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A FULLY-DECOUPLED DISCONTINUOUS GALERKIN APPROXIMATION OF
THE CAHN-HILLIARD-BRINKMAN-OHTA-KAWASAKI TUMOR GROWTH
MODEL

GUANG-AN Zoub?2 Bo WANG!?? AND XIAOFENG YANGH*

Abstract. In this article, we consider the Cahn-Hilliard-Brinkman—Ohta-Kawasaki tumor growth
system, which couples the Brinkman flow equations in the porous medium and the Cahn-Hilliard type
equation with the nonlocal Ohta—Kawasaki term. We first construct a fully-decoupled discontinuous
Galerkin method based on a decoupled, stabilized energy factorization approach and implicit-explicit
Euler method in the time discretization, and strictly prove its unconditional energy stability. The
optimal error estimate for the tumor interstitial fluid pressure is further obtained. Numerical results
are also carried out to demonstrate the effectiveness of the proposed numerical scheme and verify
the theoretical results. Finally, we apply the scheme to simulate the evolution of brain tumors based
on patient-specific magnetic resonance imaging, and the obtained computational results show that the
proposed numerical model and scheme can provide realistic calculations and predictions, thus providing
an in-depth understanding of the mechanism of brain tumor growth.
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1. INTRODUCTION

Cancer is the most common malignant tumor and has become one of the highest morbidity and mortality in
the world. The main difficulty in cancer detection and treatment lies in the complexity of the internal mechanisms
during tumor growth. A better understanding of tumor growth can help detect and treat cancer earlier and
more accurately, so it has very direct clinical significance. In the past few decades, many mathematical models
have been developed and simulated to understand the mechanism of tumor growth. For examples, the nonlinear
reaction-diffusion models [1-4], the hyperbolic-elliptic type models [5,6], state-parameter estimation model [7],
multicellular tumor spheroid model [8] and so on. In the latest stage of tumor growth, several models are
based on the hypothesis that different tissue components of the tumor are separated by a interfacial layer and
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therefore can be described by interface problems, it has turned out that interface models, treating the tumour as
a collection of cells is a good strategy to describe the evolution and interactions of different species. If the existing
mathematical models describing tumor growth are classified according to the types of interface equations, we
find that there are mainly two types of interface models, namely the sharp interface model [5,6,9-13], and the
diffusive interface (phase-field) model [14-23,65], and the latter is considered in this paper.

In the phase-field model, the interface of the tumor is represented by a phase variable with smooth changes but
a large gradient between the two distinct values. Since the phase-field model usually has some good properties
such as the law of energy dissipation, it has been used to study tumor growth for more than two decades,
see [5,6,10,12,19,24-26] and reference therein. But it is worth noting that many developed models omit the
actual interstitial fluid pressure [6, 10,24, 27] or just treat it as a fixed function (or constant) [13,26, 28, 29],
although many physiological results suggest that tumor interstitial fluid pressure is a very important factor that
can affect tumor prognosis, treatment, metastasis, and drug delivery, ¢f. [30-36]. This prompts us to develop a
comprehensive mathematical model to incorporate more details, especially the fluid pressure, to provide further
insights into describing, understanding, and predicting tumor evolution. Moreover, most of the work related to
the phase-field tumor growth model is devoted to modeling and theoretical analysis (e.g. well-posedness and
regularity [11,14-21,23,37,38]), and there is relatively little work on algorithm design of the existing models.

In this article, inspired by the Cahn—Hilliard—Darcy/Cahn—Hilliard—Brinkman phase-field models developed
in [16,20,37], we obtain the so-called Cahn—Hilliard-Brinkman—Ohta—Kawasaki tumor growth model, in which,
we add the nonlocal Ohta—Kawasaki term in the Cahn-Hilliard equation and time-dependence term to the
Brinkman flow model. In this way, we can address nonlocal effects to depict long-range interactions of cell species
and the time-dependent behavior of interstitial fluid pressure (or velocity) at the stages of tumor growth. Then,
we further consider the development of a fully discrete numerical scheme to solve this model. As mentioned
above, most of the research on the phase-field tumor growth model is focused on the existence and uniqueness
of weak solutions, and so there is no numerical algorithm that had been developed for this specific model. But
if we expand our visions to consider other systems with similar structures to the model studied in this article,
for instance, the Cahn—Hilliard equation (Ohta-Kawasaki term is absent) coupled with another type of flow
field such as the incompressible Navier—Stokes equation, there exist many works focusing on the development
of numerical algorithms, see [39-45] and reference therein. If we keep the Cahn—Hilliard equation, but further
switch the flow field to the Darcy (or Brinkman) flow field, such as the Cahn-Hilliard-Darcy equation in the
Hele-Shaw cell, or Cahn—Hilliard-Stokes-Darcy model, there are also some existing effective numerical schemes,
see [46-52].

However, most of the above-mentioned numerical algorithms have some aspects that are not suitable for
this particular model and the focus of this article, for example, either the algorithm only considers the time
semi-discrete version assuming continuous space [44], or the nonlinear potential considered in the system is the
double-well type [48], or the obtained algorithm is nonlinear and fully coupled [47]. In contrast, the focus of this
paper is to construct a fully discrete scheme for the Cahn—Hilliard-Brinkman—Ohta—Kawasaki system, and it is
expected that the scheme can follow the linearity, decoupling, and unconditional energy stability. We adopt the
discontinuous Galerkin (DG) method for spatial discretization since it offers some particular and remarkable
features such as arbitrary order accuracy, local mass conservation, ready parallelization, and adaption (see
[63-55]), etc. Meanwhile, DG might have high performance in simulating the tumor boundaries with highly
irregular properties [55]. It can be seen that there exists an increasing interest in applying the DG methods
for solving the phase-field related models, see [56-59]. However, as far as the author knows, if the logarithmic
Flory—Huggins potential is used, then for either the Cahn—Hilliard—Brinkman-Ohta—Kawasaki model studied in
this article or those widely concerned models like the Cahn—-Hilliard—Brinkman or Cahn—Hilliard-Navier—Stokes
system, how to use the DG method for the spatial discretization to obtain the decoupled and energy stable fully
discrete scheme has not been resolved successfully.

Therefore, in this paper, we achieve a fully discrete DG scheme for the Cahn—Hilliard-Brinkman—Ohta—
Kawasaki system with the logarithmic Flory—Huggins potential by combining the stabilized energy factorization
approach with some subtle implicit-explicit treatments for nonlinear coupling terms. The scheme is highly
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efficient since one can efficiently solve only a sequence of elliptic equations at each time step. We also conduct
rigorous error estimates, especially for the tumor interstitial fluid pressure. Some simulations related to the tumor
growth process are carried out and also validated by evaluating the performance and benefits in simulating the
brain tumor growth for patients based on MR (magnetic resonance) images.

The rest of this paper is organized as follows. In the next section, we give some notations and formulate the
Cahn—Hilliard—Brinkman—Ohta—Kawasaki tumor growth model. In Section 3, we construct a fully decoupled
DG scheme for solving the coupled system, and we also prove the energy stability of the proposed scheme.
Section 4 is devoted to the error analysis, where we rigorously establish optimal error estimates for the fully
discrete scheme under some suitable regularities. In Section 5, we present some numerical results to validate the
developed scheme, and simulate the brain tumor growth process. Finally, some concluding remarks are given in
Section 6.

2. TUMOR GROWTH MODEL

In this article, we consider a modified Cahn-Hilliard phase-field model for the tumor growth, where a “growth”
term is added in chemical potential, that reads as:

¢r+ V- (pu) = MAp,
p=—A¢+ f(¢) — BAT (& — ¢0),

where ¢ denotes the tumor cell density and w is the tumor interstitial fluid velocity, M > 0 is a mobility
constant, A~! stands for the inverse Laplacian operator, and ¢y = |Q|~! fQ ¢o dx is the initial mass average
over the domain €. The term SA~! (¢ — (50) with 8 > 0 had been used in the nonlocal Ohta—Kawasaki model
to describe the phase change of diblock copolymers, see [60]. In the context of tumor growth, this term works
as a growth (tumor proliferation or death) term and § can be positive or negative. Namely, when £ < 0, the
process of phase separation is enhanced, which is used to describe the enhanced proliferation of tumor cells;
when 3 > 0, the term can suppress both the coarsening process and the phase separation, which implies the
death of tumor cells.

The interstitial fluid flow in tumors also plays an important role in describing tumor growth, metastasis and
treatment (see [31,36]). The transport velocity in the interstitium of tumors is the main mechanism for nutrients
supply and waste removal during tumor growth and tumor cell metastasis to distant organs. In this article, we
consider that the tumor interstitial fluid pressure p and velocity u are obtained by using a time-dependent
Brinkman flow [61] through the porous medium, that reads as

(2.1)

u — V- 2vD(u)] + nu+ Vp = —\opVy, (2.2)

where v > 0 is the fluid viscosity, n > 0 is the Darcy drag parameter, D(u) = (Vqu (Vu)T) /2 is the velocity

deformation tensor. The term A¢pV denotes the surface tension force with A > 0.
By assuming that the fluid flow is incompressible, combining with (2.1)—(2.2), we arrive at the Cahn—Hilliard—
Brinkman—Ohta—Kawasaki system, that reads as: for (x,t) € Qr,

¢r+ V- (ou) = MAy,

p=—-A2¢+ f(¢) +¢,

— A& = B(d — o), (2.3)
w — V- [2vD(u)] + nu+ Vp = =V,

V-u=0,

where Q7 = Q x (0,7) within Q C R? is a bounded domain with the smooth boundary 9Q, and T > 0 is a
prescribed final time. The potential function f(¢) = F’(¢) while F' corresponds to the Helmholtz free energy.
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The physically most relevant choice of F is given by the logarithmic Flory—Huggins energy potential (see [62,63]
and the references therein), namely,

F(¢) = ¢In(¢) + (1 - 9)In(1 - ¢) + p(¢ — ¢*), 0< P <1, (2.4)

where p > 2 is the energy parameter, the choice of this case is necessary to ensure that it has two local minimums
that allows the co-existence of two distinct phases. The system (2.3) presents a coupling system consisting of a
Cahn—Hilliard—Ohta—Kawasaki equation and a time-dependent Brinkman flow equation, where the two coupling
terms include the surface tension force A¢Vy and the advection term V - (¢u).

The system (2.3) is usually posed by the following initial and boundary conditions:
{8n¢=8nu:6n520, u=0 ondQx(0,T), (2.5)
ul(—0) = Yo, |(t=0) = %o, in Q, )

where n is the unit outward normal vector to the boundary 952.

