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THE MOROZOV’S PRINCIPLE APPLIED TO DATA ASSIMILATION
PROBLEMS

Laurent Bourgeois1,* and Jérémi Dardé2

Abstract. This paper is focused on the Morozov’s principle applied to an abstract data assimilation
framework, with particular attention to three simple examples: the data assimilation problem for the
Laplace equation, the Cauchy problem for the Laplace equation and the data assimilation problem for
the heat equation. Those ill-posed problems are regularized with the help of a mixed type formulation
which is proved to be equivalent to a Tikhonov regularization applied to a well-chosen operator. The
main issue is that such operator may not have a dense range, which makes it necessary to extend
well-known results related to the Morozov’s choice of the regularization parameter to that unusual
situation. The solution which satisfies the Morozov’s principle is computed with the help of the duality
in optimization, possibly by forcing the solution to satisfy given a priori constraints. Some numerical
results in two dimensions are proposed in the case of the data assimilation problem for the Laplace
equation.
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1. Introduction

In this article we consider inverse problems of the following type: find a solution 𝑢 to the Laplace equation
∆𝑢 = 0 in a domain Ω of R𝑑, 𝑑 ≥ 1, from values of 𝑢 measured on a smaller domain 𝜔. Such problem can be seen
as a toy model for data assimilation problems. Data assimilation is a very active domain of applied mathematics
in connection with oceanography, meteorology or life sciences. It can be addressed from a deterministic or a
stochastic point of view, one of the pioneering contribution to the field being [2], a deterministic vision being
exposed in [24], a stochastic one in [22]. The introduction of [15] also offers a nice overview of data assimilation
problems. Despite uniqueness holds for our basic data assimilation problem for the Laplace equation, it is severely
ill-posed, in the sense that existence is obviously not ensured if the measurements are corrupted by noise. In
order to regularize such problem, we introduce a mixed variational formulation which is parametrized by a small
parameter 𝜀 > 0. Such formulation has the advantage to be well-posed and to provide a solution which is close
to the true solution 𝑢. In addition, the regularized solution is searched in the natural energy space in which 𝑢
is supposed to belong, typically 𝐻1(Ω), which results from the mixed nature of our formulation. The “mixed”
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terminology comes from the fact that the weak formulation consists of a system of two equations satisfied by
two unknowns, that is the regularized solution 𝑢𝜀 and a Lagrange multiplier 𝜆𝜀, which is also searched in the
space 𝐻1(Ω). The idea of mixed formulation to solve linear ill-posed problems goes back to [3], which concerns
the Cauchy problem for the Laplace equation and can be seen as a variant of the quasi-reversibility method
introduced in [21]. The notion of mixed formulation was more recently recast in a general abstract framework
in [8], in which it is proven that such mixed formulation is equivalent to the classical Tikhonov regularization
for a well-chosen linear injective operator 𝐴. In particular, once the mixed formulation has been reformulated
as a Tikhonov regularization, it is natural to apply the classical Morozov’s discrepancy principle to compute a
consistent regularization parameter 𝜀 as a function of the amplitude of noise 𝛿. In [8], this technique was used in
the case of a Cauchy-type problem for the Helmholtz equation set in a waveguide, that is the data was formed
by the trace and the normal derivative of the acoustic field on a subpart of the boundary. It is important to
note that for such a Cauchy-type problem, the underlying operator 𝐴 has a dense range.

When it comes to the data assimilation problem for the Laplace equation previously introduced, we will
observe that applying the Morozov’s discrepancy principle is not standard any more in the sense that the
corresponding operator 𝐴 has not a dense range. Indeed, the standard results which justify the Morozov’s
principle for the Tikhonov regularization (see e.g. Thm. 2.17 in [20]) are limited to dense range operators. The
objectives of the present paper are the following. The first objective is to generalize these standard results to
the case when such denseness assumption fails. In particular, we will see that this generalized result requires the
data to satisfy an additional condition which is not trivial to check. A second objective is to extend the duality
method, introduced in the context of Morozov’s discrepancy principle in [4] and revisited in [6, 12], to the case
of those operators 𝐴 which do not have a dense range. This duality method, the origin of which is the theory
developed in [17], later adapted to controllability problems in [25, 26], consists in solving an unconstrained
minimization problem involving a cost function which depends on the adjoint operator 𝐴* of 𝐴. The main
interest of the duality method in the context of inverse problems consists of an idea introduced in [4, 6] and
reused in the present paper: by applying the operator 𝐴 to the solution of such minimization problem, we
exactly obtain the Tikhonov solution associated with the Morozov’s choice for 𝜀. In our paper, we also adapt
another idea, borrowed from [18] in the context of control theory, then transposed in [12] in the context of
inverse problems. It consists in introducing a modification of the cost function involving a compact projection
operator in order to impose some a priori assumptions to the solution which may be useful in practice, while
keeping the objective of satisfying the Morozov’s principle. The third objective is to apply all the previous ideas
to an abstract framework of data assimilation problems, including the toy problem presented at the beginning
of the introduction.

Although we present some numerical results using a finite element method at the end of the paper, the choice
of the discretization parameter ℎ is not discussed in the present paper, such ℎ being supposed to be sufficiently
small so that we can apply the algorithms introduced at the continuous level. The Morozov’s principle for the
discretized Tikhonov regularization is however an interesting subject, addressed for example in [27]. In a long
series of papers, Burman and his collaborators (see e.g. [9–11] for the Laplace, heat and wave equations, respec-
tively) have proposed a weak formulation which is different from ours: there are no regularization parameter
at the continuous level, but sophisticated stabilizers at the discrete level are introduced to obtain a well-posed
problem. In those works, some estimates between the exact solution and the solution to the discrete regularized
problem are obtained with respect to the mesh parameter ℎ, which can be seen as a regularization param-
eter. Similar estimates are obtained for discretized mixed formulations to regularize the Cauchy problem for
the Laplace equation in [5] and a data assimilation problem for a wave-type equation in [14]. Those estimates
are interesting because they provide convergence rates, up to a multiplicative constant which cannot be esti-
mated. The subject of our article is different and also challenging: we wish to choose a particular value of the
regularization parameter.

Our paper is organized as follows. In Section 2, we revisit the Morozov’s principle for the Tikhonov regularized
solutions in the case of an operator which has not a dense range. An abstract framework for data assimilation
problems is introduced in Section 3, to which the results obtained in Section 2 are applied. In Section 4, we
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analyze three particular cases of our general data assimilation framework: the data assimilation problem for the
Laplace equation, the Cauchy problem for the Laplace equation, lastly the data assimilation problem for the
heat equation. Section 5 is dedicated to numerical experiments related to the first particular case. Lastly, an
appendix summarizes the theory of duality in optimization exposed in [17].

2. The Morozov’s principle revisited

2.1. The Tikhonov regularization and the Morozov’s principle

We first extend a well-known result related to the Tikhonov regularization for operators which have a dense
range (see e.g. Sect. 2.5 in [20] for the restricted case of a compact operator) to the case of operators which
don’t satisfy this property. Let 𝐴 : 𝑉 → 𝐻 be a linear bounded operator from the Hilbert space 𝑉 to another
Hilbert space 𝐻. We assume that 𝐴 is injective. In what follows, for a family (𝑢𝜀)𝜀 of functions depending on
the real parameter 𝜀 > 0, we will frequently use a slight abuse of notations: each time the family (𝑢𝜀)𝜀 will
be called a sequence, we mean that we may choose any sequence (𝜀𝑛)𝑛∈N, such that 𝜀𝑛 → 0 when 𝑛 → +∞.
Extracting a subsequence of (𝑢𝜀)𝜀 means that we have extracted a subsequence of that particular sequence of
(𝜀𝑛)𝑛∈N.

Theorem 2.1. For some 𝛿 > 0, let us assume that the data 𝑔𝛿 ∈ 𝐻 is such that⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿 <
⃦⃦
𝑔𝛿

⃦⃦
𝐻

, (2.1)

where 𝑔𝛿
⊥ is the orthogonal projection of 𝑔𝛿 on (Range 𝐴)⊥.

For 𝜀 > 0, let us denote 𝑢𝛿
𝜀 ∈ 𝑉 the regularized solution associated with data 𝑔𝛿 in the sense of Tikhonov,

which is defined by the weak formulation(︀
𝐴𝑢𝛿

𝜀, 𝐴𝑣
)︀
𝐻

+ 𝜀
(︀
𝑢𝛿

𝜀, 𝑣
)︀
𝑉

=
(︀
𝑔𝛿, 𝐴𝑣

)︀
𝐻

, ∀𝑣 ∈ 𝑉. (2.2)

There exists a unique 𝜀 > 0 such that ⃦⃦
𝐴𝑢𝛿

𝜀 − 𝑔𝛿
⃦⃦

𝐻
= 𝛿. (2.3)

Proof. Let us introduce, for 𝜀 > 0, the function

𝐸𝛿(𝜀) =
⃦⃦
𝐴𝑢𝛿

𝜀 − 𝑔𝛿
⃦⃦2

𝐻
,

which is differentiable and satisfies

d𝐸𝛿

d𝜀
(𝜀) = 2

(︀
𝐴𝑢𝛿

𝜀 − 𝑔𝛿, 𝐴𝑣𝛿
𝜀

)︀
𝐻

, ∀𝜀 > 0,

where 𝑣𝛿
𝜀 ∈ 𝑉 is uniquely defined by(︀

𝐴𝑣𝛿
𝜀 , 𝐴𝑣

)︀
𝐻

+ 𝜀
(︀
𝑣𝛿

𝜀 , 𝑣
)︀
𝑉

= −
(︀
𝑢𝛿

𝜀, 𝑣
)︀
𝑉

, ∀𝑣 ∈ 𝑉. (2.4)

By choosing 𝑣 = 𝑣𝛿
𝜀 in (2.2),

d𝐸𝛿

d𝜀
(𝜀) = −2𝜀

(︀
𝑢𝛿

𝜀, 𝑣
𝛿
𝜀

)︀
𝑉

, ∀𝜀 > 0.

Then choosing 𝑣 = 𝑣𝛿
𝜀 in (2.4), we find

d𝐸𝛿

d𝜀
(𝜀) = 2𝜀

(︁⃦⃦
𝐴𝑣𝛿

𝜀

⃦⃦2

𝐻
+ 𝜀‖𝑣𝛿

𝜀‖2𝑉
)︁
, ∀𝜀 > 0.

Obviously d𝐸𝛿/d𝜀 ≥ 0, and more precisely d𝐸𝛿/d𝜀 > 0. Indeed, let us assume that d𝐸𝛿/d𝜀 = 0. It follows from
the above identity that 𝑣𝛿

𝜀 = 0, and from (2.4) that 𝑢𝛿
𝜀 = 0. From (2.2) we hence infer that (𝑔𝛿, 𝐴𝑣)𝑉 = 0 for
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all 𝑣 ∈ 𝑉 , that is 𝑔𝛿 ∈ (Range 𝐴)⊥, in other words 𝑔𝛿 = 𝑔𝛿
⊥. But there is a contradiction with the fact that⃦⃦

𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿 <
⃦⃦
𝑔𝛿

⃦⃦
𝐻

. We conclude that the function 𝐸𝛿 is a continuous and non-decreasing function in the
interval (0, +∞).

Now let us prove that
lim
𝜀→0

𝐸𝛿(𝜀) =
⃦⃦
𝑔𝛿
⊥

⃦⃦2

𝐻
and lim

𝜀→+∞
𝐸𝛿(𝜀) =

⃦⃦
𝑔𝛿

⃦⃦2

𝐻
.

By choosing 𝑣 = 𝑢𝛿
𝜀 in (2.2), we firstly obtain that

‖𝐴𝑢𝛿
𝜀‖𝐻 ≤

⃦⃦
𝑔𝛿

⃦⃦
𝐻

, (2.5)

and secondly that

‖𝑢𝛿
𝜀‖𝑉 ≤

⃦⃦
𝑔𝛿

⃦⃦
𝐻√

𝜀
· (2.6)

This implies that (𝑢𝛿
𝜀)𝜀 converges to 0 in 𝑉 when 𝜀 → +∞, and then 𝐸𝛿(𝜀) converges to

⃦⃦
𝑔𝛿

⃦⃦2

𝐻
when 𝜀 tends

to +∞.
Since the function 𝐸𝛿 is non-negative and non-decreasing, it has a limit when 𝜀 tends to 0. As by (2.5),

(𝐴𝑢𝛿
𝜀)𝜀 is bounded, we can extract from (𝑢𝛿

𝜀)𝜀 a subsequence, that we still denote (𝑢𝛿
𝜀)𝜀, such that (𝐴𝑢𝛿

𝜀)𝜀

weakly converges to some ℎ ∈ 𝐻. In fact, ℎ ∈ Range 𝐴 because the space Range 𝐴 is weakly closed. We have,
in view of (2.6), ⃒⃒(︀

𝐴𝑢𝛿
𝜀 − 𝑔𝛿, 𝐴𝑣

)︀
𝐻

⃒⃒
=

⃒⃒
−𝜀

(︀
𝑢𝛿

𝜀, 𝑣
)︀
𝑉

⃒⃒
≤
√

𝜀
⃦⃦
𝑔𝛿

⃦⃦
𝐻
‖𝑣‖𝑉 → 0, ∀𝑣 ∈ 𝑉,

when 𝜀 → 0. But we also have (︀
𝐴𝑢𝛿

𝜀 − 𝑔𝛿, 𝐴𝑣
)︀
𝐻
→

(︀
ℎ− 𝑔𝛿, 𝐴𝑣

)︀
𝐻

, ∀𝑣 ∈ 𝑉,

when 𝜀 → 0. We conclude that ℎ − 𝑔𝛿 ∈ (Range 𝐴)⊥. Since we have the decomposition 𝐻 =
Range 𝐴

⨁︀
(Range 𝐴)⊥, we get that ℎ = 𝑔𝛿

�, where 𝑔𝛿
� is the orthogonal projection of data 𝑔𝛿 on Range 𝐴,

while 𝑔𝛿−𝑔𝛿
� = 𝑔𝛿

⊥. Hence (𝐴𝑢𝛿
𝜀)𝜀 weakly converges to 𝑔𝛿

� in 𝐻, and subsequently, (𝐴𝑢𝛿
𝜀−𝑔𝛿)𝜀 weakly converges

to −𝑔𝛿
⊥ in 𝐻.

On the one hand, we have⃦⃦
𝑔𝛿
⊥

⃦⃦2

𝐻
≤ lim inf

𝜀→0

⃦⃦
𝐴𝑢𝛿

𝜀 − 𝑔𝛿
⃦⃦2

𝐻
= lim inf

𝜀→0
𝐸𝛿(𝜀) = lim

𝜀→0
𝐸𝛿(𝜀).

On the other hand, we have

𝐸𝛿(𝜀) =
⃦⃦
𝐴𝑢𝛿

𝜀 − 𝑔𝛿
⃦⃦2

𝐻
=

(︀
𝐴𝑢𝛿

𝜀 − 𝑔𝛿, 𝐴𝑢𝛿
𝜀

)︀
𝐻
−

(︀
𝐴𝑢𝛿

𝜀 − 𝑔𝛿, 𝑔𝛿
)︀
𝐻

= −𝜀‖𝑢𝛿
𝜀‖2𝑉 −

(︀
𝐴𝑢𝛿

𝜀 − 𝑔𝛿, 𝑔𝛿
)︀
𝐻
≤ −

(︀
𝐴𝑢𝛿

𝜀 − 𝑔𝛿, 𝑔𝛿
)︀
𝐻

,

which implies that
lim
𝜀→0

𝐸𝛿(𝜀) ≤
(︀
𝑔𝛿
⊥, 𝑔𝛿

)︀
𝐻

=
⃦⃦
𝑔𝛿
⊥

⃦⃦2

𝐻
.

