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ADAPTIVE PHYSICAL-CONSTRAINTS-PRESERVING UNSTAGGERED
CENTRAL SCHEMES FOR SHALLOW WATER EQUATIONS ON

QUADRILATERAL MESHES

Jian Dong1, Xu Qian1,* and Songhe Song1,2

Abstract. A well-balanced and positivity-preserving adaptive unstaggered central scheme for two-
dimensional shallow water equations with nonflat bottom topography on irregular quadrangles is pre-
sented. The irregular quadrilateral mesh adds to the difficulty of designing unstaggered central schemes.
In particular, the integral of the source term needs to subtly be dealt with. A new method of discretiz-
ing the source term for the well-balanced property is proposed, which is one of the main contribu-
tions of this work. The spacial second-order accuracy is obtained by constructing piecewise bilinear
functions. Another novelty is that we introduce a strong-stability-preserving Unstaggered-Runge–Kutta
method to improve the accuracy in time integration. Adaptive moving mesh strategies are introduced
to couple with the current unstaggered central scheme. The well-balanced property is still valid. The
positivity-preserving property can be proved when the cells shrink. We prove that the current adaptive
unstaggered central scheme can obtain the stationary solution (“lake at rest” steady solutions) and
guarantee the water depth to be nonnegative. Several classical problems of shallow water equations are
shown to demonstrate the properties of the current numerical scheme.
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1. Introduction

We consider two-dimensional shallow water equations which read as follows:⎧⎪⎨⎪⎩
ℎ𝑡 + (ℎ𝑢)𝑥 + (ℎ𝑣)𝑦 = 0,

(ℎ𝑢)𝑡 +
(︀
ℎ𝑢2 + 1

2𝑔ℎ2
)︀
𝑥

+ (ℎ𝑢𝑣)𝑦 = −𝑔ℎ𝑏𝑥,

(ℎ𝑣)𝑡 + (ℎ𝑢𝑣)𝑥 +
(︀
ℎ𝑣2 + 1

2𝑔ℎ2
)︀
𝑦

= −𝑔ℎ𝑏𝑦.

(1.1)
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where ℎ(𝑥, 𝑦, 𝑡) represents the water depth, 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) denote the depth-averaged fluid velocity in
𝑥- and 𝑦-direction respectively, 𝑔 is a constant related to the acceleration due to the gravity, 𝑏(𝑥, 𝑦) denotes the
bottom topography, which is time-independent.

We first rewrite the system (1.1) as a compact form:

W𝑡(𝑥, 𝑦, 𝑡) +∇ · (F(W),G(W)) = S(W, 𝑏), (1.2)

where W := (ℎ, ℎ𝑢, ℎ𝑣)⊤ is the conservative vector, and fluxes are

F(W) =

⎛⎝ ℎ𝑢
ℎ𝑢2 + 1

2𝑔ℎ2

ℎ𝑢𝑣

⎞⎠, G(W) =

⎛⎝ ℎ𝑣
ℎ𝑢𝑣

ℎ𝑣2 + 1
2𝑔ℎ2

⎞⎠, (1.3)

and a source term is

S(W, 𝑏) =

⎛⎝ 0
−𝑔ℎ𝑏𝑥

−𝑔ℎ𝑏𝑦

⎞⎠. (1.4)

Stationary solutions of the system (1.1) satisfies

∇ · (F(W),G(W)) = S(W, 𝑏),

in which contains moving steady states (see [1–4]) and a “lake at rest” stationary solution which takes the
following form

𝑤 := ℎ + 𝑏 = Const., 𝑢 = 𝑣 = 0. (1.5)

It is indispensable to preserve the stationary solution at a discrete level to avoid the numerical storm [5].
Numerical schemes that can preserve the stationary solution at the discrete level are called “well-balanced”
scheme. We refer the reader to [1,3–12] and references therein. Since the calculation of the acoustic speed

√
𝑔ℎ

is needed for determining the time step ∆𝑡 under the CFL condition, the numerical schemes need to guarantee
the water depth ℎ to be nonnegative. The positivity-preserving solutions are also physically relevant. It is worth
mentioning that the positivity-preserving property of the water depth is crucial in preserving the conservation
of the water mass and is indispensable for successfully simulating physically relevant phenomena. For several
positivity-preserving numerical schemes, we refer the reader to [6–9,11,12] and references therein.

Central schemes have attracted tremendous attention in the past decade because these schemes are Riemann-
problem-solver-free. In [13], they proposed “Lax-Friedrichs” (Lxf) schemes for hyperbolic conservation laws.
Nevertheless, the Lxf scheme produces large numerical diffusions that smear discontinuous solutions (shocks,
contact discontinuous etc.). In [14], they proposed a second-order central scheme termed as the “Nessyahu-
Tadmor” (NT) scheme by replacing the piecewise constant function with a piecewise linear function in the
MUSCL framework. They also proved that the NT scheme satisfies an entropy condition using homotopy meth-
ods. The NT scheme has subtle difficulty in preserving synchronization problems and the boundary conditions,
which become more complex for the multi-dimensional system due to the application of staggered grids. Thus,
unstaggered central schemes were introduced in [15]. They inherited the advantages of the NT scheme and
solved their difficulties. In [16], they proposed “Central-Upwind” scheme based on discretizing the system on
exactly Riemann fans to reducing the numerical diffusions of the NT scheme. They also obtained semi-discrete
central-upwind schemes, which can be discretized solvers of higher-order ODEs. The central-upwind scheme was
extended for solving shallow water equations in [6]. Unstaggered central schemes for shallow water equations
can be found in [12, 17]. In [18], they extended the unstaggered central scheme for the Euler equation with a
gravitation. In [9], they proposed unstaggered central schemes for the open channel flow, which are well-balanced
and positivity-preserving.

Capturing the complex wave structures is a challenging work, especially for computing discontinuous weak
solutions. In order to correctly reflect the complex wave patterns, finer computational meshes are needed.
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Nevertheless, it makes the computational effort to be expensive. In the smooth region, we need a coarse mesh to
compute the numerical solution, in the other region, we need a finer mesh to obtain a higher resolution. Adaptive
moving mesh (AMM) methods can perfectly overcome these difficulties. The AMM methods can adaptively shift
old mesh points that towards to the region where the large variation can be constructed. The new mesh points
are constructed based on a mesh partial differential equation [19, 20]. In [21], they proposed “central-upwind”
schemes for the hyperbolic system based on AMM methods using irregular quadrangles. In [22], they proposed
a WENO reconstructions for compressible flows together with the AMM method on triangles. In [23], numerical
schemes for two-dimensional ideal magnetohydrodynamics based on AMM methods were discussed.

In this paper, we propose well-balanced and positivity-preserving adaptive unstaggered central schemes on
irregular quadrilateral meshes for 2-D shallow water equations with nonflat bottom topography. To the best
of our knowledge, this paper is the first attempt designing adaptive unstaggered central schemes on irregular
quadrangles. Compared with the adaptive approaches in [24,25], the current adaptive unstaggered central scheme
is Riemann-problem-solver-free and uncoupled with the PDE solvers. Our method has less restrictions on the
quality of the meshes. A key difficulty is to discrete the integral of the source term for the well-balanced property.
Notice that the discretized source term should be consistent with the homogeneous shallow water equation for
correctly reflecting the wave structure of shallow water equations without bottom topography. Motivating by
the method in [11], we use the divergence theorem based on a new auxiliary vector (2.13) which results in
well-balanced and consistent discretization of the source term. In particular, the adaptive unstaggered central
schemes cannot preserve the “lake at rest” steady states when the computational domain contains wet-dry
fronts.

It is nontrivial to prove the positivity-preserving property of the current unstaggered central schemes based
on irregular quadrangles because of the complex geometrical structure of irregular quadrangles. The formulae
(B.1) used to compute the cell average of the unknown variable is very complex. It is not easy to find the relation
between the cell average of the water depth ℎ

𝑛

𝑖+ 1
2 ,𝑗+ 1

2
and the numerical flux (2.7) in proving the positivity of

the water depth ℎ
𝑛+1

𝑖+ 1
2 ,𝑗+ 1

2
. It is remarkable that the positivity-preserving property of the forward step and the

backward step can be addressed using the method [21]. Even though the calculations are complex, we still found
that the cell average of the water depth on the staggered cell has same terms based on the formulae (2.24), which
makes it easy to prove the positivity-preserving property. We prove that the current scheme can guarantee the
water depth to be nonnegative without using the “draining” time-step technique as in [12].

We would like to point out that, when moving the meshes, the well-balanced property is still valid and the
positivity-preserving property can be proved when the cells shrink. We fix the points of the associated with the
mesh when the adaptive current scheme cannot guarantee the water depth to be nonnegative.

It is remarkable that, in order to improve the accuracy of the time integration of the central scheme, the
usual method is to apply the Taylor expansion or the Central Runge–Kutta (CRK) method proposed in [26] to
compute the intermediate values. The first unstaggered central scheme [15] uses classical Runge–Kutta solvers to
obtain the intermediate value for improving the accuracy of the time integration. The intermediate values were
again computed using the Taylor expansions on the unstaggered cell. This methodology was applied to design
well-balanced unstaggered central schemes for shallow water equations by the authors [18] and for the Euler
equations by the authors [27]. Despite the CRK method obtains high-order accuracy in time, the positivity of the
physically relevant unknown variables (e.g. density, water depth, energy et al.) is an open problem. In particular,
the strong-stability-preserving (SSP) property is also an open problem. We follow the method proposed in [28]
to discretize the ODEs (2.6) in time integration. This method was termed as SSP Unstaggered-Runge–Kutta
method, which inherits the property of the SSP Runge–Kutta method proposed in [29,30].

We summarize the main contributions of the proposed adaptive unstaggered central scheme for two-
dimensional shallow water equations as:

– The scheme is Riemann-problem-solver-free;
– The scheme can adaptively capture complex wave structures;
– The scheme has second-order accuracy both in time and in space;



2300 JIAN DONG ET AL.

– The scheme can preserve the “lake at rest” stationary solution;
– The scheme can guarantee the water depth to be nonnegative and is robust when the computational domain

contains wet-dry fronts.

The paper is organised as follows. In Section 2, we introduce the unstaggered central scheme for 2-D shallow
water equations with nonflat bottom topography. The discretized source term is investigated in Section 2.2.1. In
Section 2.4, we introduce the strong-stability-preserving Unstaggered-Runge–Kutta method. The well-balanced
and positivity-preserving properties are proved in Section 3. Adaptive moving mesh strategies are introduced in
Section 4. We show several computed results obtained by the current scheme for 2-D shallow water equations
in Section 5. A conclusion follows in Section 6.

2. Numerical schemes

In this section, we investigate a well-balanced and positivity-preserving unstaggered central scheme for two-
dimensional shallow water equations with nonflat bottom topography on quadrilateral meshes. The numerical
scheme consists of three steps: the forward step, the corrector step, the backward step. Let us remark that the
forward step is used to compute the cell average of unknowns on staggered cells; the corrector step is used
to evolve the cell average of unknowns on staggered cells; the backward step is used to recover solutions on
unstaggered cells.

It is worth mentioning that each step needs to be capable of preserving the steady states and guarantee
the positivity of the water depth. Once the previous step cannot preserve the steady states, the errors will be
accumulated. In particular, the velocity maybe vary large to break down the code. The well-balanced property of
the forward step and the backward step can be obtained by using the surface gradient method (e.g. [5,9,12,31])
in the MUSCL framework. It is a challenging work to guarantee the well-balanced and positivity-preserving
properties of the corrector step, since the discretized source term of the system (1.1) does not necessarily
balance the difference of the flux. In particular, when the computational domain is discretized by using irregular
meshes, guaranteeing the well-balanced property is more difficult.

2.1. The forward step

This section computes the cell average of the solutions on the staggered cell using the constructed piece-
wise bilinear polynomial, which is the approximate function of the exact solution on the unstaggered cell. We
first introduce notations used in this paper and illustrate the method in constructing approximate numerical
derivatives of the solution. We close this subsection in computing the cell average of solutions on staggered cells.

2.1.1. The discretization of the computational domain

The computational domain is divided into quadrangles. It is worth noticing that, the quadrangle is not
necessarily to be uniform rectangles. We denote by 𝐷𝑖,𝑗 =

(︁
𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2

)︁
×
(︁
𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2

)︁
and 𝐷𝑖+ 1

2 ,𝑗+ 1
2

=
(𝑥𝑖, 𝑥𝑖+1)× (𝑦𝑗 , 𝑦𝑗+1), the unstaggered and staggered cell, respectively. We use x𝑖,𝑗 := (𝑥𝑖, 𝑦𝑗) and x𝑖+ 1

2 ,𝑗+ 1
2

:=(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
to denote the barycenter of the unstaggered cell 𝐷𝑖,𝑗 and the staggered cell 𝐷𝑖+ 1

2 ,𝑗+ 1
2
, respectively.

Since the computational mesh is staggered, it is nontrivial to introduce the notations that we will use in
showing the details of constructing numerical schemes. As showed in Figure 1, we first introduce the following
notations associated with the information of the side:

𝑙𝑖,𝑖+1 denotes the side connecting points x𝑖,𝑗 and x𝑖+1,𝑗 .
𝑙𝑗,𝑗+1 denotes the side connecting points x𝑖,𝑗 and x𝑖,𝑗+1.
𝑙𝑖,𝑖−1 denotes the side connecting points x𝑖,𝑗 and x𝑖−1,𝑗 .
𝑙𝑗,𝑗−1 denotes the side connecting points x𝑖,𝑗 and x𝑖,𝑗−1.
𝑙24 denotes the side connecting points 𝑃𝑖+ 1

2 ,𝑗− 1
2

and 𝑃𝑖+ 1
2 ,𝑗+ 1

2
.

𝑙46 denotes the side connecting points 𝑃𝑖+ 1
2 ,𝑗+ 1

2
and 𝑃𝑖− 1

2 ,𝑗+ 1
2
.
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Figure 1. Schematic: the unstaggered cell of the computational domain.

𝑙68 denotes the side connecting points 𝑃𝑖− 1
2 ,𝑗+ 1

2
and 𝑃𝑖− 1

2 ,𝑗− 1
2
.

𝑙82 denotes the side connecting points 𝑃𝑖− 1
2 ,𝑗− 1

2
and 𝑃𝑖+ 1

2 ,𝑗− 1
2
.

𝑃𝑖± 1
2 ,𝑗± 1

2
denotes the barycenter of the staggered cell with the coordinate x𝑖± 1

2 ,𝑗± 1
2
.

𝑃𝑖,𝑗−1 denotes the intersection of the side 𝑙82 and 𝑙𝑗,𝑗−1.
𝑃𝑖+1,𝑗 denotes the intersection of the side 𝑙24 and 𝑙𝑖,𝑖+1.
𝑃𝑖,𝑗+1 denotes the intersection of the side 𝑙46 and 𝑙𝑗,𝑗+1.
𝑃𝑖−1,𝑗 denotes the intersection of the side 𝑙68 and 𝑙𝑖,𝑖−1.

Next, we introduce the following notations associated with the area:

𝐴±1,𝑖,𝑗 denotes the triangle passing through points
{︁

𝑃𝑖,𝑗−1, 𝑃𝑖+ 1
2 ,𝑗− 1

2
, 𝑃𝑖+1,𝑗

}︁
and {𝑃𝑖,𝑗−1,x𝑖,𝑗 , 𝑃𝑖+1,𝑗} respec-

tively.
𝐴±2,𝑖,𝑗 denotes the triangle passing through points

{︁
𝑃𝑖+1,𝑗 , 𝑃𝑖+ 1

2 ,𝑗+ 1
2
, 𝑃𝑖,𝑗+1

}︁
and {𝑃𝑖+1,𝑗 ,x𝑖,𝑗 , 𝑃𝑖,𝑗+1} respec-

tively.
𝐴±3,𝑖,𝑗 denotes the triangle passing through points

{︁
𝑃𝑖,𝑗+1, 𝑃𝑖− 1

2 ,𝑗+ 1
2
, 𝑃𝑖−1,𝑗

}︁
and {𝑃𝑖,𝑗+1,x𝑖,𝑗 , 𝑃𝑖−1,𝑗} respec-

tively.
𝐴±4,𝑖,𝑗 denotes the triangle passing through points

{︁
𝑃𝑖−1,𝑗 , 𝑃𝑖− 1

2 ,𝑗− 1
2
, 𝑃𝑖,𝑗−1

}︁
and {𝑃𝑖−1,𝑗 ,x𝑖,𝑗 , 𝑃𝑖,𝑗−1} respec-

tively.

Remark 2.1. We would like to point out that the discretized quadrangles have the uniform topological struc-
ture in this paper. Even so, the present unstaggered central scheme can be applied to the unstructured quad-
rangles. The numerical results showed in Section 5 are based on structured irregular quadrangles, which are
obtained by disturbing uniform rectangles.

