTURED BRANCHING PROCESS

The purpose of this section is to prove the law of large numbers result. We show that asymptotically, the
behavior of the whole population corresponds to the mean behavior of the auxiliary process introduced in [21].
The ergodicity of this process is the key for the proof of the law of large numbers. We notice that the ergodicity
of the auxiliary process is also required for the proof of the convergence of the empirical measure in [5, 17]
and [8].

In Section 3.1, we prove the ergodicity of the auxiliary process. Then, in Section 3.2, we state the main
theorem of this article which is the convergence in Ly-norm of the difference between the empirical measure and
the mean value of the auxiliary process towards zero as time goes to infinity. Section 3.3 is devoted to proofs.

3.1. Ergodicity of the auxiliary process

For all t > 0, we recall that ( ﬁts) ,r< s < t) denotes the semigroup of the auxiliary process defined in (1.2)
by its infinitesimal generators.

The next assumption gathers two classical hypotheses to obtain the ergodicity of a process ([22], Chaps. 15,
16). We adapt them to the time-inhomogeneous case.
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Assumption 3.1. We suppose that:

(1) there exists a function V' : X — R, and ¢,d > 0 such that for all z € X', ¢t > 0 and s < ¢,
ADV (z) < —cV (2) + d,
(2) for all 0 < r < s, there exists as_, € (0,1) and a probability measure v, ; on X such that for all ¢ > s,

inf P(t) '>s—rrs'7
vt ) s (T5) 2 aspvr s ()

with B(R,V) = {z € X : V(z) < R} for some R > 2¢ where ¢, d are defined in the first point.

In what follows, as in [18, 22], we call Lyapunov function any function V satisfying the first condition of
Assumption 3.1 and we will refer to the second point of Assumption 3.1 as a minorization condition. Adapting
directly Theorem 3.1 of [18], we prove that the semigroup of the auxiliary process is a contraction operator for
a well-chosen norm. For all § > 0, we define the following metric on X:

d (JJ ) o 0 r=y,
POV T 24 V(@) + BV (y) a2y
We can now state the result on the ergodic behavior of the trajectories of auxiliary process.
Proposition 3.2. Let T > 0. Under Assumptions 2.1, 2.3, 2.4, 3.1, there exists ¢ > 0 and 5 > 0 such that for
all z,y € X, for all bounded measurable functions F : D([0,T],X) = R and all 0 < r < t, we have
|PrirF(x) = Py Fy)| < Ce 7| F| , dg(x,y), (3.1)

where C' > 0 is a positive constant.

In the case of a division rate independent of time, the auxiliary process is still time-inhomogeneous but we
obtain the convergence of the trajectories of the auxiliary process.

Proposition 3.3. Let T > 0. Assume that B(t,x) = B(x) for allt = 0 and x € X. Then, under Assumptions
2.1, 2.8, 2.4, 3.1, there exists a probability measure II on the Borel o-field of D ([0,T],X) endowed with the
Skorokhod distance such that for all bounded measurable functions F : D ([0,T],X) — R and for all z € X,

[PoairFla) = T(F)| < O™ I, (24 26V(0) + 57 ).

This convergence is different from classical ergodicity results because (Po(tt) ,t = 0) is not a semigroup.

3.2. A law of large numbers

Before stating the law of large numbers, we need to consider a final set of assumptions. For z,y € X and
s >0, let

m(z,0,s)m(y, s, )

@s(z,y) = sup (3.2)

t=s m(ac, 07 t)

It quantifies the benefit, in term of number of individuals at time ¢, of “changing” the trait of the entire
population at time s by the trait y. This quantity is possibly infinite, but Assumption 3.4 below ensures that it
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is finite. For all x € X, we define:

1 t
c(x) = liminfiog(m(x’07 )), (3.3)
t—0o0 t
which corresponds to the growth rate of the total population. In particular, if the division rate is constant
B = b, we have that c(x) = b (see (2.6) in [21]).
Using the same notations as [21], we set for all measurable functions f: X — R and for all z € X,

Jf(m)=:2\[ £ (w0) f (1) Qe dyo ). (3.4)

XXX

It represents the average trait at birth of the descendants of an individual.
Assumption 3.4. We suppose that

(1) for all x € X, ¢(z) > 0,
(2) there exist ag, D1 = 0 such that a1 < ¢(z) for all z € X and for all ¢ > 0,

E, | B (£Y.7) 7 (1v Ve @) (¥7)] < Die,

where V is defined in Assumption 3.1.