We conclude that 𝐸𝛿(𝜀) →
⃦⃦
𝑔𝛿
⊥

⃦⃦2

𝐻
when 𝜀 → 0. Finally since 𝐸𝛿(0+) =

⃦⃦
𝑔𝛿
⊥

⃦⃦2

𝐻
< 𝛿2 < 𝐸𝛿(+∞) =

⃦⃦
𝑔𝛿

⃦⃦2

𝐻
,

since 𝐸𝛿 is a non-decreasing continuous function of 𝜀, there exists a unique 𝜀 > 0 such that 𝐸𝛿(𝜀) = 𝛿2, which
completes the proof. �

Remark 2.2. In the particular case when the operator 𝐴 has a dense range, that is (Range 𝐴)⊥ = {0}, we
have of course 𝑔𝛿

⊥ = 0, so that the assumption
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿 is automatically satisfied. This is why Theorem 2.1
is a generalization of the result given in [20] (see Thm. 2.17).
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The context of Theorem 2.1 could be the following: we consider an idealized exact problem which consists,
for the exact data 𝑔 ∈ 𝐻, in finding the exact solution 𝑢 ∈ 𝑉 such that

𝐴𝑢 = 𝑔.

However, in practice such exact problem is impossible to solve, because the exact data 𝑔 ∈ 𝐻 is unknown.
Instead, we measure some noisy data 𝑔𝛿 such that⃦⃦

𝑔𝛿 − 𝑔
⃦⃦

𝐻
= 𝛿, (2.7)

where 𝛿 is the amplitude of noise. The objective is to find a solution in 𝑉 from data 𝑔𝛿 which is close to 𝑢,
in particular when such noisy data 𝑔𝛿 does not belong to the range of 𝐴. The Tikhonov regularization, which
consists in computing 𝑢𝛿

𝜀 with the help of (2.2) for some 𝜀 > 0, is a classical way to approximate 𝑢. It is
well-known that for 𝛿 = 0, that is for exact data 𝑔, the corresponding Tikhonov solution 𝑢𝜀 converges to 𝑢 in
𝑉 when 𝜀 tends to 0. When 𝛿 > 0 however, choosing 𝜀 is not easy. In particular, each time 𝑔𝛿 /∈ Range 𝐴, the
norm ‖𝑢𝛿

𝜀‖𝑉 tends to +∞ when 𝜀 tends to 0. The Morozov’s principle is a classical way of choosing 𝜀 such that
(2.3) is satisfied. The general idea of the Morozov’s principle is the following: since from (2.7) the data 𝑔𝛿 is
corrupted by some noise of amplitude 𝛿, a solution to the problem 𝐴𝑢𝛿 = 𝑔𝛿 might fail to exist, and it is not
worth computing a Tikhonov solution such that 𝐴𝑢𝛿

𝜀 ≃ 𝑔𝛿 be satisfied with a better accuracy than 𝛿. More
precisely, the Morozov’s value 𝜀 is chosen so that the error

⃦⃦
𝐴𝑢𝛿

𝜀 − 𝑔𝛿
⃦⃦

𝐻
made in the resolution of the problem

exactly coincides with the amplitude of noise 𝛿. A justification of the Morozov’s rule is given by the following
result. The proof is omitted since it is exactly the one given in Theorem 2.17 of [20] in the restricted case when
𝐴 is a compact operator with dense range (in fact, the proof does not use these two assumptions).

Proposition 2.3. With the same assumptions as in Theorem 2.1 and assumption (2.7), let us denote 𝜀(𝛿) the
value of 𝜀 given by (2.3) and 𝑢𝛿

𝜀(𝛿) the corresponding solution to (2.2). Then

lim
𝛿→0

𝑢𝛿
𝜀(𝛿) = 𝑢 in 𝑉.

Remark 2.4. It should be noted that in the context which is described above, that is
⃦⃦
𝑔𝛿 − 𝑔

⃦⃦
𝐻

= 𝛿, where 𝑔

is the exact data, the assumption
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿 is very unlikely to be violated. Indeed, let us denote 𝑟𝛿 = 𝑔𝛿 − 𝑔

the perturbation between the noisy and the exact data, and let us use the decomposition 𝑟𝛿 = 𝑟𝛿
� + 𝑟𝛿

⊥, with
𝑟𝛿
� ∈ Range A and 𝑟𝛿

⊥ ∈ (Range 𝐴)⊥. Since 𝑔 ∈ Range A, we have⃦⃦
𝑔𝛿
⊥

⃦⃦2

𝐻
=

⃦⃦
𝑟𝛿
⊥

⃦⃦2

𝐻
= 𝛿2 −

⃦⃦⃦
𝑟𝛿
�

⃦⃦⃦2

𝐻
,

so that
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿 unless 𝑟𝛿
� = 0, that is if and only if the perturbation 𝑟𝛿 only has a contribution in (Range 𝐴)⊥.

2.2. Interpretation of the Morozov’s principle with duality in optimization

Now let us introduce and study a minimization problem which will be later on related to the Morozov’s
principle. We consider an orthogonal projector 𝑃 : 𝐻 → 𝐻 on a closed subspace of 𝐻 such that 𝑃 is compact
and Range 𝑃 ⊂ Range 𝐴. The operator 𝑃 will enable us to enforce the approximate solution to satisfy some
a priori constraints, as will be clarified later.

We consider the problem
(P*

𝑃 ) inf
𝑞∈𝐻

𝐺𝛿
𝑃 (𝑞), (2.8)

the functional 𝐺𝛿
𝑃 being defined, for all 𝑞 ∈ 𝐻, by

𝐺𝛿
𝑃 (𝑞) =

1
2
‖𝐴*𝑞‖2𝑉 + 𝛿 ‖(𝐼 − 𝑃 )𝑞‖𝐻 −

(︀
𝑔𝛿, 𝑞

)︀
𝐻

, (2.9)

where 𝐼 : 𝐻 → 𝐻 is the identity operator and 𝐴* : 𝐻 → 𝑉 is the adjoint operator of 𝐴.
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Lemma 2.5. The function 𝐺𝛿
𝑃 is coercive if and only if the data 𝑔𝛿 satisfies

⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿.

Proof. Let us assume that
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿 and let us prove that 𝐺𝛿
𝑃 (𝑞) → +∞ when ‖𝑞‖𝐻 → +∞. Assume

on the contrary that there exists some constant 𝐶 > 0 and a sequence (𝑞𝑛)𝑛∈N of elements in 𝐻 such that
𝛼𝑛 = ‖𝑞𝑛‖𝐻 → +∞ while 𝐺(𝑞𝑛) ≤ 𝐶. Let us define 𝑧𝑛 = 𝑞𝑛/‖𝑞𝑛‖𝐻 . Since ‖𝑧𝑛‖𝐻 = 1, there exists a subsequence
of (𝑧𝑛)𝑛, still denoted (𝑧𝑛)𝑛, such that 𝑧𝑛 ⇀ 𝑧 in 𝐻. We have

𝛼2
𝑛

2
‖𝐴*𝑧𝑛‖2𝑉 + 𝛼𝑛𝛿‖(𝐼 − 𝑃 )𝑧𝑛‖𝐻 − 𝛼𝑛

(︀
𝑔𝛿, 𝑧𝑛

)︀
𝐻
≤ 𝐶, (2.10)

hence
1
2
‖𝐴*𝑧𝑛‖2𝑉 ≤ 1

𝛼𝑛

(︀
𝑔𝛿, 𝑧𝑛

)︀
𝐻

+
𝐶

𝛼2
𝑛

,

which implies that 𝐴*𝑧𝑛 → 0 in 𝑉 and since 𝐴*𝑧𝑛 ⇀ 𝐴*𝑧 in 𝑉 , we get that 𝐴*𝑧 = 0, that is 𝑧 ∈ Ker 𝐴* =
(Range 𝐴)⊥.

Another consequence of (2.10) is

𝛿‖(𝐼 − 𝑃 )𝑧𝑛‖𝐻 ≤
(︀
𝑔𝛿, 𝑧𝑛

)︀
𝐻

+
𝐶

𝛼𝑛

=
(︀
𝑔𝛿, 𝑧

)︀
𝐻
−

(︀
𝑔𝛿, 𝑧 − 𝑧𝑛

)︀
𝐻

+
𝐶

𝛼𝑛

=
(︀
𝑔𝛿
⊥, 𝑧

)︀
𝐻
−

(︀
𝑔𝛿, 𝑧 − 𝑧𝑛

)︀
𝐻

+
𝐶

𝛼𝑛

=
(︀
𝑔𝛿
⊥, (𝐼 − 𝑃 )𝑧

)︀
𝐻
−

(︀
𝑔𝛿, 𝑧 − 𝑧𝑛

)︀
𝐻

+
𝐶

𝛼𝑛

≤
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻
‖(𝐼 − 𝑃 )𝑧‖𝐻 +

⃒⃒(︀
𝑔𝛿, 𝑧 − 𝑧𝑛

)︀
𝐻

⃒⃒
+

𝐶

𝛼𝑛
,

where the second equality comes from the fact that 𝑧 ∈ (Range 𝐴)⊥ and the third one from the fact that
Range 𝑃 ⊂ Range 𝐴. Now, since (𝐼 − 𝑃 )𝑧𝑛 ⇀ (𝐼 − 𝑃 )𝑧 in 𝐻, we have

𝛿‖(𝐼 − 𝑃 )𝑧‖𝐻 ≤ lim inf
𝑛→+∞

𝛿‖(𝐼 − 𝑃 )𝑧𝑛‖𝐻

≤ lim inf
𝑛→+∞

(︂⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻
‖(𝐼 − 𝑃 )𝑧‖𝐻 + |

(︀
𝑔𝛿, 𝑧 − 𝑧𝑛

)︀
𝐻
|+ 𝐶

𝛼𝑛

)︂
=

⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻
‖(𝐼 − 𝑃 )𝑧‖𝐻 .

Since
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿, we obtain that (𝐼 − 𝑃 )𝑧 = 0, in particular 𝑧 ∈ Range 𝑃 ⊂ Range 𝐴, which together with
𝑧 ∈ (Range 𝐴)⊥ implies 𝑧 = 0.

Suppose finally that (𝐼 −𝑃 )𝑧𝑛 → 0 in 𝐻. That 𝑃 is a compact operator and 𝑧𝑛 ⇀ 0 in 𝐻 yields 𝑃𝑧𝑛 → 0 in
𝐻, hence 𝑧𝑛 → 0 in 𝐻. But this contradicts the fact that ‖𝑧𝑛‖𝐻 = 1 for all 𝑛. Then we can find a real 𝜀 > 0
and a subsequence of (𝑧𝑛)𝑛, still denoted (𝑧𝑛)𝑛, such that ‖(𝐼 − 𝑃 )𝑧𝑛‖𝐻 ≥ 𝜀 for all 𝑛. As a result, in view of
(2.10),

𝐶 ≥ 𝛼𝑛

(︀
𝛿𝜀−

(︀
𝑔𝛿, 𝑧𝑛

)︀
𝐻

)︀
→ +∞.

Such contradiction proves that 𝐺𝛿
𝑃 is coercive if

⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿.
Let us prove the converse statement, that is

⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻
≥ 𝛿, implies that 𝐺𝛿

𝑃 is not coercive. For 𝛼 ∈ R, by
setting 𝑞 = 𝛼𝑔𝛿

⊥ ∈ 𝐻 in 𝐺𝛿
𝑃 (𝑞) we get

𝐺𝛿
𝑃 (𝛼𝑔⊥) =

𝛼2

2

⃦⃦
𝐴*𝑔𝛿

⊥
⃦⃦

𝑉
+ 𝛼𝛿

⃦⃦
(𝐼 − 𝑃 )𝑔𝛿

⊥
⃦⃦

𝐻
− 𝛼

⃦⃦
𝑔𝛿
⊥

⃦⃦2

𝐻
.
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We observe that 𝑔𝛿
⊥ ∈ (Range 𝐴)⊥ = Ker𝐴*. The operator 𝑃 is self-adjoint as an orthogonal projector. Since in

addition Range 𝑃 ⊂ Range 𝐴, we also observe that 𝑔𝛿
⊥ ∈ (Range 𝑃 )⊥ = Ker𝑃 . We conclude that

𝐺𝛿
𝑃 (𝛼𝑔⊥) = 𝛼

(︁
𝛿
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻
−

⃦⃦
𝑔𝛿
⊥

⃦⃦2

𝐻

)︁
.

If
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

> 𝛿, then
⃦⃦
𝑔𝛿
⊥

⃦⃦2

𝐻
> 𝛿

⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

, so that 𝐺𝛿
𝑃 (𝛼𝑔⊥) → −∞ when 𝛼 → +∞. If

⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

= 𝛿, then
𝐺𝛿

𝑃 (𝛼𝑔⊥) = 0. In both cases, the functional 𝐺𝛿
𝑃 is not coercive. �

From Lemma 2.5, by introducing the set

𝐾𝛿
𝑃 =

{︀
𝑣 ∈ 𝑉,

⃦⃦
𝐴𝑣 − 𝑔𝛿

⃦⃦
𝐻
≤ 𝛿, 𝑃𝐴𝑣 = 𝑃𝑔𝛿

}︀
,

we obtain the following theorem.

Theorem 2.6. If
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿, the optimization problem (2.8) has at least one solution 𝑝𝛿 ∈ 𝐻. Then 𝑢𝛿 = 𝐴*𝑝𝛿

belongs to the set 𝐾𝛿
𝑝 and we have the identity⃦⃦

𝑢𝛿
⃦⃦2

𝑉
+ 2 𝐺𝛿

𝑃 (𝑝𝛿) = 0. (2.11)

Proof. The functional 𝐺𝛿
𝑃 is continuous and convex on 𝐻. Existence of a minimizer 𝑝𝛿 of 𝐺𝛿

𝑃 is then a conse-
quence of the coercivity of 𝐺𝛿

𝑃 by Lemma 2.5. Let us define 𝑢𝛿 = 𝐴*𝑝𝛿. We consider two cases.
Let us firstly assume that (𝐼 − 𝑃 )𝑝𝛿 ̸= 0. The optimality of 𝐺𝛿

𝑃 at 𝑝𝛿 writes

(︀
𝐴*𝑝𝛿, 𝐴*𝑞

)︀
𝑉

+
𝛿

‖(𝐼 − 𝑃 )𝑝𝛿‖𝐻

(︀
(𝐼 − 𝑃 )𝑝𝛿, (𝐼 − 𝑃 )𝑞

)︀
𝐻
−

(︀
𝑔𝛿, 𝑞

)︀
𝐻

= 0, ∀𝑞 ∈ 𝐻,

which implies, since (𝐼 − 𝑃 )2 = 𝐼 − 𝑃 ,

𝐴𝑢𝛿 − 𝑔𝛿 = − 𝛿

‖(𝐼 − 𝑃 )𝑝𝛿‖𝐻

(𝐼 − 𝑃 )𝑝𝛿. (2.12)

We conclude that
⃦⃦
𝐴𝑢𝛿 − 𝑔𝛿

⃦⃦
𝐻

= 𝛿 and 𝑃𝐴𝑢𝛿 = 𝑃𝑔𝛿, that is 𝑢𝛿 ∈ 𝐾𝛿
𝑃 . In addition, we have⃦⃦

𝑢𝛿
⃦⃦2

𝑉
+ 2 𝐺𝛿

𝑃

(︀
𝑝𝛿

)︀
=

⃦⃦
𝑢𝛿

⃦⃦2

𝑉
+

⃦⃦
𝐴*𝑝𝛿

⃦⃦2

𝑉
+ 2𝛿

⃦⃦
(𝐼 − 𝑃 )𝑝𝛿

⃦⃦
𝐻
− 2

(︀
𝑔𝛿, 𝑝𝛿

)︀
𝐻

= 2
(︀
𝐴𝑢𝛿 − 𝑔𝛿, 𝑝𝛿

)︀
𝐻

+ 2𝛿
⃦⃦

(𝐼 − 𝑃 )𝑝𝛿
⃦⃦

𝐻

= − 2𝛿

‖(𝐼 − 𝑃 )𝑝𝛿‖𝐻

(︀
(𝐼 − 𝑃 )𝑝𝛿, 𝑝𝛿

)︀
𝐻

+ 2𝛿
⃦⃦

(𝐼 − 𝑃 )𝑝𝛿
⃦⃦

𝐻

= 0,

where the third equality is a consequence of (2.12).
Let us on the contrary assume that (𝐼 − 𝑃 )𝑝𝛿 = 0. Then the functional 𝐺𝛿

𝑃 is not differentiable at point 𝑝𝛿.
The optimality however writes 0 ∈ 𝜕𝐺𝛿

𝑃 (𝑝𝛿), where 𝜕𝐺𝛿
𝑃 (𝑝𝛿) denotes the subdifferential of 𝐺𝛿

𝑃 at point 𝑝𝛿. In
view of (2.9), and by using the classical rules for subdifferential computations, we have

𝜕𝐺𝛿
𝑃 (𝑝𝛿) = 𝐴𝐴*𝑝𝛿 − 𝑔𝛿 + 𝛿(𝐼 − 𝑃 )𝜕(‖ · ‖𝐻)(0).