We fixed some notations here. For 1 < p < oo, let LP(§2) and W*P(Q) be the standard Lebesgue and Sobolev
spaces endowed with their usual norms, respectively. Specifically, we denote by (-,-)q. the standard L?-inner
product equipped with the norm as

1/2
(U, V) g :/ wodz, |[v]lp2qe = (/ v? dx) ,
Q- Q-

where * denotes the proper space as needed below. When Q* = , we also denote (-, )¢, by (-,-) in short. We
also introduce a Hilbert space H~1(2), which is the dual of the Sobolev space H'(Q2). Recall that, if g € L?(£2)
and [ g =0, there is a unique ¢ such that

—A¢p =g in Q, %:0 on 0f.
on

We introduce the notation ¢ = (—A)fl g. Since (—A)f1 is a positive self-adjoint operator and fractional power
of it is well defined. The space is the completion of the space of smooth functions in the norm [|¢[| -1 o) =

|-

2@’ The inner product is given by
Q

1 1

(1,0 10 = ((—8) Fu, (~4) Fv),

for u, v belonging to H=1(Q). If u € H=1(Q2) and v € L?(Q), then we have
(u,v)H*I(Q) = ((_A)71U7U)'

We consider the of weak formulation of the Cahn-Hilliard-Brinkman-Ohta-Kawasaki system (2.3), which
reads as follows: find (¢, u, &, u, p) such that

¢ € L>®(0,T; H'(Q)), ¢ € L*(0,T;H (), pe L*((0,T); H(Q)),

we L™ <O,T; [L2(Q)]2) N L2 (o,T; [H&(Q)f), w € L2 (o,T; (H‘l)Q), p e L2(0,T; LA()), (2.6)
for all (,6,¢,v,q) € HY () x H(Q) x HY(Q) x [HE(2)]® x L2(2), there holds
b, p) — (du, Vo) + M(Vpu, V) =0,
Vo, V) + (f(9),0) + (,) (1, 0) =0,
VE V) = B(¢ — do,¢) = (2.7)

g, v) + 2v(D(u), ())+77(uv) (V- v,p) + A¢v, Vi) =0,
V- u,q)=0.

o~~~ o~ o~ o~
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Note that the coupled system (2.3) satisfies the law of energy dissipation. To see that, we consider the
following energy functional

1 1 N 2
E(u,¢):—/ |u|2dx+/ —|Vo|* + F(e) dX+£/’A‘§(¢—¢O)‘ dx. (2.8)
22X Jq a\2 2 Jq
It is straightforward to show that the system (2.7) admits the law of energy, we state the result as a lemma

here.

Lemma 2.1. Suppose (¢, i, &, u,p) solve (2.7). Then, the energy law is satisfying

d 2

S E(w8) = = ID(W)[F2(0) = 320y = MIVilFaa) <0,
for allt € (0,T).

Proof. By taking (¢,0,(,v,q) = (;A,gﬁt, 7(7A)—1¢t7 %u, %p) in (2.7), we obtain

(60, 1) = (&, Vi) + M|[Vpel 120y = 0,

(v¢7 v¢t) + (f(¢)7 (bt) + (67 (bt) - (l’L7 ¢t) =0

(& 00+ B(6 = do, (-28)'&n) =0,

(2.9)
1d 2 2v 2 n 2 1
) 2D gy + Ly — 5 (V) + (60 Vi) =0,
1
Thus, taking the summation of five equations in (2.9), we can easily get
1d d
2)\ dt” HLZ(Q 2 dtHv¢HL2(Q dt(F((b) + §£H¢ QbOHH L&) (2 10)

+ THD( )||L2 @ T ||u||L2(Q) + M||VM||L2 @ =0

where we use the fact that

d

S(F(6),1),

(Vo,Vor) + (f(d), ¢r) = By dt Hvébum(ﬂ) + =

and

w\»—A
-

ﬁ(¢>—éo,<—A>1¢>t):ﬂ(( A)7= (o= o), (= )2( (¢- ¢o)>)

(6 d0)|

w\»—A

2 dt H L2(Q)

After dealing with the above equation (2.10), the desired result is obtained. The proof of Lemma 2.1 is
finished. O

3. A FULLY-DECOUPLED DG SCHEME

Let N be a positive integer and 0 =ty < t; < --- < t;y = T be an uniform partition of time interval [0, T]
with time step k = t,,41 — tn,,n =0,1,--- | N — 1. Suppose &, = {E} is a family of non-overlap subdivision of
Q) parameterized by h > 0, where h denotes the discrete spatial mesh size and triangle E stands for physical
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computation element, we define hg = diam(FE) and h = maxgeg, hg. Let I'y, denote the set of all interior edges
of &;,. Let e be a segment of E shared by two elements Ef and E§ which are neighbors, associated with e once
and for all, a unit normal vector n. oriented from Ef to E5. We define formally the average and jump of a
scalar or vector valued function ¢ for interior edges and by

1 1
{v} =5 (leg) + 5 (0les)s 0] = (vlmg) = (vlgs), Ve € OETNOE;.

By convention we can extend the definitions of average and jump to sides that belong to boundary 02, as
follows

{v} = [v] = (v|gs), Vee EfNIN.

Some discontinuous/broken Sobolev spaces (see [55]) on the decomposition &, shall be recalled. For some
nonnegative integer s > 0, we define

H? (&) ={v e L*(Q):VE € &,, v|p € H*(E)},

equipped with the broken Sobolev norm:

1/2
2
|||UH|H5(£h) = (Z U||Hs(E)> )

Ec&y,

and in particular, we will use the broken gradient semi-norm as

1/2
IVolll 2, = (Z VU%%E)) :

Ee€€y,

We now introduce the discontinuous finite element spaces Sy, X; and M), associated with the triangulation
&n used in this article, define

Sp={p e L*(Q):VE € &, ¢ € P.(E)},
Xy = {ve (12(2)": VE € &, ve (P(E)’},
My, = {q € L3(Q) :VE € &, q € P,_1(E)},

where P,.(E) denotes the set of all polynomials of degree less than or equal to r(> 1) on the element E.
The DG discretization of the operators —A¢p, —V - [2vD(v)] and —Ap are enforced by the bilinear forms Ap,
Az and Ap as follows:

Ap(p. ) = > (Vo Vi) — > ({Ve-n}[)),

FEe&y eecl’,UON
- Y AV ndlel.+ Y %([go],w]>@, o, 1) € Sh,
eel’,UoN ecl', UoQ2
Az(v,w) =20 Y (D(v),D(w); 2 Y. ({D(v)n.}, [u]),
Ecé&p eecl',UON
2w S ({D(w)n ), v > f;j([v],[wny Vo, w e X,
ecl'p,UON ecl'pLUON

Ap(p,a) = > (Vp,Va) s — > ({Vp- .} [d),

Ecé&y ecTly,
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- > ({Va-n},lp Z Vp,q € My,
eely eEFh

Recalling that, since we use the symmetric bilinear forms, the penalty parameter o, has to be chosen large
enough.
In addition, the discretization of the term Vp is done by the bilinear form Cp as

Cp(v,p) = — Z (P, V-v)p+ Z ({p},[v] - ne),, VYve Xp,pe M.

Ecé&y e€l’', U

The DG discretization of advection term V - (¢v) and interface term —@V pu, respectively, are given by

Bo(¢,v,0) == > (¢v,Vo)p+ > ({oHv n},l¢)),, Yve Xu, é,0€ S,

Ecé&p ecl'LUON
BI(¢7M) 'U):— Z (@bvﬂ» U)E+ Z ({¢}[N]v{v'ne})ev Vv e th(z)nufesfr
Eeé&n e€l', U

In a convenient manner, here we specially design our numerical scheme to satisfy Bp (¢, u, u) = Bz (o, p, w) for
any ¢, u and wu.

Based on the discontinuous Sobolev spaces and the DG operators, the energy norms of relevant spaces are
defined by

1/2
16llpe = <Z HV¢||L2(E) + Z E ||| L2(e)> , Vo € Sh,

Eeé&y, ecl'p, U0

1/2
HvHDG = ( Z HD ||L2(E’) + Z |L2(e)> 5 Vv e Xh,

Ee&y ethUc’?Q

1/2
|q|DG=<Z|Vq||L2 PRI (> . Yge

Ecé&y eth

Whenever Ap(¢, ¢) > 0, Az(v,v) > 0 and Ap(q,q) > 0 (see Lem. 3.4), we also define the broken energy (semi)
norm |[[-|[pg by

l6lllpe = Ap(¢.9), llIwll[he = Az(v,v), lldlllbe = Ar(q,)- (3.1)

Let S;, be the dual of Sh,Awe also introduce tl}e inverse discrete Laplace operator (—Ah)_1 : S, — 8, as
follows (see [64]): Given ¢ € Sy, let (—Ap) "¢ € S), such that

Ap((=2n) " ¢wn) = (6, wn)g, Ve € Si.

where Ap is defined as above. Let (, ¢ € S‘;“ we define the following inner product by

(681 = Ap((=80) "¢ (=a0)10) = (a0 "¢ 0) = (¢ (=) o), (3:2)

and induced the norm as

||C||—17h = (<7 C)—l,h = sup (Cv ¢) .

0#£p€S), H¢||DG

Consequently, for all (,p € S, and ¢ € Sh, we have
(G @)y nl SNC_ypllell g p 1S < ISy plllpe- (3.3)
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Furthermore, for all ¢ € S'h, the following Poincaré-type estimate holds

I€ll-1n < ClIC 2 (3-4)

where C' > 0 is the usual Poincaré constant.

Due to the strong nonlinearity of the energy potential function, a challenging issue to solve the system (2.3)
numerically is how to design efficient schemes that preserve the energy stability of the discrete system. In this
study, following the work in [62], we regularize the logarithmic bulk potential by a C? piecewise function. More
precisely, for any 0 < ¢ < 1, the regularized free energy is

OI(@) + 5-(1=9)" + (1= 6) (o) = T +p(6~¢?). 6210,
F(¢) = § #n(9) + (1 = ) n(1 — ¢) + p(¢ — ¢°), c<¢<1-o, (3.5)
(1= 6)n(1l —6) + 56" +0l(o) ~ 2 +p(6~ &), <o

Then, the derivative of I (¢) is

() +1 -+ (o) +p(1-26), 6>1-0,
F(#) = { In(¢) —In(1 — ¢) + p(1 — 29), s<dp<1-o, (3.6)

—ln(l—qS)—1+§+1n(0)+p(1—2¢), 6 <o

From now on, we consider the problem formulated with the substitute F and f For convenience, we will omit
the ™ signs for both F and f. Now the domain for the regularized functional F (¢) is (—o0,400). Hence, we do
not need to worry about that any small fluctuation near the domain boundary (0, 1) of the numerical solution
can cause the overflow. Here, a energy factorization approach is adapted to deal with the regularized functional
F(¢), which can be split-up as F(¢) = Fi(¢) — Fa(¢), we denote by Fi(¢) and Fi(¢):

SIn(6) + 5o (1= 6 + (1= ) (o) = 2 +p6, 6210,

Fo(6) = p%, Fi(9) = 9In(8) + (1~ 6)In(1 - 9) + o, s<o<i-o
(1= G)n(l —6) + 56 +0ln(o) - S +pp, 650

We also denote by f1(¢) = F{(¢) and fa(¢p) = Fy(¢). It is easy to see that the derivative of F(¢) can be split
accordingly as f(6) = f1(#) — f2(@), where

@) +1- L) +p o210
f2(9) = 2p¢, fi(¢) = § In(¢) —In(1l =) +p, c<¢<l-o, (3.7)
—111(1—(15)—1—|—§—|—ln(a)—+-p7 ¢ <o.