2.1.2. Second-order extensions

This section introduces the method for constructing piecewise bilinear polynomials using the cell average of the
solutions on unstaggered cells. Since the mesh is not uniform, the construction based on dimension-by-dimension
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Figure 2. Schematic: stencils of constructing slopes on the unstaggered cell.

method is not valid any more. The piecewise constant function approximates the exact solution, the resulting
numerical schemes obtain the first-order accuracy in space. Although the first-order scheme is easily constructed,
it produces more numerical diffusions than higher order schemes. IN particular, the computed shocks may be
seriously smeared. It is subtle in constructing higher order schemes, even for the second-order scheme. The
constructed piecewise bilinear function should share the essentially non-oscillatory property. In [11], they used
the information of neighboring cells to construct piecewise bilinear polynomials on triangles in constructing well-
balanced Central-Upwind schemes. Using the similar methodology, the authors [21] introduced robust Central-
Upwind schemes on irregular quadrangles for compressible Euler equations and granular hydrodynamics. We
use the method proposed in [21] to construct the piecewise bilinear polynomials on the irregular quadrangles.

For the convenience of the presentations, in what follows, we temporarily omit the superscript time notation
𝑛 when there is no ambiguity.

Next, we begin with the following notations used in this section to give the details of constructions,

♯ (∇W)1𝑖,𝑗 :=
(︁

(W𝑥)1𝑖,𝑗 , (W𝑦)1𝑖,𝑗
)︁⊤

denotes the numerical derivative of the bilinear polynomial 𝐿1
𝑖,𝑗 obtained

by constructing a bilinear function which passes three points, x𝑖,𝑗 , x𝑖,𝑗−1 and x𝑖+1,𝑗 .

♯ (∇W)2𝑖,𝑗 :=
(︁

(W𝑥)2𝑖,𝑗 , (W𝑦)2𝑖,𝑗
)︁⊤

denotes the numerical derivative of the bilinear polynomial 𝐿2
𝑖,𝑗 obtained

by constructing a bilinear function which passes three points, x𝑖,𝑗 , x𝑖,𝑗+1 and x𝑖+1,𝑗 .

♯ (∇W)3𝑖,𝑗 :=
(︁

(W𝑥)3𝑖,𝑗 , (W𝑦)3𝑖,𝑗
)︁⊤

denotes the numerical derivative of the bilinear polynomial 𝐿3
𝑖,𝑗 obtained

by constructing a bilinear function which passes three points, x𝑖,𝑗 , x𝑖−1,𝑗 and x𝑖,𝑗+1.

♯ (∇W)4𝑖,𝑗 :=
(︁

(W𝑥)4𝑖,𝑗 , (W𝑦)4𝑖,𝑗
)︁⊤

denotes the numerical derivative of the bilinear polynomial 𝐿4
𝑖,𝑗 obtained

by constructing a bilinear function which passes three points, x𝑖,𝑗 , x𝑖−1,𝑗 and x𝑖,𝑗−1.

These notations are shown in Figure 2. The calculations of the above numerical derivative can be obtained
in Appendix A.

In order to minimize the spurious oscillations and preserve the second-order accuracy, we compute the numer-
ical derivative ∇W𝑖,𝑗 in the MUSCL framework, i.e. the numerical derivative ∇W𝑖,𝑗 is obtained by using the
minmod function (e.g. [6, 9, 15, 16]) based on the computed neighbouring four numerical derivatives. The same
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methodology was also considered in [21]. Noting that, the constructed bilinear polynomial can preserve the
conservation of the water mass.

The numerical derivative of the solution ∇W𝑖,𝑗 on the unstaggered cell is computed by

∇W𝑖,𝑗 = minmod
(︂

1
4
(︀
∇W1

𝑖,𝑗 +∇W2
𝑖,𝑗 +∇W3

𝑖,𝑗 +∇W4
𝑖,𝑗

)︀
, 𝜗∇W1

𝑖,𝑗 , 𝜗∇W2
𝑖,𝑗 , 𝜗∇W3

𝑖,𝑗 , 𝜗∇W4
𝑖,𝑗

)︂
, (2.1)

here, the minmod function reads as follows:

minmod(𝑥1, 𝑥2, 𝑥3, . . .) =

{︃
sign(𝑥𝑗) min(|𝑥𝑗 |), if 𝑥𝑗 ,∀𝑗 ∈ Z, have the same sign,

0, otherwise,
(2.2)

and the parameter 𝜗 ∈ (1, 2) is used to control the numerical diffusion of numerical schemes. The larger 𝜗 leads
to the higher resolution, but produces spurious oscillations. The constructed bilinear function is given bỹ︁W(𝑥, 𝑦) :=

∑︁̃︁W𝑖,𝑗(𝑥, 𝑦)𝜒𝐷𝑖,𝑗 (𝑥, 𝑦), (2.3)

here, 𝜒𝐷𝑖,𝑗
(𝑥, 𝑦) is the characteristic function of the domain 𝐷𝑖,𝑗 and̃︁W𝑖,𝑗(𝑥, 𝑦) := W𝑖,𝑗 + (W𝑥)𝑖,𝑗(𝑥− 𝑥𝑖) + (W𝑦)𝑖,𝑗(𝑦 − 𝑦𝑗), for (𝑥𝑖, 𝑦𝑗) ∈ 𝐷𝑖,𝑗 . (2.4)

Remark 2.2. We would like to point out that, a direct application of the constructed bilinear function can not
guarantee the positivity of the computed water depth due to the applied gradient limiter. The negative water
depth is not physical and maybe break down the code. The positivity of the constructed water depth ̃︀ℎ𝑖,𝑗(𝑥, 𝑦)
can be guaranteed using the method proposed in [21] through introducing a positivity-preserving limiter, which
will be discussed in latter.

2.1.3. Cell averages of solutions on staggered cells

In this section, we compute the cell average of the solution on the staggered cell 𝐷𝑖+ 1
2 ,𝑗+ 1

2
using the con-

structed piecewise bilinear functions on the unstaggered cell 𝐷𝑖,𝑗 . Comparing with the computational method
showed in [12] whose computational domain is divided by uniform rectangles, one can not use midpoint formulae
to compute the cell average of the solutions on distinct unstaggered cells. This case is more complicated due
to the used irregular quadrangles. Even so, we can use the analogous methodology to compute the cell average
of the solutions on the staggered cell. That is, we first divide the staggered cell into eight triangles, and then
compute the cell average of the solutions on these triangles using the constructed bilinear functions on the
unstaggered cell.

As showed in Figure 3, the cell average of the solution W on the staggered cell 𝐷𝑖+ 1
2 ,𝑗+ 1

2
is defined as

W𝑖+ 1
2 ,𝑗+ 1

2
:=

1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

̃︁W(𝑥, 𝑦) dΩ.

Since the constructed function is piecewise bilinear function, we divide the staggered cell into eight triangles.
The calculations of the cell average of the solution on staggered cells can be obtained in Appendix B.

It is worth noticing that the conservative variables and the water surface are computed in the component-
wise manner. Since we do not construct the bottom topography directly, then the cell average of the bottom
topography is computed using the following method,

𝑏𝑖+ 1
2 ,𝑗+ 1

2
= 𝑤𝑖+ 1

2 ,𝑗+ 1
2
− ℎ𝑖+ 1

2 ,𝑗+ 1
2
, (2.5)

via the equation (1.5). The cell average of the bottom topography depends on the temporal variable due to the
cell average of the water surface and water depth depending on the temporal variable.

Remark 2.3. Notice that, the point 𝑄8 locates at x𝑖,𝑗 , the point 𝑄2 locates at x𝑖+1,𝑗 , the point 𝑄4 locates at
x𝑖+1,𝑗+1, and the point 𝑄6 locates at x𝑖,𝑗+1.
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Figure 3. Schematic: the staggered cell of the computational domain.

2.2. The corrector step

This section evolves the cell average of solutions on staggered cells. We adopt the method of lines to dis-
cretize the system (1.2). This methodology allows us to convert the partial differential equations into ordinary
differential equations (ODEs). Through only integrating the system in the spatial direction, we can obtain an
ordinary differential equation with respect to the temporal direction. Then, one can use robust higher-order
ODEs solvers to compute the numerical solutions.

In order to give a clear presentation, we first introduce following notations:

𝑙𝑖+ 1
2 ,𝑗+ 1

2 ,1 denotes the side connecting points x𝑖,𝑗 and x𝑖+1,𝑗 .
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,2 denotes the side connecting points x𝑖+1,𝑗 and x𝑖+1,𝑗+1.

𝑙𝑖+ 1
2 ,𝑗+ 1

2 ,3 denotes the side connecting points x𝑖+1,𝑗+1 and x𝑖,𝑗+1.
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,4 denotes the side connecting points x𝑖,𝑗+1 and x𝑖,𝑗 .

We only integrate the system (1.2) on the staggered cell 𝐷𝑖+ 1
2 ,𝑗+ 1

2
which results in the following form,

d
d𝑡

W𝑖+ 1
2 ,𝑗+ 1

2
(𝑡)+

1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

∇·(F(W),G(W))(𝑡) dΩ =
1⃒⃒⃒

𝐷𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒ ∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

S(W, 𝑏)(𝑡) dΩ. (2.6)

Noting that, the flux is continuous with respect to the temporal variable, since the constructed bilinear
function (2.4) on the unstaggered cell is continuous. This property is crucial in defining the numerical fluxes.
Unlike the Godunov-type upwind scheme, in which the definition of the numerical fluxes is based on exact
or approximate Riemann solvers emerged from the cell interface. The Godunov-type upwind scheme is time-
consuming in analyzing the characteristic fields of the Jacobian matrix of the flux. The central scheme does
not need this information in defining numerical fluxes. This property is one of the key ingredients of central
schemes, we refer the reader to [12,14,32] about the central schemes.

Using the divergence theorem, we can compute the integral of the flux,∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

∇ · (F(W),G(W))(𝑡) dΩ =
∫︁

𝜕𝐷
𝑖+ 1

2 ,𝑗+ 1
2

(F(W),G(W))(𝑡) · n d𝑠, (2.7)
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with the outer normal vector n of the corresponding side and 𝜕𝐷𝑖+ 1
2 ,𝑗+ 1

2
denotes the boundary of the staggered

cell 𝐷𝑖+ 1
2 ,𝑗+ 1

2
. Using the trapezoidal quadrature formula, the right hand side of the equation (2.7) can be

computed by∫︁
𝜕𝐷

𝑖+ 1
2 ,𝑗+ 1

2

(F(W),G(W))(𝑡) · n d𝑠 =
4∑︁

𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
F𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘(𝑡)

+
4∑︁

𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒
sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
G𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘(𝑡),

here, 𝜃𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 is the angle of the outer normal vector of the 𝑘-th side 𝑙𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 of the staggered cell, and

F𝑖+ 1
2 ,𝑗+ 1

2 ,1 =
1
2

(F𝑖,𝑗 + F𝑖+1,𝑗), F𝑖+ 1
2 ,𝑗+ 1

2 ,2 =
1
2

(F𝑖+1,𝑗 + F𝑖+1,𝑗+1),

F𝑖+ 1
2 ,𝑗+ 1

2 ,3 =
1
2

(F𝑖,𝑗+1 + F𝑖+1,𝑗+1), F𝑖+ 1
2 ,𝑗+ 1

2 ,4 =
1
2

(F𝑖,𝑗 + F𝑖,𝑗+1),
(2.8)

equipped with F𝑖,𝑗 := F(W𝑖,𝑗). We can compute the G𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 using the similar method. Then, we can obtain
a semi-discrete scheme for the system (1.2),

d
d𝑡

W𝑖+ 1
2 ,𝑗+ 1

2
(𝑡) +

1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒H𝑖+ 1
2 ,𝑗+ 1

2
(𝑡) =

1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒S𝑖+ 1
2 ,𝑗+ 1

2
(𝑡), (2.9)

here

H𝑖+ 1
2 ,𝑗+ 1

2
(𝑡) :=

4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
F𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘(𝑡)

+
4∑︁

𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒
sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
G𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘(𝑡),

(2.10)

and S𝑖+ 1
2 ,𝑗+ 1

2
is the approximate integral of the source term

S𝑖+ 1
2 ,𝑗+ 1

2
(𝑡) ≈

∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

S(W, 𝑏)(𝑡) dΩ.

It is greatly nontrivial to design the discretization of the source term, because the discretization of the source term
should be well balanced by the difference of the numerical flux when the system admits the steady states (1.5).
The author [12] designed well-balanced discretized source term based on the hydrostatic reconstruction methods
on the uniform meshes. In [17], they designed well-balanced discretized source term using the constant water
surface on uniform meshes. However, these methodology are both not extended to the irregular quadrangles.
We discuss the details of the discretization of the source term in the latter section.

2.2.1. The well-balanced discretization of the source term

A direct computation of the integral of the source term resulted in the numerical scheme that cannot preserve
the stationary solution and fails to correctly capture its small perturbations. In [12], they proposed well-balanced
discretized source terms based on hydrostatic reconstructions. Nevertheless, the methodology of the construction
of the discretized source term discussed in [12] cannot be applied due to the irregular quadrangles. The discretized
source term can be obtained by introducing an auxiliary vector.

As discussed in [33], the discretization of the source term can be obtained using the first Green’s formula,∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

∇ · 𝒱 dΩ =
∫︁

𝜕𝐷
𝑖+ 1

2 ,𝑗+ 1
2

𝒱 · n d𝑠, (2.11)
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here, the auxiliary vector is defined as 𝒱 :=
(︀

1
2 (𝑤 − 𝑏)2, 0

)︀⊤. As an example, we can compute the discretization
of the source term associated with the derivative of the bottom topography along the 𝑥 direction,

− 𝑔⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

ℎ𝑏𝑥 dΩ :=
𝑔

2
⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ 4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒
(𝑤𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘 − 𝑏𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘)2 cos

(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
− 𝑔⃒⃒⃒

𝐷𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒ ∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

(𝑤 − 𝑏)𝑤𝑥 dΩ

≈ 𝑔⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ 4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒
(𝑤𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘 − 𝑏𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘)2 cos

(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
− 𝑔(𝑤𝑥)𝑖,𝑗⃒⃒⃒

𝐷𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒ ∫︁
𝐴−2,𝑖,𝑗+𝐴+

2,𝑖,𝑗

(︁ ̃︀𝑤𝑖,𝑗 −̃︀𝑏𝑖,𝑗

)︁
(𝑥, 𝑦) dΩ

− 𝑔(𝑤𝑥)𝑖+1,𝑗⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−3,𝑖+1,𝑗+𝐴+

3,𝑖+1,𝑗

( ̃︀𝑤𝑖+1,𝑗 −̃︀𝑏𝑖+1,𝑗)(𝑥, 𝑦) dΩ

− 𝑔(𝑤𝑥)𝑖+1,𝑗+1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−4,𝑖+1,𝑗+1+𝐴+

4,𝑖+1,𝑗+1

(︁ ̃︀𝑤𝑖+1,𝑗+1 −̃︀𝑏𝑖+1,𝑗+1

)︁
(𝑥, 𝑦) dΩ

− 𝑔(𝑤𝑥)𝑖,𝑗+1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−1,𝑖,𝑗+1+𝐴+

1,𝑖,𝑗+1

( ̃︀𝑤𝑖,𝑗+1 −̃︀𝑏𝑖,𝑗+1)(𝑥, 𝑦) dΩ, (2.12)

where, 𝑤𝑥 and 𝑏𝑥 are the numerical derivative of the water surface and the bottom topography, respectively.
Notice that, the discretization of the source term (2.12) is not consistent with the homogeneous shallow water

equation, i.e. the discretization of the source term is not vanish when the bottom topography to be a constant.
Especially, even the bottom topography is zero, the discretization of the source term (2.12) doest not vanish.

In order to overcome this issue, we introduce a new auxiliary vector to discretize the integral of the source
term. We define the vector

̂︀𝒱 :=
(︂

1
2
ℎ2 − 1

2
𝑤2, 0

)︂⊤
. (2.13)

We compute the integral,∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

∇ · ̂︀𝒱 dΩ =
∫︁

𝐷
𝑖+ 1

2 ,𝑗+ 1
2

ℎℎ𝑥 − 𝑤𝑤𝑥 dΩ

=
∫︁

𝐷
𝑖+ 1

2 ,𝑗+ 1
2

ℎ(𝑤𝑥 − 𝑏𝑥)−
∫︁

𝐷
𝑖+ 1

2 ,𝑗+ 1
2

𝑤𝑤𝑥 dΩ

= −
∫︁

𝐷
𝑖+ 1

2 ,𝑗+ 1
2

ℎ𝑏𝑥 dΩ +
∫︁

𝐷
𝑖+ 1

2 ,𝑗+ 1
2

(ℎ− 𝑤)𝑤𝑥 dΩ.