By the definition of ¢(z), the first point ensures that the growth of the population is exponential (which is
not the case, for example, if the trait of the initial individual remains constant at a value where B is equal
to zero). This condition is satisfied for instance if the division rate is lower bounded by a positive constant or
in the example given in the last section. The second point is a technical assumption. In particular, if ¢;, B,V
are upper bounded by polynomials and if we can control the moments of the measure m, the first point of
Assumption 3.4 amounts to bounding the moments of the auxiliary process. We refer the reader to Lemma 4.5
in the last section of this article for the verification of this hypothesis in an example.

We first state a slightly less strong result than the law of large numbers.

Theorem 3.5. Let T > 0. Under Assumptions 2.1, 2.3, 2.4, 3.1, 3.4, we have for all bounded measurable
functions F : D([0,T],X) - R, for all xg,z1 € X,

2

Es

F (X"  s<T)—Py,roF
D (Xtiss <T) = PourF(z) | | 0. (3.5)
m(xg,0,t +T) t—0

ED)
uEVH_T

Moreover, the rate of convergence is lower-bounded by:
v(t) = exp (min <C, 76(1:0)27 al) t> )

As in [17] and [5], we could generalize this result to unbounded functions F' satisfying specific conditions such

where € is defined below in (3.12).

as P(gtt)F < e for some b < ¢(z). The rate of convergence of the empirical measure depends both on the growth
rate of the population and on the rate that governs the exponential ergodicity for the auxiliary process. The
same type of rate of convergence appeared in Theorem 3 of [20], in the case of an age structured population.

In order to derive the law of large numbers from the previous result, we need to control the variance of the
number of individuals in the population.
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Assumption 3.6. For all z € X,

N, 2
sup £ _ < 0.
o ((m@c,o,t)) )

The meaning of this assumption is that the number individuals at time ¢ in the population is of the same
order as the expected number of individuals in the population at time ¢. We can now state the law of large
numbers.

Corollary 3.7. Let T > 0. Under Assumptions 2.1, 2.8, 2.4, 3.1, 8.4, 3.6, for all bounded measurable functions
F:D([0,T],X) = R, for all zg,z1 € X, we have,

ZueVHT F (Xtu+s’ 5 < T) .
Nt+T — P()’t’TF(J?l) m 0, wm ]LQ((SxO)-

Remark 3.8. It is possible to extend this convergence to population processes allowing death events i.e. if
po % 0. In this case, the convergence is only valid on the survival event {N; > 0}.

Remark 3.9. We are not able to give the rate of convergence in this case because we did not prove the
convergence of (Nym(x, )71t > 0), for x € X.

In the case of a division rate that does not depend on time, even if the auxiliary process is still time-
inhomogeneous, it converges when time goes to infinity according to Proposition 3.3. Therefore, we obtain the
following result.

Corollary 3.10. Let T > 0. Under Assumptions 2.1, 2.3, 2.4, 8.1, 8.4, 3.6, if B(t,x) = B(z) for allt >0
and x € X, there exists a probability measure I1 on the Borel o-field of D ([0, T], X') endowed with the Skorokhod
distance such that:

ZueVHT F (Xtu-&-m s < T)
Nt+T t—+400

II(F), in Lo(ds,)-

Therefore, the empirical measure of ancestral trajectories converges toward the limit of the auxiliary process.

3.3. Proofs

We first give a useful inequality. Combining the first point of Assumption 3.1 and Dynkin’s formula applied
to x +— etV (x) where ¢,V are defined in Assumption 3.1, we have,

POV () < eIV (2) + & (1 - e*C<H>) : (3.6)
’ Cc

We will use this inequality in the two following subsections.

8.8.1. Proof of Proposition 3.2

This is adapted from ([18], Thm. 3.1). We consider the semi-norm on measurable functions from X into R
defined by

|f(z) = f()]
ds(x,y)

g = sup
TF#Y
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We also introduce the following weighted norm:

|/ ()]

I£1s = sup =10

Step 1. Let 0<r<s<tand f: X — R be a bounded measurable function. First, we prove that for all
A > 0, there exists @a € (0,1) and Sa > 0 such that for all » > 0 and all t > r + A,

125, afllps <@allfllgs- (3.7)

Let 3 > 0 that will be specified later. Fix R > 52 4 and f X — R such that ||f]|s < 1. Using Lemma 2.1 in
[18], we can assume without loss of generality that Iflg < 1. To obtain (3.7), it is sufficient to prove that for
all z,y € X, there exists aa € (0,1) and Sa > 0 such that

B af (@) = Pl A f(4)] < @adsy (2.9).
If x = y, the claim is true. Let = # y € X. We assume first that  and y are such that
V(z)+V(y) = R.