From the definitions of f; and f2 in (3.7), we can easy prove that

1

f2(¢) =2p>0and 0 < fi(¢) < mv

Yo € (—o0, +00). (3.8)

Next, we are ready to construct a fully-decoupled, first-order semi-discrete time-marching numerical scheme
for solving the system (2.3). Given the initial conditions (¢0, 10, €9, ul, po), having computed (¢™, u™, &™, w™, p™).
We update (¢m*1, ", &t un L pnth) for n > 0 from:
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Step 1. Find (¢m*1, u" 1, £ 1) such that

n+l _ n
Y (@) - Map =0
A¢n+1 + f(¢n7¢n+l) + £n+1 _ Hn+1 _ 0, (3 9)
- A (e o) =0,
8n n+1‘ _ 076n n+1} =0 an n+1‘ — 0,
¢ o9 A PF ¢ oY)
where u? and ¢*"*! can be calculated as
n+1 n
’U,:L —u"— /\k_qsnv‘uTH»l7 ¢*,n+1 — % (310)
Step 2. Find @ such that
~n+1 _an
T % v wD(@)] 4 nattt 4+ vt =0,
k (3.11)
@t =0
a0
Step 3. Find (u"*!,p"™!) such that
n+1 _ ,an-ﬁ-l L
7 + V"t -p") =0,
Voutt =0, (3.12)
un ! n‘ =0

o0
In the above scheme, the term f(¢”, ¢"+1) shall be used the splitting scheme as

F(@",¢" ) = fu(e™h) = fae™). (3.13)
Here, the choice of u can be seen in [39,40] to the interested readers.

Remark 3.1. By taking the divergence for the first equation in (3.12), we obtain
—A(p"tt —p") = ,,v antt, (3.14)

associated with the Neumann boundary conditions 0y, (p”‘*‘1 — p”) log = 0. Thus once p"*! is obtained, we can
update u™*! by
n+1 — ,&n-‘rl _ kv(pn-‘rl _pn)

Now, we begin to develop the fully-decoupled DG approximation of the modified Cahn—Hilliard—Brinkman—
Ohta—Kawasaki system (2.3). The fully discrete version of (3.9)-(3.14) reads as:

Step 1. Find ( ”Jrl,uzﬂ, ZH u}f*) € Sp X Sp X Sy x Xy, such that for all (¢, Op, Ch, wr) € Sk x Sy x Sy x X,

u

¢n+1 _ d)h VA il 5
e ) (1 on) + Bo(of, upy. on) = 0, (3.15)
Ap (¢, 0n) + (f(2h, "“) On) + (&7, 0,) — (up ™, 0n) = (3.16)
Ap (&, 6) = B( *”“—¢o,<h)= (3.17)
<uhkuh ) ABz (9, iy wn) = (3.18)
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Step 2. Find u ”H € X}, for all v, € X}, such that
# ) + AI(Uh s ’Uh) + ’I’}(’II,Z—H, ’llh) + Cp(’l]h,pZ) = 0. (319)
Step 3. Find p”Jrl € My, for all q;, € Mj, such that

1
Ecp( aytt qn). (3.20)

Step 4. Find uZH € Xy, such that for all z, € X}, and g € M,

A (p’ZJrl _pZth) =

’LL;LH_l ﬁZJrl + C ( n+l _  n\ _ 0 3.21
- 5 Zn P\ 2Zh, Py, Ph) =Y (3.21)
Cp(up™, qn) = 0. (3.22)

We assume the initial data h, uh and ph are good approximations of ¢°, 4 and p°, respectively. For
example, we choose ¢\ = Rp¢°, u) = Pyu’ and p) = Qpp°, where P, Rj, and @, denote the projection
operators, respectively, see [55] for the details.

In the following, we will recall several well-known results and provide some briefly proofs for the interior
penalty DG forms, which shall be used to success in performing the analysis of our scheme throughout this
work. Without loss of generality, we denote by C' a generic constant that is independent of k£ and h but possibly
depends on the regularity of solution. For the sake of brevity, we use the abbreviation f < g for the inequality
f < Cg, where C' > 0 denotes a generic constant independent of the mesh size, as well as the definition of f 2 g.
Moreover, the constant C' may indicate different values at their different appearances.

Lemma 3.1 (Broken Poincaré’s inequality [55]). For any p € [1,+00), the embedded inequalities hold that
1910 (@) S 19llpas 19llLs0) S l¥llpes

forall p € Sy, and ve Xj,.

Lemma 3.2 (Trace inequality [55]). For any v € Pi(E) and e € OF, there hold

712 1/2
oll 2oy S b5 20l 2my V0 Rellpagey < b 21V 0ll o

Lemma 3.3 (Continuity of Ap, Az and Ap, see [55]). The bilinear forms Ap and Az defined on Sy and Xp,
equipped with the energy norms are continuous, respectively. Then, we have

Ap(én, ¥n) S InllpgllYnllpgs  Yén, ¥n € S,
Az (un, vn) S unllpellvnllpg,  Yun, vi € Xa,

Ap(pn,an) Slenllpellanllpgs  Yow, an € M.
Lemma 3.4 (Coercivity of Ap, Az and Ap, see [55]). Assume that o, is sufficiently large. Then there hold
Ap (61, dn) 2 |énllg:  Yon € Shy
Az(vn, o) 2 ||vh||]2:,G, Yoy, € X,
Ap(gn:an) 2 lanlbe,  Yan € M.

Lemma 3.5 (Boundedness of Cp). The bilinear form Cp is continuous. Moreover, the following estimate holds

Cp(vn,qn) S vnllpcllanlle)y,  Yon € Xn, qn € M.
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Proof. The proof can be seen in Appendix A. O

Lemma 3.6 (Boundedness of Bp and Bz). The trilinear forms Bp and Bz satisfy the following results

Bo(dn, vas ¥n) S 110wl o yllvnll 2 o) 1¥nllpg: (3.23)

and

Bo(¢n; v ¥n) S onllpelvnllpgll¥nllpas (3.24)
for all on, Yy € Sp, vy, € Xy, It should be noted that, the operator Bz has the same arguments.
Proof. The proof can be found in Appendix B. a

Lemma 3.7 (Inf-sup condition [55]). The spaces Xp, and M}, satisfy the inf-sup condition, which yields

Cp(vn,qn)

inf  sup I~ ||qh||L2(Q)'

ah€EMn v, € X, thHDG

Lemma 3.8 (See [55]). Let v € H™1(Q). Then, we obtain

o = Ra(@ll oy S ol 1o = Rl S Pl
where Ry (v) is an approximation operator.

Analogously to the total energy (2.8) at the continuous level, we define the discrete energy as follows

1 1 — 2 k2
En(un, on) = 5y llunllZ2(0) + 51l19nlling + (F(én), 1 qush Ool|= ) + 5 llpnll B (3.25)

The next statement, the discrete energy dissipation law, stems from a direct result of stabilized energy
factorization represented in the scheme.

Theorem 3.1. Let (¢}, up ™ wp ™, ppth) € Sy x S, x X, x My, be the solution of scheme (3.15)~(3.22), with
the other variables regarded as auxiliary. Then, for any h and k, the property of unconditional energy stability
holds:

Bt o)+ o (. — s >+ a7 = e y) + 11057 = 8l

L 1 (3.26)

gy 118 1 + 00 [ < B 7).

Proof. By taking ¢, = kuj ™ in (3.15), 0, = ¢! — ¢ in (3.16), and ¢, = —(—Ap) (4T — ¢F) in (3.17),
we obtain
(O = O™ ™) + KM AD (14, ) + KB (6, i ) = 0,

Ap (5,03 = 67) + (F (o1, 01 1) 0! = 03) + (1 o™ = 07)

n n 3.27
(Mh+1; h+1 _ ¢h) — 0 ( )

— (Gt = on) + B(0 ! = o, (—An) T (en T — oh)) =

By taking wy, = %47, in (3.18) and v, = £4 "1 in (3.19), and using the following identity

(a—b)a==(a®—b?) + %(a —b)?, (3.28)

N | =
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we derive

o (1 2y — 102y + i, — 3 — KB (0F i i) =0, (3.29)
and

21 (||uh+1HL2(Q) ||u;;*||2Lz(Q)+ |yt uh*HLz(Q)) + AI( L gt 50

n ~n n n
H +1HL2(Q)+ CP( vah):O'

Setting g, = 5—( ot +ph) (3.20), from (3.1), we get

k2 k
(e 1l = WkiBG ) — 55Cr (@R o +0) =0, (3.31)

By taking z, = 2&( ntl u"“) in (3.21) and noticing the fact Cp (uh ,qh) = 0, we obtain
k n n n
(g~ 1557 agey) + (25 = 57) = 0 (5.32
Adding the resulting equations (3.27) and (3.29)—(3.32), we arrive at
1 ~Nn n
o (1 2 gy — 2200 ) + g (ke — w2y + 5 — 22 )
k ~Nn n n n n n 7
+ Az () + 77|| G oy + EMAD (7 i) + A (67 67 - 0
(f(¢ha n+1) n+1 ¢h) _'_5( 41 — o, (—Ap)” ( n+1 ¢’h))

(N R IG) = o

Based on the result (3.8), using the Taylor expansion and the facts that F|(¢) = f1(¢) and F{'(¢) = f1(¢) > 0
we obtain

(3.33)

Fu(op) = Fu(opth) = Fi(en™) (on —on ) + Fl//(¢h)(¢h nﬂ)
> f (¢n+1)(¢h n-‘rl)’

for some ¢} € (¢, ¢ ]. Similarly, we use the the facts that (@) = f2(¢) and FY'(¢) = f4(¢) > 0, for some
7€ [, o5, there holds

(3.34)

Fa(63) = Fa(6) = FUOR (61" — 0F) + 5 P (6 (63 — o)’ (3.35)
)

> fa(op)(ent = o7)-
Therefore, from (3.34) and (3.35) and the definition of f(¢}, ¢} "), we derive that

(F(on™) = F(op),1) < (F(ohson™), o0 = oh). (3.36)
Using the definition of (3.2), we immediately have

n+1

o = o o7 =) = p( B2 B ) - (61 - )

~Lh (3.37)
n - 2 n T 12
W¢“—%Mm—WwwﬂﬂJ'
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Since Ap is a symmetric bilinear form, using (3.1) and (3.28), we derive
1 2 2
Ap (7,7 = 67) = 5 (116 I — Nenllide + 16 = oillIne)- (3.38)

Combining (3.33) and (3.36)—(3.38) together, we obtain

(1 h“HLz g2 m)+i(||uh* a2 + |5 = 2 g )
Rl )+ S g+ KA () .
+ f(Hlabz“m;G = lekllpe + 16" = 6l [he) + (F (o) = Fléq).)
2ot =0l = N6k = 0l ) + o (ol g — MR NIG) <0
From (3.39) and (3.1), we have
H | ) + %|H¢Z“!H2DG+(F( W)+ H¢"“—<50H21h+5\\| W 1 oe
+ox (s = gy + [ = gy + 51108 — 62l
UH”‘“HLZ(Q *llluh“lllDG+kM|HuZ“|||DG
< sy + SR + @R 1)+ Dot = doll, + S iRl
from which (3.26) follows immediately. O

The discrete energy law (3.26) immediately implies the following uniform a priori estimates for ¢}, puj, up
and py.