(2.14)

According to the first Green’s formula, we obtain

−
∫︁

𝐷
𝑖+ 1

2 ,𝑗+ 1
2

ℎ𝑏𝑥 dΩ =
∫︁

𝜕𝐷
𝑖+ 1

2 ,𝑗+ 1
2

(︂
1
2
ℎ2 − 1

2
𝑤2

)︂
𝑛𝑥 d𝑠 +

∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

(𝑤 − ℎ)𝑤𝑥 dΩ, (2.15)
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here, 𝑛𝑥 is the 𝑥-component of the outer normal vector n. Using the above formula, we can compute the
discretization of the second component of the source term, which is computed as

− 𝑔⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

ℎ𝑏𝑥 dΩ :=
𝑔

2
⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ 4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒(︁
ℎ2

𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 − 𝑤2
𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
+

𝑔⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

(𝑤 − ℎ)𝑤𝑥 dΩ

= Ξ1 + Ξ2 + Ξ3 + Ξ4 + Ξ5, (2.16)

with introduced notations

Ξ1 =
𝑔

2
⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ 4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒(︁
ℎ2

𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 − 𝑤2
𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
,

Ξ2 =
𝑔(𝑤𝑥)𝑖,𝑗⃒⃒⃒

𝐷𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒ ∫︁
𝐴−2,𝑖,𝑗+𝐴+

2,𝑖,𝑗

(︁ ̃︀𝑤𝑖,𝑗 ,−̃︀𝑏𝑖,𝑗

)︁
(𝑥, 𝑦) dΩ,

Ξ3 =
𝑔(𝑤𝑥)𝑖+1,𝑗⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−3,𝑖+1,𝑗+𝐴+

3,𝑖+1,𝑗

(︁ ̃︀𝑤𝑖+1,𝑗 −̃︀𝑏𝑖+1,𝑗

)︁
(𝑥, 𝑦) dΩ,

Ξ4 =
𝑔(𝑤𝑥)𝑖+1,𝑗+1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−4,𝑖+1,𝑗+1+𝐴+

4,𝑖+1,𝑗+1

(︁ ̃︀𝑤𝑖+1,𝑗+1 −̃︀𝑏𝑖+1,𝑗+1

)︁
(𝑥, 𝑦) dΩ,

Ξ5 =
𝑔(𝑤𝑥)𝑖,𝑗+1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−1,𝑖,𝑗+1+𝐴+

1,𝑖,𝑗+1

(︁ ̃︀𝑤𝑖,𝑗+1 −̃︀𝑏𝑖,𝑗+1

)︁
(𝑥, 𝑦) dΩ.

Similarly, we can compute the discretization of the third component of the source term, which is computed as

− 𝑔⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

ℎ𝑏𝑦 dΩ :=
𝑔

2
⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ 4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒(︁
ℎ2

𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 − 𝑤2
𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
+

𝑔⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

(𝑤 − ℎ)𝑤𝑦 dΩ

= Λ1 + Λ2 + Λ3 + Λ4 + Λ5, (2.17)

with introduced notations

Λ1 =
𝑔

2
⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ 4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒(︁
ℎ2

𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 − 𝑤2
𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
,

Λ2 =
𝑔(𝑤𝑦)𝑖,𝑗⃒⃒⃒

𝐷𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒ ∫︁
𝐴−2,𝑖,𝑗+𝐴+

2,𝑖,𝑗

(︁ ̃︀𝑤𝑖,𝑗 −̃︀𝑏𝑖,𝑗

)︁
(𝑥, 𝑦) dΩ,

Λ3 =
𝑔(𝑤𝑦)𝑖+1,𝑗⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−3,𝑖+1,𝑗+𝐴+

3,𝑖+1,𝑗

(︁ ̃︀𝑤𝑖+1,𝑗 −̃︀𝑏𝑖+1,𝑗

)︁
(𝑥, 𝑦) dΩ,

Λ4 =
𝑔(𝑤𝑦)𝑖+1,𝑗+1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−4,𝑖+1,𝑗+1+𝐴+

4,𝑖+1,𝑗+1

(︁ ̃︀𝑤𝑖+,𝑗+1 −̃︀𝑏𝑖+1,𝑗+1

)︁
(𝑥, 𝑦) dΩ,
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Λ5 =
𝑔(𝑤𝑦)𝑖,𝑗+1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−1,𝑖,𝑗+1+𝐴+

1,𝑖,𝑗+1

(︁ ̃︀𝑤𝑖,𝑗+1 −̃︀𝑏𝑖,𝑗+1

)︁
(𝑥, 𝑦) dΩ,

where, we compute

W2
𝑖+ 1

2 ,𝑗+ 1
2 ,1 :=

1
2
(︀
W2

𝑖,𝑗 + W2
𝑖+1,𝑗

)︀
,

W2
𝑖+ 1

2 ,𝑗+ 1
2 ,2 :=

1
2
(︀
W2

𝑖+1,𝑗 + W2
𝑖+1,𝑗+1

)︀
,

W2
𝑖+ 1

2 ,𝑗+ 1
2 ,3 :=

1
2
(︀
W2

𝑖,𝑗+1 + W2
𝑖+1,𝑗+1

)︀
,

W2
𝑖+ 1

2 ,𝑗+ 1
2 ,4 :=

1
2
(︀
W2

𝑖,𝑗 + W2
𝑖,𝑗+1

)︀
. (2.18)

It is worth mentioning that the constructed bilinear function (2.4) is discontinuous at the cell interface. Thus,
the point values W𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘 can not be directly computed. The equation (2.18) is used to define the arithmetic

mean value ̃︁W(𝑥, 𝑦) at the cell interface. We notice that the water surface is a constant when the system (1.1)
admits steady states (1.5) and does not contain the wet-dry fronts. In this case, the approximate water surface
and velocity functions are continuous.

We observe that, the discretization of the source term is only consistent with the homogeneous shallow
water equation when the bottom topography to be zero, but this property is not shared by the discretized
methodology of [11] where the discretized source term does not vanish even the bottom topography become
zero. The discretized source term of the current unstaggered central scheme is carried out based on the new
auxiliary variable (2.13). We will prove the well-balanced property of the current unstaggered central scheme
in Section 3.

Finally, we summarize the discretized source terms as

S(2)

𝑖+ 1
2 ,𝑗+ 1

2
=

𝑔

2
⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ 4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒(︁
ℎ2

𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 − 𝑤2
𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
+

𝑔(𝑤𝑥)𝑖,𝑗⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−2,𝑖,𝑗+𝐴+

2,𝑖,𝑗

(︁ ̃︀𝑤𝑖,𝑗 − ̃︀ℎ𝑖,𝑗

)︁
(𝑥, 𝑦) dΩ

+
𝑔(𝑤𝑥)𝑖+1,𝑗⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−3,𝑖+1,𝑗+𝐴+

3,𝑖+1,𝑗

(︁ ̃︀𝑤𝑖+1,𝑗 − ̃︀ℎ𝑖+1,𝑗

)︁
(𝑥, 𝑦) dΩ

+
𝑔(𝑤𝑥)𝑖+1,𝑗+1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−4,𝑖+1,𝑗+1+𝐴+

4,𝑖+1,𝑗+1

(︁ ̃︀𝑤𝑖+1,𝑗+1 − ̃︀ℎ𝑖+1,𝑗+1

)︁
(𝑥, 𝑦) dΩ

+
𝑔(𝑤𝑥)𝑖,𝑗+1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−1,𝑖,𝑗+1+𝐴+

1,𝑖,𝑗+1

(︁ ̃︀𝑤𝑖,𝑗+1 − ̃︀ℎ𝑖,𝑗+1

)︁
(𝑥, 𝑦) dΩ,

S(3)

𝑖+ 1
2 ,𝑗+ 1

2
=

𝑔

2
⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ 4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒(︁
ℎ2

𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 − 𝑤2
𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
+

𝑔(𝑤𝑦)𝑖,𝑗⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−2,𝑖,𝑗+𝐴+

2,𝑖,𝑗

(︁ ̃︀𝑤𝑖,𝑗 − ̃︀ℎ𝑖,𝑗

)︁
(𝑥, 𝑦) dΩ

+
𝑔(𝑤𝑦)𝑖+1,𝑗⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−3,𝑖+1,𝑗+𝐴+

3,𝑖+1,𝑗

(︁ ̃︀𝑤𝑖+1,𝑗 − ̃︀ℎ𝑖+1,𝑗

)︁
(𝑥, 𝑦) dΩ
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+
𝑔(𝑤𝑦)𝑖+1,𝑗+1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−4,𝑖+1,𝑗+1+𝐴+

4,𝑖+1,𝑗+1

(︁ ̃︀𝑤𝑖+1,𝑗+1 − ̃︀ℎ𝑖+1,𝑗+1

)︁
(𝑥, 𝑦) dΩ

+
𝑔(𝑤𝑦)𝑖,𝑗+1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ ∫︁
𝐴−1,𝑖,𝑗+1+𝐴+

1,𝑖,𝑗+1

(︁ ̃︀𝑤𝑖,𝑗+1 − ̃︀ℎ𝑖,𝑗+1

)︁
(𝑥, 𝑦) dΩ. (2.19)

It is worth mentioning that the discretized source terms (2.16) and (2.17) may be discontinuous.

Remark 2.4. The discretized source term (2.16) and (2.17) is consistent with the homogeneous shallow water
equation since the 𝑤− 𝑏 terms have been replaced by 𝑤− ℎ terms. Then, the water surface equals to the water
depth when the bottom topography vanishes.

Remark 2.5. We would like to stress that the discretized source term (2.16) and (2.17) is modified to be zero
when the cell average of the water depth on the staggered cell vanishes, i.e. ℎ𝑖+ 1

2 ,𝑗+ 1
2

= 0 for 𝑖, 𝑗 ∈ Z.

2.3. The backward step

This section recovers solutions on the unstaggered cell using the evolved solutions on staggered cells. It is
worth mentioning that this step is crucial in avoiding the alternate mesh at each time step. The key difference
between the unstaggered central scheme and staggered central scheme is that the unstaggered central scheme
only integrates the system (1.1) on the mesh 𝐷𝑗+ 1

2
at each time steps, but the staggered central scheme integrates

the system (1.1) on the mesh 𝐷𝑖,𝑗 and 𝐷𝑗+ 1
2

at even time steps and odd time steps, respectively. The staggered
central scheme makes the boundary conditions that are more complex than the unstaggered central schemes.
We refer the reader to [15] for more details.

For the sake of brevity, we first omit the time mark 𝑛 + 1. The piecewise bilinear function is denoted bŷ︁W(𝑥, 𝑦) on the staggered cell, which can be constructed using the analogous method in the forward step, then

̂︁W(𝑥, 𝑦) :=
∑︁̂︁W𝑖+ 1

2 ,𝑗+ 1
2
(𝑥, 𝑦)𝜒𝐷

𝑖+ 1
2 ,𝑗+ 1

2
(𝑥, 𝑦), (2.20)

here, 𝜒𝐷
𝑖+ 1

2 ,𝑗+ 1
2

(𝑥, 𝑦) is the characteristic function of the domain 𝐷𝑖+ 1
2 ,𝑗+ 1

2
and

̂︁W𝑖+ 1
2 ,𝑗+ 1

2
(𝑥, 𝑦) := W𝑖+ 1

2 ,𝑗+ 1
2

+ (W𝑥)𝑖+ 1
2 ,𝑗+ 1

2

(︁
𝑥− 𝑥𝑖+ 1

2

)︁
+ (W𝑦)𝑖+ 1

2 ,𝑗+ 1
2

(︁
𝑦 − 𝑦𝑗+ 1

2

)︁
, (2.21)

here (𝑥𝑖+ 1
2
, 𝑦𝑗+ 1

2
) ∈ 𝐷𝑖+ 1

2 ,𝑗+ 1
2
. The numerical derivative (∇W)𝑖+ 1

2 ,𝑗+ 1
2

can be obtained using the similar method
discussed in Section 2.1.2.

The cell average of the solution on the unstaggered cell can be obtained in Appendix C. It is worth noticing
that, we construct the water surface, the discharge along the 𝑥-direction and the discharge along the 𝑦-direction
for guaranteeing the well-balanced property that can be maintained in the backward step. This methodology is
related to the surface gradient method discussed in [12,34]. Thus, the cell average of the water depth is computed
as

ℎ𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝑏𝑖,𝑗 , (2.22)

on unstaggered cells.

Remark 2.6. The water depth obtained by the equation (2.22) cannot be guaranteed positivity since the
constructed water surface maybe lower than the bottom topography, especially near dry areas. The negative
water depth is not physically relevant and make the simulation within the risk of break. For the positivity-
preserving property of this step, we replace the formula (2.22) as follows

𝑤𝑖,𝑗 = ℎ𝑖,𝑗 + 𝑏𝑖,𝑗 , (2.23)

that is, we construct the water depth instead of the water surface when the water depth (2.22) becomes negative.
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Remark 2.7. We would like to point out that the positivity of the constructed water depth ̂︀ℎ𝑖+ 1
2 ,𝑗+ 1

2
(𝑥, 𝑦) can

be guaranteed using the similar method discussed in Section 3.2.

Remark 2.8. The velocities are solved through using the following formula,

𝑢 =

⎧⎨⎩
ℎ𝑢
ℎ , if ℎ > 𝜖,√

2ℎ(ℎ𝑢)√
(ℎ)4+max((ℎ)4,𝜏)

, otherwise, 𝑣 =

⎧⎨⎩
ℎ𝑣
ℎ , if ℎ > 𝜖,√

2ℎ(ℎ𝑣)√
(ℎ)4+max((ℎ)4,𝜏)

, otherwise, (2.24)

here 𝜖 = 10−9 is a parameter to switch the formula. This method is used to avoid the cancellations near dry
areas. We refer the reader to [6, 9, 11] for more details.

2.4. The discretization of the system in the time integration

This sections solves the time integration of the ODEs (2.9) for improving the accuracy in time. It is worth
mentioning that, the first unstaggered central scheme [15] uses classical Runge–Kutta solvers to obtain the
intermediate value for improving the accuracy in time. The intermediate values are computed using the Taylor
expansions on the unstaggered cell. This methodology was applied to design well-balanced unstaggered central
schemes for shallow water equations by the authors [18] and for the Euler equations by the authors [27]. Based
on this methodology, the authors [26] proposed Central Runge–Kutta (CRK) method for obtaining a high-order
accuracy in time.

Although the CRK method obtains high-order accuracy in time, the positivity of the physically relevant
unknown variables, such as, density, water depth, energy, etc., is an open problem. Especially, the strong-
stability-preserving (SSP) property is also an open problem.

We follow the method proposed in [28] to discretize the ODEs (2.9) in time integration. This method was
termed as Unstaggered-Runge–Kutta (URK) method, which inherits the property of the SSP Runge–Kutta
method proposed in [29,30]. In this paper, we use the second-order URK method, which is defined as

W
(1)

𝑖+ 1
2 ,𝑗+ 1

2
= W

𝑛

𝑖+ 1
2 ,𝑗+ 1

2
+ ∆𝑡R𝑖+ 1

2 ,𝑗+ 1
2

(︁
W

𝑛
; 𝑖, 𝑗

)︁
,

W
(2)

𝑖+ 1
2 ,𝑗+ 1

2
= ̃︁W(1)

𝑖+ 1
2 ,𝑗+ 1

2
+ ∆𝑡R𝑖+ 1

2 ,𝑗+ 1
2

(︂̃︁W(1)

; 𝑖, 𝑗
)︂

,

W
𝑛+1

𝑖+ 1
2 ,𝑗+ 1

2
=

1
2

(︁
W

𝑛

𝑖+ 1
2 ,𝑗+ 1

2
+ W

(2)

𝑖+ 1
2 ,𝑗+ 1

2

)︁
=

1
2

(︂
W

𝑛

𝑖+ 1
2 ,𝑗+ 1

2
+ ̃︁W(1)

𝑖+ 1
2 ,𝑗+ 1

2

)︂
+

1
2

∆𝑡R𝑖+ 1
2 ,𝑗+ 1

2

(︂̃︁W(1)

; 𝑖, 𝑗
)︂

, (2.25)

where the residuum is defined as

R𝑖+ 1
2 ,𝑗+ 1

2

(︀
W; 𝑖, 𝑗

)︀
:= − 1⃒⃒⃒

𝐷𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒H𝑖+ 1
2 ,𝑗+ 1

2
+

1⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒S𝑖+ 1
2 ,𝑗+ 1

2
. (2.26)

The intermediate values ̃︁W(1)

𝑖,𝑗 are obtained at the backward step based on the values W
(1)

𝑖+ 1
2 ,𝑗+ 1

2
. We can compute

the intermediate cell average ̃︁W(1)

𝑖+ 1
2 ,𝑗+ 1

2
at the forward step based on the values ̃︁W(1)

𝑖,𝑗 . We can obtain the values

W
𝑛+1

𝑖,𝑗 using the backward step based on the values W
𝑛+1

𝑖+ 1
2 ,𝑗+ 1

2
.

Remark 2.9. The URK scheme can obtain the strong-stability-preserving property together with the TVD
reconstruction of the forward step and the backward step. The updated value W

𝑛+1

𝑖+ 1
2 ,𝑗+ 1

2
is a convex combination

of several first-order forward Euler solutions. Especially, the formula (2.25) has Shu-Osher type [30], then the
SSP property can be proved using the same methodology.
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3. Well-balanced and positivity-preserving properties

This section proves that the unstaggered central scheme can preserve the stationary solution and guarantee
the water depth to be nonnegative.

3.1. Well-balanced properties

When the system (1.1) admits the stationary solution, the gradient of the physical flux can be balanced by
the source term in the smooth sense. We do not consider the case where the computational domain contains
wet-dry fronts when the water is at rest. Therefore, the numerical scheme should satisfy that the difference of
the numerical flux should be balanced by the discretized source term, that is, the designed numerical scheme is
well-balanced. We begin with the proof of well-balanced properties of the current scheme.