Then, we have

P f(x) - PY_ A fy)| <2+ BPY, AV (2) + 8P, AV (y),

because | f| 5 < 1. Next, using (3.6), we obtain

PO A (@)~ PO, AF)| €24 B (Vi) + Vi) +269 (172
<24 BB (V(z) + V(y)) + 25%(1/(:5) V() (1)

Let 7 = e ¢4 + 2L (1 — ¢=“2). We have 7 < 1. Then,

)+ V()
exe Goraeo) KRR

< Yads(z,y), (3.8)
where
2 0
fyi = 2 PRYA PRAA < 1.

24+ BR

Assume now that x and y are such that

Viz)+V(y) <R.
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Let us consider the following linear operator:

(1) 1 (t) QA
Priia = anrJrA TRt

where aa is given in Assumption 3.1(2). We have

P Al (@) = PO AT )| = (L= an) B, a0 @) = PO, AT )]

According to the second point of Assumption 3.1, PT( ranf(@)=0forall f>0and ze B(R,V). Then,

) af@) = P s @) < (1= an) (B, st )+ PYL A1)

Next, using that | f|; <1 and that Pﬁt)+AV( ) < ﬁtT)JrAV( ), we get

= 1—0¢A

P At @) = PUL At )| <20 —aa) + 8 (PO, AV (@) + PO, AV ()
<2 <1 —aa + ﬂ% (1— e_CA)) + B A (V(z) + V(y)),

where the second inequality comes from (3.6). Let o € (0, 1%% A). Then, fixing

B =PBa:=cd tad (1 —e )7,
yields

P af(@) = P af )] <2(1—aa +ad) + Bac™ 2 (V(@) + V(y)
< YAdsa (2,9), (3.9)

where

YA =€ v (1 - (aa —aQ)).

cA

Finally, combining (3.8) and (3.9) and noticing that yv4 > e~“? yields the result with @a = vA v (1—(aa —aQ)).

Step 2. We now prove (3.1). Conditioning with respect to o (YH(HT),T <u< t) and using the Markov

property, we obtain

PoirF(z) — Py rFl(y J Py rF(z )(P}””(x dz) — Pr(ttJrT)(y,dz)). (3.10)

For all z € X, we set g(z) = Pr¢F(%). Let A > 0. Let [(r,t) € Nand €, > 0 be such that t —r = [(r,{)A 4+ &,
and €.+ < A. Using (3.7), we have

P g(x) — Pf?T)g(y)‘ =

T T T T
PO BT o) - PR

_ t+T)
< @adp, (2, 9) 1P gl g

< (aA)l(r’t) d,(a(l‘, y) ”gHoo )
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where 8 = cd~!. Finally, we obtain

P g(x) — P g(y)| < Ce™ D dg(w,y) g, (3.11)
where C := 1+ % and
¢ := sup log(a, ')A~ (3.12)
A>0

In particular, ¢ < ¢ because aa > e~ *. Finally, combining (3.10) and (3.11), and using that ‘Pfﬁ?F” <
’ ©

[F.,, we get the result.

3.8.2. Proof of Proposition 3.3
Let F:D([0,T],X) — R be a bounded measurable function. We have for all ¢, = 0,

PoinrF(e) =B, [F (V17 s < 7) | = B[R] F (Vs < 7) |70 |

Using the Markov property, we have

PotrrrF(z) = J Pr,t+7",TF(y)P(§,t:r+T) (z,dy).
X

Since B does not depend on time, we have m(y,r,t +r +T) = m(y,0,t + T). Then, using the many-to-one
formula (1.1) and the Markov property, we get

L [Zuevt+T F (Xzi+sa s < T) }ZO = 6’1/

P.yr7F(y) = My 0.6+ 1) =Py 7F(y),
so that
PuriraF(@) = [ PosaP) RS o,y
Next,

(PastrrF(@) = PosrF(@)] < | [PosrF(u) = PoaFl@)| P e,y
x
Then, according to (3.1), there exist ¢ > 0, § > 0 and a constant C > 0 such that

|Posir1F(z) — PoyrF(z)| < Ce™® |F|, f 2+ BV(y) + BV (x) B (@, dy)
X

_ d
<Ce ®|F|, <2 + 26V (z) + 'Bc> 0,

r,t—+00

where the last inequality comes from (3.6). Finally, (PyrF(z),t = 0) is a Cauchy sequence in X which is
complete. Then, it has a limit as t — +o0 and this limit is independent of z by (3.1).
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3.8.3. Proof of Theorem 3.5, Corollary 3.7 and Corollary 3.10

Let F: D([0,T],X) — R, be a bounded measurable function. For all z € D([0,¢t + T], X) and z; € X, we
define the following function:

der(w1, (25,8 <t +T)) = F (245,58 <T) — Py 7F(21).