Theorem 3.2. Let (o7, u}t, ujt, py) € Sy x Sy, x Xp, x My, be the solution of scheme (3.15)—(3.22). Suppose that
Eh('u,%, gb%) < Cy. Then, the following estimates hold for any h and k:

n|2 n|2 712 k? n2
s, (o1 + 165136 + (PR + 8ok = doll,, + S 1MRIRG ) 5 Co

0<n<N
N
2 12 2
B (11220 + 1131 + 36 ) < Co.
n=1
for some constant Cy > 0 that is independent of k and h.

4. ERROR ANALYSIS

4.1. Error estimates for ¢, u, v and p

We are now in position to prove the error estimates for the tumor cell density ¢, chemical potential pu,
interstitial fluid velocity w and pressure p. To begin with, the weak formulation of the modified Cahn—Hilliard—
Brinkman-Ohta-Kawasaki system (2.3) satisfies the following truncation forms:

(Ll =20 ) s M), ) + B (). ) ) = (R5n). (2.)
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A (Dt ), 00) + (Fr(0(t012)) = Fo(0lt02)),00) + (€Lt 1), 00) = (1ltnsr), 60) = 0, 42)

A(E(tn1). )~ B((tnsr) — 0, C) = (43)

(MO0 ) 4 At o)+ (b)) + Co(on.pit) (4.4
ABL(0(tn), 1ltnsr), o) = (RE™ ),

Ap(plta 1) = p(tn). 1) = £Cp(ultnss). an) =0, (4.5

(Ao et ) s Cotanntnn) — plt) = (R ), (1)

where RZH, Ryt and Ryt denote the truncation errors. In order to derive the error estimate for the numerical
scheme in terms of time and space discretization, we shall assume that the weak solution to the system (2.3) is
regular enough. More precisely, we assume

b, b1, b € L®(0,T; H*(Q)), e € L (0, T; H'(2)),
(A):{ we L™ (O,T; (HQ(Q))z),ut, wy € L (0,T; (Hl(Q))z),um e L <O,T; (L2(Q))2),
p.pr € L(0,T; H' (), pee € L=(0,T; L*(Q)).

Thus, we can easily establish the following estimates for the truncation errors, provided that the exact
solutions are sufficiently smooth or in the assumption (A).

Lemma 4.1. Under the Assumption (A), the truncation errors Ry, Ry and R satisfy
1BS]] 20y + 1 Bull 2oy + 1Bl o) S B m=0,1,--- N

Proof. Since the proof is rather standard (see [24]), we omit the details for simplicity. O

For the derivation of the error estimates, we define the projection errors and the discretization errors as
follows

where we denote

XZ = ¢(tn) - Rh¢(tn)7 wg = Rh(b(tn) - ;;7 XZ = M(tn) - Rhﬂ(tn)7 wﬁ = Rhﬂ(tn) - /1427
X? = g(tn) - Rh&(tn)v Wg = Rhg(tn) - 5}?7 XZ = u(tn) - Phu(tn)7 WZ = Phu(tn) - uﬁu
wy = Ppu(tn) =y, Xy = p(tn) — Qup(tn), w, = Qnp(tn) — P,

in which the definitions of Ry, P, and @} are given as similar in Lemma 3.8. Moreover, the operator P} satisfies
the following (see [55])

Cp(u— Pyu,qn) =0, VYue X,qn € M.
By subtracting (4.1)—(4.6) from the corresponding decoupled schemes (3.15)-(3.22), we derive the error

equations as follows

et _en
(W, goh> + MAp (e 01) + Bp(@(ta). wlta), 1) = Bo(@hi i on) = (R en). (A7)
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Ap(eg“,t‘)h) + (f1(d(tns1)) — f2(6(tn)) — f(oR, D3 T), 6n)
~(F@(tnr1) = fa(6(6)). 0) + (2, 0) = (ef7,00) = 0,

Ap(,G) = B (e 4 e8,61) = S (6(tns) — 9lt0),G) =0,

n+1 _.n
<uke )+AI( mL )+ 0(E o) + Cp (n €?)
_ABI(¢(tn)7M(tn+l) vh)+/\BZ<¢h, n+1,’llh (Rn+1 )

) =
Ap(eptt — el qn) — *CP("H,%) 0,
p) =

_ 6'rH»l

et u +1 +1
(k,zh> +Cp (Zh, Z — € (R;L ,zh).

Theorem 4.1. Under the Assumption (A), the following inequality holds,

H z+1‘

2 2
2 H ZHHD + Heft—HHLQ(Q) + kQHef)HHDG

2 2 - 2 - 2
+k2(||ez+1||m+ e 172y + 125 e + 165 )
n=0

< k24 7

n+1 n+1

Proof. Taking ¢y, = kwy, ™ and ¢, = kwy ™ in (4.7), respectively, we obtain

n
— kMAD(XZ+1 TLLJrl) _ k'(BD (¢(tn), u(tn)’wﬁ+1) Bp (¢h7 up,,w n+1))’

(w;hLl _wd;a n+1) + k’MA ( n+1 wﬁ“) — k(Rg+17wn+1) (Xngl _ X wn—i—l)

and

+1 2
n — W

7 ) + M Ap (w) W)
L2(9)
_ k(R”“ n+1) (Xgﬂ _ X¢7WZH) _ kMAD< n+1 wgﬂ)

- k(ng (qb(tn),u(t ), wg“) - Bp (¢Z?u2*’ ZH))'

i

n+1‘

s

L2(0) - H ¢HL2

By taking 6, = —kaL‘“ and 6, = ;”“1 wy in (4.8), respectively, we obtain

kM Ap (w3 Wt ) — kM (et wn )+ kMl

— kM Ap ( n+l’ ZH) — EM (0wt

+ kM (f1(¢(tny1)) = f2(0(tn)) = F(OF, opt1), wpt)
— kM (f2(p(tni1)) — f2(d(tn)), wii ),

2155

(4.8)

(4.13)

(4.14)

(4.15)

(4.16)
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and
Ap (gt =) + (et =) - (gt —up)
_ AD( mant—ug) + (et — )
~ (A(0(tnr1) = Fald(ta)) = F (65, 0 70) W = wi)
+ (£2(0(tns1)) = fa(@(ta)),wi ™ = )

(4.17)

Setting ¢, = —(—Ap) " ( g“ wg) and (p, = k]\/[(—Ah)*l(,uZJrl in (4.9), respectively. Noticing the defini-

tion of (—Ap) ™" we get

n+1 n+1 n 5 n+1 5 n+1 n
( C % wd’) + 2(‘ Yo H 1,h B H ¢H 1 h) B §<¢(tn+1) B ¢(tn)7w¢ _wd))fl,h

5 (4.18)
n+1 n+1 n
=gl eyt —ap)
and
RM (et wptt) — ng<< P et (Blts) ¢(tn>,w::“)1,h> =0. (4.19)
By taking v, = kol in (4.10) we derive
1 ~n+1 2 n+l n 2 n+l ~n+1
5 (185 150y = i 2oy + @5 = Wiy ) + RAz @, &)
el gy + RO (EE ) = KR E) - (T B EEY)  (gan)
—k.AI( n+1 wnJrl) kn( n+1 wn+1) —]CCP( ZJrlep)
+ Ak (Bz (6(tn), wltns1), @y ™) = Br (o, ™ 0nt).
Setting g, = £ E-(wpt! + W) in (4.11), we obtain
k2 n+1 2 n 2 n+1 n+1 n k2 n+1 n+1 (4 21)
?(m‘% |||DG*|||WPH|DG)*7C7’( erp):*QAP(Xp 7X:D’ P +wp)' ’
By taking z, = & (wit! + &0 F1) in (4.12), we have
n+1 ~n+1 2 k n+1 n+1 k ~n+1 n+1 n
(1 gy — 155 2 agey) + 5P (Wi — ) + o (@ ™ — wf) )

~ k ~
— *(RZJFI,WZJFI + w;ﬂrl) _ 5673 (wz+1 + wruLJrl X;Hrl X;)

By combining (4.14)—(4.22), using the same argument as in (3.38), we derive

1 2 2
o (7 gy~ Wt o7 =) + 3 (M7 o~ et
2 ﬂ 2 2
+ et - DG+2(\w"“H I ) + M gy + B

5 (I gy — Il + 1T = w2 + HIBE [ + EnllZE 2 e
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(s e~ Nl 1)
< k(RZ+17WZ+1> +k(RZ+17 n+1) T R(RIH ) 4
= (= ) — RMAD () = (= e ™) - kA (gt e )
+kMAD< n+1, ZH) kM (x n+17 n+1) AD< n+1 wg-ﬂ,—l w;‘)+(><fj“ (7;+1 wg)

- §<( s+ Xdﬂ n+1 o wg)—l,h - (¢(tn+1) - ¢(tn)vwg+l o wg>1’h)

# GRa (¥ ™) | (Oltan) — o)), ) — (0 - 1B

E (R;L+17WZ+1 4 wnJrl)

_ k.AZ( n+17wz+l) ]CT]( n+17&3+1) _ ka (&n+1,xp) kCP( n+1’w;}+1 _ wg)

—*CP( WA -G - AP( P X wp T W)

+ kM (f1(¢(tns1)) — f2(6(tn)) — f(¢5h, P wn )

= (FuBltns1) = Fa@ltn)) — F(05,077) 0™ — )

= M (fa(6(ta) = Fo(0ta))s ) + (Fo(0lturn)) = Falolta), ™ = )
— k(Bo($(tn), ultn), wji ™) = Bo (@}, e, wji ™))

— k(Bo (6(tn), ult). ™) = Bo (1w, ™))

+ M (B (6(tn), pltni1), @y ) — Br(og, pp ™ @p ™))
=Ji+Jo+ -+ Jos + Jog. (4.23)

Applying the Cauchy—Schwarz inequality, Young’s inequality and Lemma 4.1, we arrive at

A 1 O e e 1 el (424)
o= k(RyHL Wt < k”R”H‘ ]wg“’ <k 4 k‘ "+1H (4.25)
L2(Q) L2(Q) pG’
n 'VTL T n n ~n
Js = k(R 00 < k| Ry +1||L2(Q)Hw +1HL2(Q) B ||wu+1||L2(Q)’ (4.26)
k n n ~n n n —~n
Jo= 5 (R eyt + a3t < gHRp“HLz(Q)ku“ + 5 |0
n LU st
S+ k0t q + 5 19 ey (4.27)

A repeated application of the Cauchy—-Schwarz inequality, Holder’inequality, Young’s inequality, Lem-
mas 3.1 and 3.8, we get

n+1 n+1 n+1 n n+1 1 mt 8X¢ n+1
T == (™ =X < [t g o e <5 ) B N o S
el x| nt1
S’“(/ 2 ‘“) (/ . i

< p2rt2 ’ 2 EM 12
Nh 0 |||¢t|||H°‘(Eh)dt+Hku HL2(Q)7 (428)
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1 [+ Ox
n+1 n+1 YXe n+1
Jr = (X¢ _X¢7W¢ ) Ska/t ot dt ’w

L2(@) L2(9)

Sy M R e (429

B0 = kMG ) <M o I oy © 4224 S a2, (1.30
2
Jip = (xﬁ“, wytt - w¢) < IIX/L“HLQ(Q‘ w—wp o) < ¥4 8‘ g Ly (4.31)
- ' OXu -