Since 𝜕(‖ · ‖𝐻)(0) is the unit ball of 𝐻 centered at 0, that 0 ∈ 𝜕𝐺𝛿
𝑃 (𝑝𝛿) implies that

⃦⃦
𝐴𝑢𝛿 − 𝑔𝛿

⃦⃦
𝐻
≤ 𝛿. In

addition, we have
𝐺𝛿

𝑃 (𝑝𝛿) = inf
𝑞∈𝐻

𝐺𝛿
𝑃 (𝑞) ≤ inf

𝑞∈Range 𝑃
𝐺𝛿

𝑃 (𝑞) = inf
𝑞∈Range 𝑃

𝐺̃𝛿(𝑞),
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where
𝐺̃𝛿(𝑞) =

1
2
‖𝐴*𝑞‖2𝑉 −

(︀
𝑔𝛿, 𝑞

)︀
𝐻

.

Since 𝑝𝛿 ∈ Range 𝑃 , in fact we have

𝐺𝛿
𝑃 (𝑝𝛿) = 𝐺̃𝛿(𝑝𝛿) = inf

𝑞∈Range 𝑃
𝐺̃𝛿(𝑞).

The optimality of 𝐺̃𝛿 in Range 𝑃 at point 𝑝𝛿 writes(︀
𝐴*𝑝𝛿, 𝐴*𝑞

)︀
𝑉
−

(︀
𝑔𝛿, 𝑞

)︀
𝐻

= 0, ∀𝑞 ∈ Range 𝑃,

which amounts to
𝐴𝑢𝛿 − 𝑔𝛿 ∈ (Range 𝑃 )⊥ = Ker𝑃. (2.13)

We conclude that 𝑢𝛿 ∈ 𝐾𝛿
𝑃 . In addition,⃦⃦

𝑢𝛿
⃦⃦2

𝑉
+ 2 𝐺𝛿

𝑃 (𝑝𝛿) =
⃦⃦
𝑢𝛿

⃦⃦2

𝑉
+

⃦⃦
𝐴*𝑝𝛿

⃦⃦2

𝑉
− 2

(︀
𝑔𝛿, 𝑝𝛿

)︀
𝐻

= 2
(︀
𝐴𝑢𝛿 − 𝑔𝛿, 𝑝𝛿

)︀
𝐻

= 0,

the last equality being a consequence of (2.13). The proof is complete. �

In order to give a precise meaning to 𝑢𝛿, we need the following lemma.

Lemma 2.7. For all 𝑣 ∈ 𝐾𝛿
𝑃 ∖ {𝑢𝛿}, it holds that ‖𝑣‖𝑉 > ‖𝑢𝛿‖𝑉 .

Proof. Assume that 𝑣 ∈ 𝐾𝛿
𝑃 and let us introduce 𝑞 = 𝑔𝛿 −𝐴𝑣, which satisfies ‖𝑞‖𝐻 ≤ 𝛿 and 𝑃𝑞 = 0. We have

1
2
(︀
‖𝑣‖2𝑉 − ‖𝑢𝛿‖2𝑉

)︀
=

1
2
‖𝑣‖2𝑉 + 𝐺𝛿

𝑃

(︀
𝑝𝛿

)︀
=

1
2
‖𝑣‖2𝑉 +

1
2

⃦⃦
𝐴*𝑝𝛿

⃦⃦2

𝑉
+ 𝛿

⃦⃦
(𝐼 − 𝑃 )𝑝𝛿

⃦⃦
𝐻
−

(︀
𝑔𝛿, 𝑝𝛿

)︀
𝐻

=
1
2
‖𝑣‖2𝑉 +

1
2
‖𝑢𝛿‖2𝑉 + 𝛿

⃦⃦
(𝐼 − 𝑃 )𝑝𝛿

⃦⃦
𝐻
−

(︀
𝐴𝑣, 𝑝𝛿

)︀
𝐻
−

(︀
𝑞, 𝑝𝛿

)︀
𝐻

=
1
2
‖𝑣‖2𝑉 +

1
2
‖𝑢𝛿‖2𝑉 − (𝑣, 𝑢𝛿)𝑉 + 𝛿

⃦⃦
(𝐼 − 𝑃 )𝑝𝛿

⃦⃦
𝐻
−

(︀
(𝐼 − 𝑃 )𝑞, 𝑝𝛿

)︀
𝐻

=
1
2

⃦⃦
𝑣 − 𝑢𝛿

⃦⃦2

𝑉
+ 𝛿

⃦⃦
(𝐼 − 𝑃 )𝑝𝛿

⃦⃦
𝐻
−

(︀
𝑞, (𝐼 − 𝑃 )𝑝𝛿

)︀
𝐻

≥ 1
2

⃦⃦
𝑣 − 𝑢𝛿

⃦⃦2

𝑉
,

where the first equality is a consequence of (2.11), while the fourth one is a consequence of 𝑃𝑞 = 0 and the last
inequality uses that ‖𝑞‖𝐻 ≤ 𝛿. The proof is complete. �

Theorem 2.8. If
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿, for any solution 𝑝𝛿 ∈ 𝐻 to the minimization problem (2.8), 𝑢𝛿 = 𝐴*𝑝𝛿 ∈ 𝑉 is
the unique solution to the minimization problem

(P𝑃 ) inf
𝑣∈𝐾𝛿

𝑃

‖𝑣‖2𝑉 . (2.14)

Proof. We first remark that the optimization problem (2.14) has a unique solution. Indeed, the set 𝐾𝛿
𝑃 is convex,

closed and non-empty (it contains 𝑢𝛿 from Thm. 2.6). In addition, the cost function to minimize is coercive and
strictly convex. Lemma 2.7 shows that 𝑢𝛿 coincides with the unique solution to such problem (2.14). �
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Remark 2.9. An important consequence of Theorem 2.8 is that 𝑢𝛿 = 𝐴*𝑝𝛿 does not depend on the solution
𝑝𝛿 to the optimization problem (2.8).

The following result specifies in which sense 𝑢𝛿 is an approximation of the exact solution 𝑢.

Theorem 2.10. Let us assume that 𝑔𝛿 satisfies (2.1) and (2.7). If in addition 𝑃𝑔𝛿 = 𝑃𝑔, then

lim
𝛿→0

𝑢𝛿 = 𝑢 in 𝑉.

Proof. We have
‖𝐴𝑢− 𝑔𝛿‖𝐻 = ‖𝑔 − 𝑔𝛿‖𝐻 = 𝛿

and 𝑃𝐴𝑢 = 𝑃𝑔𝛿, so that 𝑢 ∈ 𝐾𝛿
𝑃 . By Lemma 2.7 we obtain that ‖𝑢𝛿‖𝑉 ≤ ‖𝑢‖𝑉 . From the sequence (𝑢𝛿)𝛿 in 𝑉 ,

we can then extract a subsequence still denoted (𝑢𝛿)𝛿, such that 𝑢𝛿 ⇀ 𝑤 in 𝑉 when 𝛿 → 0. Besides, we have
both 𝐴𝑢𝛿 → 𝑔 in 𝐻 and 𝐴𝑢𝛿 ⇀ 𝐴𝑤 in 𝐻, hence 𝐴𝑤 = 𝑔, that is 𝑤 = 𝑢 from the injectivity of 𝐴. As a result,
𝑢𝛿 ⇀ 𝑢 in 𝑉 . Then ⃦⃦

𝑢𝛿 − 𝑢
⃦⃦2

𝑉
=

⃦⃦
𝑢𝛿

⃦⃦2

𝑉
+ ‖𝑢‖2𝑉 − 2

(︀
𝑢𝛿, 𝑢

)︀
𝑉
≤ 2

(︀
𝑢− 𝑢𝛿, 𝑢

)︀
𝑉

,

and we get that 𝑢𝛿 → 𝑢 in 𝑉 . We easily conclude that all the sequence (𝑢𝛿)𝛿, and not only a subsequence,
converges to 𝑢 in 𝑉 . �

We wish now, in the particular case when 𝑃 = 0, to relate the solutions 𝑝𝛿 which minimize the functional
𝐺𝛿

0 (note that 𝐺𝛿
0 coincides with the functional 𝐺𝛿

𝑃 given by (2.9) when 𝑃 = 0) to the classical solution of the
Tikhonov regularized problem associated with operator 𝐴 when the regularization parameter is chosen according
to the Morozov’s discrepancy principle. We hence consider the minimization problem

(P*) inf
𝑞∈𝐻

𝐺𝛿
0(𝑞) = inf

𝑞∈𝐻

(︂
1
2
‖𝐴*𝑞‖2𝑉 + 𝛿 ‖𝑞‖𝐻 −

(︀
𝑔𝛿, 𝑞

)︀
𝐻

)︂
. (2.15)

The solutions to problem (P*) will enable us to obtain a practical method to compute the Morozov’s value
𝜀(𝛿) > 0 given by Theorem 2.1 and the corresponding Tikhonov solution 𝑢𝛿

𝜀. In the appendix, we show how the
problem (2.15) can be derived in a constructive way by using the theory exposed in [17].

Theorem 2.11. If the noisy data 𝑔𝛿 satisfies the assumption (2.1), the problem (P*) given by (2.15) has at
least one solution, and 𝑢𝛿 = 𝐴*𝑝𝛿 coincides with the Tikhonov solution 𝑢𝛿

𝜀 of problem (2.2) where 𝜀(𝛿) is the
unique value of 𝜀 > 0 such that

⃦⃦
𝐴𝑢𝛿

𝜀 − 𝑔𝛿
⃦⃦

𝐻
= 𝛿 according to Theorem 2.1. Lastly, 𝑝𝛿 ̸= 0 and

𝜀(𝛿) =
𝛿

‖𝑝𝛿‖𝐻
·

Proof. From Theorem 2.6, we already know that the problem (P*) has solutions which are denoted 𝑝𝛿. Let us
verify that 𝑝𝛿 ̸= 0. Actually, let us take 𝑔𝛿

1 = 𝑔𝛿/
⃦⃦
𝑔𝛿

⃦⃦
𝐻

. For 𝜀 > 0, we have

𝐺𝛿
0

(︀
𝜀𝑔𝛿

1

)︀
=

𝜀2

2

⃦⃦
𝐴*𝑔𝛿

1

⃦⃦2

𝑉
+ 𝜀

(︀
𝛿 −

⃦⃦
𝑔𝛿

⃦⃦
𝐻

)︀
.

If 𝜀 is sufficiently small, 𝐺𝛿
0

(︀
𝜀𝑔𝛿

1

)︀
has the sign of 𝛿 −

⃦⃦
𝑔𝛿

⃦⃦
𝐻

< 0, hence there exists 𝑞 ∈ 𝐻 such that 𝐺𝛿
0(𝑞) <

0 = 𝐺𝛿
0(0), and the solutions 𝑝𝛿 do not vanish. From the proof of Theorem 2.6 in the case 𝑃 = 0, in particular

in view of (2.12), if we denote 𝑢𝛿 = 𝐴*𝑝𝛿, we directly obtain that 𝑢𝛿 satisfies the Morozov’s principle⃦⃦
𝐴𝑢𝛿 − 𝑔𝛿

⃦⃦
𝐻

= 𝛿

and the equation

𝐴*(𝐴𝑢𝛿) +
𝛿

‖𝑝𝛿‖𝐻
𝑢𝛿 = 𝐴*𝑔𝛿.
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We hence conclude that if we take 𝜀(𝛿) = 𝛿/‖𝑝𝛿‖𝐻 , the function 𝑢𝛿 satisfies 𝐴*(𝐴𝑢𝛿) + 𝜀(𝛿)𝑢𝛿 = 𝐴*𝑔𝛿, which
means that it is the unique solution 𝑢𝛿

𝜀 to the problem (2.2) associated with that 𝜀(𝛿) and furthermore satisfies
the Morozov’s principle. �

Remark 2.12. In the case when 𝑃 = 0, the above theorem provides a strategy to find the Tikhonov/Morozov
solution associated with noisy data 𝑔𝛿. It consists in finding first a solution to problem (P*). The Morozov
solution is then obtained by applying 𝐴* to any solution of (P*).

In the case when the operator 𝑃 is not 0, for 𝑝𝛿 the solutions to problem (P*
𝑃 ), the corresponding solutions

𝑢𝛿 = 𝐴*𝑝𝛿 can not be related to the Tikhonov problem (2.2). However, since
⃦⃦
𝐴𝑢𝛿 − 𝑔𝛿

⃦⃦
𝐻
≤ 𝛿, they satisfy

the Morozov’s principle in the sense of an inequality instead of an equality when 𝛿 =
⃦⃦
𝑔𝛿 − 𝑔

⃦⃦
𝐻

. The role of
the operator 𝑃 is to impose that 𝑃𝐴𝑢𝛿 = 𝑃𝑔𝛿, which ensures that some particular reliable features of the data
𝑔𝛿 are satisfied exactly by 𝐴𝑢𝛿. For example, the noise often affects the high frequencies of the measurements.
Hence we are tempted to be more confident in the low frequencies of the data than in their high frequencies. It
is then natural to impose that a finite number of low frequency components of the data be exactly satisfied by
the approximate solution, which can be achieved by using a specific operator 𝑃 . We will present some examples
of projector 𝑃 in the case of the data assimilation problem for the Laplace equation.

3. An abstract framework for data assimilation problems

In this section we introduce a general framework for a class of data assimilation problems. The three appli-
cations that we will present in the next section are particular cases of such general framework. Let us consider
𝑉 , 𝑀 and 𝑂 three Hilbert spaces, 𝑏 a bilinear continuous mapping on 𝑉 ×𝑀 and the corresponding operator
𝐵 : 𝑉 → 𝑀 such that

(𝐵𝑢, 𝜆)𝑀 = 𝑏(𝑢, 𝜆), ∀(𝑢, 𝜆) ∈ 𝑉 ×𝑀,

as well as a continuous operator 𝐶 : 𝑉 → 𝑂. We assume that the operator 𝐴 : 𝑉 → 𝐻 = 𝑀 × 𝑂 such that
𝐴𝑢 = (𝐵𝑢, 𝐶𝑢) is injective. We formulate our abstract data assimilation problem as follows: for data 𝑓 ∈ 𝑂,
find 𝑢 ∈ 𝑉 such that 𝐵𝑢 = 0 and 𝐶𝑢 = 𝑓 .

By the injectivity of 𝐴, such problem has at most one solution but in many situations, it is ill-posed because
𝐴 is not onto. This is why we propose, for 𝜀 > 0, the following regularized weak formulation: for 𝑓 ∈ 𝑂, find
(𝑢𝜀, 𝜆𝜀) ∈ 𝑉 ×𝑀 such that for all (𝑣, 𝜇) ∈ 𝑉 ×𝑀 ,{︂

𝜀(𝑢𝜀, 𝑣)𝑉 + (𝐶𝑢𝜀, 𝐶𝑣)𝑂 + 𝑏(𝑣, 𝜆𝜀) = (𝑓, 𝐶𝑣)𝑂

𝑏(𝑢𝜀, 𝜇)− (𝜆𝜀, 𝜇)𝑀 = 0.
(3.1)

As recalled in the introduction, the principal motivation for introducing such variational mixed formulation is
to find an approximate solution to our ill-posed problem in the space 𝑉 , which is the natural space of the true
solution 𝑢. In addition, when it comes to the discretization with the Finite Element Method, it enables us to
consider simple conforming finite elements. Alternatively, if we directly apply the ideas of [21], for instance, the
approximate solution has to be searched in a space more regular than 𝑉 and the discretization requires some
more cumbersome finite elements, as can be seen in [7].