Proof of Theorem 3.5. Fix xy € X. Let € > 0 be such that c¢(zp) — a1 > ¢, where «; is defined in
Assumption 3.4. Let ¢ > 0 be such that

log(m(zo,0, s))

c(zg) < ;rgt — . +e.

We have
2
o1, (Xg,s<t+T))
E =A(t,T)+ B(t,T
Oz Z ((E(),Ot-l-T) (a )+ (a )a
ueViyr
where
A(t,T) = m(zo,0,t + T) K, Z br.r (21, ( <t+T1))?%|,
| ueViyT

B(t,T) = m(x0,0,t + T)°Es, D (e, (X s <t +T)eur(r, (X0, s<t+T))

_u;ﬁveVH_T
For the first term, using that ¢, 7(z1, (X%, s <t +1T))? <4 HFH we get
< Lo (c@0) =) (t+T) | |12 R
A(t,T) < 4e 1F5 P 0.

For the second term, using the many-to-one formula for forks ([21], Prop. 3.6), we have

t+T
m(zo,0,t + T)2B(t,T) = J m(z0,0, 5)Eq, [B (YS(S)) Jsssroer(zi,”) (YT(S),T < s)] ds,
0
where for z € D(]0, 5], X),
Jo 41, r(T1,°) (T) =2 m (yo,s,t +T)E [¢t,T (961, (%HT),T <t+ T)) ‘YS(HT) = yo]

m ();1, s,t+T)E [@,T (561, (ﬁ(HT), r<t-+ T)) ’YS(HT) = yl] Q(zs, dyo, dy1),

where

f/(t-i—T)

Ty if r <s,
v fs<r<t+T.
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We split the integral into two parts:
B(t,T) =L + I,

where

t+T

I = m(xzg,0,t + T)_2j m(zo,0, s)E,, [B (YS(S)) Jsivrde (21, ) (YT(S),T < s)] ds,

t
t

Iy = m(xo,0,t + T)fQJ m(zo,0, s)E,, [B (Ys(5)> Jsirrder(T1,°) (YT(S),’/‘ < s)] ds.

0
For the first integral, we have

L <4 HFHic Jt+T m(zo, 0, 8)_1Ez0 [B (ys(s)) Js (z0,°) <Ys(s))] ds
t

t+T
<4 HF||§c J e~ (e@)=e)s ) e@15dg
t

D
<4 HF||(2)O %e(arc(zoﬂe)t 0,
C(IO) aq £ t—+00

where the second inequality comes from Assumption 3.4. Therefore, we only have to deal with the remaining
integral I. First, we notice that for any 0 < s <tand 0<r < T,

o(t+T t+T
AMLES Anelh

Therefore, we get

o (xl, ()N’T(HT),T <t+ T)) =¢¢ T (ml, (Y;(HT),T <t+ T)) .

Next, Assumption 3.4 yields

I, < _r m(zo,0, )"
0
X By [B (V) T (po(@o, ) (60 (w1, (V4 < t4.7) )y =) (v2) ] as.
Moreover, for any y € X and s < t, we have

E (¢t,T (1'1; (Y}(HT),T <t+ T))

YS(HT) = y) = Ps.7F(y) — PorF'(71).

According to Proposition 3.2, there exists ¢ > 0, § > 0 and C > 0 such that

\Py o7 F(y) — PorrF(z1)| < Ce et

Pt(,tti?FHw L{ dg(y, xz)Pé,t;T) (z1,dxs).

Finally:

_ d
|Ps 7 F(y) — PogrF(z1)| < Ce ) |F|| <2 + BV (y) + BV (1) + ﬁc) '
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Then, we have
L <C|F|% JO t e 220=5) 1 (200, 5) 1
X Ery [B (v&) s (@s(ﬁfo, ) (2 +BV() + AV () + 5jf>) (y;(s))] as.
Next, using Assumption 3.4 we obtain

d\ [* o
L <C HFH?o (2 + 06+ BV(CBl) + ﬂc> J e—2c(t—s)e(oq—c(a:o)-ka)sds7
0

where C' > 0 denotes a positive constant which can vary from line to line. Then,

t
0

2
115 o—2et (e(alfc(zo)+26+s)t _ 1)
STy —cfzg) + 2+ ¢
2
<C 115 _ <e(a1fc(:1:0)+s)t - efzat)
oy —c(xg)+2C+¢

<C HFHi) e~ min(2E,c(:r0)foz175)t'

Finally, we obtain

A, T) + B(t,T) < C |F|| e~ min(2@e(wo)—ar—<)t

where C' is a constant depending on zg, 5,V (z1), ¢, d, ¢(xo), a1, R. O
We now prove Corollary 3.7.