Tl DY -y -t I
= e [ G

< p2r+2 r 2 k’? ~n+1(|2

kn .~
o= b3 < B Hw“*lum < wnrer o e, (433
By virtue of the Cauchy—Schwarz inequality, Young’s inequality, Lemmas 3.3 and 3.8, we obtain
Jo = —kMAp (G ) S M g ot g 5 b2+ 52 g2 (434
Js :—kM.AD( n+1 wzﬂ) kMHXnHHDG‘ ZHHD <kh2r+k‘ n+1HDG’ (4.35)
Jo = kM Ap ( n+1 wﬁ+1> < kM‘ Xn+1HDGH n+1||DG < kB2 1 H /‘JFIHDG’ (4.36)
2
Ji1 = *AD( el wgﬂ *W(z;) < ’ "HHDG‘ wZH we b < h? 4H art— J b’ (4.37)
- ~ . k-
o = —kRAz (G E) SR e 180 pa S 07+ 230 [fe: (4.38)
G- xg
Jm-——‘*AP("+1—Xp:Z+L+WZ)5k3‘£4¢74£' g™ + w3l
L2(Q)
SE R (s e + 115l e): (4.39)

From the Cauchy—Schwarz inequality, Young’s inequality, Lemma 3.8, and (3.2), (3.3), we simply bound

Jiz = *g (< s xgwp — ”g),l,h - (¢(tn+1) — ¢(tn), Wi — wg)l,h>

ﬂ n+1 n+1 n 6 n+1 n
‘ X} 1h‘w¢ —wg_, +§H¢>(tn+1)*¢(tn)||—1,h""¢ Wy in
2
2r42 2 n+1 n
SHH R 4 ot - e (4.40)
and
6 mn n n
Jia = §kM ( e +1>_1 h + (0(tns+1) — ¢(tn)>wu+l)—1,h
< ﬁk‘M n+1 n+1 n n+1 ﬂk‘M t n+1
<2 vt g e H1h+* l6(tns1) = &lta)lly wllp ™|y,
242 2 n+1 2 n+1
k(h T+ k + k‘ H—1 + kH‘“ZH—Lh 14 H Y HLQ(Q) (4.41)
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Since Cp (ez'H, qh) = 0, similarly, using the Lemmas 3.4 and 3.8 yields

Tis = =kCp @I G) S KB g Il oy S 1272+ G 1BE (442
Jig = —fcp( Wt Wt —wr) =0, (4.43)
Jao = = 5Ch (Wi TG ) = —5Cp(ert - AT T g - )

SHNE 4T ol =gl sy S 7+ B (4.49

For the term Joo and Jas, from (3.13), making use of the Lagrange’s mean value theorem, we give the definition
of G7 as
®

G = [1(@(tnr1)) = fo((tn)) — f(0h, 83 T") = Fi(@F)el ™ — 2063, (4.45)

where ¢* is between ¢(t,,41) and ¢'*'. Then, from (3.5), we can derive that

n 2
[ Y s e (1.46)
and
1G85 < st + el (447)
Using the Cauchy—Schwarz inequality, Lemma 3.8 and (4.45), we can prove that
S22 = kM( o n+1 =< kMHG ||L2(Q Hw"+1HL2
: k( ed’HHLZ(Q - He“"””@) 75l HHLZ (4.48)
s n nl|l2 n 2
S (A R 2 S W
Taking ¢, = GY in (4.7), we arrive at
w;+1 — wz n n+1 n n
S50 G ) = ~MAp (e, GY) - Bo(6(ta), u(ta), G)
no,n n Xg—i_l B Xg n n+1 n
+ BD (¢h7 Upy 5 G¢> - T7 G¢ + (R¢ ) G¢)7 (449)

then, by using the Cauchy—Schwarz inequality, Young’s inequality, Lemmas 3.3, 3.8 and (4.46), (4.47), the term
Jos can be bounded as

wn+1 W XnJrl -\
Jas == ¢,w;+1wg)k< b= | = k(G Ry ) + k| Gy -

+ kM Ap (G, ) — k(B (6(tn), ultn), G3) — Bp (6}, up,. G3))

1 [ier
/ 9% dt
tn

< WG] o oy, vl

+ R G3ll 2 )

; +EM| Gl pellen I oe
() )
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+ k|Bp (e, ultn), G)| + k|Bp (¢4 en, G4 )| + Ak |Bp (o5, on Vi Tt GB) |
et | Bm;u+iYW$wBG+MW|bG
) 1B el a 0 + FISRIDGIER 20 + RIS IbG VA7
S B R 1 o B s Ry =
kM

+k”wZHiQ(Q) H u+1HDG’ (4.50)
J24=—kM<f2<¢< )~ B8, Wptt) < EML3O)(8(tns1) = St )|z |9 | oo

20)

n+1
R ot

SK[Gal3 2y + 4

n+1
Yo

S K+ 14 H u+1||L2 ()’ (4.51)

Jos = (f2(¢( n+1)) — f2((tn)),w ZH — wZ) < D) (D(tns1) — ¢(t"))“L2(Q)HWZH -y

L2(Q)

2
n+1 n

1
<K 4 ’ .
~ gl“s T 9|20

(4.52)

Now we use the Lemmas 3.6 and 3.8 to derive

Joo = —k(Bp (8(tn), ultn),wy ™) — B (45, . w ™))

= —k(Bp (eg, ultn), wi ™) + B (67, ultn) — uh., wi ™))

< k|BD(€z,’Ur(t )’ nJrl)} +k|BD(¢h>6uawn+1)| +)\k2|BD(¢)ha¢hv,un+la n+1)|

S kH’u’(tn)”DGHe¢HL2(Q)HWZ_HHDG + k||¢h||DG||€Z||L2(Q)kuHHDG

+ K163 Dl i 2oy o lpe

S RO + 122) k(gD + Ieila@ ) +
Jar = —k(Bp (6(ta) u(ta), w5 ™) - Bo (45, uh*,w:;“))

Sk;‘BD(eg,u(t) ”H)‘-i-k’BD(th,eu, ”*1) +/\k2’BD(¢h,¢ZVM"“ "“)’

n+1 n+1
Yo H

e 1P (4.53)

oo, * R I elzeqey |

n+1H

< Fllu(t) g €3 2 o |

+ BRIV o)

DG

DG

< k(K2 + h2rt?) +k<||%||m<n +||w”||L2<Q>) ”‘“" n—HHDG’ (4.54)
oy = Me(Br (0(t). (b ~”“) B (¢h, w00 )

= Nk (Bz (e, pultasn), ) + Bz (o, e 5yH))

S kllp(tn ||DGH6¢'HL2(Q)Hwn—HHDG +kl|oh Ine e ™ |, Q)H‘N"ZHHDG

<R Ry o a2y + (4.59)

w3

Combining with the above estimates, we derive

1(

2
n+1

n|l2 n n
$ iy~ I8y ) + gl -

7| - i)
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w4l = |+ B e + 2 (e~ el )
O et 1y + 3 (e gy — Iy + 1354~ ey
B+ e ey + A (e +1mDG—WHrDG)

5h27'+h2"+2+k2+k(k2+h2"+h2"+2)+k(‘ g“ o) (w;}“HiG

e

n n 2 n 2 nl2 nl2
B g+ RN M + 1ol ey + I
1 e PR [ (136

Summing (4.56) up for n = 0 to ¢ < N, using the fact that w) = wj = w) = 0, for § > 0, using the
Lemmas 3.3 and 3.4, we obtain

2 2
H & L2(Q) H : 1H H : 1H—1, H 21||L2(“) k2|| f; 1HDG
2 2 ~ 2
§ <’ n+1 n ) ‘ ;-&-1 Z H n+1l n” 2 ))

YA
2 2 ~ 2 ~ 2
kZ(nwzﬂnDG et gy + 150 g + WHW)

<KX+ R 4 Zk (k2 + h?7) +00k2(‘ o L2(@) ‘”EHHQDG * ’ ”gﬂHim
+ IIwﬁ“IILzm) + B2 g+ 198 ey + 1t lpe + gl
+ 1l + Rl ) (457)
When 0 < k < ko := 57 < g, for any 0 < £ < N, since 1 < 1= < 2 and from (4.57), it can be readily
seen that

H 041

[+ 1 gy + Rl

L2(Q) ’ DG

4
2 2 ~ 2 ~ 2
8D (e e + e oy + 185 o + 1257 17y

n=0
14
<1+ > k> ‘
n—= Cok
S ﬁ(kz +07) + ,OC P (H%Hiz(m + w3 e

The application of the discrete Gronwall’s inequality to (4.58), dropping some positive terms, we obtain

w5 o [wh e + R b e

47 o

L2(Q ’ DG
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¢
2 2 - 2 - 2
+ kZ(HwZHHDG + H“JLLHHB(Q) + HwZHHDG + H‘UQHHL?(Q))
n=0

< k? 4+ A%
Noting that, if we consider the sign of 8 < 0, by Poincaré-type estimate (3.3), we can check that the above

results still work. The proof is similar to the Subsection 4.2 to deal with the nonlocal Ohta—Kawasaki term.
Finally, we can obtain the desired result (4.13) by applying the triangle inequality. O

4.2. Improved pressure estimates

Note that the convergence order of the pressure in Theorem 4.1 is not optimal. We are now ready to derive
the improved L? error estimate for the pressure. To simplify the notation, for a sequence of functions {y?}2_ .
we denote by d; the increment operator

n+1_ n
hiwﬁ n=1.2---_N.

‘l{: ) ) )
Applying the increment operator d; to (4.7)-(4.12), we have for n > 1

dtd}erl =

diet — dye?
(W: @h) + MA'D (dtez+1a @h) = (dthJrla ‘Ph) (459)
—dy (BD (ega u(tn), Soh) + BD((ZSZv (u(tﬂ) - u;zl*)a Qoh))7
Ap (die ™00 ) + (G5, 0n) = (di fa(0tns1)) = i fo(6(E1)), 6n) (4.60)

+(dteg+1,eh) — (del 1, 0,) =0,

Ap (dieg™,6) - g(dteg“ + iy, Cn) - g(dtzb(tnm = dy(tn). Cn) =0, (4.61)

(W, 'vh) + Az (dep o) + (el o) + Cp (vn, diep) (4.62)
—Ady (B (€5, pu(tn1), vn) + Bz (dh, e, o)) = (deRy ™, wn),

Ap (deel™ — dyel qn) — %CP (deeu™ an) =0, (4.63)

<W, zh> +Cp (20, diey ™ — diep) = (i RGT 21). (4.64)

For the truncation errors in (4.59)—(4.64), we have the following lemma.

Lemma 4.2. Under the Assumption (A), we have the following estimate

N-1
1 (12 2 2
k ; <||dtRu+1HL2(Q) + Hdth"rlHLz(Q) + ”dtRpH”Lzm)) < k2.