Theorem 3.1. Considering the two-dimensional shallow water equation with nonflat bottom topography (1.1).
The unstaggered central scheme (2.9) endows with the numerical flux (2.7) and the discretized source term (2.16)
and (2.17) can preserve the stationary solution (1.5).

Proof. Since the first equation of the system does not contain the source term, we only consider the second and
third component of the numerical scheme. Thanks to the central numerical flux, we can obtain d

d𝑡ℎ𝑖+ 1
2 ,𝑗+ 1

2
(𝑡) = 0

due to the velocity vanishes. Indeed, we only need to prove that

d
d𝑡

(︀
ℎ𝑢
)︀
𝑖+ 1

2 ,𝑗+ 1
2
(𝑡) = 0. (3.1)

We can use the analogous method to obtain d
d𝑡

(︀
ℎ𝑣
)︀
𝑖+ 1

2 ,𝑗+ 1
2
(𝑡) = 0. Thus, for the stationary solution (1.5), we

can obtain
𝑤(𝑥, 𝑦) = 𝐶, 𝑢 = 𝑣 = 0, (3.2)

here, 𝐶 is a constant. Then, using the equation (2.7), we compute the numerical flux∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

∇ · (F(W),G(W))(𝑡) dΩ =
∫︁

𝜕𝐷
𝑖+ 1

2 ,𝑗+ 1
2

(F(W),G(W))(𝑡) · n d𝑠

=
𝑔

2

4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
ℎ2

𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘. (3.3)

Using the equation (2.16), we can compute the discretized source term

−𝑔

∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

ℎ𝑏𝑥 dΩ :=
𝑔

2

4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒(︁
ℎ2

𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 − 𝑤2
𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
+ 𝑔

∫︁
𝐷

𝑖+ 1
2 ,𝑗+ 1

2

(𝑤 − ℎ)𝑤𝑥 dΩ

=
𝑔

2

4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒(︁
ℎ2

𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 − 𝑤2
𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
. (3.4)

In the last line, we have used 𝑤𝑥 = 0 according to the condition (3.2). Notice that, we have

𝑤𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘 = 𝐶,

4∑︁
𝑘=1

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

⃒⃒⃒
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,𝑘

)︁
= 0. (3.5)

Substituting (3.3)–(3.5) into (2.9), we can obtain (3.1). The proof is completed. �
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Next, we discuss the positivity-preserving property of the unstaggered central scheme. The positivity-
preserving property of the water depth is crucial in preserving the conservation of the water mass and is
indispensable for successfully simulating physically relevant phenomena. In this paper, it is nontrivial to prove
the positivity-preserving property, since the present unstaggered central scheme is designed on the irregular
quadrangles. The formulae (B.1) used to compute the cell average of the unknown variable is very complex. It
is difficult to couple with the numerical flux (2.7) in proving the positivity of the water depth ℎ

𝑛+1

𝑖+ 1
2 ,𝑗+ 1

2
. It is

remarkable that, the positivity-preserving property of the forward step and the backward step can be addressed
using the method [21]. Even though the calculations are complex, we still found that, the cell average of the
water depth on the staggered cell has same terms based on the formulae (2.24), which makes it easy to prove
the positivity-preserving property.

3.2. Positivity-preserving modifications

This section redefines the bilinear polynomial associated with the water depth to guarantee that the water
depth is nonnegative at eight points. As showed in Figure 1, we redefine the polynomial associated with the
water depth when one of these point values is negative.

We first give the constructed polynomial of the water depth̃︀ℎ𝑖,𝑗(𝑥, 𝑦) = ℎ𝑖,𝑗 + (ℎ𝑥)𝑖,𝑗(𝑥− 𝑥𝑖) + (ℎ𝑦)𝑖,𝑗(𝑦 − 𝑦𝑗), for (𝑥𝑖, 𝑦𝑗) ∈ 𝐷𝑖,𝑗 . (3.6)

Notice that, we can compute the cell average of the water depth as

ℎ𝑖,𝑗 = ̃︀ℎ𝑖,𝑗(𝑥𝑖, 𝑦𝑗).

According to the conservation of the water mass, we obtain the following lemma.

Lemma 3.2. Providing the constructed bilinear polynomial of the water depth (3.6), the cell average of the
water depth ℎ𝑖,𝑗 satisfies

min
𝑘

(ℎ𝑘) ≤ ℎ𝑖,𝑗 ≤ max
𝑘

(ℎ𝑘), for 𝑘 = 1, . . . , 8. (3.7)

here
ℎ𝑘 := ̃︀ℎ𝑖,𝑗(𝑝𝑘), for 𝑘 = 1, . . . , 8,

and
𝑝1 = 𝑝𝑖−1,𝑗 , 𝑝2 = 𝑝𝑖+ 1

2 ,𝑗− 1
2
, 𝑝3 = 𝑝𝑖+1,𝑗 , 𝑝4 = 𝑝𝑖+ 1

2 ,𝑗+ 1
2
,

𝑝5 = 𝑝𝑖,𝑗+1, 𝑝6 = 𝑝𝑖− 1
2 ,𝑗+ 1

2
, 𝑝7 = 𝑝𝑖−1,𝑗 , 𝑝8 = 𝑝𝑖− 1

2 ,𝑗+ 1
2
.

Proof. According to the definition of the cell average of the water depth ℎ𝑖,𝑗 , we can directly compute

|𝐷𝑖,𝑗 |ℎ𝑖,𝑗 =
∫︁

𝐷𝑖,𝑗

̃︀ℎ𝑖,𝑗(𝑥, 𝑦) dΩ

=
∫︁

𝐴−4,𝑖,𝑗+𝐴+
4,𝑖,𝑗

̃︀ℎ𝑖,𝑗(𝑥, 𝑦) dΩ +
∫︁

𝐴−1,𝑖,𝑗+𝐴+
1,𝑖,𝑗

̃︀ℎ𝑖,𝑗(𝑥, 𝑦) dΩ

+
∫︁

𝐴−2,𝑖,𝑗+𝐴+
2,𝑖,𝑗

̃︀ℎ𝑖,𝑗(𝑥, 𝑦) dΩ +
∫︁

𝐴−3,𝑖,𝑗+𝐴+
3,𝑖,𝑗

̃︀ℎ𝑖,𝑗(𝑥, 𝑦) dΩ

=

⃒⃒
𝐴+

4,𝑖,𝑗

⃒⃒
3

(︁̃︀ℎ𝑖,𝑗(𝑝8) + ̃︀ℎ𝑖,𝑗(𝑝1) + ̃︀ℎ𝑖,𝑗(𝑝7)
)︁

+

⃒⃒
𝐴−4,𝑖,𝑗

⃒⃒
3

(︁
ℎ𝑖,𝑗 + ̃︀ℎ𝑖,𝑗(𝑝1) + ̃︀ℎ𝑖,𝑗(𝑝7)

)︁
+

⃒⃒
𝐴+

1,𝑖,𝑗

⃒⃒
3

(︁̃︀ℎ𝑖,𝑗(𝑝2) + ̃︀ℎ𝑖,𝑗(𝑝1) + ̃︀ℎ𝑖,𝑗(𝑝3)
)︁

+

⃒⃒
𝐴−1,𝑖,𝑗

⃒⃒
3

(︁
ℎ𝑖,𝑗 + ̃︀ℎ𝑖,𝑗(𝑝1) + ̃︀ℎ𝑖,𝑗(𝑝3)

)︁
+

⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒
3

(︁̃︀ℎ𝑖,𝑗(𝑝4) + ̃︀ℎ𝑖,𝑗(𝑝3) + ̃︀ℎ𝑖,𝑗(𝑝5)
)︁

+

⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
3

(︁
ℎ𝑖,𝑗 + ̃︀ℎ𝑖,𝑗(𝑝3) + ̃︀ℎ𝑖,𝑗(𝑝5)

)︁
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+

⃒⃒
𝐴+

3,𝑖,𝑗

⃒⃒
3

(︁̃︀ℎ𝑖,𝑗(𝑝6) + ̃︀ℎ𝑖,𝑗(𝑝5) + ̃︀ℎ𝑖,𝑗(𝑝7)
)︁

+

⃒⃒
𝐴−3,𝑖,𝑗

⃒⃒
3

(︁
ℎ𝑖,𝑗 + ̃︀ℎ𝑖,𝑗(𝑝5) + ̃︀ℎ𝑖,𝑗(𝑝7)

)︁
=

⃒⃒
𝐴−1,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴−3,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴−4,𝑖,𝑗

⃒⃒
3

ℎ𝑖,𝑗 +
∑︁

𝑘

𝐶𝑘
̃︀ℎ𝑖,𝑗(𝑝𝑘),

here

𝐶1 =
1
3
(︀⃒⃒

𝐴−1,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

1,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴−4,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

4,𝑖,𝑗

⃒⃒)︀
,

𝐶3 =
1
3
(︀⃒⃒

𝐴−1,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

1,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒)︀
,

𝐶5 =
1
3
(︀⃒⃒

𝐴−2,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴−3,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

3,𝑖,𝑗

⃒⃒)︀
,

𝐶7 =
1
3
(︀⃒⃒

𝐴−4,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

4,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴−3,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

3,𝑖,𝑗

⃒⃒)︀
,

𝐶2 =
1
3

⃒⃒
𝐴+

1,𝑖,𝑗

⃒⃒
, 𝐶4 =

1
3

⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒
, 𝐶6 =

1
3

⃒⃒
𝐴+

3,𝑖,𝑗

⃒⃒
, 𝐶8 =

1
3

⃒⃒
𝐴+

4,𝑖,𝑗

⃒⃒
.

After several calculations give
𝐶𝐷ℎ𝑖,𝑗 =

∑︁
𝑘

𝐶𝑘
̃︀ℎ𝑖,𝑗(𝑝𝑘),

here

𝐶𝐷 :=
2
3
(︀⃒⃒

𝐴−1,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴−3,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴−4,𝑖,𝑗

⃒⃒)︀
+
⃒⃒
𝐴+

1,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

3,𝑖,𝑗

⃒⃒
+
⃒⃒
𝐴+

4,𝑖,𝑗

⃒⃒
.

It is not difficulty to verify that
𝐶𝐷 =

∑︁
𝑘

𝐶𝑘, for 𝑘 = 1, . . . , 8. (3.8)

Then, the cell average of the water depth ℎ𝑖,𝑗 is a convex combination of the point values ̃︀ℎ𝑖,𝑗(𝑝𝑘). We complete
the proof. �

Thanks to the gradient limiter, the computed point values of the water depth ℎ𝑘 does not necessary to be
nonnegative. We use the method proposed in [35] to redefine a bilinear polynomial to approximate the water
depth function while inherits the second-order accuracy in space. The reconstructed bilinear polynomial is given
by ̂︀̃︀ℎ𝑖,𝑗(𝑥, 𝑦) := 𝜃

(︁̃︀ℎ𝑖,𝑗(𝑥, 𝑦)− ℎ𝑖,𝑗

)︁
+ ℎ𝑖,𝑗 , (3.9)

here

𝜃 := min
(︂

1,
ℎ𝑖,𝑗

ℎ𝑖,𝑗 −min𝑘(ℎ𝑘)

)︂
· (3.10)

Obviously, the conservation of the water mass is still valid based on the reconstructed polynomial (3.9). We can
obtain the following theorem.

Theorem 3.3. Assuming the cell average of the water depth ℎ𝑖,𝑗 ≥ 0, then the point values of the water depth
satisfy ̂︀ℎ𝑘 := ̂︀̃︀ℎ𝑖,𝑗(𝑝𝑘) ≥ 0, ∀𝑘 ∈ 1, . . . , 8, (3.11)

providing the reconstructed polynomial (3.9).
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Proof. We first consider the case min𝑘(ℎ𝑘) ≥ 0. Thanks to the Lemma 3.2, we have min𝑘(ℎ𝑘) ≤ ℎ𝑖,𝑗 . Then the

parameter satisfies 𝜃 = 1. Then, we obtain ̂︀̃︀ℎ𝑖,𝑗(𝑥, 𝑦) = ̃︀ℎ𝑖,𝑗(𝑥, 𝑦). Thus, we can obtain ̂︀ℎ𝑘 ≥ 0.
Next, we consider the case min𝑘(ℎ𝑘) < 0, we can obtain

𝜃 =
ℎ𝑖,𝑗

ℎ𝑖,𝑗 −min𝑘(ℎ𝑘)
· (3.12)

Substituting (3.12) into (3.9), we can obtain

̂︀̃︀ℎ𝑖,𝑗(𝑝𝑘) = 𝜃̃︀ℎ𝑖,𝑗(𝑝𝑘) + (1− 𝜃)ℎ𝑖,𝑗

=
ℎ𝑖,𝑗

ℎ𝑖,𝑗 −min𝑘(ℎ𝑘)
̃︀ℎ𝑖,𝑗(𝑝𝑘)− min𝑘(ℎ𝑘)

ℎ𝑖,𝑗 −min𝑘(ℎ𝑘)
ℎ𝑖,𝑗

=
̃︀ℎ𝑖,𝑗(𝑝𝑘)−min𝑘(ℎ𝑘)

ℎ𝑖,𝑗 −min𝑘(ℎ𝑘)
ℎ𝑖,𝑗 ≥ 0.

(3.13)

Thanks to ̃︀ℎ𝑖,𝑗(𝑝𝑘) ≥ min𝑘(ℎ𝑘), we obtain the conclusion. The proof is completed. �

In order to prove the positivity-preserving property of the present unstaggered central scheme clearly, we
first use the first-order forward Euler method to discretize the scheme (2.9) in time integration. The notations
𝑡𝑛 and 𝑡𝑛+1 := 𝑡𝑛 + ∆𝑡 are used to denote the corresponding time level.

Theorem 3.4. Considering the two-dimensional shallow water equation with nonflat bottom topography (1.1).
The unstaggered central scheme (2.9) endows with the numerical flux (2.7) and the discretized source term (2.16)
and (2.17). Assuming the water depth is nonnegative at points 𝑄𝑘, 𝑘 = 1, . . . , 8 and (𝑥𝑖+ 1

2 ,𝑗+ 1
2
), and providing

the following CFL condition

∆𝑡 ≤ 2
3

min
𝑖,𝑗∈Z

(︃ ⃒⃒
𝐴−3,𝑖+1,𝑗

⃒⃒
𝐻ℵ

𝑖+ 1
2 ,𝑗+ 1

2 ,1

,

⃒⃒
𝐴−4,𝑖+1,𝑗+1

⃒⃒
𝐻ℵ

𝑖+ 1
2 ,𝑗+ 1

2 ,2

,

⃒⃒
𝐴−1,𝑖,𝑗+1

⃒⃒
𝐻ℵ

𝑖+ 1
2 ,𝑗+ 1

2 ,3

,

⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
𝐻ℵ

𝑖+ 1
2 ,𝑗+ 1

2 ,4

)︃
, (3.14)

here,

𝐻ℵ
𝑖+ 1

2 ,𝑗+ 1
2 ,1 :=

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,1

⃒⃒⃒̃︀u𝑖+1,𝑗(𝑄2) +
√︁

𝑔̃︀ℎ𝑖+1,𝑗(𝑄2),

𝐻ℵ
𝑖+ 1

2 ,𝑗+ 1
2 ,2 :=

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,2

⃒⃒⃒̃︀u𝑖+1,𝑗+1(𝑄4) +
√︁

𝑔̃︀ℎ𝑖+1,𝑗+1(𝑄4),

𝐻ℵ
𝑖+ 1

2 ,𝑗+ 1
2 ,3 :=

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,3

⃒⃒⃒̃︀u𝑖,𝑗+1(𝑄6) +
√︁

𝑔̃︀ℎ𝑖,𝑗+1(𝑄6),

𝐻ℵ
𝑖+ 1

2 ,𝑗+ 1
2 ,4 :=

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,4

⃒⃒⃒̃︀u𝑖,𝑗(𝑄8) +
√︁

𝑔̃︀ℎ𝑖,𝑗(𝑄8), (3.15)

and

̃︀u𝑖+1,𝑗(𝑄2) :=
(︁

cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,1

)︁̃︀𝑢𝑖+1,𝑗(𝑄2) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,1

)︁̃︀𝑣𝑖+1,𝑗(𝑄2)
)︁
,

̃︀u𝑖+1,𝑗+1(𝑄4) :=
(︁

cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,2

)︁̃︀𝑢𝑖+1,𝑗+1(𝑄4) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,2

)︁̃︀𝑣𝑖+1,𝑗+1(𝑄4)
)︁
,

̃︀u𝑖,𝑗+1(𝑄6) :=
(︁

cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,3

)︁̃︀𝑢𝑖,𝑗+1(𝑄6) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,3

)︁̃︀𝑣𝑖,𝑗+1(𝑄6)
)︁
,

̃︀u𝑖,𝑗(𝑄8) :=
(︁

cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,4

)︁̃︀𝑢𝑖,𝑗(𝑄8) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,4

)︁̃︀𝑣𝑖,𝑗(𝑄8)
)︁
. (3.16)