Proof of Corollary 3.7. Let T > 0, € > 0, zp € X and let F : D([0,T],X) — R be a bounded measurable
function. Let § > 0. We have

2 2
o ZueVH.T ber (21, (X, s <t +T)) <62E5 Zue\/t+T Grr (21, (X, s <t +T))
@0 Niir =7 00 m(zo,0,t +T)

+4|F|% Py, (Nem(xo,0,t +T) "t <671,

According to Paley—Zygmund inequality and Assumption 3.6, we have

-1

2 —1\2
(Ne < 6 'm(0,0,t + T)) < 1—(1-07")°Es,, l(m(N”T)) ] <1- &, (3.13)

P
° 20,0, + 7T 9(xo)

o

where g : X — R, is such that for all g € X, we have Es, [NZ pm(zo,0,t+T) %] < g(xo). Finally, we can
fix § such that, combining (3.13) and Theorem 3.5, for ¢ large enough, we have

< e.

2
E <Zue\/t+T th,T (331,(X§,8 <t+T))>
Sag

Nyt
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Corollary 3.10 is a direct consequence of Proposition 3.3 and Corollary 3.7.

4. ASYMPTOTIC BEHAVIOR A TIME-INHOMOGENEOUS DYNAMIC:
APPLICATION OF ERGODICITY TECHNIQUES

In the study of population dynamics, time-inhomogeneity typically appears in fluctuating environment. This
effect can be modeled by a division rate that changes over time. In this section, we show how our method via
the ergodicity of the auxiliary process applies to such models.

We consider a size-structured cell population in a fluctuating environment: each cell grows exponentially at
rate a > 0 and division occurs at time ¢ at rate B(t,z) = zp(t), if x is the size of the cell at time t. We assume
that ¢ : R, — R, is continuous and that there exist 1, 2 > 0 such that for all t € Ry,

1 < p(t) < pa.

The choice B(xz) = z is classical in the study of growth-fragmentation equations [23]. The originality comes
from the function ¢ which models a changing environment.

At division, the cell splits into two daughter cells of size 6z and (1 — )z, with § ~ U ([e,1 —€]) for some
OD<e< % and z the size of the cell at division. Then, the process that we consider is a piecewise deterministic
Markov process (PDMP) on a tree with individual jump rate B and transition density function @ given by

1 .
| o ez <y<(l-¢)z,
Qla,y) = { (g ) otherwise.

Let us first make some comments on the choice of the model. The function ¢ is lower bounded to ensure that
each cell effectively divides after some time. The upper bound is convenient for the calculations. An interesting
example is B(t,z) = z(a + Bsin(t)), with o — 8 > 0 for the modeling of the growth of a cell population in a
periodic environment. Finally, we consider a uniform law on [e,1 — €] for the kernel at division but the next
lemmas can easily be extend to a more general kernel.

Following the same calculations as in ([21], Sect. 2.2), we have

m(xz,s,t) =1+ xd(s,t), Vx e Ry,

where

o5, ) = f o)

S

Moreover, in this case, the infinitesimal generator of the auxiliary process is given by

(1—e)x

Agt)f(x) = azf'(z) + 21:90(8)[ (f(y) — f(x)) ZZE? ‘273 q _délg)x’

(4.1)

for all f: R, — R continuously differentiable, all s,¢ € R, such that s <t and all z € R,. Then, the division
rate of the auxiliary process is given by

m(x/2,s,t)
m(x,s,t)

3
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and the transition kernel for the trait at birth is given by

m(y, s, t)
1 _e)pd
(1 —2e)m(z/2,s,t) cosy<(i-e)z @

QW (x,dy) = QW (x,y)dy =
X

where

(1—e)x

(a2, 5,t) = j m(y, s )Q(x, y)dy,

ET
corresponds to a normalization term so that @gt)(a:, dy) is a probability measure. We have the following result
on the asymptotic behavior of the measure-valued branching process.

Theorem 4.1. Let T > 0. For all bounded measurable functions F : D([0,T],X) — R, for all zg,z1 € X, we
have

F(X{,,s<T
Duevin B (Xtiss <T) B, [F (V07 <)) 0, in La(ds, ). (4.2)

t+s
Neyr

t——+o0

The proof of Theorem 4.1 is detailed in several lemmas. First, in Lemma 4.2, we exhibit a Lyapunov function
and a probability measure which ensure that Assumption 3.1 is satisfied. Next, in Lemma 4.3, we prove that the
moments of the auxiliary process are bounded. Finally, in Lemmas 4.5 and 4.6, we prove that Assumptions 3.4
and 3.6 are satisfied.