Proof. We leave it to the interested readers since the proof is rather standard [24]. (]
Lemma 4.3. Under the Assumption (A), the following estimates hold
1 ~1 r
leallpe + lEulln < &+ 77,
and

2 2 2 2 .
b 2 gy + ek g + ey + K2 5 B2+
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Proof. By setting n = 0 in (4.59)—(4. 64) and taking ¢, = kw}, in (4.59), 0, = k*w} in (4.60), ¢, = k(—Ah)flwé
n (4.61), vy, = ki, in (4.62), since w = wy = W = wy = wp = 0, we get
(W50 w0p) + EMAD (@, 0,) = K (di R, w,) = k(dixg — dixgs wy) — KM Ap (dixg,, )
— k? (Bo(dtxz, ulto),w,,) + Bp (didh, ulto) — i, w)),
Ap (W, wy) + k(dreg, wp) = (w0 w5) = —kAp (dixg, wy) + k(i wp) = k(diGg, w5),
— K (de fo(d(tnsr)) — defo(o(t n))7w¢)7

 h(dsel,wh) = _gk(dte; i wh) |, — Dh(db () — didlta).wh) .

122 ) + BAZ (@0 @) + BBl ) = K (AR @) = (Ao — Ao @)
— K2 Az (dixa, @) — K2 n(dixa, @y) — K*Cp (0y, diX))
+ Akz (BZ (thqba ,U/(tl)7 &}11;) + BI (dt¢ha ep,a w};,)) .

Summing up the resulted equations, using the coercivity of Ap and Az, applying the Cauchy—Schwarz
inequality, Young’s inequality, Lemmas 3.1, 3.8 and 4.2, (2.2) and (3.3). similar to the derivation of (4.49), we
can obtain

b 1 + #M [lwpllne + EI@hlpe + (1 + kmlIEa] 5
< K (deRy, wy) + k> (di Ry, 0y) — k(dixg, — dex$,wyy) — KM Ap (dex s w),)
— kAp (dtx¢,w¢) + k(dtxﬂ, w¢) kﬁ(dt%, w¢) k‘(dtxu — thu, u)
—k(fi(¢" )dt6¢ 2Pth¢,w¢) — KAz (dexy, @) — k2 n(dixa, wy) — k*Cp (Wmdtxp) (4.65)
— k2 (Bp (dix, ulto), wp) + B (didhy, X5 + Ak Vg, w0y, ))
+ A2 (B (dixg, (1), 0g) + Bz (dedh, €., 0))

. kM - (T+kn)~
S k(K 4R + 5 lwullpe + 51@ullpe + =51

5”“’45”13(; UHL2(SZ)'

Then, by a simple calculation and after dropping some positive terms in (4.65), we can derive that

||wu||DG + H uHDG Sk + R

Therefore, the first estimate in Lemma 4.3 can be easily obtained by the triangle inequality. Similarly as before,
it follows from (4.57) and (4.65), one can obtain the second inequality in Lemma 4.3. (]

Lemma 4.4. Under the Assumption (A), the following estimate holds

2
e

2
¢+ + e 2y + K

n n 2 ~n 2 ~n 2 -
3 (1 s+ 1 gy I 1053 ) €621

Proof. For n > 1, setting ¢, = kdtwﬁH and ¢p = kdtwgﬂ in (4.59), respectively, we obtain
(it = iy, dueo ) + kM AD (Ao, dyes ™)
= k(A RS deop ) = (Ao = i, dwt ) = EMAp (dix ™ di )
—k;(BD(dteg,u(tn) ™) + Bp (eg—l,dt ultn), dtw"“))
— k(Bp (didyy, ultn) — ujp,, dywj ™) + Bp (op " de(ultn) — up,), dwli ),

(4.66)
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o

and

dtwd’—H’ ) — ||dtw¢7HL2(Q) + ’

dtwg""l ) + k'MA’D (dth+1, dtwg"'l)

L2(Q)
= k(dthH,dthH) — (th¢ - dtx¢7dtw"+1) — kM Ap (thp+1 dtw"H)
— k(Bo (dieg, ultn), diwy ™) + B (7 dyultn), diwy ™) )

= (B (debfsulta) = s ™) + B (917" o) = ) ) ).

(4.67)

By taking 6;, = —kMdth"’l and 6;, = dtwgﬂ — dywy in (4.60), respectively, we derive

— M Ap (duwop ! dyeop ) — KM (et duo ) + kM [ldes
= kM Ap (™ dwt ™) = M (s dywrt ™) + kM (4G, dyo ) (4.68)
— kM (dy fo(d(tng1)) — di fo(o(tn)), dewli ™),
and
Ap (™ d = i) + (el dwy ™ = ) = (di ™ dyy ™ = )
= —Ap (A de T = dw) + (ot d T - dyes) (4.69)

— (4G, dwy™ = dw) + (defo(@tns1)) = dufa(9(tn)), dwy ™ = dicsy ).

Setting ¢, = —(—Ah)_1 (dtw;H — de) and ( = kM(—Ah)_ldtw;‘"‘l in (4.61), respectively. Noticing the
definition of (—Ax) ™" we get

—(dse clw"‘*'1 dw")—FQ(d et 4 d e”,dw"“—dw")
(tg t tYe 2 \“tCy tCqpy Uty t¢—1h

)

—% (dt¢(tn+1) — dp(tn), dtwgﬂ - dth) h =0, (4.70)

-

and

kM (dte"“ d w”ﬂ) - ng<(dteg+1 + dteg,dtwﬁﬂ)_l (@i (tasn) — di(t), dues ) h) —0.

(4.71)
By taking v, = kd, o7 in (4.62) we derive
1 ~n n ~n n
E(Hdt“}u“”iz = ldew 12y + || deit? dtwquLz(Q))
+ kAz (doy ™, dioy 1) + knl|dyon HL2 (@ +kCp (dewy™, dywiy)
=k(d Ryt dyoy ) — (dox iyt — dixy, dewp ™) — KAz (de 0, dyoytY) (4.72)

B kn(thqul df~n+1) - kCP (dtu}uJr athp)
AR (BI (dteg’ f(tn1), dt@n_‘—l) + Bz (62_1, dipe(tns1), dtwn+1>)
+ /\k(BZ(dt(bh7 A dt~n+1) BI(¢Z_17dt€Z+1adt@Z+1)).



FULLY-DECOUPLED DISCONTINUOUS GALERKIN APPROXIMATION 2165

Setting qj, = % (dtng + dtwg) in (4.63), we obtain

B (g 1~ Naasp 1) — e (@it ey + dsy) s
= —%QAP (dexpth — dexpy, dewp ™ + dyw)y). |
By taking z, = £ (duwi*! + d, @l *1) in (4.64), we have
3 (a2 gy = 14 3 ) + 5Cp (o™ s — dcy)
+ gcp (deop™™, dywp ™ — dyw))) (4.74)

k - k
= S (@R dwi ™+ diay ) = SCp (dwy ™ + AT diog T - dixg).-

Combining (4.66)—(4.74) with (3.28) and (3.38), using the coercivity of Ap and Az, we can obtain

H n+1 ’ 2
L2()

n

HdthHiz(Q) + Hdtwg"'l _ dtCU¢

L2(Q)
3l g Ml s - ) 1
i kMHdthHHDG * 7(Hdth+1HL2 — w720 + |yt dthHi?(m)
+ k| B + Rl e + —(H\dtwgﬂmzm el

S k(ARG deop ) 4 (RS dwo ™) + (4 R At + g(dtRZ“, ™ + dynHY)
_ (thZ de¢,dfw”+1) _ kMAD(dtan dfwn+1) _ (thZH _ dtx;,dtwf;“)
— EMAp (dpt dieol ™) + BMA (A di ) = kM (it dyi )
—Ap (th¢ dtw"H) (al,g)(#+1 cltou”Jrl d w¢) — é (dte"H ds w”+1 de)iLh

&

+ g(dt¢<tn+1> — di(tn), dwy T =) = DRM(di(tnrn) = ded(ta) dis )

+ ng(dteg“ +dteg,dtw,’j+l)_17 (A = dox, di ) — kA7 (dp Y, dn )
— kn(dox )t doy ™) — kCp (dioy ™ dexy) — 5(:73 (dpwp™, dywy ™ — dyw?)
- Ecp (dpwp ™+ dioy ™ dixy T — dixgy) — %2,47; (dixy ™ — dixy, duwp ™ + dywy)
T+ RM (G, duspr ™) = (G dusly ™ = dyesy)
— EM (dy fa($(tnt1)) — de fa(@(tn)), diwpith) + (dtf2(¢(tn+1)) — di fo(P(tn)), dey T — dth)
_ k(BD (v, u(tn), dyw? ™) + Bp (eg_l,dtu(t ), dtw”“))
)

— k(Bp (diop, ultn) — up,, dw! ™) + Bp (67", de(ul(ty) — uit,), diw )
— k(Bo (dueg, ultn), diwy ) + B (7" dyulty), diwy ™) )
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— k(B (e, ultn) — wp, die ™) + Bo (67" i (ulta) — i), dwy ™ ) )

+ Ak(Bz(dteg, fitnsr), i) + By (eg—l,dtu(tm) 4" +1))

+ Mk (Bz (deop, ep ™, dioy ™) + Br (o~ deep ™ dyioy ). (4.75)
From the definition of G in (4.45), then we have

= f1(¢")diel ™ — 2pdye. (4.76)
Using the Cauchy—Schwarz inequality, Young’s inequality and (4.76), we can prove that
n n+1 mn n+1
kM (dGy, dywt) < kM||dt HL2 Q)Hdtw; HLz(Q)

’Lz(m e 2 )

2 EM 2 (4.77)
+ k| died || a0y + ﬁ”dtwuﬂHLz(Q)

dte — 2pd;ey
S kHd e”“H
L2(Q)

. n nl2 kM n 2
h2 +2 -+ k”d w +1H + k|’dtw¢||L2(Q) + E||dtw#+1||L2(Q)’

L2()

where we use the fact that

k_Hd n+1‘ =klld n+1 d n+1’
“ iz O A
2 1 tn+t1 2
< k|| dwpt! +k‘ f/ 0o g
L2(Q) kJ., ot L2(Q)
2 tht1 tnt1 || Oy |2
< k| dwt! + k( / dt> / el
L2(Q) tn tn ot L2(Q)
< h2r+2 —|—k dt n+1’
~ ¢ L2(Q)
From (3.10) and (3.18), we find
u(ty) — up, = el + Negp vVt (4.78)

and

gu (t, ﬁ up,) = diely + Mkde Vgt + Neg T VT (4.79)
By using (4.78) and (4.7 corern 4.1 1, and performing a similar argument as (4.77), we get

dtw"+1 — dtw"
— (4G, diwp ™~ dyes) = k(dt 5t
dixy ™ — dix
= k(dGy dRE) + & (dt §o " |+ RM(VA,GY, Ve )

- k(th n dyu(t,)el " + u(tn)dteg) — k(Y G, did} (ulty) — uf.))
— k(VdiGy, ¢p di(ulty) — )

2 I

< kl|de

1 th+1 92
- / X6 4
k), o

s v
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+ MG [l g + kllde G g lldenttalllng| ||, o,
Gl It el o) + kI (VG dedy (€ + Ak Vg t))|

+ k| (thGg» o 1(dt6 + )\kdt(bhv//”rl + )\kqu 1th/ln+1))‘

< K|diG2| gy + KRz +/ Pl g
~ t T L2(Q) t L2(Q) 0 6t2 £2(9)
+kHdtG¢||DG+ 8 ||dteﬂ+1||DG LQ(Q)+kHdt6¢||L2(Q)