Remark 3.1. We have chosen here to restrict ourselves to the homogeneous equation 𝐵𝑢 = 0 instead of a
non-homogeneous equation 𝐵𝑢 = ℓ for some ℓ ∈ 𝑀 , in order to handle one single data 𝑓 instead of a couple
of data (ℓ, 𝑓), and hence simplify the analysis. The fully non-homogeneous case is for example addressed in
[8], where a Cauchy problem for the Helmholtz equation in the presence of both noisy Dirichlet and Neumann
data is considered. This increases the difficulty to apply the Mororov’s principle since the two Cauchy data are
independently perturbed by some noise while a single regularization parameter is at one’s disposal.

The weak formulation (3.1) is justified by the following theorem.

Theorem 3.2. For all 𝜀 > 0, the weak formulation (3.1) has a unique solution. Furthermore, if there exists
𝑢 ∈ 𝑉 such that 𝐵𝑢 = 0 and 𝐶𝑢 = 𝑓 , then (𝑢𝜀, 𝜆𝜀) → (𝑢, 0) in 𝑉 ×𝑀 when 𝜀 → 0.
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Proof. The weak formulation (3.1) is equivalent to: find (𝑢𝜀, 𝜆𝜀) ∈ 𝑉 ×𝑀 such that for all (𝑣, 𝜇) ∈ 𝑉 ×𝑀 ,

A((𝑢𝜀, 𝜆𝜀); (𝑣, 𝜇)) = L((𝑣, 𝜇)),

with

A((𝑢, 𝜆); (𝑣, 𝜇)) = 𝜀(𝑢, 𝑣)𝑉 + (𝐶𝑢, 𝐶𝑣)𝑂 + 𝑏(𝑣, 𝜆)− 𝑏(𝑢, 𝜇) + (𝜆, 𝜇)𝑀 , L((𝑣, 𝜇)) = (𝑓, 𝐶𝑣)𝑂.

If suffices to apply the Lax-Milgram Lemma, the coercivity of A being ensured by

A((𝑢, 𝜆); (𝑢, 𝜆)) = 𝜀‖𝑢‖2𝑉 + ‖𝐶𝑢‖2𝑂 + ‖𝜆‖2𝑀 ≥ min(𝜀, 1)
(︀
‖𝑢‖2𝑉 + ‖𝜆‖2𝑀

)︀
.

Now assume that there exists 𝑢 ∈ 𝑉 such that 𝐵𝑢 = 0 and 𝐶𝑢 = 𝑓 . By the injectivity of 𝐴, such 𝑢 is uniquely
defined. Since 𝐵𝑢 = 0 and 𝐶𝑢 = 𝑓 , the system (3.1) implies that for all (𝑣, 𝜇) ∈ 𝑉 ×𝑀 ,{︂

𝜀(𝑢𝜀, 𝑣)𝑉 + (𝐶(𝑢𝜀 − 𝑢), 𝐶𝑣)𝑂 + 𝑏(𝑣, 𝜆𝜀) = 0
𝑏(𝑢𝜀 − 𝑢, 𝜇)− (𝜆𝜀, 𝜇)𝑀 = 0.

Choosing 𝑣 = 𝑢𝜀 − 𝑢 in the first equation and 𝜇 = 𝜆𝜀 in the second equation, taking the difference of the two
obtained equations implies that for all 𝜀 > 0,

𝜀(𝑢𝜀 − 𝑢, 𝑢𝜀)𝑉 + ‖𝐶(𝑢𝜀 − 𝑢)‖2𝑂 + ‖𝜆𝜀‖2𝑀 = 0. (3.2)

Identity (3.2) implies that (𝑢𝜀 − 𝑢, 𝑢𝜀)𝑉 ≤ 0, hence (𝑢𝜀)𝜀 is bounded in 𝑉 . There exists a subsequence of (𝑢𝜀)𝜀,
still denoted (𝑢𝜀)𝜀, which weakly converges to some 𝑤 ∈ 𝑉 . From (3.2), we also deduce that (𝐶𝑢𝜀)𝜀 converges
to 𝐶𝑢 in 𝑂 and that (𝜆𝜀) converges to 0 in 𝑀 . From the second equation of (3.1), we have that 𝐵𝑢𝜀 = 𝜆𝜀,
which implies that (𝐵𝑢𝜀)𝜀 converges to 0. Since the sequences (𝐵𝑢𝜀)𝜀 and (𝐶𝑢𝜀)𝜀 weakly converges to 𝐵𝑤 in
𝑀 and 𝐶𝑤 in 𝑂, respectively, we obtain that 𝐵𝑤 = 0 = 𝐵𝑢 and 𝐶𝑤 = 𝐶𝑢. The injectivity of 𝐴 = (𝐵, 𝐶) yields
𝑤 = 𝑢. It remains to remark that

‖𝑢𝜀 − 𝑢‖2𝑉 = (𝑢𝜀 − 𝑢, 𝑢𝜀)𝑉 − (𝑢, 𝑢𝜀 − 𝑢)𝑉 ≤ −(𝑢, 𝑢𝜀 − 𝑢)𝑉 ,

which implies that the weak convergence of (𝑢𝜀) implies the strong convergence of (𝑢𝜀) in 𝑉 . A classical
contradiction argument proves that all the sequence (𝑢𝜀)𝜀, and not only the subsequence, tends to 𝑢 in 𝑉 when
𝜀 tends to 0. �

Remark 3.3. Reading the above proof carefully shows that Theorem 3.2 also holds if the mapping 𝑣 ∈ 𝑉 ↦→
‖𝑣‖𝑉 ∈ R+ is no more a norm in 𝑉 but only a semi-norm, provided the mapping 𝑣 ∈ 𝑉 ↦→ (‖𝑣‖2𝑉 +‖𝐶𝑣‖2𝑂)1/2 ∈
R+ is a norm in 𝑉 such that 𝑉 , equipped with such a norm, is complete.

We now offer a link between the weak formulation (3.1) and the Tikhonov regularization (2.2). For 𝑓 ∈ 𝑂,
finding 𝑢 ∈ 𝑉 such that 𝐵𝑢 = 0 and 𝐶𝑢 = 𝑓 is equivalent to finding 𝑢 ∈ 𝑉 such that 𝐴𝑢 = 𝑔, where
𝑔 = (0, 𝑓) ∈ 𝐻.

Proposition 3.4. The pair (𝑢𝜀, 𝜆𝜀) ∈ 𝑉 ×𝑀 is the solution to problem (3.1) if and only if 𝑢𝜀 is the solution
to the problem: find 𝑢𝜀 ∈ 𝑉 such that for all 𝑣 ∈ 𝑉 ,

(𝐴𝑢𝜀, 𝐴𝑣)𝐻 + 𝜀(𝑢𝜀, 𝑣)𝑉 = (𝑔,𝐴𝑣)𝐻 (3.3)

for 𝑔 = (0, 𝑓) ∈ 𝐻, and 𝜆𝜀 = 𝐵𝑢𝜀.
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Proof. The function 𝑢𝜀 ∈ 𝑉 satisfies the problem (3.3) if and only if

(𝐵𝑢𝜀, 𝐵𝑣)𝑀 + (𝐶𝑢𝜀, 𝐶𝑣)𝑂 + 𝜀(𝑢𝜀, 𝑣)𝑉 = (0, 𝐵𝑣)𝑀 + (𝑓, 𝐶𝑣)𝑂, ∀𝑣 ∈ 𝑉,

that is, setting 𝜆𝜀 = 𝐵𝑢𝜀,

𝜀(𝑢𝜀, 𝑣)𝑉 + (𝐶𝑢𝜀, 𝐶𝑣)𝑂 + (𝐵𝑣, 𝜆𝜀)𝑀 = (𝑓, 𝐶𝑣)𝑂, ∀𝑣 ∈ 𝑉,

and
(𝐵𝑢𝜀, 𝜇)𝑀 − (𝜆𝜀, 𝜇)𝑀 = 0, ∀𝜇 ∈ 𝑀,

which is equivalent to formulation (3.1). �

That the problem 𝐴𝑢 = 𝑔 is ill-posed and the above equivalence between the Tikhonov regularization for
the operator 𝐴 and the mixed formulation (3.1) prevents us from setting 𝜀 = 0 in (3.1). In particular, such
ill-posedness implies that the bilinear form 𝑏 does not satisfy the inf-sup condition, as shown in [3, 8].

If we now consider, for 𝛿 > 0, some noisy data 𝑓𝛿 ∈ 𝑂, let us denote (𝑢𝛿
𝜀, 𝜆

𝛿
𝜀) ∈ 𝑉 × 𝑀 the solution to

problem (3.1) associated with data 𝑓𝛿. From Proposition 3.4, we get that 𝑢𝛿
𝜀 is the solution to problem (3.3) for

𝑔𝛿 = (0, 𝑓𝛿) and that 𝜆𝛿
𝜀 = 𝐵𝑢𝛿

𝜀. From Theorem 2.1 applied to operator 𝐴 = (𝐵, 𝐶) from 𝑉 to 𝐻 = 𝑀 ×𝑂, we
immediately obtain the following result.

Corollary 3.5. Let us denote
(︀
𝜆𝛿
⊥, 𝑓𝛿

⊥
)︀
∈ 𝑀 × 𝑂 the orthogonal projection of data

(︀
0, 𝑓𝛿

)︀
∈ 𝑀 × 𝑂 on

(Range 𝐴)⊥ and assume that ⃦⃦
𝜆𝛿
⊥

⃦⃦2

𝑀
+

⃦⃦
𝑓𝛿
⊥

⃦⃦2

𝑂
< 𝛿2 < ‖𝑓𝛿‖2𝑂.

There exists a unique 𝜀 > 0 such that ⃦⃦
𝜆𝛿

𝜀

⃦⃦2

𝑀
+

⃦⃦
𝐶𝑢𝛿

𝜀 − 𝑓𝛿
⃦⃦2

𝑂
= 𝛿2.

Remark 3.6. Corollary 3.5 is close to Theorem 2.10 in [8]. However, here we point out that the statement
of such theorem is not correct in the sense that the following assumption should have been added: using the
notations of [8], the operator A = (𝐴, 𝐵) shall have a dense range. In particular, that A has a dense range is
not a consequence of the fact that the operators 𝐴 and 𝐵 both have a dense range, contrary to what is claimed
in [8]. Fortunately, the property that the operator A has a dense range is actually true in the particular case
considered in [8], which is very similar to the Cauchy problem for the Laplace equation addressed hereafter (see
Sect. 4.2, in particular Lem. 4.7).

In order to compute the value of 𝜀 and the Morozov’s solution 𝑢𝛿
𝜀 given by Corollary 3.5 by using duality, we

wish to give a more explicit form of the minimization problem (2.8) as well as the Fréchet derivative of 𝐺𝛿
𝑃 in the

data assimilation framework. This Fréchet derivative will be required to solve the minimization problem with
the help of an iterative gradient method. More generally, we consider two orthogonal projectors 𝑃𝑀 : 𝑀 → 𝑀
and 𝑃𝑂 : 𝑂 → 𝑂 on a closed subspace of 𝑀 and 𝑂, respectively, such that 𝑃𝑀 and 𝑃𝑂 are compact. We hence
obtain an orthogonal projector 𝑃 = (𝑃𝑀 , 𝑃𝑂) : 𝑀 ×𝑂 → 𝑀 ×𝑂 which is compact and assume in addition that
Range 𝑃 ⊂ Range 𝐴. We are hence in a position to state the following proposition.

Proposition 3.7. Let us identify the spaces 𝑉 *, 𝑀*, 𝑂* with 𝑉 , 𝑀 , 𝑂, respectively. The dual problem (2.8)
reduces to

(P*
𝑃 ) inf

(𝜆*,𝑓*)∈𝑀×𝑂
𝐺𝛿

𝑃 (𝜆*, 𝑓*) (3.4)

with for (𝜆*, 𝑓*) ∈ 𝑀 ×𝑂,

𝐺𝛿
𝑃 (𝜆*, 𝑓*) =

1
2
‖𝐵*𝜆* + 𝐶*𝑓*‖2𝑉 + 𝛿 ‖(𝐼 − 𝑃 )(𝜆*, 𝑓*)‖𝑀×𝑂 − (𝑓𝛿, 𝑓*)𝑂. (3.5)
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Let us define 𝑢* ∈ 𝑉 by the weak formulation

(𝑢*, 𝑣)𝑉 = 𝑏(𝑣, 𝜆*) + (𝑓*, 𝐶𝑣)𝑂, ∀𝑣 ∈ 𝑉. (3.6)

For (𝐼 − 𝑃 )(𝜆*, 𝑓*) ̸= 0, the two partial Fréchet derivatives 𝜕𝜆𝐺𝛿
𝑃 ∈ 𝑀 and 𝜕𝑓𝐺𝛿

𝑃 ∈ 𝑂 of 𝐺𝛿
𝑃 at point (𝜆*, 𝑓*)

are given by the weak formulation

(𝜕𝜆𝐺𝛿
𝑃 , 𝜇)𝑀 = 𝑏(𝑢*, 𝜇) +

𝛿

‖(𝐼 − 𝑃 )(𝜆*, 𝑓*)‖𝑀×𝑂
((𝐼𝑀 − 𝑃𝑀 )𝜆*, 𝜇)𝑀 , ∀𝜇 ∈ 𝑀 (3.7)

and the identity

𝜕𝑓𝐺𝛿
𝑃 = 𝐶𝑢* +

𝛿

‖(𝐼 − 𝑃 )(𝜆*, 𝑓*)‖𝑀×𝑂
(𝐼𝑂 − 𝑃𝑂)𝑓* − 𝑓𝛿, (3.8)

respectively.

Proof. Formula (3.5) is obtained having in mind that 𝑔𝛿 = (0, 𝑓𝛿), for 𝑓𝛿 ∈ 𝑂, and by observing that since
𝐴𝑣 = (𝐵𝑣, 𝐶𝑣)𝑀×𝑂 for all 𝑣 ∈ 𝑉 , we have for all (𝜆*, 𝑓*) ∈ 𝑀* ×𝑂*, 𝐴*(𝜆*, 𝑓*) = 𝐵*𝜆* + 𝐶*𝑓*. In addition,
(𝐼 − 𝑃 )(𝜆*, 𝑓*)) = ((𝐼𝑀 − 𝑃𝑀 )𝜆*, (𝐼𝑂 − 𝑃𝑂)𝑓*). Differentiating (3.5), the partial derivative 𝜕𝜆𝐺𝛿

𝑃 is given,
introducing 𝑢* = 𝐵*𝜆* + 𝐶*𝑓* ∈ 𝑉 , by

(𝜕𝜆𝐺𝛿
𝑃 , 𝜇)𝑀 = (𝑢*, 𝐵*𝜇)𝑉 +

𝛿

‖(𝐼 − 𝑃 )(𝜆*, 𝑓*)‖𝑀×𝑂
((𝐼𝑀 − 𝑃𝑀 )𝜆*, 𝜇)𝑀 ,

which implies (3.6) and (3.7), while the partial derivative 𝜕𝑓𝐺𝛿
𝑃 is given, for ℎ ∈ 𝑂, by

(𝜕𝑓𝐺𝛿
𝑃 , ℎ)𝑂 = (𝑢*, 𝐶*ℎ)𝑉 +

𝛿

‖(𝐼 − 𝑃 )(𝜆*, 𝑓*)‖𝑀×𝑂
((𝐼𝑂 − 𝑃𝑂)𝑓*, ℎ)𝑂 − (𝑓𝛿, ℎ)𝑂,

which implies (3.8). �

4. Some applications

4.1. The data assimilation problem for the Laplace equation

Let us consider a bounded Lipschitz domain Ω ⊂ R𝑑, 𝑑 > 1, and a subdomain 𝜔 b Ω of class 𝐶2. The data
assimilation problem for the Laplace equation consists here, for some data 𝑓 ∈ 𝐿2(𝜔), in finding 𝑢 ∈ 𝐻1(Ω) such
that ∆𝑢 = 0 in Ω (in the sense of distributions) and 𝑢|𝜔 = 𝑓 . Clearly, such problem has at most one solution in
virtue of Holmgren’s theorem, but is ill-posed, since any harmonic solution in Ω is infinitely smooth in Ω.