When the water depth is ℎ
𝑛

𝑖+ 1
2 ,𝑗+ 1

2
≥ 0, then we obtain ℎ

𝑛+1

𝑖+ 1
2 ,𝑗+ 1

2
≥ 0 using the first-order forward Euler method.
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Proof. In the following process, for the sake of clarity, we first omit the time notation 𝑛. Using the equation
(B.1), we can compute the cell average of the water depth on the staggered cell 𝐷𝑖+ 1

2 ,𝑗+ 1
2
,⃒⃒⃒

𝐷𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒
ℎ𝑖+ 1

2 ,𝑗+ 1
2

=
∫︁

𝐷
𝑖+ 1

2 ,𝑗+ 1
2

̃︀ℎ(𝑥, 𝑦) dΩ

=
∫︁

𝐴−2,𝑖,𝑗+𝐴+
2,𝑖,𝑗

̃︀ℎ𝑖,𝑗(𝑥, 𝑦) dΩ +
∫︁

𝐴−3,𝑖+1,𝑗+𝐴+
3,𝑖+1,𝑗

̃︀ℎ𝑖+1,𝑗(𝑥, 𝑦) dΩ

+
∫︁

𝐴−4,𝑖+1,𝑗+1+𝐴+
4,𝑖+1,𝑗+1

̃︀ℎ𝑖+1,𝑗+1(𝑥, 𝑦) dΩ +
∫︁

𝐴−1,𝑖,𝑗+1+𝐴+
1,𝑖,𝑗+1

̃︀ℎ𝑖,𝑗+1(𝑥, 𝑦) dΩ

= ̂︀Υ1 + ̂︀Υ2 + ̂︀Υ3 + ̂︀Υ4, (3.17)

with

̂︀Υ1 =
∫︁

𝐴−2,𝑖,𝑗+𝐴+
2,𝑖,𝑗

̃︀ℎ𝑖,𝑗(𝑥, 𝑦) dΩ

=
|𝐴−2,𝑖,𝑗 |

3

(︁̃︀ℎ𝑖,𝑗(𝑄8) + ̃︀ℎ𝑖,𝑗(𝑄1) + ̃︀ℎ𝑖,𝑗(𝑄7)
)︁

+
|𝐴+

2,𝑖,𝑗 |
3

(︁̃︀ℎ𝑖,𝑗

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+ ̃︀ℎ𝑖,𝑗(𝑄1) + ̃︀ℎ𝑖,𝑗(𝑄7)

)︁
,

̂︀Υ2 =
∫︁

𝐴−3,𝑖+1,𝑗+𝐴+
3,𝑖+1,𝑗

̃︀ℎ𝑖+1,𝑗(𝑥, 𝑦) dΩ

=
|𝐴−3,𝑖+1,𝑗 |

3

(︁̃︀ℎ𝑖+1,𝑗(𝑄1) + ̃︀ℎ𝑖+1,𝑗(𝑄2) + ̃︀ℎ𝑖+1,𝑗(𝑄3)
)︁

+
|𝐴+

3,𝑖+1,𝑗 |
3

(︁̃︀ℎ𝑖+1,𝑗

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+ ̃︀ℎ𝑖+1,𝑗(𝑄1) + ̃︀ℎ𝑖+1,𝑗(𝑄3)

)︁
,

̂︀Υ3 =
∫︁

𝐴−4,𝑖+1,𝑗+1+𝐴+
4,𝑖+1,𝑗+1

̃︀ℎ𝑖+1,𝑗+1(𝑥, 𝑦) dΩ

=

⃒⃒
𝐴−4,𝑖+1,𝑗+1

⃒⃒
3

(︁̃︀ℎ𝑖+1,𝑗+1(𝑄3) + ̃︀ℎ𝑖+1,𝑗+1(𝑄4) + ̃︀ℎ𝑖+1,𝑗+1(𝑄5)
)︁

+

⃒⃒
𝐴+

4,𝑖+1,𝑗+1

⃒⃒
3

(︁̃︀ℎ𝑖+1,𝑗+1

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+ ̃︀ℎ𝑖+1,𝑗+1(𝑄3) + ̃︀ℎ𝑖+1,𝑗+1(𝑄5)

)︁
,

̂︀Υ4 =
∫︁

𝐴−1,𝑖,𝑗+1+𝐴+
1,𝑖,𝑗+1

̃︀ℎ𝑖,𝑗+1(𝑥, 𝑦) dΩ

=

⃒⃒
𝐴−1,𝑖,𝑗+1

⃒⃒
3

(︁̃︀ℎ𝑖,𝑗+1(𝑄5) + ̃︀ℎ𝑖,𝑗+1(𝑄6) + ̃︀ℎ𝑖,𝑗+1(𝑄7)
)︁

+
|𝐴+

1,𝑖,𝑗+1|
3

(︁̃︀ℎ𝑖,𝑗+1

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+ ̃︀ℎ𝑖,𝑗+1(𝑄5) + ̃︀ℎ𝑖,𝑗+1(𝑄7)

)︁
.

The equation (3.17) is complex, we can not see the relations with the numerical fluxes (2.7) directly. Notice
that, the water depths computed at nine points, 𝑄1, . . . , 𝑄8 and the point

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
are nonnegative, it is

a key ingredient of the current scheme in proving the positivity-preserving property.
After several simple calculations give⃒⃒⃒

𝐷𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒
ℎ𝑖+ 1

2 ,𝑗+ 1
2

= ̃︀ℎ𝑖,𝑗(𝑄1)

(︃⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
3

+

⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒
3

+

⃒⃒
𝐴−3,𝑖+1,𝑗

⃒⃒
3

+

⃒⃒
𝐴+

3,𝑖+1,𝑗

⃒⃒
3

)︃
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+ ̃︀ℎ𝑖+1,𝑗(𝑄3)

(︃⃒⃒
𝐴−3,𝑖+1,𝑗

⃒⃒
3

+

⃒⃒
𝐴+

3,𝑖+1,𝑗

⃒⃒
3

+

⃒⃒
𝐴−4,𝑖+1,𝑗+1

⃒⃒
3

+

⃒⃒
𝐴+

4,𝑖+1,𝑗+1

⃒⃒
3

)︃

+ ̃︀ℎ𝑖+1,𝑗+1(𝑄5)

(︃⃒⃒
𝐴−4,𝑖+1,𝑗+1

⃒⃒
3

+

⃒⃒
𝐴+

4,𝑖+1,𝑗+1

⃒⃒
3

+

⃒⃒
𝐴−1,𝑖,𝑗+1

⃒⃒
3

+

⃒⃒
𝐴+

1,𝑖,𝑗+1

⃒⃒
3

)︃

+ ̃︀ℎ𝑖,𝑗+1(𝑄7)

(︃⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
3

+

⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒
3

+

⃒⃒
𝐴−1,𝑖,𝑗+1

⃒⃒
3

+

⃒⃒
𝐴+

1,𝑖,𝑗+1

⃒⃒
3

)︃

+
1
3
̃︀ℎ𝑖+1,𝑗(𝑄2)

⃒⃒
𝐴−3,𝑖+1,𝑗

⃒⃒
+

1
3
̃︀ℎ𝑖+1,𝑗+1(𝑄4)

⃒⃒
𝐴−4,𝑖+1,𝑗+1

⃒⃒
+

1
3
̃︀ℎ𝑖,𝑗+1(𝑄6)

⃒⃒
𝐴−1,𝑖,𝑗+1

⃒⃒
+

1
3
̃︀ℎ𝑖,𝑗(𝑄8)

⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
+

1
3

⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒̃︀ℎ𝑖,𝑗

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+

1
3

⃒⃒
𝐴+

3,𝑖+1,𝑗

⃒⃒̃︀ℎ𝑖+1,𝑗

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+

1
3

⃒⃒
𝐴+

4,𝑖+1,𝑗+1

⃒⃒̃︀ℎ𝑖+1,𝑗+1

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+

1
3

⃒⃒
𝐴+

1,𝑖,𝑗+1

⃒⃒̃︀ℎ𝑖,𝑗+1

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
. (3.18)

We observe that, the numerical fluxes includes the information of four points, which are points 𝑄2, 𝑄4, 𝑄6, 𝑄8.
As showed in Figure 3. This observation helps us rewrite the expression of the water depth and the numerical
fluxes. According to the equation (2.7), we can compute the first component of the numerical flux as

H(1)

𝑖+ 1
2 ,𝑗+ 1

2
=

1
2

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,1

⃒⃒⃒
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,1

)︁(︁(︁̃︀ℎ𝑖,𝑗(𝑄8)̃︀𝑢𝑖,𝑗

)︁
(𝑄8) + ̃︀ℎ𝑖+1,𝑗(𝑄2)̃︀𝑢𝑖+1,𝑗(𝑄2)

)︁
+

1
2

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,2

⃒⃒⃒
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,2

)︁(︁(︁̃︀ℎ𝑖+1,𝑗+1(𝑄4)̃︀𝑢𝑖+1,𝑗+1

)︁
(𝑄4) + ̃︀ℎ𝑖+1,𝑗(𝑄2)̃︀𝑢𝑖+1,𝑗(𝑄2)

)︁
+

1
2

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,3

⃒⃒⃒
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,3

)︁(︁(︁̃︀ℎ𝑖+1,𝑗+1(𝑄4)̃︀𝑢𝑖+1,𝑗+1

)︁
(𝑄4) + ̃︀ℎ𝑖,𝑗+1(𝑄6)̃︀𝑢𝑖,𝑗+1(𝑄6)

)︁
+

1
2

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,4

⃒⃒⃒
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,4

)︁(︁(︁̃︀ℎ𝑖,𝑗(𝑄8)̃︀𝑢𝑖,𝑗

)︁
(𝑄8) + ̃︀ℎ𝑖,𝑗+1(𝑄6)̃︀𝑢𝑖,𝑗+1(𝑄6)

)︁
+

1
2

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,1

⃒⃒⃒
sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,1

)︁(︁(︁̃︀ℎ𝑖,𝑗(𝑄8)̃︀𝑣𝑖,𝑗

)︁
(𝑄8) + ̃︀ℎ𝑖+1,𝑗(𝑄2)̃︀𝑣𝑖+1,𝑗(𝑄2)

)︁
+

1
2

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,2

⃒⃒⃒
sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,2

)︁(︁(︁̃︀ℎ𝑖+1,𝑗+1(𝑄4)̃︀𝑣𝑖+1,𝑗+1

)︁
(𝑄4) + ̃︀ℎ𝑖+1,𝑗(𝑄2)̃︀𝑣𝑖+1,𝑗(𝑄2)

)︁
+

1
2

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,3

⃒⃒⃒
sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,3

)︁(︁(︁̃︀ℎ𝑖+1,𝑗+1(𝑄4)̃︀𝑣𝑖+1,𝑗+1

)︁
(𝑄4) + ̃︀ℎ𝑖,𝑗+1(𝑄6)̃︀𝑣𝑖,𝑗+1(𝑄6)

)︁
+

1
2

⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,4

⃒⃒⃒
sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,4

)︁(︁(︁̃︀ℎ𝑖,𝑗(𝑄8)̃︀𝑣𝑖,𝑗

)︁
(𝑄8) + ̃︀ℎ𝑖,𝑗+1(𝑄6)̃︀𝑣𝑖,𝑗+1(𝑄6)

)︁
.

A direct calculation gives the equivalent form,

H(1)

𝑖+ 1
2 ,𝑗+ 1

2
=

1
2
̃︀ℎ𝑖+1,𝑗(𝑄2)

[︁⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,1

⃒⃒⃒(︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,1

)︁̃︀𝑢𝑖+1,𝑗(𝑄2) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,1

)︁̃︀𝑣𝑖+1,𝑗(𝑄2)
)︁]︁

+
1
2
̃︀ℎ𝑖+1,𝑗+1(𝑄4)

[︁⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,2

⃒⃒⃒(︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,2

)︁̃︀𝑢𝑖+1,𝑗+1(𝑄4) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,2

)︁̃︀𝑣𝑖+1,𝑗+1(𝑄4)
)︁]︁

+
1
2
̃︀ℎ𝑖,𝑗+1(𝑄6)

[︁⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,3

⃒⃒⃒(︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,3

)︁̃︀𝑢𝑖,𝑗+1(𝑄6) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,3

)︁̃︀𝑣𝑖,𝑗+1(𝑄6)
)︁]︁

+
1
2
̃︀ℎ𝑖,𝑗(𝑄8)

[︁⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,4

⃒⃒⃒(︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,4

)︁̃︀𝑢𝑖,𝑗(𝑄8) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,4

)︁̃︀𝑣𝑖,𝑗(𝑄8)
)︁]︁

. (3.19)

Let us define the following notations for the ease of presentation,

𝐻♯

𝑖+ 1
2 ,𝑗+ 1

2 ,1
:=
⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,1

⃒⃒⃒(︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,1

)︁̃︀𝑢𝑖+1,𝑗(𝑄2) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,1

)︁̃︀𝑣𝑖+1,𝑗(𝑄2)
)︁
,
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𝐻♯

𝑖+ 1
2 ,𝑗+ 1

2 ,2
:=
⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,2

⃒⃒⃒(︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,2

)︁̃︀𝑢𝑖+1,𝑗+1(𝑄4) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,2

)︁̃︀𝑣𝑖+1,𝑗+1(𝑄4)
)︁
,

𝐻♯

𝑖+ 1
2 ,𝑗+ 1

2 ,3
:=
⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,3

⃒⃒⃒(︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,3

)︁̃︀𝑢𝑖,𝑗+1(𝑄6) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,3

)︁̃︀𝑣𝑖,𝑗+1(𝑄6)
)︁
,

𝐻♯

𝑖+ 1
2 ,𝑗+ 1

2 ,4
:=
⃒⃒⃒
𝑙𝑖+ 1

2 ,𝑗+ 1
2 ,4

⃒⃒⃒(︁
cos
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,4

)︁̃︀𝑢𝑖,𝑗(𝑄8) + sin
(︁
𝜃𝑖+ 1

2 ,𝑗+ 1
2 ,4

)︁̃︀𝑣𝑖,𝑗(𝑄8)
)︁
. (3.20)

According to the first equation of (2.9), and omitting the time mark 𝑛, we obtain

ℎ
𝑛+1

𝑖+ 1
2 ,𝑗+ 1

2
= ℎ𝑖+ 1

2 ,𝑗+ 1
2
− ∆𝑡⃒⃒⃒

𝐷𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒H(1)

𝑖+ 1
2 ,𝑗+ 1

2
. (3.21)

Substituting (3.18) and (3.19) into (3.21), we compute⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒
ℎ

𝑛+1

𝑖+ 1
2 ,𝑗+ 1

2
=
⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒
ℎ𝑖+ 1

2 ,𝑗+ 1
2
−∆𝑡H(1)

𝑖+ 1
2 ,𝑗+ 1

2

= ̃︀ℎ𝑖+1,𝑗(𝑄2)
(︂

1
3

⃒⃒
𝐴−3,𝑖+1,𝑗

⃒⃒
−∆𝑡

1
2
𝐻♯

𝑖+ 1
2 ,𝑗+ 1

2 ,1

)︂
+ ̃︀ℎ𝑖+1,𝑗+1(𝑄4)

(︂
1
3

⃒⃒
𝐴−4,𝑖+1,𝑗+1

⃒⃒
−∆𝑡

1
2
𝐻♯

𝑖+ 1
2 ,𝑗+ 1

2 ,2

)︂
+ ̃︀ℎ𝑖,𝑗+1(𝑄6)

(︂
1
3

⃒⃒
𝐴−1,𝑖,𝑗+1

⃒⃒
−∆𝑡

1
2
𝐻♯

𝑖+ 1
2 ,𝑗+ 1

2 ,3

)︂
+ ̃︀ℎ𝑖,𝑗(𝑄8)

(︂
1
3

⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
−∆𝑡

1
2
𝐻♯

𝑖+ 1
2 ,𝑗+ 1

2 ,4

)︂
+ ̃︀ℎ𝑖,𝑗(𝑄1)

(︃⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
3

+

⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒
3

+

⃒⃒
𝐴−3,𝑖+1,𝑗

⃒⃒
3

+

⃒⃒
𝐴+

3,𝑖+1,𝑗

⃒⃒
3

)︃

+ ̃︀ℎ𝑖+1,𝑗(𝑄3)

(︃⃒⃒
𝐴−3,𝑖+1,𝑗

⃒⃒
3

+

⃒⃒
𝐴+

3,𝑖+1,𝑗

⃒⃒
3

+

⃒⃒
𝐴−4,𝑖+1,𝑗+1

⃒⃒
3

+

⃒⃒
𝐴+

4,𝑖+1,𝑗+1

⃒⃒
3

)︃

+ ̃︀ℎ𝑖+1,𝑗+1(𝑄5)

(︃⃒⃒
𝐴−4,𝑖+1,𝑗+1

⃒⃒
3

+

⃒⃒
𝐴+

4,𝑖+1,𝑗+1

⃒⃒
3

+

⃒⃒
𝐴−1,𝑖,𝑗+1

⃒⃒
3

+

⃒⃒
𝐴+

1,𝑖,𝑗+1

⃒⃒
3

)︃

+ ̃︀ℎ𝑖,𝑗+1(𝑄7)

(︃⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
3

+

⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒
3

+

⃒⃒
𝐴−1,𝑖,𝑗+1

⃒⃒
3

+

⃒⃒
𝐴+

1,𝑖,𝑗+1

⃒⃒
3

)︃

+
1
3

⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒̃︀ℎ𝑖,𝑗

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+

1
3

⃒⃒
𝐴+

3,𝑖+1,𝑗

⃒⃒̃︀ℎ𝑖+1,𝑗

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+

1
3

⃒⃒
𝐴+

4,𝑖+1,𝑗+1

⃒⃒̃︀ℎ𝑖+1,𝑗+1

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+

1
3

⃒⃒
𝐴+

1,𝑖,𝑗+1

⃒⃒̃︀ℎ𝑖,𝑗+1

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
. (3.22)

Since the water depth is nonnegative at all points with the aid of the CFL condition (3.14)–(3.16), all the
coefficients are nonnegative, then we obtain ℎ

𝑛+1

𝑖+ 1
2 ,𝑗+ 1

2
≥ 0. We completed the proof. �

Remark 3.5. It is worth recalling that, the positivity-preserving property is still valid when using the
Unstaggered-Runge–Kutta method to discretize the ODEs in time integration, since its solutions can be seen as
a convex combination of several first-order forward Euler solvers.