+ Kl B el 2 + B Ndedh e | 6n Vi e
+ k| én p el o) + k¥ ldidh palloh ™ Ve e
+ksndmm\éGHWtuz‘“Hizm)

< kHd R"“

I T n n 2
I G ) + k| dw; +1H Rl

k:M

(e L+ Mzl ) + st + S5 st (1.80

Similarly, by using the estimates (3.3) and (3.4), we obtain

dtw"'H - dtw"
ol ), = koaegen S
’ ~1,h

k

+1 n
_ kﬁ(d n+1 d RnJrl) Ll d n+1 dtxg B th¢ kM (Vd n+1 vd n+1
= te¢ y Uty —1h + te¢ sy T . + t6¢ ) t€, —ih
) 1h )

- k(wteg“, dyu(ta)el ™" + u(tn)dteg)_1 - k(vczteg“, el (ulty) — uZ*))

- k(wte”“,o);‘“dt(u(tn) - u}?*))

~1,h

“1.h

1 tn41 32
Sl aep|| ) llaerst| L ke 7/ X0 gt
L2(Q) L2(Q) 2| k J, ot? L2(0)
e e o+ e st

kfdee |t dies | g + k[ dies | Nedinglicilng

4 )\k2 dten+1’

dtenHH ||¢nvuh+1||DG +k

H¢271HDGudt€ZHDG

pe

+ Ak ‘dtenHH Hdtqshvluh—i_lHDG

+ AkQHdte"“H [ ¢r "V

Sk +h2r+k(k2+h2r)

dth“

Lz(ﬂ)
nll2
v ||dtw¢||L2(Q)+k(Hdtwn+1HD +||dtw¢HDG>

+ kHdtWruLHiz(Q) + ﬁ”dtWﬁHHD@ (4.81)

+ k <‘ dth-‘rl
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and

GRM (diey ™ ™) S ke

2(Q)H t u+1HL2(Q)

< h2r+2 + kHd wn—i—l

12@) THdt”ZHHH(Q)'

(4.82)

The application of the Cauchy—Schwarz inequality, Young’s inequality, Lemmas 3.5, 3.8 and Theorem 4.1

yields
n n+1 n—1 n+1
—k(Bp(dted),u(tn),dtw# )—i—BD(% s dyu(tn), dwy, ))
< K[Bo (die ultn), iy ™)| + K| Bo (7", duult), duyy )|
S Kllulta)lnglldeel ]| lldewy ™ | + Flldeulta) g e
kM,
5 i o
— k(Bo (dieg, ultn), disy ) + Bo (€7 dyulty), dwy ™ ) )
< k‘l’j’p(dteg, u(tn), dies ) +k:‘BD( "1 dou(ty), dtw”“)‘

< Mt el s b g + Hlldenttaling e ez

€5 1” G"dth+1”DG

S (R 4 1) + kg +

<R 4 k(K2 + h%)+ky|dtw¢|\DG+kHdtw"“HDG,
Ak (Bz(dt%M( 1), dewp ) + BI(% s dypu(t n+1)adt@Z+l))

S kllaltnr)lpelldes || polld@n™ |l pe + Fldu(tnin)lIpe

Sl I [

SKET k(K + hg’“) + kHdtngEG EHdt&n-‘rlHéG’
(Bt ) + B0 ey ™, )
S k||dt¢h||DG||en+1HL2 Q)Hdt&nHHDG + k||¢n 1HDG”dten+1||L2(Q)Hdtb~dz+l||DG

S A AR T’|dth+1”L2(Q Hdt~n+lHDG’

where we use the fact that

I
n+1]|2 n+1(|2 2 2r
ke HLZ(Q) < kZHeu HL2(Q) SET AR
n=0
Using (4.78) and (4.79), making use of Lemmas 3.5, 3.8 and Theorem 4.1, one obtains

— k(B (didhy, ultn) — upt,,, dwp ™) + Bp (65 de(ultn) — uf,), diwopi 1))
< k|Bp(didyy, e, dpwii )| +Ak213D(dt¢h,¢hw”+1 dwop ™) |
+ k|Bp (o1t deery, duwi ) | 4+ M2 [ Bp (07 dedp Vi T dyw T |
+ AP |Bp (o) o Vg T dyw T |

5 kHdt(bhHDGHeZHL?(Q)Hdtwﬁ—i_luDG + szdt(bZ”DGH(bhvuh+1HLz(Q "dtwn+1”DG

+ k[0 I deehll ooy lde)i™ | + #1165 I lldedh Vi | ooy ldewi ™ e

(4.83)

(4.84)

(4.85)

(4.86)
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—1112 n
+ 82|65 I p Vet || ooy ldewi ™ | e

SRV KR 1) R gy + ol (4.87)
and
F(Bo (didh, ultn) — i dwoi ™) + Bo (0" duultn) — i), duo ™))
< k’BD (dt(,zbh, u,dtw”“) n w‘BD (dt¢h,¢hw"+1 d w"'H)’
+k‘5‘p(¢h 1 dteu,dtw"H)‘ k2 BD< nl gt dtw“)‘
+ 2B (qb;; LIV dy it dtw"“)‘
S Klldedillplenll gz | ™|+ R2diap oG |6 Vi | o ey | e
+kH¢" 1HDG||dt€u||L2(Q)HdtwnHHD +kQHQﬁZ_lHDG’|dt¢hvﬂh+1’|L2(Q HdtngHDG
T e T O T
SR k(K 02) + klld o) + K dtw"“HDG. (4.88)

The other terms in the right hand-sides of (4.75) can be estimated by the same argument as (4.24)—(4.39)
and (4.42)—(4.44), combining with (4.77), (4.80)—(4.88), then we have
2

1 n nll2 1
(s~ Wlay) + 3 "
n n kM n 2
+2mww+w1 ezl ) + St o + S5 e e
1 ~ . k .
5 (st oy = Ml oy + 43" = d[fa(q ) + 5 10+ g

77 ~n n 2 ni2
)i “||Lz(g)+*(|||dtw o = lldeplllpe)

2
S kHdtRz-i—luLz(Q T k”d RnJrlH[} + k||dtRn+1||L2(ﬂ +

dtw¢

+ k(K2 + B%") + Cok (Hdtw”“

d n+1H
L2(Q) + H o

i gy + K2l 2 + i ey

a1 g + 14w [ + 87y |3, ) (4.89)

Summing up (4.89) from n = 1 to ¢, using Lemmas 4.2 and 4.3, and performing a similar argument as (4.58),
we obtain

Hdtw€+1

+ Hdth1HL2(Q) +

2
L2(Q) dthlHD + k2Hdtw£+1HDG

tk Z(HdWZ“HEG ol ey e B + e o)

n=1
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¢
<1 + Z k) ¢ ) ,
N 1= Co (K* +1?") + Z( ‘dtwgum(m + [|diwg[ g

+ ldewi |32y + K2 dew HDG). (4.90)
Applying the discrete Gronwall’s inequality for (4.90), we get

2 2
A P L

k] + et

¢
03 (e g + N + 1 i+ 35 )
< k;jrl R,
Therefore, the conclusion is completed after using the triangle inequality. O
Finally, thanks to the Theorem 4.1, Lemmas 4.1-4.4, the following result can therefore be proved.

Theorem 4.2. Under the Assumption (A), we have the improved error estimate for the pressure p as

HeZJrlHL2(Q) Sk+h

Proof. From the inequality [|eZ*!||,, — llenllpe < |lent — using Lemmas 4.3 and 4.4, we can obtain

el

L )4
lEe lpe = D_l1Ent = Eillpe + lullbe = 2 klldien e + 1eullpe
et

n=1

¢ 3/ 3 (4.91)
< (1300 e ) (328) el
<hen -
Similarly, we have
lep™™ e Sk+A (4.92)

Taking the summation of (4.10) and (4.12), by means of the Cauchy—Schwarz inequality, Lemmas 3.1 and 3.5,
we estimate

Cp (vn, e ™) = (Ry™ wn) + (R on) = (deey ™, on) — Az (&7, on)
— (@™ o) + A(Bz (e}, p(tns1), vn) + Br(¢h, ef ™, vn))
S HRZHHLz(Q)”vhHDG + HR;Z+1||L2(Q)”vhHDG + HdtGZHHL‘Z(Q)H”h”DG
ezt gl onlog + Akl g It Dllng oo

Jr/\Hd)h“DGHenJrl||D(;th||DG'

Therefore, using the discrete inf-sup condition in Lemma 3.7, Theorem 4.1, Lemmas 4.1-4.4, (4.91) and (4.92),
we get

Cp(vn,ept!)
n+1 < f P
lles HL2(Q) nﬁlnth v:g}h [on b
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SR ooy + 1B oy + o™ 2

+ HéZHHDG + HeZHHDG + HegHDG
<k+h.

(D)

The proof is completed. ([l

5. NUMERICAL SIMULATIONS

In this section, we conduct various numerical experiments to verify the theoretical results of the previous
sections. Numerical simulations include tests for convergence and energy stability, as well as two patient-specific
simulations of brain tumor growth, which may be of great interest for neurosurgeons because it can help them
better assess the risks and benefits of surgery.

5.1. Convergence and stability tests

In the first example, we verify the accuracy and stability of the proposed algorithm. The 2D rectangular
domain is set as 2 = [0, 1] x [0,1], and the initial conditions read as:

025—¢@—0&2+@—Qm2 +wm1015—¢@—0ﬂ2+@—a@2

z,y) = 1+ tanh ,
¢0( y) \/56 \/56

’U,()(SU,y) = Oa pO(wvy) =0.
The model parameters are set as

v =001, A=0.1, M =0.02, n=0.1, £ = 0.01.
/]

scheme, where the error function is defined as ef}) =M (x,T) — w%()gT), as well as a similar defined for the
temporal convergence rate. To verify the convergence rates of spatial errors, we take the time step size k = 0.0001
and the value r = 2, choosing the decreasing mesh size h = 1/16,1/32,1/64,1/128, respectively. Table 1 shows
the errors and convergence rates of the velocity, phase-field variable, and pressure at T = 1, where we vary
different parameter 5. We can see that the obtained spatial convergence rate is O(hQ), which is consistent with
our theoretical prediction.

To obtain the convergence rate in time, we fix the mesh size h = 1/500 and choose the decreasing mesh size
k =1/10,1/20,1/40,1/80. In Table 2, we show the L? errors of the velocity, phase-field variable and pressure
at T = 1 with different 5. It can be seen that the convergence rate is O(k) for all variables, which is consistent
with the theoretical predictions given in the previous section.