The data assimilation problem for the Laplace equation is a particular case of the general framework exposed
in Section 3. It corresponds to spaces 𝑉 = 𝐻1(Ω), 𝑀 = 𝐻1

0 (Ω), 𝑂 = 𝐿2(𝜔), the bilinear form 𝑏 on 𝐻1(Ω)×𝐻1
0 (Ω)

such that 𝑏(𝑢, 𝜆) =
∫︀
Ω
∇𝑢·∇𝜆 d𝑥, and the associated operator 𝐵 : 𝐻1(Ω) → 𝐻1

0 (Ω) such that (𝐵𝑢, 𝜆)𝑀 = 𝑏(𝑢, 𝜆)
for all (𝑢, 𝜆) ∈ 𝐻1(Ω) ×𝐻1

0 (Ω), while the operator 𝐶 : 𝐻1(Ω) → 𝐿2(𝜔) is the restriction operator. The space
𝐻1

0 (Ω) is equipped with the 𝐻1 semi-norm.

Lemma 4.1. For 𝑓 ∈ 𝐿2(𝜔), 𝑢 ∈ 𝐻1(Ω) satisfies the data assimilation problem for the Laplace equation if and
only if 𝐵𝑢 = 0 and 𝐶𝑢 = 𝑓 .

Proof. The solution 𝑢 ∈ 𝐻1(Ω) satisfies the data assimilation problem iff 𝑢|𝜔 = 𝑓 and

𝑏(𝑢, 𝜇) =
∫︁

Ω

∇𝑢 · ∇𝜇 d𝑥 = 0, ∀𝜇 ∈ 𝐻1
0 (Ω),

in other words iff 𝐵𝑢 = 0 and 𝐶𝑢 = 𝑓 . �
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The injectivity of the operator 𝐴 = (𝐵, 𝐶) is a direct consequence of Holmgren’s Theorem. The corresponding
formulation (3.1) is: for 𝑓 ∈ 𝐿2(𝜔), find (𝑢𝜀, 𝜆𝜀) ∈ 𝐻1(Ω)×𝐻1

0 (Ω) such that for all (𝑣, 𝜇) ∈ 𝐻1(Ω)×𝐻1
0 (Ω),{︃

𝜀
∫︀
Ω

(𝑢𝜀 𝑣 +∇𝑢𝜀 · ∇𝑣) d𝑥 +
∫︀

𝜔
𝑢𝜀 𝑣 d𝑥 +

∫︀
Ω
∇𝑣 · ∇𝜆𝜀 d𝑥 =

∫︀
𝜔

𝑓 𝑣 d𝑥,∫︀
Ω
∇𝑢𝜀 · ∇𝜇 d𝑥−

∫︀
Ω
∇𝜆𝜀 · ∇𝜇 d𝑥 = 0.

(4.1)

A Poincaré-type inequality implies that the mapping 𝑣 ↦→ (
∫︀
Ω
|∇𝑣|2 d𝑥 +

∫︀
𝜔

𝑣2 d𝑥)1/2 is an equivalent norm to
the standard norm on 𝐻1(Ω). In view of Remark 3.3, the term

∫︀
Ω

𝑢𝜀 𝑣 d𝑥 in (4.1) could therefore be dropped.
With a view to applying Corollary 3.5, let us identify (Range 𝐴)⊥, which is the aim of the next lemma. In

what follows, we identify the space 𝐻2
0 (𝜔) with the space of functions in 𝐻2

0 (Ω) which vanish in Ω ∖ 𝜔.

Lemma 4.2. We have that

(Range 𝐴)⊥ =
{︀

(𝜇, ℎ) ∈ 𝐻2
0 (𝜔)× 𝐿2(𝜔), ∆𝜇 = ℎ

}︀
.

Proof. Let us consider (𝜇, ℎ) ∈ 𝐻1
0 (Ω)× 𝐿2(𝜔). We have (𝜇, ℎ) ∈ (Range 𝐴)⊥ if and only if for all 𝑣 ∈ 𝐻1(Ω)

(𝐵𝑣, 𝜇)𝑀 + (𝐶𝑣, ℎ)𝑂 = 0,

that is ∫︁
Ω

∇𝑣 · ∇𝜇 d𝑥 +
∫︁

𝜔

𝑣 ℎ d𝑥 = 0,

which is equivalent to {︂
∆𝜇 = 1𝜔 ℎ in Ω
𝜕𝜈𝜇 = 0 on 𝜕Ω.

(4.2)

Here, 1𝜔 is the indicator function of the set 𝜔. Hence, (𝜇, ℎ) ∈ (Range 𝐴)⊥ implies that 𝜇 satisfies ∆𝜇 = 0 in
Ω ∖ 𝜔, 𝜇 = 0 and 𝜕𝜈𝜇 = 0 on 𝜕Ω, hence 𝜇 = 0 in Ω ∖ 𝜔 from uniqueness of the Cauchy problem. We obtain that
𝜇 = 0 and 𝜕𝜈𝜇 = 0 on 𝜕𝜔, and from a standard regularity result and the fact that 𝜔 is of class 𝐶2, we conclude
that 𝜇 ∈ 𝐻2

0 (𝜔). Conversely, it is straightforward to check that if (𝜇, ℎ) ∈
{︀

(𝜇, ℎ) ∈ 𝐻2
0 (𝜔)× 𝐿2(𝜔), ∆𝜇 = ℎ

}︀
,

then in particular (𝜇, ℎ) ∈ 𝐻1
0 (Ω)× 𝐿2(𝜔) and satisfies (4.2), which finally yields (𝜇, ℎ) ∈ (Range 𝐴)⊥. �

In the following lemma, we specify the orthogonal projection of (0, 𝑓) ∈ 𝐻1
0 (Ω)× 𝐿2(𝜔) on (Range 𝐴)⊥.

Lemma 4.3. The projection of (0, 𝑓) ∈ 𝐻1
0 (Ω)× 𝐿2(𝜔) on (Range 𝐴)⊥ is the pair (𝜆⊥, 𝑓⊥) ∈ 𝐻1

0 (Ω)× 𝐿2(𝜔),
where 𝜆⊥ is the unique solution in 𝐻2

0 (𝜔) of the weak formulation set in the subdomain 𝜔:∫︁
𝜔

∆𝜆⊥ ∆𝜇 d𝑥 +
∫︁

𝜔

∇𝜆⊥ · ∇𝜇 d𝑥 =
∫︁

𝜔

𝑓 ∆𝜇 d𝑥, ∀𝜇 ∈ 𝐻2
0 (𝜔), (4.3)

and 𝑓⊥ = ∆𝜆⊥.

Proof. Let us find the orthogonal projection (𝜆⊥, 𝑓⊥) ∈ 𝐻1
0 (Ω)× 𝐿2(𝜔) of any pair (𝜆, 𝑓) ∈ 𝐻1

0 (Ω)× 𝐿2(𝜔) on
(Range 𝐴)⊥. Such orthogonal projection is characterized by{︃

(𝜆⊥, 𝑓⊥) ∈ (Range 𝐴)⊥,

(𝜆− 𝜆⊥, 𝑓 − 𝑓⊥) ⊥ (𝜇, ℎ), ∀(𝜇, ℎ) ∈ (Range 𝐴)⊥,

which from Lemma 4.2 is equivalent to{︃
𝜆⊥ ∈ 𝐻2

0 (𝜔) and 𝑓⊥ = ∆𝜆⊥,∫︀
Ω
∇(𝜆− 𝜆⊥) · ∇𝜇 d𝑥 +

∫︀
𝜔

(𝑓 − 𝑓⊥)ℎ d𝑥 = 0, ∀𝜇 ∈ 𝐻2
0 (𝜔) and ℎ = ∆𝜇,
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and then to {︃
𝜆⊥ ∈ 𝐻2

0 (𝜔) and 𝑓⊥ = ∆𝜆⊥,∫︀
𝜔

∆𝜆⊥ ∆𝜇 d𝑥 +
∫︀

𝜔
∇𝜆⊥ · ∇𝜇 d𝑥 =

∫︀
𝜔

𝑓 ∆𝜇 d𝑥 +
∫︀

𝜔
∇𝜆 · ∇𝜇 d𝑥, ∀𝜇 ∈ 𝐻2

0 (𝜔).
(4.4)

The result follows by setting 𝜆 = 0. �

Remark 4.4. It should be noted that (4.3) is a fourth-order problem, which from the numerical point of
view requires some cumbersome finite elements. In the case of the heat equation, computing the corresponding
projection on (Range 𝐴)⊥ is even more complicated, as can be seen on (4.13).

We can now apply Corollary 3.5 to the data assimilation problem. Let 𝑓𝛿 ∈ 𝐿2(𝜔) and (𝜆𝛿
⊥, 𝑓𝛿

⊥) the orthogonal
projection of (0, 𝑓𝛿) on (Range 𝐴)⊥, which can be computed with the help of Lemma 4.3. If we assume that⃦⃦

𝜆𝛿
⊥

⃦⃦2

𝐻1
0 (Ω)

+
⃦⃦
𝑓𝛿
⊥

⃦⃦2

𝐿2(𝜔)
< 𝛿2 < ‖𝑓𝛿‖2𝐿2(𝜔),

then there exists a unique 𝜀 > 0 such that∫︁
Ω

⃒⃒
∇𝜆𝛿

𝜀

⃒⃒2
d𝑥 +

∫︁
𝜔

⃒⃒
𝑢𝛿

𝜀 − 𝑓𝛿
⃒⃒2

d𝑥 = 𝛿2,

where
(︀
𝑢𝛿

𝜀, 𝜆
𝛿
𝜀

)︀
is the unique solution to the problem (4.1) for data 𝑓𝛿.

Remark 4.5. By choosing 𝜇 = 𝜆⊥ in the weak formulation (4.3), we notice that⃦⃦
𝜆𝛿
⊥

⃦⃦2

𝐻1
0 (Ω)

+
⃦⃦
𝑓𝛿
⊥

⃦⃦2

𝐿2(𝜔)
=

∫︁
𝜔

𝑓𝛿𝑓𝛿
⊥ d𝑥.

In order to compute the Morozov parameter 𝜀 and the corresponding solution 𝑢𝛿
𝜀 which are given above,

one may be tempted to solve the minimization problem given by (3.4) (3.5) following the strategy exposed
in Remark 2.12. Let us see how Proposition 3.7 is specified in the case of the data assimilation problem for
the Laplace equation, in particular as concerns the computation of the Fréchet derivative of 𝐺𝛿

𝑃 . In view of
Proposition 3.7, the solution 𝑢* ∈ 𝐻1(Ω) is given, for (𝜆*, 𝑓*) ∈ 𝐻1

0 (Ω)× 𝐿2(𝜔), by the weak formulation∫︁
Ω

(𝑢* 𝑣 +∇𝑢* · ∇𝑣) d𝑥 =
∫︁

Ω

∇𝑣 · ∇𝜆* d𝑥 +
∫︁

𝜔

𝑓* 𝑣 d𝑥, ∀𝑣 ∈ 𝐻1(Ω). (4.5)

The dual problem (2.8) then amounts to

(P*
𝑃 ) inf

(𝜆*,𝑓*)∈𝐻1
0 (Ω)×𝐿2(𝜔)

𝐺𝛿
𝑃 (𝜆*, 𝑓*) (4.6)

with for (𝜆*, 𝑓*) ∈ 𝐻1
0 (Ω)× 𝐿2(𝜔),

𝐺𝛿
𝑃 (𝜆*, 𝑓*) =

1
2
‖𝑢*(𝜆*, 𝑓*)‖2𝐻1(Ω) + 𝛿 ‖(𝐼 − 𝑃 )(𝜆*, 𝑓*)‖𝐻1

0 (Ω)×𝐿2(𝜔) −
∫︁

𝜔

𝑓𝛿 𝑓* d𝑥, (4.7)

with

‖(𝐼 − 𝑃 )(𝜆*, 𝑓*)‖𝐻1
0 (Ω)×𝐿2(𝜔) =

√︃∫︁
Ω

|∇(𝐼𝑀 − 𝑃𝑀 )𝜆*|2 d𝑥 +
∫︁

𝜔

|(𝐼𝑂 − 𝑃𝑂)𝑓*|2 d𝑥.

The two partial derivatives 𝜕𝜆𝐺𝛿
𝑃 ∈ 𝐻1

0 (Ω) and 𝜕𝑓𝐺𝛿
𝑃 ∈ 𝐿2(𝜔) of the Fréchet derivative of 𝐺𝛿

𝑃 at point (𝜆*, 𝑓*)
are given by the weak formulation∫︁

Ω

∇(𝜕𝜆𝐺𝛿
𝑃 ) ·∇𝜇 d𝑥 =

∫︁
Ω

∇𝑢* ·∇𝜇 d𝑥+
𝛿

‖(𝐼 − 𝑃 )(𝜆*, 𝑓*)‖𝐻1
0 (Ω)×𝐿2(𝜔)

∫︁
Ω

∇(𝐼𝑀 −𝑃𝑀 )𝜆* ·∇𝜇 d𝑥, ∀𝜇 ∈ 𝐻1
0 (Ω)

(4.8)
and the formula

𝜕𝑓𝐺𝛿
𝑃 = 𝑢*|𝜔 +

𝛿

‖(𝐼 − 𝑃 )(𝜆*, 𝑓*)‖𝐻1
0 (Ω)×𝐿2(𝜔)

(𝐼𝑂 − 𝑃𝑂)𝑓* − 𝑓𝛿. (4.9)
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4.2. The Cauchy problem for the Laplace equation

We again consider a bounded Lipschitz domain Ω ⊂ R𝑑, 𝑑 > 1, such that its boundary 𝜕Ω is partitioned into
two sets Γ and Γ̃. More precisely, Γ and Γ̃ are non empty open sets for the topology induced on 𝜕Ω from the
topology on R𝑑, that is 𝜕Ω = Γ ∪ Γ̃ and Γ ∩ Γ̃ = ∅.

The Cauchy problem consists here, for some data 𝑓 ∈ 𝐿2(Γ), in finding 𝑢 ∈ 𝐻1(Ω) such that⎧⎨⎩∆𝑢 = 0 in Ω
𝑢 = 𝑓 on Γ
𝜕𝜈𝑢 = 0 on Γ,

(4.10)

where 𝜈 is the outward unit normal to 𝜕Ω. This kind of problem arises when we have 𝜕𝜈𝑢 = 0 and measure
𝑢 = 𝑓 on some accessible part Γ of the boundary of the structure, while the complementary part Γ̃ of the
boundary is not accessible. In practice those measurements are contaminated by some noise. Due to Holmgren’s
theorem, the Cauchy problem (4.10) has at most one solution. However it is ill-posed in the sense of Hadamard:
existence may not hold for some data 𝑓 , as for example shown in [1].

Let us show that the problem (4.10) is a particular case of the general framework exposed in Section 3. It
corresponds to spaces 𝑉 = 𝐻1(Ω), 𝑀 = {𝜆 ∈ 𝐻1(Ω), 𝜆|Γ̃ = 0}, 𝑂 = 𝐿2(Γ), the bilinear form 𝑏 on 𝑉 ×𝑀 such
that 𝑏(𝑢, 𝜆) =

∫︀
Ω
∇𝑢 · ∇𝜆 d𝑥, and the associated operator 𝐵 : 𝑉 → 𝑀 such that (𝐵𝑢, 𝜆)𝑀 = 𝑏(𝑢, 𝜆) for all

(𝑢, 𝜆) ∈ 𝑉 ×𝑀 , while the operator 𝐶 : 𝐻1(Ω) → 𝐿2(Γ) is the trace operator. Due to Poincaré inequality, the
space 𝑀 can be equipped with the 𝐻1 semi-norm.