Let V(z) = L + x for x € R*. We recall that B(R,V) = {z € Ry, V(z) < R}.

Lemma 4.2. We have the following:

1. There exists d(e) > 0 such that for all 0 < s <t and x € R¥ we have
ADV (z) < —aV (z) + d(e).
2. For all R > 2d(g)a™t, for all r < s < t, there exists as_. > 0 such that for all Borel set A of R,

inf P (Y0 € A = 2) > ap s (A).
2eB(R,V)

Proof. We first prove that V(z) = L + x satisfies the first point of Lemma 4.2. Let us compute A&“Vl(x) where
Vi(z) = z. We have for x € R,

2 (1=e)z 1+ yo(s,t)
(®) _ _ Yyous,
AV (z) = ax + T 26(,0(5) Lw (y 33)71 T 2o(s.) dy

9 2 2 2 1
= az —p(s)a” + gp(s)(e” e + N (1_1+x¢(8,t))

Then, we obtain

3a?
(pl(l + 2 — 252) '

ADV(z) < a (1 - 3i<p(s)(1 +2e — 252)x> r < —ax +
a
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Next, let Va(z) = 1. We have

(1—e)x
(t) _ @ 2 J 1 1Y\ 1+yg(s,t)
AV2(@) x * 1— chp(s) o <y )1 +x¢(s,t)dy’

Using that for all z = 0 and y € [ex, (1 —&)x], 1 + yo(s,t) < 1+ z¢(s,t), we get
ADVa(2) < =2 + 20(5)C(e),

where C(g) = 125 [log (12%) — (1 — 2¢)]. Noticing that C(g) > 0 because € < 3 yields

ADVy(2) < —aVa(z) + 202C(e). (4.3)
Finally
ADV (z) < —aV (z) + d(e),
where

3a?

d(e) = 2p2C(e) + o+ 2e —2:9)

Next, we prove the second point of Lemma 4.2. Let us describe the shape of the subset B(R, V) of R, that we
will consider. For all R > 2d(g)a™!, we have

B(R,V)={zeR,, V(z) < R} = {z1(R) <z < 22(R)}, (4.4)
where
z1(R) = R_i ”2R2_47 z2(R) = L V2R2_4

Now, we prove the second point. Let R > 2d(e)a™!, z € B(R,V) and let A be a Borel set. Let n € N be such
that

<1 5)n_1 . w2l (4.5)

Let 0 < r < s < t. Considering the case where the auxiliary process jumped exactly n times between r and s,
we have

Pr(,ts) (x, A) > K [1{Ys(t>eA}1{T<71<S}1{n<72<5} s 1{7—n—1<7n<5}1{7n+125} Yr(t) = x] )

where 7; denotes the time of the ith jump of the auxiliary process, ¢ = 1,...,n. Let us denote by ]-}St) the

filtration generated by the auxiliary process (Ys(t)7 s < t) up to time s. Conditioning with respect to ]-"ﬁf) and
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using the strong Markov property and the fact that between two jumps, the growth of the auxiliary process is
exponential at rate a, we get

Prg,ts) ({E, A) = Ell{r<71<s} J - E|j'—{n<m<s} v 1{Tn71<'rn<s}1{'m+1>s}l{ys(t)eA} Yr(lt) = yl]
ror (T

€ QO (2620 1)

Yr(t) = 1’] .

where for all r < s <t and x € X, we set J,.,(z) = [exze?*™"); (1 — £)ze®*~")]. Introducing the probability
density function of the first division time 7y yields

r

Prgfs) ((E,A) = f gﬁt)(xvtl) JJ ( )Ell{tlgrzgs} A l{TnflgT"gs}1{7n+1>s}1{yq(t)eA} sz-t(lt) — yl]
rtq (T -

X @E? (Iea(tﬁr%%) dy,

where for all r < s <t and x € X,

gﬁt) (x,8) = Egt) (wea(s_r)) exp (— JS é,(f) (mea(“_r)) du) )

Using the same argument iteratively, we get

PO . 4)> |

s B (4 ealu—tn)
gﬁt)(%h)_[ gt(f)(yth).__f gt(?,l(yn—htn)@ §: BY (yne )du
Ey By E

n—1

n—1
| | A (t tiv1—t;