Finally, we perform energy stability tests using different time steps. In Figure 1, we plot six energy evolution
curves calculated by using the time steps ranging from k = 0.5 to k = 0.001 and mesh size h = 1/100, where we
take 3 = —5 (The choice of other value /3 gives the similar monotonic results, we omit it here). All the obtained
curves display very good monotonic attenuation, which are in accordance with the discrete energy dissipation
law.

h
We define the value of Rate = logQ( ey ) to calculate the spatial convergence rate of the proposed

5.2. Simulations of tumor growth

In this example, we provide some numerical simulations to show the effective of nonlocal terms on the tumor
growth. We consider the rectangular domain 2 = [0, 2] x [0, 2], and the initial condition for the phase ¢, is taken
to be

@-1? -1 _
do(z,y) =< (01>  (0.12)> —
0, otherwise,

b
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TABLE 1. Numerical errors and convergence rates for (¢, u, p) in spatial direction with different

patT=1.
16} h ||e$|| Rate Heﬁ“ Rate HeZH Rate
% 1.3687¢e—02 — 2.4365e—02 — 4.9824e—02 —
—50 3—12 3.1269e—03 2.13  5.9660e—03 2.03  1.2456e—02 2.00
6%1 7.3445e—04 2.09 1.3916e—03 2.10  3.1575e—03 1.98
ﬁ 1.8235e—04 2.01  3.2913e—04 2.08 7.4163e—04 2.09
% 1.7536e—02 — 2.3578e—02 — 5.1325e—02 —
0.0 3—12 4.0904e—03 2.10  5.8945e—03 2.00 1.2480e—02 2.04
6#4 9.6743e—04 2.08 1.3466e—03 2.14  2.9929¢—03 2.06
ﬁ 2.2102e—04 2.13  3.3203e—04 2.02 6.9331e—04 2.11
1—16 1.2868e—02 — 2.5024e—02 — 5.0987e—02 —
5.0 3—12 3.1727e—03 2.02  6.2995e—03 1.99 1.2398e—02 2.04
é 7.7149e—04 2.04  1.5425e—03 2.03  3.0569e—03 2.02
1

1.7871e—04 2.11  3.6482e—04 2.08 7.6953e—04 1.99

-
(™
[oo’

TABLE 2. Numerical errors and convergence rates for (¢, u,p) in temporal direction with dif-
ferent 3 at T = 1.

164 k ||6§>H Rate “eﬁ“ Rate “e’;H Rate
L 21968e—02 — 3.2877e—-02 — 6.4530e—02 —

~50 = 1.0610e—02 1.05 1.5552e—02 1.08  3.2944e—02 0.97
L 5.2320e—03 1.02 7.4078e—03 1.07 1.6358¢—02 1.01
L 24749¢-03 1.08 3.6530e—03 1.02  7.9556e—03 1.04
L 292588—02 — 3.4890e—-02 — 5.8346e—02 —

0.0 % 1.5203e—02 1.10  1.6968e—02 1.04 2.8972e—02 1.01
L 73938¢—03 1.04 8.4841e—03 1.00 1.4586e—02 0.99
L 3.4254e—03 1.11  3.9856e—03 1.09  7.2429¢—03 1.01
L 1.9871e—02 — 3.5932e—02 — 4.918%—-02 —

5.0 L 9.7311e-03 1.03 1.7354e—02 1.05 2.4937e—02 0.98
L 4.4463e—03 1.13  8.0400e—03 1.11  1.2128e—02 1.04
L 21179e—03 1.07 3.9922e—03 1.01  5.5799e—03 1.12

while the initial conditions for ug and pg are set to be zero. We set the model parameters as
k=0.01, h=1/100, v»=0.05, A=0.1, M =0.02, n=0.1.

Figure 2 show the numerical solutions of tumor phase field ¢ at different time levels with 5 =5,3=0, 5= -5
and B = —10, respectively. We can see that, when 3 > 0, the tumor grows very slowly, but in some cases 5 < 0,
the tumor can grow rapidly and the patterns of tumor exhibit different shapes. In short, the introduction of
nonlocal Ohta—Kawasaki term in our model can affect the tumor shapes during the tumor growth.
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FIGURE 1. The time evolution of the discrete energy Fj, with different time steps.

5.3. Simulations of brain tumor growth based on MR images

In the following numerical examples, we carry out the simulations of brain tumor growth. The geometric
domain and meshes for the patient-specific simulations of brain tumor are constructed based on segmentation
of MR images. The final time of brain tumor growth is hard to handle, so we only simulate the process of tumor
growth compared with the MRI results. We set the model parameters as

B=-5 k=01, h=1/100, » =001, A=0.1, M =0.02, 5=0.1.

Noting that, the choice of these parameters shows that the simulation results tally with the practical scenarios
very well.

We mainly focus on two clinical cases of patients with brain tumors, the geometric domains and computational
meshes are shown in Figure 3. The MR images of a 68-year-old male patient at three different time stages are
shown in Figure 4A and 5B—5C, where we can see that the volume of the tumor increases over time significantly.
The first snapshot in Figure 4A on the date of 02/2015 is chosen as the initial condition for the tumor cell density,
the profile of ¢q is shown in Figure 4A1, where ¢ is given by

g Vi@ —2) + (- y)* -
¢o = 0.7+ tanh ,
i=1 V2e

where 1 = —0.18,y; = —0.13,71 = 0,22 = —0.18,y5 = —0.38,72 = 0.33, x3 = —0.22,y3 = —0.25,r3 = 0,24 =
—0.10,y4 = —0.48,r4 = 0.32,25 = —0.21,y5 = —0.26,r5 = 0, ¢ = 0.08, within x;,y;, (i =1,2,3,4,5) are
obtained by the interpolation method.

The second and the third MR images (Figs. 5B-5C) scanned on the date of 06/2015 and 09/2015 are used
to compare with our numerical simulation. It can be seen that the shape of the brain tumor obtained by
our simulations (shown in Figs. 5B1-5C1) are consistent with the MRI results (Figs. 5B-5C), qualitatively.
Furthermore, we plot the profiles of the fluid velocity in Figures 5B2-5C2, and the pressure in Figures 5B3—
5C3. We observe that in the middle part of the tumor, the interstitial fluid velocity is very low, but in the
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FIGURE 2. The numerical solutions of tumor phase field ¢ at different time levels with different
0. The graphs are arranged column-wise.

boundary region of the tumor, the interstitial fluid velocity is relatively high. The situation of the pressure is
the opposite. We observe that the tumor interstitial fluid pressure is significantly higher than the surrounding
tissues, and it is the highest at the core of the tumor. These results are consistent with the experiments given
in [25,33]. This is because the quickly proliferating cancer cells are much more compact than the norm cells,
which pushes healthy tissue outward to form a boundary to trap interstitial fluid and pressure inside the tumor.
The tumor cells always migrate or proliferate towards directions of lower interstitial pressure, and as a result,
the dividing cells inside the tumor successively push other cells towards the peripheral region with the highest
pressure gradient.
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F1GURE 3. The geometric domains and computational meshes for the two clinical cases of
patients, respectively.
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FIGURE 4. The initial condition for the tumor cell density. (A) The MR image on the date of
02/2015; and (A1) The profile of ¢g.

The second test case, shown in Figures 6A and 7B-7C, are the MR images of a 38-year-old male patient. The
initial profile of ¢ shown in Figure 6A1 (on the date of 08/2018) is given by,

! \/(:v—xi)2+(y—yi)2—n
¢o =05+ tanh ,
i—1 Ve

where 1 = 0.34,y1 = 030,71 = 022,29 = 0.21,y2 = 0.17,70 = 0, 3 = 0.26,y3 = 0.28,r3 = 031,24 =
0.20,y4 = 0.14,74 = 0, ¢ = 0.11, within x;, y;,r;(¢ = 1,2, 3,4) are obtained by the interpolation method.

We carry out the algorithm to obtain the simulation results, where the profiles of ¢ are shown in
Figures 7TB1-7C1, the velocity profiles are shown in Figures 7TB2-7C2, and the pressure is shown in
Figures 7B3-7C3. The snapshots of simulation results are in good agreement with the clinical data shown
in the medical MR images of Figures 7B—7C, which also illustrates the effectiveness of the proposed model and
numerical scheme.

6. CONCLUDING REMARKS

In this paper, we consider the Cahn—Hilliard—Brinkman—Ohta—Kawasaki system with the Flory—Huggins
logarithmic potential for brain tumor growth, and design a fully-decoupled DG method for this hydrodynamically
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FIGURE 5. The first column shows the real MR images, the dates are on: (B) 06/2015; (C)
09/2015. The second column lists the realistic simulation results of brain tumor growth (Bl-
C1). The third column (B2-C2) shows the tumor interstitial fluid velocity. The last column
(B3-C3) shows the interstitial fluid pressure. The graphs are arranged column-wise.

(AT)

FIGURE 6. The initial condition for the tumor cell density. (A) The MR image on the date of
08/2018; and (A1) The profile of ¢g.

coupled system. The time discretization is based on a stabilized energy factorization approach and some subtle
explicit-implicit treatments for nonlinear coupling terms, which can efficiently preserve the energy stability of
the system. The optimal error estimates for the proposed scheme are also derived. To confirm the efficiency
and accuracy of the proposed scheme, we have performed various numerical experiments and the simulation
results are in good agreement with theoretical prediction and real MR images of patients. For future work, we
will consider the environmental factors including nutrients and oxygen concentration in the modeling work to
improve the simulation and prediction of tumor growth in the quantitative way.
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FIGURE 7. The first column shows the real MR images, the dates are on: (B) 11/2018; (C)
01/2019. The second column lists the realistic simulation results of brain tumor growth (B1-
C1). The third column (B2-C2) shows the tumor interstitial fluid velocity. The last column
(B3-C3) shows the interstitial fluid pressure. The graphs are arranged column-wise.

APPENDIX A.

We recall that the notation |e| simply means the length of e, then we have |e| < hg < h for Ve € OF. Using
the Cauchy—Schwarz inequality, trace inequality and Korn’s inequality, we have

Cp 'vh,qh Z/ qnV - v dx + Z /{qh} ’Uh - me ds

E€&y, ecl'pLUoN

} } ; }
2 2 2 2
< < Z V- ”h||L2(E)> ( Z ||qh||L2(E)> + ( Z {an} - ne||L2(e)> ( Z ||[vh]||L2(e)>
Ecé&y, Ecgy, ecl'pLUdN ecl'pLUoN
% 1 1 %
2 2
S <Z ”D(’Uh)|L2(E)> (Z Qh||L2(E)> 1/2 ( Z Qh||L2(E)> < Z | ‘H[’Uh]Hm > ,
Ee&y, E€&y, Oe E€&y, eel',UoN

which completes the proof of Lemma 3.5.

APPENDIX B.

For (3.23), we omit the details of the proof since it is straightforward after applying the Cauchy—Schwarz
inequality and the trace inequality. For (3.24), from the definition of Bp, we obtain

Boonvnin) == % [ oo Vondxr 3 [{oHon-n)linlds

Eeé&y, ecl',UON Y €
=1 + 5.
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Using the Holder inequality, Cauchy—Schwarz inequality, we have

2

1 1
g q
4 4 2
I < Z ||¢h||L4(E) Z ||UhHL4(E) Z HV@[’hHB(E)

Ee&, Ee&p Ee€&y,

Again, by using the Holder inequality, the Cauchy—Schwarz inequality, and the trace inequality, we obtain

1 1 1
le] 4 ! le] 4 ! g 2 ’

I < Z ;"{(/j)h}HL‘*(e) Z ;||{Uh ) "e}Hm(e) Z ﬁ”w’h]np(e)

eclUON € ecT,UON € €', U

1 3 i - 3

4 4 2
5 12 Z ||¢h||L4(E) Z H'”h||L4(E) Z ﬁll[wh]\\m@)
Oe E€é&), Eeé&), €€, U

Thus, combining the bounds above, and using Lemma 3.1, we conclude (3.24).
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