4. Adaptive moving mesh strategies

This section proposes an adaptive moving method on quadrangles. We consider the structured irregular
quadrangles. We first define the logical domain denoted by Ω𝑙 and the physical domain denoted by Ω. As
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Figure 4. Moving mesh. Schematic of the mapping between the logical domain and physical
domain.

showed in Figure 4, we use 𝑙𝑖 to denote the 𝑖-th side of the dual cell 𝑉𝑖+ 1
2 ,𝑗+ 1

2
containing the vertex (𝜉𝑖+ 1

2
, 𝜂𝑗+ 1

2
).

The mapping between the logical domain and the physical domain is denoted as x : Ω𝑙 → Ω.
As discussed in [19,23], the mapping x(𝜉, 𝜂) is the solution of the following mesh PDEs, which is defined as

∇ · (𝜙∇x) = 0. (4.1)

The equation (4.1) is known as the Euler−Lagrange equation for minimizing the energy functional equation
discussed in [19], here ∇ := (𝜕𝜉, 𝜕𝜂) and 𝜙 := 𝜙(W) is a monitor function which will be given later. We assume
that the logical domain Ω𝑙 is fixed. Notice that, the vertex x of the new mesh is obtained by solving the mesh
PDEs (4.1)

Integrating the equation (4.1) and using the divergence theorem, we obtain
4∑︁

𝑘=1

∫︁
𝑙𝑘

𝜙(W)
𝜕x
𝜕n𝑘

d𝑙 = 0, (4.2)

here, n𝑗 is the outward normal vector of the side 𝑙𝑗 . We discrete the equation (4.2) as
2∑︁

𝑘=1

𝜙𝑖+ 1
2 ,𝑘|𝑙2𝑘−1|

x𝑖+ 1
2 ,𝑗+ 1

2
− x𝑖+ 1

2 ,𝑗+(−1)𝑘+ 1
2⃒⃒⃒

𝜉𝑖+ 1
2 ,𝑗+ 1

2
− 𝜉𝑖+ 1

2 ,𝑗+(−1)𝑘+ 1
2

⃒⃒⃒ +
2∑︁

𝑘=1

𝜙𝑘,𝑗+ 1
2
|𝑙2𝑘|

x𝑖+ 1
2 ,𝑗+ 1

2
− x𝑖+(−1)𝑘+1+ 1

2 ,𝑗+ 1
2⃒⃒⃒

𝜉𝑖+ 1
2 ,𝑗+ 1

2
− 𝜉𝑖+(−1)𝑘+1+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ = 0, (4.3)

here
𝜙𝑖+ 1

2 ,1 =
1
2

(𝜙𝑖,𝑗 + 𝜙𝑖+1,𝑗), 𝜙𝑖+ 1
2 ,2 =

1
2

(𝜙𝑖,𝑗+1 + 𝜙𝑖+1,𝑗+1),

𝜙1,𝑗+ 1
2

=
1
2

(𝜙𝑖+1,𝑗 + 𝜙𝑖+1,𝑗+1), 𝜙2,𝑖+ 1
2

=
1
2

(𝜙𝑖,𝑗 + 𝜙𝑖,𝑗+1).

We first denote by 𝜈 the iterative times. Since the equation (4.3) is highly nonlinear, we use a iterative method
to move the vertex x𝑖+ 1

2 ,𝑗+ 1
2
,

x𝜈+1
𝑖+ 1

2 ,𝑗+ 1
2

= 𝜗̂︀x𝜈
𝑖+ 1

2 ,𝑗+ 1
2

+ (1− 𝜗)x𝜈
𝑖+ 1

2 ,𝑗+ 1
2
, (4.4)

here, ̂︀x𝑘
𝑖+ 1

2 ,𝑗+ 1
2

is computed as

̂︀x𝜈
𝑖+ 1

2 ,𝑗+ 1
2

:=

∑︀2
𝑘=1 T𝑖+ 1

2 ,𝑘x
𝜈
𝑖+ 1

2 ,𝑗+(−1)𝑘+ 1
2

+
∑︀2

𝑘=1 T𝑘,𝑗+ 1
2
x𝜈

𝑖+(−1)𝑘+ 1
2 ,𝑗+ 1

2∑︀2
𝑘=1 T𝑖+ 1

2 ,𝑘 +
∑︀2

𝑘=1 T𝑘,𝑗+ 1
2

, (4.5)
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Figure 5. The convex domain consists of the four points.

and

T𝑖+ 1
2 ,𝑘 :=

𝜙𝑖+ 1
2 ,𝑘|𝑙2𝑘−1|⃒⃒⃒

𝑉𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒⃒⃒⃒
𝜉𝑖+ 1

2 ,𝑗+ 1
2
− 𝜉𝑖+ 1

2 ,𝑗+(−1)𝑘+ 1
2

⃒⃒⃒ , 𝑘 = 1, 2.

T𝑘,𝑗+ 1
2

:=
𝜙𝑘,𝑗+ 1

2
|𝑙2𝑘|⃒⃒⃒

𝑉𝑖+ 1
2 ,𝑗+ 1

2

⃒⃒⃒⃒⃒⃒
𝜉𝑖+ 1

2 ,𝑗+ 1
2
− 𝜉𝑖+(−1)𝑘+1+ 1

2 ,𝑗+ 1
2

⃒⃒⃒ , 𝑘 = 1, 2.

(4.6)

We choose the parameter 𝜗 to be 0.5 and the iterative times 𝜈 to be 5 in our all numerical examples when
there is no ambiguity. It is mentioning that, the vertex of the new mesh x𝜈+1

𝑖+ 1
2 ,𝑗+ 1

2
is contained in the convex

domain which consists of the four points as showed in Figure 5, since the equations (4.4) and (4.5) are a convex
combination of the old mesh vertexes.

Remark 4.1. We use the method proposed in [19, 23] and the reference therein to obtain a smoother mesh.
The monitor function is given by

𝜙𝑖,𝑗 ←
1
4
𝜙𝑖,𝑗 +

1
8

(𝜙𝑖−1,𝑗 + 𝜙𝑖+1,𝑗 + 𝜙𝑖,𝑗−1 + 𝜙𝑖,𝑗+1) +
1
8

(𝜙𝑖−1,𝑗−1 + 𝜙𝑖+1,𝑗−1 + 𝜙𝑖+1,𝑗+1 + 𝜙𝑖−1,𝑗+1).

Remark 4.2. The monitor function in (4.1) can be obtained in [19, 21, 22, 36]. In all numerical examples, we
use the monitor function proposed in [22,36] which reads as

𝜙𝑖,𝑗 =
√︁

1 + 𝛼(̂︀𝜙𝑖,𝑗)2, (4.7)

here ̂︀𝜙𝑖,𝑗 = min
(︂

1,
|∇(𝜉𝑖,𝜂𝑖)W|

𝛽Φ

)︂
, Φ = max

𝑖
(|∇(𝜉𝑖,𝜂𝑖)W|) (4.8)

and |∇(𝜉𝑖,𝜂𝑖)W| denotes the model of the gradient of the numerical solutions, and

∇(𝜉𝑖,𝜂𝑖)W =

(︃W𝑖+1,𝑗−W𝑖−1,𝑗

2Δ𝜉
W𝑖,𝑗+1−W𝑖,𝑗−1

2Δ𝜂

)︃
,

and ∆𝜉 and ∆𝜂 are the mesh size of the logical domain. The parameters 𝛼 and 𝛽 are taken as 50 and 0.25,
respectively.
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4.1. Geometrical conservative interpolation

In this section, we introduce the method discussed in [19, 23] for projecting the solutions from old meshes
to new meshes. When obtaining the new meshes, we need to compute the cell average of the solutions on
new meshes using the information of old meshes. For the shallow water equation with a source term, the
designed technique recovering the solutions on new meshes need to satisfy well-balanced and positivity-preserving
properties. Especially, it should satisfy the conservation of the water mass.

We denote 𝜈 the old mesh and 𝜈 + 1 the new mesh. Using the conservative method in [23], the solutions on
the new mesh can be obtained by ⃒⃒⃒ ̂︀𝐷𝑖,𝑗

⃒⃒⃒
W

𝜈+1

𝑖,𝑗 = |𝐷𝑖,𝑗 |W
𝜈

𝑖,𝑗 +
4∑︁

𝑘=1

𝒮𝜈
𝑖𝑗𝑘, (4.9)

here, the following values are computed on the old mesh when there is no ambiguity,

𝒮𝑖𝑗𝑘 := max(𝐷𝑖𝑗𝑘, 0)W𝑟
𝑖𝑗𝑘 + min(𝐷𝑖𝑗𝑘, 0)W𝑙

𝑖𝑗𝑘,

and

W𝑟
𝑖𝑗1 =

1
2

(︁̃︁W𝑖,𝑗−1(𝑝4) + ̃︁W𝑖,𝑗−1(𝑝6)
)︁
, W𝑙

𝑖𝑗1 =
1
2

(︁̃︁W𝑖,𝑗(𝑝8) + ̃︁W𝑖,𝑗(𝑝2)
)︁
,

W𝑟
𝑖𝑗2 =

1
2

(︁̃︁W𝑖+1,𝑗(𝑝6) + ̃︁W𝑖+1,𝑗(𝑝8)
)︁
, W𝑙

𝑖𝑗2 =
1
2

(︁̃︁W𝑖,𝑗(𝑝2) + ̃︁W𝑖,𝑗(𝑝4)
)︁
,

W𝑟
𝑖𝑗3 =

1
2

(︁̃︁W𝑖,𝑗+1(𝑝8) + ̃︁W𝑖,𝑗+1(𝑝2)
)︁
, W𝑙

𝑖𝑗3 =
1
2

(︁̃︁W𝑖,𝑗(𝑝4) + ̃︁W𝑖,𝑗(𝑝6)
)︁
,

W𝑟
𝑖𝑗4 =

1
2

(︁̃︁W𝑖−1,𝑗(𝑝2) + ̃︁W𝑖−1,𝑗(𝑝4)
)︁
, W𝑙

𝑖𝑗4 =
1
2

(︁̃︁W𝑖,𝑗(𝑝6) + ̃︁W𝑖,𝑗(𝑝8)
)︁
.

We denote by | ̂︀𝐷𝑖,𝑗 | the area of the new mesh ̂︀𝐷𝑖,𝑗 , and 𝐷𝑖𝑗𝑘 denotes the scanned area of the 𝑘-th side. For an
example, as showed in Figure 6, we compute

𝐷𝑖𝑗2 =
1
2

[︁(︁
𝑥𝜈+1

𝑖+ 1
2 ,𝑗+ 1

2
− 𝑥𝜈

𝑖+ 1
2 ,𝑗− 1

2

)︁(︁
𝑦𝜈+1

𝑖+ 1
2 ,𝑗− 1

2
− 𝑦𝜈

𝑖+ 1
2 ,𝑗+ 1

2

)︁
−
(︁
𝑥𝜈+1

𝑖+ 1
2 ,𝑗− 1

2
− 𝑥𝜈

𝑖+ 1
2 ,𝑗+ 1

2

)︁(︁
𝑦𝜈+1

𝑖+ 1
2 ,𝑗+ 1

2
− 𝑦𝜈

𝑖+ 1
2 ,𝑗− 1

2

)︁]︁
.

(4.10)
We use the reconstructed polynomial (3.9) to recover the water depth on the new meshes for positivity-preserving
property. The method (4.9) can preserve the still-water steady state. Indeed, when the water is at rest and the
water surface is assumed to be a constant 𝑤, we have

4∑︁
𝑘=1

max(𝐷𝑖𝑗𝑘, 0)𝑤𝑟
𝑖𝑗𝑘 + min(𝐷𝑖𝑗𝑘, 0)𝑤𝑙

𝑖𝑗𝑘 = 𝑤

4∑︁
𝑘=1

max(𝐷𝑖𝑗𝑘, 0) + min(𝐷𝑖𝑗𝑘, 0).

It is easily to verify ⃒⃒⃒ ̂︀𝐷𝑖,𝑗

⃒⃒⃒
= |𝐷𝑖,𝑗 |+

4∑︁
𝑘=1

max(𝐷𝑖𝑗𝑘, 0) + min(𝐷𝑖𝑗𝑘, 0).

Then, we can obtain 𝑤𝜈+1 = 𝑤𝜈 .
Next, we discuss the positivity-preserving property of the adaptive moving mesh strategies. We observe that

the current strategy admits the following proposition.

Proposition 4.3. We consider two-dimensional shallow water equations (1.1) and the corresponding numerical
scheme discussed in Section 2. Assume that ℎ

𝜈

𝑖,𝑗 , ℎ
𝑙,𝜈
𝑖𝑗𝑘, ℎ𝑟,𝜈

𝑖𝑗𝑘 are nonnegative for all 𝑖, 𝑗 ∈ 𝑁 . Then, we obtain

ℎ
𝜈+1

𝑖,𝑗 ≥ 0, (4.11)
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Figure 6. A sketch of a moving typical quadrangle.

Figure 7. A sketch of a typical quadrangle.

using the equation (4.9) and (4.10) under the case

𝐷𝑖𝑗𝑘 ≤ 0, ∀𝑘 = 1, . . . , 4.

Proof. Using the first component of the equation (4.9), we obtain

| ̂︀𝐷𝑖,𝑗 |ℎ
𝜈+1

𝑖,𝑗 = |𝐷𝑖,𝑗 |ℎ
𝜈

𝑖,𝑗 +
4∑︁

𝑘=1

max(𝐷𝑖𝑗𝑘, 0)ℎ𝑟
𝑖𝑗𝑘 + min(𝐷𝑖𝑗𝑘, 0)ℎ𝑙

𝑖𝑗𝑘,

= |𝐷𝑖,𝑗 |ℎ
𝜈

𝑖,𝑗 +
4∑︁

𝑘=1

min(𝐷𝑖𝑗𝑘, 0)ℎ𝑙
𝑖𝑗𝑘.

(4.12)

As showed in Figure 7, we can rewrite the cell average of the water depth

|𝐷𝑖,𝑗 |ℎ𝑖,𝑗 =
𝐴𝑖𝑗1

3

(︁̂︀ℎ8 + ℎ𝑖,𝑗 + ̂︀ℎ2

)︁
+

𝐴𝑖𝑗2

3

(︁̂︀ℎ2 + ℎ𝑖,𝑗 + ̂︀ℎ4

)︁
+

𝐴𝑖𝑗3

3

(︁̂︀ℎ4 + ℎ𝑖,𝑗 + ̂︀ℎ6

)︁
+

𝐴𝑖𝑗4

3

(︁̂︀ℎ6 + ℎ𝑖,𝑗 + ̂︀ℎ8

)︁
,

here ̂︀ℎ𝑘 is taken from (3.11). After elementary calculations give

|𝐷𝑖,𝑗 |ℎ𝑖,𝑗 =
𝐴𝑖𝑗1

2

(︁̂︀ℎ8 + ̂︀ℎ2

)︁
+

𝐴𝑖𝑗2

2

(︁̂︀ℎ2 + ̂︀ℎ4

)︁
+

𝐴𝑖𝑗3

2

(︁̂︀ℎ4 + ̂︀ℎ6

)︁
+

𝐴𝑖𝑗4

2

(︁̂︀ℎ6 + ̂︀ℎ8

)︁
. (4.13)
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It is mentioning that, in this case, we have

ℎ𝑙
𝑖𝑗1 =

1
2

(︁̂︀ℎ8 + ̂︀ℎ2

)︁
, ℎ𝑙

𝑖𝑗2 =
1
2

(︁̂︀ℎ2 + ̂︀ℎ4

)︁
, ℎ𝑙

𝑖𝑗3 =
1
2

(︁̂︀ℎ4 + ̂︀ℎ6

)︁
, ℎ4

𝑖𝑗1 =
1
2

(︁̂︀ℎ6 + ̂︀ℎ8

)︁
(4.14)

Substituting the equations (4.13) and (4.14) into (4.12), we obtain

⃒⃒⃒ ̂︀𝐷𝑖,𝑗

⃒⃒⃒
ℎ

𝜈+1

𝑖,𝑗 ≥

(︃
4∑︁

𝑘=1

|𝐴𝑖𝑗𝑘|+
4∑︁

𝑘=1

𝐷𝑖𝑗𝑘

)︃
ℎ𝑙

𝑖𝑗𝑘. (4.15)

We denote by |𝐷𝑖𝑗𝑘| the size of the scanned area. As showed in Figure 7, we obtain

4∑︁
𝑘=1

|𝐴𝑖𝑗𝑘| = |𝐷𝑖,𝑗 | ≥
4∑︁

𝑘=1

|𝐷𝑖𝑗𝑘|. (4.16)

Then, we obtain
4∑︁

𝑘=1

|𝐴𝑖𝑗𝑘|+
4∑︁

𝑘=1

𝐷𝑖𝑗𝑘 ≥ 0. (4.17)

Thus, we obtain ℎ
𝜈+1

𝑖,𝑗 ≥ 0. The proof is completed. �

Remark 4.4. The positivity-preserving property of the computed water depth using the adaptive moving
mesh methods is still an open problem. It is not easy to prove this property in the theoretical sense. When
the adaptive current scheme cannot guarantee the water depth to be nonnegative, the points of the associated
with the mesh are fixed. The computed results confirm that, the current adaptive moving mesh strategies are
positivity-preserving.