Lemma 4.6. For 𝑓 ∈ 𝐿2(Γ), 𝑢 ∈ 𝐻1(Ω) satisfies problem (4.10) if and only if 𝐵𝑢 = 0 and 𝐶𝑢 = 𝑓 .

Proof. The solution 𝑢 ∈ 𝐻1(Ω) satisfies problem (4.10) iff 𝑢|Γ = 𝑓 and

𝑏(𝑢, 𝜇) =
∫︁

Ω

∇𝑢 · ∇𝜇 d𝑥 = 0, ∀𝜇 ∈ 𝐻1(Ω) such that 𝜇|Γ̃ = 0,

in other words iff 𝐵𝑢 = 0 and 𝐶𝑢 = 𝑓 . �

The injectivity of the operator 𝐴 = (𝐵, 𝐶) is a direct consequence of uniqueness for the Cauchy problem.
Hence we have checked that all properties of the general framework exposed in Section 3 are satisfied. The
corresponding formulation (3.1) is: for 𝑓 ∈ 𝐿2(Γ), find (𝑢𝜀, 𝜆𝜀) ∈ 𝐻1(Ω)× {𝜆 ∈ 𝐻1(Ω), 𝜆|Γ̃ = 0} such that for
all (𝑣, 𝜇) ∈ 𝐻1(Ω)× {𝜆 ∈ 𝐻1(Ω), 𝜆|Γ̃ = 0},{︃

𝜀
∫︀
Ω

(𝑢𝜀 𝑣 +∇𝑢𝜀 · ∇𝑣) d𝑥 +
∫︀
Γ

𝑢𝜀 𝑣 d𝑠 +
∫︀
Ω
∇𝑣 · ∇𝜆𝜀 d𝑥 =

∫︀
Γ

𝑓 𝑣 d𝑠,∫︀
Ω
∇𝑢𝜀 · ∇𝜇 d𝑥−

∫︀
Ω
∇𝜆𝜀 · ∇𝜇 d𝑥 = 0.

(4.11)

As in the previous application, by a Poincaré-type inequality the mapping 𝑣 ↦→
(︀∫︀

Ω
|∇𝑣|2 d𝑥 +

∫︀
Γ

𝑣2 d𝑠
)︀1/2 is a

norm which is equivalent to the standard norm on 𝐻1(Ω). Then thanks to Remark 3.3, the term
∫︀
Ω

𝑢𝜀 𝑣 d𝑥 in
(4.11) could be dropped.

With a view to applying Corollary 3.5, let us identify (Range 𝐴)⊥. Contrary to the previous data assimilation
case, such space is reduced to {0}.

Lemma 4.7. The operator 𝐴 has a dense range, or equivalently, (Range 𝐴)⊥ = {0}.

Proof. Let us assume that (𝜇, ℎ) ∈ 𝑀 ×𝑂 = {𝜆 ∈ 𝐻1(Ω), 𝜆|Γ̃ = 0} × 𝐿2(Γ) satisfy, for all 𝑣 ∈ 𝑉 = 𝐻1(Ω),

(𝐵𝑣, 𝜇)𝑀 + (𝐶𝑣, ℎ)𝑂 = 0,

that is ∫︁
Ω

∇𝑣 · ∇𝜇 d𝑥 +
∫︁

Γ

𝑣 ℎ d𝑠 = 0.
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Choosing 𝑣 = 𝜙 ∈ 𝐶∞0 (Ω) implies that ∆𝜇 = 0 in the sense of distributions. Then, by the Green formula, we
have that for all 𝑣 ∈ 𝐻1(Ω),

⟨𝑣, 𝜕𝜈𝜇⟩𝐻1/2(𝜕Ω),𝐻−1/2(𝜕Ω) +
∫︁

Γ

𝑣 ℎ d𝑠 = 0,

where ⟨·, ·⟩𝐻1/2(𝜕Ω),𝐻−1/2(𝜕Ω) denotes duality pairing between 𝐻1/2(𝜕Ω) and 𝐻−1/2(𝜕Ω). Considering ℎ̃ as the
extension of ℎ by 0 on 𝜕Ω, we get that for all 𝑣 ∈ 𝐻1(Ω),⟨

𝑣, 𝜕𝜈𝜇 + ℎ̃
⟩

𝐻1/2(𝜕Ω),𝐻−1/2(𝜕Ω)
= 0,

hence 𝜕𝜈𝜇 + ℎ̃ = 0 on 𝜕Ω, that is 𝜕𝜈𝜇 = 0 on Γ̃ and 𝜕𝜈𝜇 + ℎ = 0 on Γ. From uniqueness of the Cauchy problem
applied to 𝜇, we conclude that 𝜇 = 0 in Ω, which implies in turn that ℎ = 0 in Γ. This completes the proof. �

We are now in a position to apply Corollary 3.5 in the simple case when (Range 𝐴)⊥ = {0}. Let us consider
some data 𝑓𝛿 ∈ 𝐿2(Γ) such that ‖𝑓𝛿‖2𝐿2(Γ) > 𝛿. There exists a unique 𝜀 > 0 such that∫︁

Ω

⃒⃒
∇𝜆𝛿

𝜀

⃒⃒2
d𝑥 +

∫︁
Γ

⃒⃒
𝑢𝛿

𝜀 − 𝑓𝛿
⃒⃒2

d𝑠 = 𝛿2,

where
(︀
𝑢𝛿

𝜀, 𝜆
𝛿
𝜀

)︀
is the unique solution to the problem (4.11) for data 𝑓𝛿.

Remark 4.8. As a conclusion of Sections 4.1 and 4.2, strictly speaking the Morozov’s principle is easier to
apply in the case of the Cauchy problem than in the case of the data assimilation problem for the Laplace
equation. Indeed, the underlying operator 𝐴 has a dense range for the Cauchy problem while it has not for the
data assimilation problem. As far as we know, such fact has never been highlighted so far. However, in view of
Remark 2.4, the additional condition to check when 𝐴 has not a dense range is very unlikely to be violated.

4.3. The data assimilation problem for the heat equation

Let us consider again some domains 𝜔 b Ω having the same properties as in Section 4.1. Let us introduce
𝑇 > 0, as well as 𝑄 = Ω× (0, 𝑇 ), 𝑞 = 𝜔 × (0, 𝑇 ), Σ = 𝜕Ω × (0, 𝑇 ) and 𝜎 = 𝜕𝜔 × (0, 𝑇 ). The data assimilation
problem for the heat equation consists, for some data 𝑓 ∈ 𝐿2(𝑞), in finding 𝑢 ∈ 𝐿2(0, 𝑇 ; 𝐻1(Ω)) such that
𝜕𝑡𝑢−∆𝑢 = 0 in 𝑄 (in the sense of distributions) and 𝑢|𝑞 = 𝑓 . As for the Laplacian case, such problem has at
most one solution in virtue of Holmgren’s theorem but is ill-posed.

In view of the general framework exposed in Section 3, the data assimilation problem for the heat equation
corresponds to spaces 𝑉 = 𝐿2(0, 𝑇 ; 𝐻1(Ω)), 𝑀 = 𝐻1

0 (𝑄), 𝑂 = 𝐿2(𝑞), the bilinear form 𝑏 on 𝐿2(0, 𝑇 ; 𝐻1(Ω))×𝑀
such that 𝑏(𝑢, 𝜆) =

∫︀
𝑄

(−𝑢 𝜕𝑡𝜆+∇𝑢 ·∇𝜆) d𝑥 d𝑡, and the associated operator 𝐵 : 𝐿2(0, 𝑇 ; 𝐻1(Ω)) → 𝐻1
0 (𝑄) such

that (𝐵𝑢, 𝜆)𝑀 = 𝑏(𝑢, 𝜆) for all (𝑢, 𝜆) ∈ 𝐿2(0, 𝑇 ; 𝐻1(Ω))×𝐻1
0 (𝑄), while the operator 𝐶 : 𝐿2(0, 𝑇 ; 𝐻1(Ω)) → 𝐿2(𝑞)

is the restriction operator. The space 𝐻1
0 (𝑄) is equipped with the 𝐻1 semi-norm in 𝑄. We have the following

lemma, the proof of which is very similar to the proof of Lemma 4.1.

Lemma 4.9. For 𝑓 ∈ 𝐿2(𝑞), 𝑢 ∈ 𝐿2(0, 𝑇 ; 𝐻1(Ω)) satisfies the data assimilation problem for the heat equation
if and only if 𝐵𝑢 = 0 and 𝐶𝑢 = 𝑓 .

The injectivity of the operator 𝐴 = (𝐵, 𝐶) is a direct consequence of Holmgren’s Theorem. The cor-
responding formulation (3.1) is: for 𝑓 ∈ 𝐿2(𝑞), find (𝑢𝜀, 𝜆𝜀) ∈ 𝐿2(0, 𝑇 ; 𝐻1(Ω)) × 𝐻1

0 (𝑄) such that for all
(𝑣, 𝜇) ∈ 𝐿2(0, 𝑇 ; 𝐻1(Ω))×𝐻1

0 (𝑄),⎧⎨⎩ 𝜀
∫︀

𝑄
(𝑢𝜀 𝑣 +∇𝑢𝜀 · ∇𝑣) d𝑥 d𝑡 +

∫︀
𝑞
𝑢𝜀 𝑣 d𝑥 d𝑡 +

∫︀
𝑄

(−𝑣 𝜕𝑡𝜆𝜀 +∇𝑣 · ∇𝜆𝜀) d𝑥 d𝑡 =
∫︀

𝑞
𝑓 𝑣 d𝑥 d𝑡,∫︀

𝑄
(−𝑢𝜀 𝜕𝑡𝜇 +∇𝑢𝜀 · ∇𝜇) d𝑥 d𝑡−

∫︀
𝑄

(𝜕𝑡𝜆𝜀 𝜕𝑡𝜇 +∇𝜆𝜀 · ∇𝜇) d𝑥 d𝑡 = 0.
(4.12)

It remains to identify (Range 𝐴)⊥.
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Lemma 4.10. Denoting 𝐻𝑞 = 𝐻1
0 (0, 𝑇 ; 𝐿2(𝜔)) ∩ 𝐿2(0, 𝑇 ; 𝐻2

0 (𝜔)), we have that

(Range 𝐴)⊥ =
{︀

(𝜇, ℎ) ∈ 𝐻𝑞 × 𝐿2(𝑞), 𝜕𝑡𝜇 + ∆𝜇 = ℎ
}︀
.

Proof. Let us consider (𝜇, ℎ) ∈ 𝐻1
0 (𝑄) × 𝐿2(𝜔). We have (𝜇, ℎ) ∈ (Range 𝐴)⊥ if and only if for all

𝑣 ∈ 𝐿2(0, 𝑇 ; 𝐻1(Ω))
(𝐵𝑣, 𝜇)𝑀 + (𝐶𝑣, ℎ)𝑂 = 0,

that is ∫︁
𝑄

(−𝑣 𝜕𝑡𝜇 +∇𝑣 · ∇𝜇) d𝑥 d𝑡 +
∫︁

𝑞

𝑣 ℎ d𝑥 d𝑡 = 0,

which is equivalent to {︂
𝜕𝑡𝜇 + ∆𝜇 = 1𝑞 ℎ in 𝑄
𝜕𝜈𝜇 = 0 on Σ.

We observe that (𝜇, ℎ) ∈ (Range 𝐴)⊥ implies that 𝜇 satisfies 𝜕𝑡𝜇 + ∆𝜇 = 0 in 𝑄 ∖ 𝑞, 𝜇 = 0 and 𝜕𝜈𝜇 = 0 on
Σ, hence 𝜇 = 0 in 𝑄 ∖ 𝑞 from uniqueness of the lateral Cauchy problem for the heat equation. We obtain that
𝜇 = 0 and 𝜕𝜈𝜇 = 0 on 𝜎. As a result, for (𝜇, ℎ) ∈ (Range 𝐴)⊥, we have 𝜇 ∈ 𝐻1

0 (0, 𝑇 ; 𝐿2(𝜔)) ∩ 𝐿2(0, 𝑇 ; 𝐻2
0 (𝜔))

and 𝜕𝑡𝜇 + ∆𝜇 = ℎ in 𝑞. The converse statement is straightforward. �

Let us specify the orthogonal projection of (0, 𝑓) ∈ 𝐻1
0 (𝑄)× 𝐿2(𝑞) on (Range 𝐴)⊥.

Lemma 4.11. The projection of (0, 𝑓) ∈ 𝐻1
0 (𝑄)×𝐿2(𝜔) on (Range 𝐴)⊥ is the pair (𝜆⊥, 𝑓⊥) ∈ 𝐻1

0 (𝑄)×𝐿2(𝜔),
where 𝜆⊥ is the unique solution in 𝐻𝑞 of the weak formulation set in the subdomain 𝑞:∫︁

𝑞

(𝜕𝑡𝜆⊥ + ∆𝜆⊥)(𝜕𝑡𝜇 + ∆𝜇) d𝑥 d𝑡 +
∫︁

𝑞

(𝜕𝑡𝜆⊥ 𝜕𝑡𝜇 +∇𝜆⊥ · ∇𝜇) d𝑥 d𝑡 =
∫︁

𝑞

𝑓 (𝜕𝑡𝜇 + ∆𝜇) d𝑥 d𝑡, ∀𝜇 ∈ 𝐻𝑞, (4.13)

and 𝑓⊥ = 𝜕𝑡𝜆⊥ + ∆𝜆⊥.

The proof is omitted since it is similar to the proof of Lemma 4.3. Applying Corollary 3.5 to our problem, we
get that for 𝑓𝛿 ∈ 𝐿2(𝑞) and (𝜆𝛿

⊥, 𝑓𝛿
⊥) the orthogonal projection of (0, 𝑓𝛿) on (Range 𝐴)⊥, which can be computed

with the help of Lemma 4.11, if we assume that⃦⃦
𝜆𝛿
⊥

⃦⃦2

𝐻1
0 (𝑄)

+
⃦⃦
𝑓𝛿
⊥

⃦⃦2

𝐿2(𝑞)
< 𝛿2 < ‖𝑓𝛿‖2𝐿2(𝑞),

then there exists a unique 𝜀 > 0 such that∫︁
𝑄

(︁
(𝜕𝑡𝜆𝜀)2 +

⃒⃒
∇𝜆𝛿

𝜀

⃒⃒2)︁
d𝑥 d𝑡 +

∫︁
𝑞

⃒⃒
𝑢𝛿

𝜀 − 𝑓𝛿
⃒⃒2

d𝑥 d𝑡 = 𝛿2,

where
(︀
𝑢𝛿

𝜀, 𝜆
𝛿
𝜀

)︀
is the unique solution to the problem (4.12) for data 𝑓𝛿.

5. Numerical experiments

All our numerical experiments concern the data assimilation problem for the Laplace equation which is
addressed in Section 4.1, in the two-dimensional case (𝑑 = 2). We have used the Freefem library [19] for all our
finite element computations. The domain Ω is the square (0, 1)× (0, 1), while for 𝜔 we consider three different
domains, all having the same surface |𝜔| = 0.4 |Ω|, and which are represented on Figure 1.

The domain 1 is the delicate case of interior data, the domain 2 is the easier case of exterior data, while the
domain 3 is an intermediate case where the data are distributed.
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Figure 1. Three different domains 𝜔 (the domain 𝜔 is hatched). Left (domain 1): a disk.
Middle (domain 2): the exterior of a disk. Right (domain 3): 5 small disks.