X 1{yne“(5*tn)eA} ngil (yiea(f 1t )7 dyi+1) dtn XX dth
=0

where yg = x and to = 7 and E; = [t;,5] X Jy, ¢,., (yi), for i = 0,...,n— 1. Next, since x — Eét)(a:) is increasing,
we have

n tivr s B .
R B
i=0 t s

i

where t,.1 = s. Noticing that

) ~ 2e
BY(z) = zp1, QP (z,y) = z(1 —2)’

yields

P (z,A) = C, f f J Ly eotmtweaydyn | din | dyn_adtn_ ... dyndty,
En_2 t Tty _1tn (Yn—1) "

n—1
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where £, 2 = Fy x ... X E,_5 and

_ . $2(R) a(s—r) _ 2p1€ "
Cr.s = exp ( 22— (e 1) 12

a(s_tn

Applying the substitution z = y,e ), we get

P (z,A) = C, I (z, A),

where

1
Iﬁz)(xaA) = 7\[
B a e

Let 0 < §; < 1 < 65 be such that

n—2

(1—e—a<s—tn71>) f Loeaydz | dyn_1dt, ... dyidty.
Jtnfl,a‘(ynfl)

61 n—l e
5 > (4.6)

We prove the following proposition by induction for 1 < k < n: there exists C' > 0 depending on ¢, k, d1, d2 and
a such that

k 5?71(1—5)]“136'1(57’")
IT(fCS) (x,A) =C (1 - efa(sfr)) zk1 J 1.cadz.

65715"we“(5_r)

The verification for k = 1 is straightforward. We assume now that the proposition is satisfied for k — 1, for some
k € [2,n]. Then, there exists C' > 0 such that

1‘ A f J t17 y1,A)dy1dt1

b1 (8RR (1) Ty et (et
CJ j e—a(s—h)) f 1{2€A}dzdy1dt1.

5;72€k71y16a(57t1)

Switching the integrals and using that y; > eze*®™1 ") we get

S k—1
17(,? (x, A) = CJ (1 — eia(sitl)) $k726a(k72)(t1774) (Il + Iy + I3) dtl,

where
k=21 _\_k—1__a(s—r)
05 “(1—e)e" “xe P Ca(e—ty) a(ts—r)
Il = 1{ZEA}dZ We — Exe 5
5;'_26’“9:6“(5_”") 52 er
6’1“72(1—5)k715;ce“(577')
I, = 1ieaydz(1 — 25)xe“(t1_"),

5572(1—8)51“*11'6“(5*7“)
6?72(175)k16a(57ﬂ

I3 = 1, dz 1—¢ l‘ea(tl_r) — Ze—a(s—t1)> .
’ J;TQ(l—E)klsmea(ﬁ'") {ze4} <( ) 61@‘72(1 _ E)k_l
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Next, reducing the intervals of integration for I; and I3 and using that d2e < (1 —¢) and 6;(1 — &) > € according
to (4.6), we obtain,

a(t1—r)

IL >

5572(1—6)51“7116@(377‘)
J- 1(eaydz(d2 — 1)exe

sh ek geals—r)

I3

\Y

5)1“_1(176)kze“(5_r)
J Lzeaydz(1 = 61)(1 — g)we 177,

Jf_Q(lfs)kflame“(S*T)
Therefore, gathering the three integrals and integrating with respect to t1, we get
. S (1—e)Fzea =)
Iﬁ’ks)(:v,A) =C (1 - e_“(s_")) :vk_lj 1caydz,
6§*IEkxea(sf'r‘)

where the constant C' varies from line to line and the proposition holds at stage k. Finally, we have

P (z, A) = as_yvp4(A),

where
og_yp =C (1 — e_“(s_r))n ml(R)"_le“(s_T) (6?71(1 —e)"z1(R) — 63715"332(.3)) Cr.s,
1 57 (1—e) e )
o) = T T (T b e A
and
ST — &)z (R) — 65 re™xo(R) > 0,
according to (4.5) and (4.6). O

Next, we check that Assumption 3.4 is satisfied. The verification of the first point is straightforward as

log(m(x,0,1)) _ log(1 +x §j p(r)e*"dr)
! B t t—+00

To check the second point of Assumption 3.4, we prove that the moments of the auxiliary process are bounded.
For all pe N* 0 < s <t and « = 0, we denote by

F0G, ) =B [ (v0)"].

Lemma 4.3. For all pe N*| J{-1} and = > 0, we have

supsup E,, [(Ys(t) ) p] < +00.

t=0 s<t

Remark 4.4. The moments that we need to control in order to check the second point of Assumption 3.4
depend on the function V. The shape of the Lyapunov function V(x) = x + 2~ was convenient for the proof of
the second point of Lemma 4.2. Indeed, the proof relies on the fact that B(R, V) is lower bounded by a positive
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real number. This is the case because of the term 2! in V. Because of this term, we need to control the first
harmonic moment of the auxiliary process.