Remark 4.5. As discussed in [23], the method (4.9) is conservative in the sense,∑︁
𝑖,𝑗

⃒⃒⃒ ̂︀𝐷𝑖,𝑗

⃒⃒⃒
W

𝜈+1

𝑖,𝑗 =
∑︁
𝑖,𝑗

|𝐷𝑖,𝑗 |W
𝜈

𝑖,𝑗 ,

since two neighboring quadrangles share the opposite signs flux but with same absolute values.

Remark 4.6. We would like to point out that the new quadrangle will be not convex. When the new quadrangle
is not convex, we fix the related points to overcome this issue.

5. Numerical examples

In this section, we show several numerical experiments to test the present unstaggered central scheme for
shallow water equations with a bed slope source term on irregular quadrangles. We use the CFL number to
be 0.3 in all numerical examples when there is no ambiguity. “OLD” denotes the numerical solutions obtained
by using the discretized source term (2.12); “NEW” denotes the numerical solutions obtained by using the
discretized source term (2.19). The gravity is taken as 𝑔 = 9.8 when there is no ambiguity.

5.1. Convergence rate of the current scheme

In this case, we investigate the convergence rate of the unstaggered central scheme for shallow water equations
with nonflat bottom topography on irregular quadrilateral meshes. This test case is taken from [11]. The bottom
topography is defined by the following continuous function,

𝑏(𝑥, 𝑦) =
1
2

e(−25(𝑥−1)2−50(𝑦−0.5)2).
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Table 1. Order checking: 𝐿1-norm and numerical orders of accuracy.

Number of grid cells ℎ Order ℎ𝑢 Order ℎ𝑣 Order

25× 25 7.23e−04 6.03e−03 – 1.87e−03 –
50× 50 1.78e−04 2.02 1.70e−03 1.81 4.64e−04 2.01
100× 100 4.51e−05 1.98 3.40e−04 2.32 7.87e−05 2.56
200× 200 1.13e−05 2.00 6.63e−05 2.36 1.46e−05 2.43

The water depth and velocities are given by

ℎ(𝑥, 𝑦, 0) = 1.0− 𝑏(𝑥, 𝑦), 𝑢(𝑥, 𝑦, 0) = 0.3, 𝑣(𝑥, 𝑦, 0) = 0.

We use transmissive boundary conditions in all directions. The gravitational constant is taken to be 𝑔 = 9.8.
The computational domain is taken as [0, 2] × [0, 1] and the final time is taken to be 𝑡 = 0.07. A reference
solution is computed by the present scheme using 800× 800 cells. We compute the 𝐿1 errors of the water depth
and discharges. We use the following formula to test the order

Order = log2

(︂
𝑒1

𝑒2

)︂
,

here, 𝑒𝑖 is the 𝐿1 error obtained on the meshes with size ∆𝑖. As showed in Table 1. We can expect a second-order
accuracy in space on regular quadrilateral meshes. This case also confirms that the SSP URK method (2.25) is
robust and can improve the accuracy in time.

5.2. Dam break over a flat bottom

In this example, we will show the numerical results obtained by the current unstaggered central scheme using
the discretized source terms (2.19) and (2.12). The bottom topography is set to be zero. The initial water depth
and velocities are given by

ℎ(𝑥, 𝑦, 0) =

{︃
0.5, if 𝑥 < 0.5
0.3, otherwise

, 𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) = 0,

respectively. We consider a rectangular computational domain, which has the size [0, 1]×[0, 1]. There has 200×10
irregular quadrilateral meshes to divide the computational domain. We run this simulation until the final time
to be 𝑡 = 0.1. It is known that the structure of solutions of this initial-value problem is a left-going rarefaction
and a right-going shock. The computed water depth and the velocity are shown in Figure 8. One can observe
that the “NEW” scheme produced reasonable results, which is more agreement with the exact solutions than the
“OLD” scheme. The reason produced this distinction is that, the “New” scheme has the consistent discretized
source term with the exact one. However, the “OLD” scheme does not necessarily share this property.

5.3. Dam break over a nonflat bottom

In this example, we consider a dam break over a nonflat bottom topography. The bottom topography is given
by

𝑏(𝑥, 𝑦) =
1
4

cos
(︂

2𝜋

(︂
𝑥 +

1
2

)︂)︂
.

The initial water depth and velocities are given by

ℎ(𝑥, 𝑦, 0) =

{︃
2− 𝑏(𝑥, 𝑦), if 𝑥 < 0.5
1− 𝑏(𝑥, 𝑦), otherwise

, 𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) = 0,
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Figure 8. Dam break over a flat bottom. Left column: computed water depth; Right column:
computed velocity.

Figure 9. Dam break over a nonflat bottom. Left column: computed water surface; Right
column: computed velocity 𝑢.

respectively. We take a rectangle with the size [0, 1]× [0, 1]. We use 100×10 and 400×10 irregular quadrilateral
meshes to divide the computational domain. We run this simulation until the final time to be 𝑡 = 0.05. The
structure of solutions of this initial-value problem consists of a left-going rarefaction and a right-going shock.
The computed water surface and the velocity 𝑢 are shown in Figure 9. One can observe that, the current scheme
can correctly reflect these wave patterns. This example also confirmed the well-balanced property of the current
scheme.

Finally, we change the initial data to be

ℎ(𝑥, 𝑦, 0) =

{︃
2− 𝑏(𝑥, 𝑦), if 𝑥 < 0.5
0, otherwise

, 𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) = 0,

for testing the robust property of the current scheme when simulating the water flows over a dry area. The
initial mesh is set to be 100 × 10 irregular quadrangles. The final time is taken to be 𝑡 = 0.05. We showed
the numerical results in Figure 10. One can see that the adaptive current scheme can adaptively capture the
wave structures, in which the solution has large gradient. This case verified the robust property of the current
adaptive scheme.

5.4. Circular dam break

In this example, we consider a circular dam break problem. The bottom topography is zero. The computational
domain is taken to be [0, 1]× [0, 1]. We consider the initial data as

ℎ(𝑥, 𝑦, 0) =

{︃
0.5, if 𝑟 < 0.5
0.1, otherwise

, 𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) = 0,
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Figure 10. Dam break over a nonflat bottom. Left column: computed water surface; Right
column: final meshes.

here, 𝑟 =
√︀

(𝑥− 0.5)2 + (𝑦 − 0.5)2. We compute numerical results using the current unstaggered central scheme
with the discretized source term (2.19) and (2.12) on 100 × 100 irregular quadrilateral meshes until the final
time 𝑡 = 0.1. One can see that, a symmetrical wave emerged using both discretized source term (2.19) and
(2.12), as showed in the Figure 11. However, the unstaggered central scheme equipped with the discretized
source term (2.19) produced higher resolutions. Further, we showed the water depth along the line 𝑦 = 0.5
in Figure 12. The reference solution was obtained by refining meshes to be 800 × 800 irregular quadrangles.
Since the discretized source term (2.12) is not consistent with the homogenous shallow water equation, which
produced lower resolutions.

5.5. Well-balanced test

This example verifies the well-balanced property of the unstaggered central scheme for two-dimensional
shallow water equations on irregular quadrilateral meshes. This case was also discussed in [37]. The bottom
topography is defined by the following continuous function

𝑏(𝑥, 𝑦) = 0.8e−5(𝑥−0.9)2−50(𝑦−0.5)2 ,

and the initial data is taken to be

ℎ(𝑥, 𝑦, 0) =

{︃
1− 𝑏(𝑥, 𝑦) + 𝛿, if 0.05 ≤ 𝑥 ≤ 0.15
1− 𝑏(𝑥, 𝑦), otherwise,

𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) = 0.

We consider the computational domain to be [0, 2]× [0, 1]. The computational mesh is shown in Figure 13. We
first test the ability of preserving stationary solutions. Then, the small perturbation is first taken to be 𝛿 = 0.
The computed results are obtained by the current scheme using 200× 100 irregular quadrangles until the final
time 𝑡 = 0.1. One can see that, the computed discharges are almost zero but within the machine accuracy in
Figure 14. This confirms that the current scheme is capable of preserving the stationary solutions.

Next, we investigate the ability of the current scheme in capturing small perturbations by taking the parameter
to be 𝛿 = 10−3. We run this simulation using the current adaptive unstaggered central scheme equipped with
the discretized source term (2.19) on 100 × 50 and 200 × 100 irregular quadrangles until the output time
𝑡 = 0.6, 1.2, 1.5, 1.8. The numerical solutions are shown in Figures 15–18. Notice that, no spurious oscillations
can be observed and the small perturbations can be captured sharply. The adaptive unstaggered central scheme
produced more resolutions than the unstaggered central scheme on 100×50 irregular quadrangles. The computed
results also confirm that the adaptive unstaggered central scheme is well-balanced and positivity-preserving.

Finally, we test the well-balanced property of the current scheme when the computational domain contains
wet-dry fronts. The initial data is taken to be

ℎ(𝑥, 𝑦, 0) = max(0.7− 𝑏(𝑥, 𝑦), 0.0), 𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) = 0.
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Figure 11. Circular dam break. Left column: discretized source term (2.19); Right column:
discretized source term (2.12).

Figure 12. Circular dam break.
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Figure 13. Well-balanced test. The computational irregular quadrilateral mesh.

Figure 14. Well-balanced test. Left: computed discharge HU; Right: computed discharge HV.

Figure 15. Well-balanced test. The computed water surface is shown at the final time 𝑡 = 0.6.
Top left: 100×50 uniform cells; Top right: 200×100 uniform cells; Bottom left: adaptive 100×50
cells; Bottom right: final mesh.

The numerical solutions are obtained by the scheme on 100 × 50 irregular quadrangles until the final time
𝑡 = 0.01. One can see that in Figure 19, the computed velocities are large greater than the machine accuracy.
This confirms that the current scheme cannot preserve the “lake at rest” steady states when the computational
domain contains wet-dry fronts.

5.6. Water drop phenomena

We consider water drop phenomena taken from [8]. The computational domain is taken as [0, 1]× [0, 1]. We
first take the bottom topography to be 𝑏(𝑥, 𝑦) = 0. The initial data reads as

𝑤(𝑥, 𝑦, 0) = 1 +
1
10

e−100[(𝑥−0.5)2+(𝑦−0.5)2], 𝑢(𝑥, 𝑦, 0) = 0, 𝑣(𝑥, 𝑦, 0) = 0. (5.1)

We adopt the current adaptive unstaggered central scheme using 100 × 100 irregular quadrangles to run this
simulation. The final time is taken to be 𝑡 = 0.15, 0.3, 0.5, 0.7. We apply solid walls in all directions. The
computed results are shown in Figure 20. One can see that, the obtained water surface agrees with that of in [8].
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Figure 16. Well-balanced test. The computed water surface is shown at the final time 𝑡 = 1.2.
Top left: 100×50 uniform cells; Top right: 200×100 uniform cells; Bottom left: adaptive 100×50
cells; Bottom right: final mesh.

Figure 17. Well-balanced test. The computed water surface is shown at the final time 𝑡 = 1.5.
Top left: 100×50 uniform cells; Top right: 200×100 uniform cells; Bottom left: adaptive 100×50
cells; Bottom right: final mesh.

We showed the final mesh in Figure 21. The adaptive moving mesh strategies can correctly capture the larger
gradient regimes of the solutions. In order to further verify the robust property of the adaptive unstaggered
central scheme, we run this simulation on 200× 200 irregular quadrangles. The computed results are shown in
Figure 22. One can observe that, the complex wave structures can be correctly reflect.

Next, we take the bottom topography to be

𝑏(𝑥, 𝑦) =
1
2

e−10[(𝑥−0.75)2+(𝑦−0.5)2].

The other conditions are not changed. The computed results are shown in Figure 23. We can see more complex
waves due to the effect of the bottom topography. It is remarkable that the computed water surface by the
current unstaggered central scheme agrees with that of [8]. The final meshes are shown in Figure 24. We also
recompute the solution using the adaptive unstaggered central scheme on 200× 200 irregular quadrangles. The



ADAPTIVE PHYSICAL-CONSTRAINTS-PRESERVING UNSTAGGERED CENTRAL SCHEMES 2329

Figure 18. Well-balanced test. The computed water surface is shown at the final time 𝑡 = 1.8.
Top left: 100×50 uniform cells; Top right: 200×100 uniform cells; Bottom left: adaptive 100×50
cells; Bottom right: final mesh.

Figure 19. Well-balanced test. Left: computed velocity 𝑢; Right: computed velocity 𝑣.

numerical results are shown in Figure 25. The complex wave patterns are captured by the scheme. Finally, we
test the conservation errors of the water depth and the bottom topography when using the adaptive unstaggered
central schemes. Numerical results are shown in Figure 26. One can see that the adaptive unstaggered central
schemes can preserve the conservation of the water depth for the water drop without the bottom topography
and conservation errors can be seen for the water drop with the bottom topography. These conservation errors
of the water depth is caused by the conservation errors of the bottom topography.

5.7. Flows in converging-diverging channels

This test case was taken from [8,11], which models the shallow water flow over an open converging-diverging
channel that has a symmetric construction with length 1 at the center. The length of the channel is taken to
be 3 and the width is defined by the function 𝑦𝑏(𝑥), which reads as

𝑦𝑏(𝑥) =

{︃
1
2 −

1
2 (1− 𝑑) cos2(𝜋(𝑥− 1.5)), if |𝑥− 1.5| ≤ 1

2 ,
1
2 , otherwise,

and 𝑑 is the minimum channel breadth. We first take the parameter 𝑑 to be 0.9. The sketch of the channel is
shown in Figure 27.

We consider the following initial data as

𝑤(𝑥, 𝑦, 0) = max(1, 𝑏(𝑥, 𝑦)), 𝑢(𝑥, 𝑦, 0) = 2, 𝑣(𝑥, 𝑦, 0) = 0.

We first consider a flat bottom topography that is taken to be 𝑏(𝑥, 𝑦) = 0. An inflow boundary with 𝑢 = 2 is
taken at the left end side of the channel and an outflow boundary locates at the right end side of the channel.
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Figure 20. Water drop phenomena. The bottom topography is taken as zero. The computed
water surfaces are shown at different final times.

Figure 21. Water drop phenomena. The bottom topography is taken as zero. The total cells
are 100× 100. The final mesh is shown at different final times.
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Figure 22. Water drop phenomena. The final time is 𝑡 = 0.3 and the total cells are 200× 200.
The bottom topography is taken as zero. Left: computed water surface; Right: final mesh.

Figure 23. Water drop phenomena. The bottom topography is not flat. The computed water
surfaces are shown at different final times.

The solid walls are taken in 𝑦-directions. Notice that, since the discretized source term (2.19) is consistent with
the homogenous shallow water equation, then it is to be zero. However, the discretized source term (2.12) does
not satisfy this property.

As discussed in [8, 11], the computational quadrilateral meshes are obtained from the structured one using
the mapping

(𝑥, 𝑦) =

{︃
(𝑥, (1− (1− 𝑑) cos2(𝜋(𝑥− 1.5)))𝑦, if |𝑥− 1.5| ≤ 1

2 ,

(𝑥, 𝑦), otherwise.

The numerical solutions are obtained by using two different meshes: 100 × 100 grids and 200 × 200 grids. We
run this simulation until 𝑡 = 2. We also run this simulation using the adaptive unstaggered central scheme on
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Figure 24. Water drop phenomena. The bottom topography is not flat. The total cells are
100× 100. The final mesh is shown at different final times.

Figure 25. Water drop phenomena. The final time is 𝑡 = 0.3 and the total cells are 200× 200.
The bottom topography is taken as zero. Left: computed water surface; Right: final mesh.

100× 100 grids for verifying the robust property. We showed computed results in Figure 28. One can see that
computed results match well with that of [8, 11]. The current adaptive unstaggered central scheme produced
more resolution than that without using the adaptive strategies.