5.1. Illustration of Theorem 2.1

We first want to show a numerical illustration of Theorem 2.1 in the case of the data assimilation problem
for the Laplace equation exposed in Section 4.1. Let us consider the harmonic function 𝑢(𝑥, 𝑦) = 1− 𝑥3 + 3𝑥𝑦2

and 𝑓 = 𝑢|𝜔, for 𝜔 corresponding to domain 2 in Figure 1. For a given amplitude of noise 𝛿, the first thing to do
is, in view of assumptions (2.1) and (2.7), to produce some noisy data 𝑔𝛿 = (ℓ𝛿, 𝑓𝛿) ∈ 𝐻1

0 (Ω)×𝐿2(𝜔) = 𝐻 such
that

⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿 <
⃦⃦
𝑔𝛿

⃦⃦
𝐻

and
⃦⃦
𝑔𝛿 − 𝑔

⃦⃦
𝐻

= 𝛿, where 𝑔 = (0, 𝑓). Here we choose 𝛿 = 0.1. Note that in our data
assimilation abstract framework, we have assumed that ℓ𝛿 = 0. However, with a view to building compatible
noisy data more easily, for our validation of Theorem 2.1 we tolerate that ℓ𝛿 ̸= 0. The consequence is that the
weak formulation (4.1) becomes: find (𝑢𝛿

𝜀, 𝜆
𝛿
𝜀) ∈ 𝐻1(Ω)×𝐻1

0 (Ω) such that for all (𝑣, 𝜇) ∈ 𝐻1(Ω)×𝐻1
0 (Ω),{︃

𝜀
∫︀
Ω

(︀
𝑢𝛿

𝜀 𝑣 +∇𝑢𝛿
𝜀 · ∇𝑣

)︀
d𝑥 +

∫︀
𝜔

𝑢𝛿
𝜀 𝑣 d𝑥 +

∫︀
Ω
∇𝑣 · ∇𝜆𝛿

𝜀 d𝑥 =
∫︀

𝜔
𝑓𝛿 𝑣 d𝑥,∫︀

Ω
∇𝑢𝛿

𝜀 · ∇𝜇 d𝑥−
∫︀
Ω
∇𝜆𝛿

𝜀 · ∇𝜇 d𝑥 =
∫︀
Ω
∇ℓ𝛿 · ∇𝜇 d𝑥.

(5.1)

Note that contrary to (4.1), the right-hand side of the second equation in (5.1) is not 0 any more. On the one
hand we introduce the function 𝑤 = (𝑥2 + 𝑦2)/4 and set (ℓ�, 𝑓�) = (∆𝑤, 𝑤|𝜔). On the other hand we introduce
the indicator function 𝑓(𝑥, 𝑦) = 1 if 𝑥2 + 𝑦2 > 1 and 𝑓(𝑥, 𝑦) = 0 otherwise. For such 𝑓 ∈ 𝐿2(𝜔), let us introduce
(ℓ⊥, 𝑓⊥) ∈ 𝐻1

0 (Ω) × 𝐿2(𝜔) the orthogonal projection of (0, 𝑓) on (Range 𝐴)⊥ given by Lemma 4.3 and more
precisely by the weak formulation (4.3). We have hence obtained a pair 𝑔� = (ℓ�, 𝑓�) ∈ Range 𝐴 and a pair
𝑔⊥ = (ℓ⊥, 𝑓⊥) ∈ (Range 𝐴)⊥. The idea is to search some noisy data 𝑔𝛿 = (ℓ𝛿, 𝑓𝛿) in the form

𝑔𝛿 = 𝑔 + 𝛼𝑔� + 𝛽𝑔⊥,

where 𝛼, 𝛽 > 0 are uniquely defined such that⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

=
𝛿

2
,

⃦⃦
𝑔𝛿 − 𝑔

⃦⃦
𝐻

= 𝛿.

A straightforward computation yields⃦⃦
𝑔𝛿

⃦⃦2

𝐻
= ‖𝑔‖2𝐻 + 𝛿2 + 2𝛼(𝑓, 𝑓�)𝐿2(𝜔).

Observing that (𝑓, 𝑓�)𝐿2(𝜔) ≥ 0, we conclude that
⃦⃦
𝑔𝛿

⃦⃦
𝐻

> 𝛿, that is our artificial noisy data 𝑔𝛿 satisfies both
assumptions (2.1) and (2.7). Using this noisy data 𝑔𝛿, for 𝜀 > 0 we compute

𝐸𝛿(𝜀) =
⃦⃦
𝐴𝑢𝛿

𝜀 − 𝑔𝛿
⃦⃦

𝐻
=

√︃∫︁
Ω

|∇𝜆𝛿
𝜀|

2 d𝑥 +
∫︁

𝜔

|𝑢𝛿
𝜀 − 𝑓𝛿|2 d𝑥,
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Figure 2. Graph of the function 𝐸𝛿 of 𝜀. The horizontal lines correspond to the values
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

=
𝛿/2,

⃦⃦
𝑔𝛿 − 𝑔

⃦⃦
𝐻

= 𝛿 and
⃦⃦
𝑔𝛿

⃦⃦
𝐻

> 𝛿, respectively.

where
(︀
𝑢𝛿

𝜀, 𝜆
𝛿
𝜀

)︀
∈ 𝐻1(Ω) × 𝐻1

0 (Ω) is the solution to problem (5.1). The computation of
(︀
𝑢𝛿

𝜀, 𝜆
𝛿
𝜀

)︀
is based on a

Finite Element Method, the space 𝐻1(Ω) being approximated with the help of the classical 𝑃1 finite elements
based on triangles. The resolution of problem (4.3) is also based on a FEM, the space 𝐻2(𝜔) being approximated
by the 𝐶1 conforming Hsieh–Clough–Tocher triangular finite elements (see e.g. [13] for a description of such
element). In both cases, the mesh size is ℎ = 1/20. The graph of the function 𝐸𝛿 of 𝜀 is plotted on Figure 2.
We observe that the function 𝐸𝛿 is non increasing with 𝐸𝛿(0+) =

⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

= 𝛿/2 and 𝐸𝛿(+∞) =
⃦⃦
𝑔𝛿

⃦⃦
𝐻

> 𝛿,
in accordance with Theorem 2.1, which seems to indicate that the chosen mesh size ℎ is sufficiently small.
The important conclusion is that the application of the Morozov’s principle seems to be relevant even for the
discretized problem, and not only for the continuous one.

5.2. Validation of the duality method

After having observed that the computation of the Morozov’s solution associated with the regularized problem
(4.1) actually makes sense after discretization, it is now natural to test the duality method to obtain such
solution, which consists in minimizing the functional 𝐺𝛿

0 given by (4.7) and then applying the operator 𝐴*

to the obtained solution. Again, the Finite Element Method is used, the space 𝐻1(Ω) being approximated by
𝑃1 finite elements, while the space 𝐿2(𝜔) is approximated with 𝑃0 finite elements. The minimization of 𝐺𝛿

0 is
an iterative method based on the computations of the partial derivatives 𝜕𝜆𝐺𝛿

0 and 𝜕𝑓𝐺𝛿
0 given by (4.8) and

(4.9), respectively. Note that an alternative technique consists, in order to avoid minimizing the non-quadratic
functional 𝐺𝛿

0, to find, for 𝑛 ≥ 1, the minimum (𝜆*𝑛, 𝑓*𝑛) ∈ 𝐻1
0 (Ω)× 𝐿2(𝜔) of the quadratic functional

𝐻𝛿
𝑛(𝜆*, 𝑓*) =

1
2
‖𝑢*(𝜆*, 𝑓*)‖2𝐻1(Ω) + 𝜀𝑛 ‖(𝜆*, 𝑓*)‖2𝐻1

0 (Ω)×𝐿2(𝜔) −
∫︁

𝜔

𝑓𝛿 𝑓* d𝑥, (5.2)

where 𝑢* is the solution to problem (4.5) and where 𝜀𝑛 = 𝛿/‖(𝜆*𝑛−1, 𝑓
*
𝑛−1)‖𝐻1

0 (Ω)×𝐿2(𝜔). This technique was
introduced in [16], where it is proved that in the case when the operator 𝐴 has a dense range, the sequence
formed by the minima of the quadratic problems converges to the unique minimum of the non-quadratic one.
Despite we have not extended this result to the case when 𝐴 does not have a dense range, which is the case with
our data assimilation problem for the Laplace equation, such alternative technique seems to work in the sense
that, at the numerically level, the sequence (𝜆*𝑛, 𝑓*𝑛)𝑛 converges to the same minimizer as the one obtained by
directly minimizing the functional 𝐺𝛿

0 in 𝐻1
0 (Ω)× 𝐿2(𝜔) given by (4.7).

In what follows, we will consider two kinds of harmonic function 𝑢 given either by

𝑢(𝑥, 𝑦) = 𝛼∞
(︀
1− 𝑥3 + 3𝑥𝑦2

)︀
(5.3)
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Figure 3. Exact solution (5.3).

Figure 4. Comparison of the Morozov’s solution and the exact solution (5.3) for domain 1.
Left: function 𝑢𝛿. Right: function 𝑢− 𝑢𝛿. Relative error is ‖𝑢− 𝑢𝛿‖𝐻1(Ω)/‖𝑢‖𝐻1(Ω) = 0.55.

or
𝑢(𝑥, 𝑦) = 𝛼∞ sin(4(1− 𝑦))𝑒4𝑥, (5.4)

where 𝛼∞ is calibrated such that ‖𝑢‖𝐿∞(Ω) = 1 and set 𝑓 = 𝑢|𝜔, for 𝜔 one of the three domains described in
Figure 1. We design a noisy data 𝑓𝛿 by adding a pointwise random quantity to 𝑓 in such a way that

‖𝑓𝛿 − 𝑓‖𝐿2(𝜔) = 𝛿𝑟‖𝑓‖𝐿2(𝜔) = 𝛿,

where 𝛿𝑟 is some prescribed relative noise, that is 𝛿𝑟 = 2%, 𝛿𝑟 = 5% or 𝛿𝑟 = 10%.
In Figure 3, we have plotted the exact solution 𝑢 given (5.3). In the Figures 4–6 below and for 𝛿𝑟 = 10%, we

have plotted the solution 𝑢𝛿 obtained from the minimization of 𝐺𝛿
0 (the so-called Morozov’s solution) and their

difference 𝑢− 𝑢𝛿, for 𝜔 being either of the domains 1, 2 and 3, respectively.
In Figure 7, we have plotted the exact solution 𝑢 given (5.4). In Figures 8–10 below and for 𝛿𝑟 = 10%, we

have again plotted the Morozov’s solution 𝑢𝛿 and the difference 𝑢− 𝑢𝛿, for the three different domains 𝜔.
From these numerical results, for both exact solutions given by (5.3) and (5.4), we observe that the recon-

struction is the worst for domain 1, the best for domain 2 and intermediate for domain 3.
In Figure 11, for the exact solution (5.4), the domain 3 and 𝛿𝑟 = 10%, we have plotted the error ‖𝑢𝛿

𝜀−𝑢‖𝐻1(Ω)

as a function of 𝜀, where
(︀
𝑢𝛿

𝜀, 𝜆
𝛿
𝜀

)︀
is the solution to problem (4.1) for data 𝑓𝛿. On the same graph, the value
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Figure 5. Comparison of the Morozov’s solution and the exact solution (5.3) for domain 2.
Left: function 𝑢𝛿. Right: function 𝑢− 𝑢𝛿. Relative error is ‖𝑢− 𝑢𝛿‖𝐻1(Ω)/‖𝑢‖𝐻1(Ω) = 0.33.

Figure 6. Comparison of the Morozov’s solution and the exact solution (5.3) for domain 3.
Left: function 𝑢𝛿. Right: function 𝑢− 𝑢𝛿. Relative error is ‖𝑢− 𝑢𝛿‖𝐻1(Ω)/‖𝑢‖𝐻1(Ω) = 0.52.

Figure 7. Exact solution (5.4).
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Figure 8. Comparison of the Morozov’s solution and the exact solution (5.4) for domain 1.
Left: function 𝑢𝛿. Right: function 𝑢− 𝑢𝛿. Relative error is ‖𝑢− 𝑢𝛿‖𝐻1(Ω)/‖𝑢‖𝐻1(Ω) = 0.60.

Figure 9. Comparison of the Morozov’s solution and the exact solution (5.4) for domain 2.
Left: function 𝑢𝛿. Right: function 𝑢− 𝑢𝛿. Relative error is ‖𝑢− 𝑢𝛿‖𝐻1(Ω)/‖𝑢‖𝐻1(Ω) = 0.20.

of 𝜀(𝛿) corresponding to the Morozov choice, which is associated to the Morozov’s solution 𝑢𝛿, is represented.
We clearly see that for 𝜀 < 𝜀(𝛿), the error reaches a plateau, which indicates that the Morozov choice for 𝜀 is a
relevant value. Indeed, from a numerical point of view, selecting a value of 𝜀 smaller than 𝜀(𝛿) would deteriorate
the condition number of the matrix to invert without improving the quality of the reconstruction in terms of
the error ‖𝑢𝛿

𝜀 − 𝑢‖𝐻1(Ω). In addition, the presence of a plateau instead of a clear minimum is a consequence of
the discretization. In practice we observe that the function 𝛿 ↦→ 𝜀(𝛿) is non decreasing (see e.g. [6] for a similar
case). Such monotonicity property cannot be proved theoretically without making assumptions on the mapping
𝛿 ↦→ 𝑓𝛿 ∈ 𝐿2(𝜔).

Now let us analyze the influence of the surface of the domain 𝜔, that is |𝜔| = 𝛼|Ω|, with 𝛼 = 1/5, 𝛼 = 1/4,
𝛼 = 1/3 and 𝛼 = 2/5, for 𝜔 being the domain 3, 𝑢 given by (5.3) and 𝛿𝑟 = 5%. The obtained results are given
in the Table 1 below. As expected, the larger is the measure of 𝜔, the better is the quality of the identification.

We complete this numerical section by testing the minimization of the functional (4.7) when the projector
𝑃 = (𝑃𝑀 , 𝑃𝑂) is different from 0. Let us first consider an example of projector 𝑃𝑂, that is the operator
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Figure 10. Comparison of the Morozov’s solution and the exact solution (5.4) for domain 3.
Left: function 𝑢𝛿. Right: function 𝑢− 𝑢𝛿. Relative error is ‖𝑢− 𝑢𝛿‖𝐻1(Ω)/‖𝑢‖𝐻1(Ω) = 0.40.

Figure 11. Error ‖𝑢𝛿
𝜀 − 𝑢‖𝐻1(Ω) as a function of 𝜀. The blue line represents the Morozov value.

Table 1. Influence of 𝛼 = |𝜔|/|Ω| on the error between the exact and the Morozov’s solution.

𝛼 ‖𝑢− 𝑢𝛿‖𝐻1(Ω)

‖𝑢−𝑢𝛿‖
𝐻1(Ω)

‖𝑢‖
𝐻1(Ω)

‖𝑢− 𝑢𝛿‖𝐿2(𝜔)

‖𝑢−𝑢𝛿‖
𝐿2(𝜔)

‖𝑢‖
𝐿2(𝜔)

1/5 0.50 0.55 0.02 0.10
1/4 0.47 0.52 0.02 0.092
1/3 0.41 0.46 0.018 0.072
2/5 0.3555 0.3909 1.6991 10−2 6.0638 10−2

𝑃𝑂 : 𝐿2(𝜔) → 𝐿2(𝜔) such that

𝑃𝑂𝑓 =
1
|𝜔|

(︂∫︁
𝜔

𝑓 d𝑥

)︂
1𝜔, ∀𝑓 ∈ 𝐿2(𝜔).