Proof. Let p € N* be a positive integer. We have, using (4.1) and Dynkin’s formula,

£0s) =a? +ap |50 r)dr
0

s (1—e)Y,® N
yo(r,t dr
i QJ e @(T)J (yp - (Yr(t)) ) <t>( Ly :
0 ey, 14+ Y o(r,t) 1—2e

By differentiation with respect to s of the last equality we get

(= (7)) 1215?;8(’:& ! dy%} |

(1—e)Y®

5sf1§t)($a s) = apfzgt) (x,s) + 2E, l@(S)J

Ys(t)

Next, we notice that for ex < y < (1 — €)x, we have

m(y,s,t) - 1+ exd(s,t)
m(x,s,t) ~ 1+ax¢p(s,t)

Then

(1) () (oo )"y ¥
t t P _ t
0o\ (2, 8) < apfi(x,5) + 26K, | p(s) LY;” (y (Y ) )1725

<apf(x,s) — C) ), (w,9),

(17€)p+17€p+1
p+1

where C(e) := 125254,01 (1 — 2 — ) Moreover, C'(g) > 0 because € < % Applying Jensen inequality,

we have fzgi)l(s) > flgt)(s)lﬂ/P. Finally, we obtain the following differential inequality:
00 (@,5) < F (£ (,9))

where F(z) = apx — C(¢)z'*/? for all x > 0. We notice that there exists 29 > 0 such that F' > 0 on (0, z() and

F < 0 on (x0,+0). Then, any solution to the equation 3y’ = F(y) is bounded by y(0) v ¢ and so is f,gt) (z,-).
Next, we prove that the first harmonic moment of the auxiliary process is bounded. Let us recall that
Vo(xz) = 1/x. Let x € X and 0 < s < t. According to Kolmogorov’s forward equation, we have

0:Ps V() = Pyl ADVa ).
Using (4.3), we get

0Py Vo (z) < —aP{)Va(x) + 2020 ().

S

Finally, using Gronwall’s inequality, we obtain

1 2 9
Fy)Va(z) < (m - <P2ac(€)> gas 4 %(e)
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Lemma 4.5. For all x = 0, we have

supE, [B <t,Y;(t)) J (1 v V(Q©)p(x,-)) (Y;(t))] < 400.

20
Proof. In our case, 1 v V(z) = V(z). First, we have for all x € R} and all s,t € Ry with s <¢,
1+ gnpl(ea(t_s) —1) <m(z,s,t) <1+ gwg(ea(t_s) —1).
Then, for all x,y € X', we obtain

o) sy B0 ) _ (L5 Z0ae) (Lt 2 0) (1 Zpn) (Lt )
r>t m(m,O,r) r>t 1+ %(,01 (ea’" — 1) %‘Pl Al

Next, for all 8 € (0,1), we have

o1 (2,09) i (z, (1 - 0)y) < (pe(z,y))” < Ar(2)Aa(y),

where
A )—(w 1)_2(1+x )2 A —(1+y )2
1(@) = (e A —wz) , Aay) = Sz
Moreover, for 6 € [,1 — €] and for all z € X, V(02)V((1 — 0)x) < (ex) ™2 + 2% + 2¢~1. Then,

1=e de

J(V()ee(w,-) () <2 V(0y) V(1= 0)y) oo (2,0y) o (2, (1 = O)y) 7—-

< ((ey) 2 +y? +2e71) Ar(2)Aa(y) < Ai(2) Z Crle)y"2,
k=0

where for all k =0...6 Ci(e) are constants depending on z, a, e, 2. Then, we get

e 30501000 ()] <t g [59)]<
k=0

t=0

according to Lemma 4.3.
Last, we verify that Assumption 3.6 is satisfied.
Lemma 4.6. For allt >0, x € X', we have

. < N, )2 _ &+ pax(a+ 2000) + 90’
%0 | \m(0,0,1) h (min(a, ¢17))* .

Proof. According to It6’s formula, we have, for all x € X and ¢t > 0,

t

Es, [Nf] =1+ J;L o(s)e® (2Es, [Ns] + 1) ds.
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After some calculations, we obtain

2at

Es, [Nf] < eaT (a® + o (a + 2p2z) + go%aﬂ)

Moreover, we have

2 2at —at f _ ,—at 2 2at : f 2
m(z,0,t)* > e e+ —p(1—e)) ze** (min(1,~-¢1)) ,
a a

and the result follows. O
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