Next, we consider a nonflat bottom topography to be

𝑏(𝑥, 𝑦) = e−10(𝑥−1.9)2−50(𝑦−0.2)2 + e−20(𝑥−2.2)2−50(𝑦+0.2)2 . (5.2)

The initial conditions and boundary conditions are the same as the flat bottom topography. We showed the
numerical results obtained by the current unstaggered central scheme on 100×100 and 200×200 grids until the
final time 𝑡 = 0.7 in Figure 29. We again run this simulation using the adaptive unstaggered central scheme on
100× 100 grids for verifying the robust property. We can see more complex wave structures due to the effect of
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Figure 26. Water drop phenomena. The final time is 𝑡 = 0.3. Left: conservation errors of the
water depth of the water drop without the bottom topography; Right: conservation errors of
the water depth and the bottom topography of the water drop.

Figure 27. Flows in Converging-Diverging Channels. The final mesh is shown without adaptive
strategies.

Figure 28. Flows in Converging-Diverging Channels with a flat bottom topography. The water
surface obtained by the current unstaggered central scheme. Top left: 100 × 100 quadrangles;
Top right: 200 × 200 quadrangles; Bottom left: adaptive 100 × 100 quadrangles; Bottom right:
final mesh.



2334 JIAN DONG ET AL.

Figure 29. Flows in Converging-Diverging Channels with a nonflat bottom topography. Com-
puted water surface. Top left: 100× 100 quadrangles; Top right: 200× 200 quadrangles; Bottom
left: adaptive 100× 100 quadrangles; Bottom right: final mesh.

the nonflat bottom topography. Even though the adaptive unstaggered central scheme produced more resolution
than that of the unstaggered central scheme, the computed results are in agreement with that of [8, 11].

5.8. Mach reflection problems

This final example is taken from [38]. We take the bottom topography to be 𝑏(𝑥, 𝑦) = 0. The initial data is
given as

ℎ(𝑥, 𝑦, 0) =

{︃
0.05(−1 +

√
33), if 𝑥 < 1.5

0.1, otherwise
, 𝑢(𝑥, 𝑦, 0) =

{︃
2
√

0.1𝑔(1− 0.1/ℎ(𝑥, 𝑦, 0)), if 𝑥 < 1.5
0.0, otherwise

,

𝑣(𝑥, 𝑦, 0) =0.

(5.3)

In this case, we take the gravitational constant to be 𝑔 = 9.8. We consider solid walls in 𝑦-directions and free
boundaries are considered in 𝑥-directions. The numerical results are obtained by the current unstaggered central
scheme on 100 × 100 and 200 × 200 quadrangles. We consider the computational time to be 𝑡 = 1.5. One can
observe the computed results in Figure 30, in which a Mach stem emerged at the low boundary. Notice that,
a lower resolution can be seen when using 100 × 100 quadrangles, it can be improved when using 200 × 200
quadrangles. In order to verify the robust and efficient properties of the adaptive unstaggered central scheme,
we also run this simulation on 100 × 100 quadrangles. As showed in Figure 30, one can see that the adaptive
unstaggered central scheme improved the resolution than that without using the adaptive strategies on 100×100
quadrangles.

6. Conclusions

We proposed a well-balanced and positivity-preserving adaptive unstaggered central scheme for the two-
dimensional shallow water equation with nonflat bottom topography on irregular quadrilateral meshes. We
constructed piecewise bilinear functions for obtaining the second-order accuracy in the space and constructed
the SSP Unstaggered-Runge–Kutta method to obtain the second-order accuracy in the time integration. We
proved that the current adaptive unstaggered central scheme could preserve the stationary solution within the
machine accuracy. The computed water depth was proved nonnegative when applying the current scheme. We
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Figure 30. Mach reflection problems. The computed water depth obtained by the present
scheme. Top left: 100× 50 quadrangles; Top right: 200× 100 quadrangles; Bottom left: adaptive
100× 50 quadrangles; Bottom right: final mesh.

further demonstrate the robustness of the current scheme by showing computed results of several classical test
problems of the two-dimensional shallow water flow over nonflat bottom topography.

Appendix A. Calculations of the numerical derivatives

We can compute the numerical derivative (∇W)1𝑖,𝑗 as

(W𝑥)1𝑖,𝑗 =
(W𝑖,𝑗−1 −W𝑖,𝑗)(𝑦𝑖+1,𝑗 − 𝑦𝑖,𝑗)− (W𝑖+1,𝑗 −W𝑖,𝑗)(𝑦𝑖,𝑗−1 − 𝑦𝑖,𝑗)

(𝑥𝑖,𝑗−1 − 𝑥𝑖,𝑗)(𝑦𝑖+1,𝑗 − 𝑦𝑖,𝑗)− (𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)(𝑦𝑖,𝑗−1 − 𝑦𝑖,𝑗)
,

(W𝑦)1𝑖,𝑗 =
(𝑥𝑖,𝑗−1 − 𝑥𝑖,𝑗)(W𝑖+1,𝑗 −W𝑖,𝑗)− (𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)(W𝑖,𝑗−1 −W𝑖,𝑗)

(𝑥𝑖,𝑗−1 − 𝑥𝑖,𝑗)(𝑦𝑖+1,𝑗 − 𝑦𝑖,𝑗)− (𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)(𝑦𝑖,𝑗−1 − 𝑦𝑖,𝑗)
, (A.1)

and the numerical derivative of (∇W)2𝑖,𝑗 as

(W𝑥)2𝑖,𝑗 =
(W𝑖+1,𝑗 −W𝑖,𝑗)(𝑦𝑖,𝑗+1 − 𝑦𝑖,𝑗)− (W𝑖,𝑗+1 −W𝑖,𝑗)(𝑦𝑖+1,𝑗 − 𝑦𝑖,𝑗)

(𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)(𝑦𝑖,𝑗+1 − 𝑦𝑖,𝑗)− (𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗)(𝑦𝑖+1,𝑗 − 𝑦𝑖,𝑗)
,

(W𝑦)2𝑖,𝑗 =
(𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)(W𝑖,𝑗+1 −W𝑖,𝑗)− (𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗)(W𝑖+1,𝑗 −W𝑖,𝑗)

(𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)(𝑦𝑖,𝑗+1 − 𝑦𝑖,𝑗)− (𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗)(𝑦𝑖+1,𝑗 − 𝑦𝑖,𝑗)
, (A.2)

and the numerical derivative of (∇W)3𝑖,𝑗 as

(W𝑥)3𝑖,𝑗 =
(W𝑖,𝑗+1 −W𝑖,𝑗)(𝑦𝑖−1,𝑗 − 𝑦𝑖,𝑗)− (W𝑖−1,𝑗 −W𝑖,𝑗)(𝑦𝑖,𝑗+1 − 𝑦𝑖,𝑗)

(𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗)(𝑦𝑖−1,𝑗 − 𝑦𝑖,𝑗)− (𝑥𝑖−1,𝑗 − 𝑥𝑖,𝑗)(𝑦𝑖,𝑗+1 − 𝑦𝑖,𝑗)
,

(W𝑦)3𝑖,𝑗 =
(𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗)(W𝑖−1,𝑗 −W𝑖,𝑗)− (𝑥𝑖−1,𝑗 − 𝑥𝑖,𝑗)(W𝑖,𝑗+1 −W𝑖,𝑗)

(𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗)(𝑦𝑖−1,𝑗 − 𝑦𝑖,𝑗)− (𝑥𝑖−1,𝑗 − 𝑥𝑖,𝑗)(𝑦𝑖,𝑗+1 − 𝑦𝑖,𝑗)
, (A.3)

and the numerical derivative of (∇W)4𝑖,𝑗 as

(W𝑥)4𝑖,𝑗 =
(W𝑖−1,𝑗 −W𝑖,𝑗)(𝑦𝑖,𝑗−1 − 𝑦𝑖,𝑗)− (W𝑖,𝑗−1 −W𝑖,𝑗)(𝑦𝑖−1,𝑗 − 𝑦𝑖,𝑗)

(𝑥𝑖−1,𝑗 − 𝑥𝑖,𝑗)(𝑦𝑖,𝑗−1 − 𝑦𝑖,𝑗)− (𝑥𝑖,𝑗−1 − 𝑥𝑖,𝑗)(𝑦𝑖−1,𝑗 − 𝑦𝑖,𝑗)
,
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(W𝑦)4𝑖,𝑗 =
(𝑥𝑖−1,𝑗 − 𝑥𝑖,𝑗)(W𝑖,𝑗−1 −W𝑖,𝑗)− (𝑥𝑖,𝑗−1 − 𝑥𝑖,𝑗)(W𝑖−1,𝑗 −W𝑖,𝑗)

(𝑥𝑖−1,𝑗 − 𝑥𝑖,𝑗)(𝑦𝑖,𝑗−1 − 𝑦𝑖,𝑗)− (𝑥𝑖,𝑗−1 − 𝑥𝑖,𝑗)(𝑦𝑖−1,𝑗 − 𝑦𝑖,𝑗)
· (A.4)

Appendix B. Calculations of the cell average of the solution on staggered
cells

Using the constructed polynomials, we can obtain⃒⃒⃒
𝐷𝑖+ 1

2 ,𝑗+ 1
2

⃒⃒⃒
W𝑖+ 1

2 ,𝑗+ 1
2

=
∫︁

𝐴−2,𝑖,𝑗+𝐴+
2,𝑖,𝑗

̃︁W𝑖,𝑗(𝑥, 𝑦) dΩ +
∫︁

𝐴−3,𝑖+1,𝑗+𝐴+
3,𝑖+1,𝑗

̃︁W𝑖+1,𝑗(𝑥, 𝑦) dΩ

+
∫︁

𝐴−4,𝑖+1,𝑗+1+𝐴+
4,𝑖+1,𝑗+1

̃︁W𝑖+1,𝑗+1(𝑥, 𝑦) dΩ +
∫︁

𝐴−1,𝑖,𝑗+1+𝐴+
1,𝑖,𝑗+1

̃︁W𝑖,𝑗+1(𝑥, 𝑦) dΩ

=: Υ1 + Υ2 + Υ3 + Υ4,

(B.1)

with

Υ1 =

⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
3

(︁̃︁W𝑖,𝑗(𝑄8) + ̃︁W𝑖,𝑗(𝑄1) + ̃︁W𝑖,𝑗(𝑄7)
)︁

+

⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒
3

(︁̃︁W𝑖,𝑗

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+ ̃︁W𝑖,𝑗(𝑄1) + ̃︁W𝑖,𝑗(𝑄7)

)︁
,

Υ2 = +

⃒⃒
𝐴−3,𝑖+1,𝑗

⃒⃒
3

(︁̃︁W𝑖+1,𝑗(𝑄1) + ̃︁W𝑖+1,𝑗(𝑄2) + ̃︁W𝑖+1,𝑗(𝑄3)
)︁

+

⃒⃒
𝐴+

3,𝑖+1,𝑗

⃒⃒
3

(︁̃︁W𝑖+1,𝑗

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+ ̃︁W𝑖+1,𝑗(𝑄1) + ̃︁W𝑖+1,𝑗(𝑄3)

)︁
,

Υ3 = +

⃒⃒
𝐴−4,𝑖+1,𝑗+1

⃒⃒
3

(︁̃︁W𝑖+1,𝑗+1(𝑄3) + ̃︁W𝑖+1,𝑗+1(𝑄4) + ̃︁W𝑖+1,𝑗+1(𝑄5)
)︁

+

⃒⃒
𝐴+

4,𝑖+1,𝑗+1

⃒⃒
3

(︁̃︁W𝑖+1,𝑗+1

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+ ̃︁W𝑖+1,𝑗+1(𝑄3) + ̃︁W𝑖+1,𝑗+1(𝑄5)

)︁
,

Υ4 = +

⃒⃒
𝐴−1,𝑖,𝑗+1

⃒⃒
3

(︁̃︁W𝑖,𝑗+1(𝑄5) + ̃︁W𝑖,𝑗+1(𝑄6) + ̃︁W𝑖,𝑗+1(𝑄7)
)︁

+

⃒⃒
𝐴+

1,𝑖,𝑗+1

⃒⃒
3

(︁̃︁W𝑖,𝑗+1

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
+ ̃︁W𝑖,𝑗+1(𝑄5) + ̃︁W𝑖,𝑗+1(𝑄7)

)︁
.

here, |𝐴−2,𝑖,𝑗 | denotes the area of the triangle 𝐴−2,𝑖,𝑗 and ̃︁W𝑖,𝑗(𝑄1) is the point value of W computed at the point
𝑄1. The remainder notations have similar interpretations.

Appendix C. Calculations of the cell average of the solution on
unstaggered cells

We compute the cell average of the solution on the unstaggered cell as

|𝐷𝑖,𝑗 |W𝑖,𝑗 =
∫︁

𝐷𝑖,𝑗

̂︁W(𝑥, 𝑦) dΩ

=
∫︁

𝐴−4,𝑖,𝑗+𝐴+
4,𝑖,𝑗

̂︁W𝑖− 1
2 ,𝑗− 1

2
(𝑥, 𝑦) dΩ +

∫︁
𝐴−1,𝑖,𝑗+𝐴+

1,𝑖,𝑗

̂︁W𝑖+ 1
2 ,𝑗− 1

2
(𝑥, 𝑦) dΩ

+
∫︁

𝐴−2,𝑖,𝑗+𝐴+
2,𝑖,𝑗

̂︁W𝑖+ 1
2 ,𝑗+ 1

2
(𝑥, 𝑦) dΩ +

∫︁
𝐴−3,𝑖,𝑗+𝐴+

3,𝑖,𝑗

̂︁W𝑖− 1
2 ,𝑗+ 1

2
(𝑥, 𝑦) dΩ
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=

⃒⃒
𝐴+

4,𝑖,𝑗

⃒⃒
3

(︁̂︁W𝑖− 1
2 ,𝑗− 1

2
(𝑝𝑖− 1

2 ,𝑗− 1
2
) + ̂︁W𝑖− 1

2 ,𝑗− 1
2
(𝑝𝑖,𝑗−1) + ̂︁W𝑖− 1

2 ,𝑗− 1
2
(𝑝𝑖−1,𝑗)

)︁
+

⃒⃒
𝐴−4,𝑖,𝑗

⃒⃒
3

(︁̂︁W𝑖− 1
2 ,𝑗− 1

2
(𝑥𝑖, 𝑦𝑗) + ̂︁W𝑖− 1

2 ,𝑗− 1
2
(𝑝𝑖,𝑗−1) + ̂︁W𝑖− 1

2 ,𝑗− 1
2
(𝑝𝑖−1,𝑗)

)︁
+

⃒⃒
𝐴+

1,𝑖,𝑗

⃒⃒
3

(︁̂︁W𝑖+ 1
2 ,𝑗− 1

2
(𝑝𝑖,𝑗−1) + ̂︁W𝑖+ 1

2 ,𝑗− 1
2
(𝑝𝑖+ 1

2 ,𝑗− 1
2
) + ̂︁W𝑖+ 1

2 ,𝑗− 1
2
(𝑝𝑖+1,𝑗)

)︁
+

⃒⃒
𝐴−1,𝑖,𝑗

⃒⃒
3

(︁̂︁W𝑖+ 1
2 ,𝑗− 1

2
(𝑥𝑖, 𝑦𝑗) + ̂︁W𝑖+ 1

2 ,𝑗− 1
2
(𝑝𝑖,𝑗−1) + ̂︁W𝑖+ 1

2 ,𝑗− 1
2
(𝑝𝑖+1,𝑗)

)︁
+

⃒⃒
𝐴+

2,𝑖,𝑗

⃒⃒
3

(︁̂︁W𝑖+ 1
2 ,𝑗+ 1

2
(𝑝𝑖+1,𝑗) + ̂︁W𝑖+ 1

2 ,𝑗+ 1
2
(𝑝𝑖+ 1

2 ,𝑗+ 1
2
) + ̂︁W𝑖+ 1

2 ,𝑗+ 1
2
(𝑝𝑖,𝑗+1)

)︁
+

⃒⃒
𝐴−2,𝑖,𝑗

⃒⃒
3

(︁̂︁W𝑖+ 1
2 ,𝑗+ 1

2
(𝑥𝑖, 𝑦𝑗) + ̂︁W𝑖+ 1

2 ,𝑗+ 1
2
(𝑝𝑖+1,𝑗) + ̂︁W𝑖+ 1

2 ,𝑗+ 1
2
(𝑝𝑖,𝑗+1)

)︁
+

⃒⃒
𝐴+

1,𝑖,𝑗

⃒⃒
3

(︁̂︁W𝑖− 1
2 ,𝑗+ 1

2
(𝑝𝑖,𝑗+1) + ̂︁W𝑖− 1

2 ,𝑗+ 1
2
(𝑝𝑖− 1

2 ,𝑗+ 1
2
) + ̂︁W𝑖− 1

2 ,𝑗+ 1
2
(𝑝𝑖−1,𝑗)

)︁
+

⃒⃒
𝐴−1,𝑖,𝑗

⃒⃒
3

(︁̂︁W𝑖− 1
2 ,𝑗+ 1

2
(𝑥𝑖, 𝑦𝑗) + ̂︁W𝑖− 1

2 ,𝑗+ 1
2
(𝑝𝑖,𝑗+1) + ̂︁W𝑖− 1

2 ,𝑗+ 1
2
(𝑝𝑖−1,𝑗)

)︁
. (C.1)
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