This choice is motivated by the following remark: let us assume that for a given 𝑥 ∈ 𝜔, the value of (𝑓 − 𝑓𝛿)(𝑥)
is a random function of 0 mean value. By ergodicity, computing the mean value of 𝑓𝛿(𝑥) at point 𝑥 for all
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realization amounts to compute, for a given realization, the mean value of 𝑓𝛿 on 𝜔. This is why we impose∫︁
𝜔

𝑢𝛿 d𝑥 =
∫︁

𝜔

𝑓𝛿 d𝑥

for the regularized solution 𝑢𝛿, that is 𝑃𝑂𝐶𝑢𝛿 = 𝑃𝑂𝑓𝛿. Let us secondly consider an example of operator
𝑃𝑀 : 𝐻1

0 (Ω) → 𝐻1
0 (Ω). We remark that the regularized solution 𝑢𝛿 to the problem (4.1) does not satisfy

the equation ∆𝑢𝛿 = 0 exactly, contrary to the exact solution 𝑢. Let us introduce the eigenvalues 𝜆𝑛 and the
corresponding normalized eigenfunctions 𝜙𝑛 (‖𝜙𝑛‖𝐿2(Ω) = 1) of the Dirichlet-Laplacian operator −∆ in Ω
for 𝑛 ∈ N, that is 𝜙𝑛 ∈ 𝐻1

0 (Ω) and −∆𝜙𝑛 = 𝜆𝑛𝜙𝑛 in Ω. We also denote, for some 𝑁 ∈ N, the finite set
𝐼𝑁 = {0, · · · , 𝑁} and the subspace of 𝑀 defined by 𝑀𝑁 = Span{𝜙𝑛, 𝑛 ∈ 𝐼𝑁}. We assume that 𝑃𝑀 is the
orthogonal projector on 𝑀𝑁 . On the one hand, we observe that 𝐵𝑢 = 0 is equivalent to∫︁

Ω

∇𝑢 · ∇𝜇 d𝑥 = 0, ∀𝜇 ∈ 𝐻1
0 (Ω) ⇐⇒

∫︁
Ω

∇𝑢 · ∇𝜙𝑛 d𝑥 = 0, ∀𝑛 ∈ N ⇐⇒ ∆𝑢 = 0.

On the other hand, imposing 𝑃𝑀𝐵𝑢𝛿 = 0 to the regularized solution 𝑢𝛿 exactly means that(︀
𝐵𝑢𝛿, 𝜙𝑛

)︀
𝐻1

0 (Ω)
= 0, ∀𝑛 ∈ 𝐼𝑁 ⇐⇒

∫︁
Ω

∇𝑢𝛿 · ∇𝜙𝑛 d𝑥 = 0, ∀𝑛 ∈ 𝐼𝑁 ⇐⇒
⟨︀
∆𝑢𝛿, 𝜙𝑛

⟩︀
𝐻−1(Ω),𝐻1

0 (Ω)
= 0, ∀𝑛 ∈ 𝐼𝑁 .

We conclude that 𝑃𝑀𝐵𝑢𝛿 = 0 is equivalent to the fact that the restriction of the linear form ∆𝑢𝛿 to the
subspace 𝑀𝑁 is null. In a sense, we have partially enforced the constraint ∆𝑢𝛿 = 0. Based on the previous
definitions of the operators 𝑃𝑀 and 𝑃𝑂, the operator 𝑃 = (𝑃𝑀 , 𝑃𝑂) : 𝐻1

0 (Ω) × 𝐿2(𝜔) → 𝐻1
0 (Ω) × 𝐿2(𝜔) is an

orthogonal projector which is compact. Unfortunately, such operator 𝑃 does not satisfy the required property
Range 𝑃 ⊂ Range 𝐴. Indeed, proving that Range 𝑃 ⊂ Range 𝐴 amounts to prove that (𝜆⊥, 𝑓⊥) = 0 for any pair
(𝜆, 𝑓) ∈ Range 𝑃 , where (𝜆⊥, 𝑓⊥) ∈ 𝐻1

0 (Ω) × 𝐿2(𝜔) is the orthogonal projection of (𝜆, 𝑓) on (Range 𝐴)⊥. The
pair (𝜆⊥, 𝑓⊥) is characterized by (4.4). Since 𝑓 is a constant function in 𝜔 and 𝜆 =

∑︀𝑁
𝑛=0(𝜆, 𝜙𝑛)𝐿2(Ω)𝜙𝑛 in Ω,

this characterization amounts to{︃
𝜆⊥ ∈ 𝐻2

0 (𝜔) and 𝑓⊥ = ∆𝜆⊥,∫︀
𝜔

∆𝜆⊥ ∆𝜇 d𝑥 +
∫︀

𝜔
∇𝜆⊥ · ∇𝜇 d𝑥 =

∑︀𝑁
𝑛=0 𝜆𝑛

(︀∫︀
Ω

𝜆 𝜙𝑛 d𝑥
)︀(︀∫︀

𝜔
𝜙𝑛 𝜇 d𝑥

)︀
, ∀𝜇 ∈ 𝐻2

0 (𝜔).
(5.5)

If 𝜆⊥ = 0, we obtain from (5.5) that
∑︀𝑁

0 𝜇𝑛𝜙𝑛 = 0 in 𝜔, denoting 𝜇𝑛 = 𝜆𝑛(𝜆, 𝜙)𝐿2(Ω). From the Lebeau-
Robbiano spectral inequality shown in [23], we obtain that 𝜇𝑛 = 0 for 𝑛 = 0, · · · , 𝑁 , and we conclude that
𝜆 = 0. Hence 𝜆⊥ does not vanish unless 𝜆 = 0.

In order to restore the property Range 𝑃 ⊂ Range 𝐴, let us rather consider the eigenvalues 𝜆0
𝑛 and the

corresponding normalized eigenfunctions 𝜙0
𝑛 of the Dirichlet-Laplacian operator −∆ in Ω ∖ 𝜔 for 𝑛 ∈ N, that

is 𝜙0
𝑛 ∈ 𝐻1

0 (Ω ∖ 𝜔) and −∆𝜙0
𝑛 = 𝜆0

𝑛𝜙0
𝑛 in Ω ∖ 𝜔. These functions 𝜙0

𝑛, extended by 0 in 𝜔, are functions in
𝐻1

0 (Ω) which are still denoted 𝜙0
𝑛, with a slight abuse of notation. The operator 𝑃 0

𝑀 : 𝐻1
0 (Ω) → 𝐻1

0 (Ω) is
then defined as the orthogonal projection of a function in 𝐻1

0 (Ω) on the (𝑁 + 1) first functions 𝜙0
𝑛, which

amounts to partially enforce the constraint ∆𝑢𝛿 = 0 in Ω ∖ 𝜔 instead of Ω. Finally, we form the operator
𝑃 0 = (𝑃 0

𝑀 , 𝑃𝑂) : 𝐻1
0 (Ω) × 𝐿2(𝜔) → 𝐻1

0 (Ω) × 𝐿2(𝜔), which is a compact orthogonal projector. Since the
functions 𝜙0

𝑛 vanish in 𝜔, from (5.5) for (𝜆𝑛, 𝜙𝑛) replaced by (𝜆0
𝑛, 𝜙0

𝑛), we observe that Range 𝑃 0 ⊂ Range 𝐴,
which implies that 𝑃 0 is an admissible projector.

As a numerical experiment, we now minimize the functional (4.7) for the admissible projector 𝑃 0 = (𝑃 0
𝑀 , 𝑃𝑂)

given above with 𝑁 = 4, that is 𝐵𝑢𝛿 has null contributions on the first 5 eigenfunctions 𝜙0
𝑛. The exact solution

is given by (5.3), the domain 𝜔 corresponds to the domain 3 in the Figure 1 with |𝜔| = 0.4 |Ω|, and we test
three different values of the relative noise 𝛿𝑟, that is 2%, 5% and 10%. In the Table 2 below, we compare how
the constraints 𝑃𝑂𝐶𝑢𝛿 = 𝑃𝑂𝑓𝛿 and 𝑃 0

𝑀𝐵𝑢𝛿 = 0 are satisfied with or without the projector 𝑃 0. More precisely,
we compute

∫︀
𝜔

𝑢𝛿 d𝑥, which has to be compared to
∫︀

𝜔
𝑓𝛿 d𝑥, as well as ‖𝑃 0

𝑀𝐵𝑢𝛿‖𝐻1
0 (Ω).
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Table 2. Comparison of how the constraints 𝑃𝑂𝐶𝑢𝛿 = 𝑃𝑂𝑓𝛿 and 𝑃 0
𝑀𝐵𝑢𝛿 = 0 are satisfied,

with and without projection.

∫︀
𝜔

𝑢𝛿 d𝑥 ‖𝑃 0
𝑀𝐵𝑢𝛿‖𝐻1

0 (Ω)

𝛿𝑟

∫︀
𝜔

𝑓𝛿 d𝑥
Without
projection

With
projector 𝑃 0

Without
projection

With
projector 𝑃 0

2% 0.1654 0.1649 0.1654 1.4016 10−5 4.2373 10−6

5% 0.1653 0.1641 0.1653 1.2481 10−5 2.5544 10−6

10% 0.1657 0.1617 0.1657 2.8569 10−4 1.2073 10−6

Table 3. Influence of the projector 𝑃 0 on the error between the exact and the Morozov’s solution.

𝛿𝑟 ‖𝑢− 𝑢𝛿‖𝐻1(Ω)

‖𝑢−𝑢𝛿‖
𝐻1(Ω)

‖𝑢‖
𝐻1(Ω)

‖𝑢− 𝑢𝛿‖𝐿2(𝜔)

‖𝑢−𝑢𝛿‖
𝐿2(𝜔)

‖𝑢‖
𝐿2(𝜔)

2% 0.2630 0.2892 8.9105 10−3 3.1800 10−2

5% 0.3573 0.3929 1.7038 10−2 6.0805 10−2

10% 0.4774 0.5250 3.3145 10−2 1.1829 10−1

Table 4. Comparison of how the constraints 𝑃𝑂𝐶𝑢𝛿 = 𝑃𝑂𝑓𝛿 and 𝑃𝑀𝐵𝑢𝛿 = 0 are satisfied,
with and without projection.

∫︀
𝜔

𝑢𝛿 d𝑥 ‖𝑃𝑀𝐵𝑢𝛿‖𝐻1
0 (Ω)

𝛿𝑟

∫︀
𝜔

𝑓𝛿 d𝑥
Without
projection

With
projector 𝑃

Without
projection

With
projector 𝑃

2% 0.1654 0.1649 0.1654 3.2756 10−4 1.7879 10−4

5% 0.1653 0.1641 0.1653 8.1457 10−4 5.2360 10−5

10% 0.1657 0.1617 0.1657 2.5715 10−3 1.8629 10−4

Table 5. Influence of the projector 𝑃 on the error between the exact and the Morozov’s
solutionInfluence of the projector 𝑃 on the error between the exact and the Morozov’s solution.

𝛿𝑟 ‖𝑢− 𝑢𝛿‖𝐻1(Ω)

‖𝑢−𝑢𝛿‖
𝐻1(Ω)

‖𝑢‖
𝐻1(Ω)

‖𝑢− 𝑢𝛿‖𝐿2(𝜔)

‖𝑢−𝑢𝛿‖
𝐿2(𝜔)

‖𝑢‖
𝐿2(𝜔)

2% 0.2648 0.2911 9.0449 10−3 3.2280 10−2

5% 0.3573 0.3929 1.7056 10−2 6.0871 10−2

10% 0.4767 0.5252 3.3119 10−2 1.1820 10−1

The Table 2 is complemented by the Table 3 below, which provides the error between the exact and the
Morozov’s solution in the presence of the projector 𝑃 0. The line which corresponds to 𝛿𝑟 = 5% in Table 3 has to
be compared with the line which corresponds to 𝛼 = 2/5 in Table 1. There are almost the same. As a conclusion,
using the projector 𝑃 0 in the functional (4.7) given above is an efficient way to impose some constraints on
the solution 𝑢𝛿, in particular for large amplitudes of noise, without increasing the error between the regularized
solution and the exact one.

Lastly, it is tempting to produce the same Tables 2 and 3 as before by using the more natural but non
admissible projector 𝑃 = (𝑃𝑀 , 𝑃𝑂) instead of 𝑃 0 = (𝑃 0

𝑀 , 𝑃𝑂), that is Tables 4 and 5 below. In view of the
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numerical results, and despite the operator 𝑃 is not admissible, it seems to be satisfactory from the point of view
of its objectives: its enables us to enforce the constraints without deterioring the error between the Morozov
solution and the exact solution.

Appendix A. On duality in optimization

In this appendix, we give a brief review of the theory of duality in optimization exposed in [17]. We consider
an optimization problem (P) denoted the primal problem :

(P) inf
𝑣∈𝑉

𝐹 (𝑣),

where 𝑉 is a Hilbert space, 𝐹 : 𝑉 → R a function ̸= +∞. Here we have denoted R = R ∪ {±∞}. We recall the
definition of the conjugate function, where 𝑉 * denotes the dual space of 𝑉 and ⟨·, ·⟩𝑉,𝑉 * denotes the duality
bracket between 𝑉 and 𝑉 *.

Definition A.1. The congugate function 𝐹 * : 𝑉 * → R of 𝐹 is defined, for 𝑢* ∈ 𝑉 *, by

𝐹 *(𝑢*) = sup
𝑢∈𝑉

(︁
⟨𝑢, 𝑢*⟩𝑉,𝑉 * − 𝐹 (𝑢)

)︁
.

Then we introduce the notion of perturbed problem. We consider a function Φ : 𝑉 × 𝐻 → R, where 𝐻 is
another Hilbert space, and Φ satisfies

Φ(𝑣, 0) = 𝐹 (𝑣).

For all 𝑞 ∈ 𝐻, we consider the perturbed problem (P𝑞):

(P𝑞) inf
𝑣∈𝑉

Φ(𝑣, 𝑞).

Then we define the dual problem of problem (P) with respect to the perturbation Φ. Let Φ* : 𝑉 * ×𝐻* → R
be the conjugate function of Φ. The dual problem, denoted (P*), is the following optimization problem:

(P*) sup
𝑞*∈𝐻*

−Φ*(0, 𝑞*).

We have the following proposition.

Proposition A.2.
(−∞ ≤) sup(P*) ≤ inf(P) (≤ +∞).

Proof. For 𝑞* ∈ 𝐻*, we have

Φ*(0, 𝑞*) = sup
𝑢∈𝑉, 𝑞∈𝐻

(︁
⟨𝑢, 0⟩𝑉,𝑉 * + ⟨𝑞, 𝑞*⟩𝐻,𝐻* − Φ(𝑢, 𝑞)

)︁
,

so that, for all 𝑢 ∈ 𝑉 ,
Φ*(0, 𝑞*) ≥ ⟨0, 𝑞*⟩𝐻,𝐻* − Φ(𝑢, 0) = −Φ(𝑢, 0).

We hence have ∀𝑢 ∈ 𝑉 , ∀𝑞* ∈ 𝐻*, −Φ*(0, 𝑞*) ≤ Φ(𝑢, 0), and finally sup(P*) ≤ inf(P). �

Remark A.3. Equality is not satisfied in general: when sup(P*) ̸= inf(P), we say that there is a duality gap.

The following theorem, which is proved in [17], guarantees equality sup(P*) = inf(P).

Theorem A.4. We assume that Φ is convex and that inf(P) < +∞. If there exists 𝑢0 ∈ 𝑉 such that 𝑞 →
Φ(𝑢0, 𝑞) is finite and continuous at point 0, then inf(P) = sup(P*) < +∞ and the problem (P*) has solutions.
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Let us apply the above general theory to the primal problem:

inf
𝑣∈𝐾𝛿

0

𝐿(𝑣) (A.1)

with
𝐿(𝑣) =

1
2
‖𝑣‖2𝑉 , 𝐾𝛿

0 =
{︀
𝑣 ∈ 𝑉 ; ‖𝐴𝑣 − 𝑔𝛿‖𝐻 ≤ 𝛿

}︀
,

where 𝐴 : 𝑉 → 𝐻 is a bounded injective operator and 𝑔𝛿 ∈ 𝐻. The problem (A.1) is indeed in the form (P),
that is

inf
𝑣∈𝑉

𝐹 (𝑣),

if we define
𝐹 (𝑢) = 𝐿(𝑢) + 𝜒𝐵𝛿

(𝐴𝑢),

and
Φ(𝑢, 𝑞) = 𝐿(𝑢) + 𝜒𝐵𝛿

(𝐴𝑢− 𝑞), (A.2)

where 𝐵𝛿 ⊂ 𝐻 is the closed ball of center 𝑔𝛿 and radius 𝛿, 𝜒𝐵𝛿
is the indicator function defined by{︂

𝜒𝐵𝛿
(𝑞) = 0 if 𝑞 ∈ 𝐵𝛿

𝜒𝐵𝛿
(𝑞) = +∞ if 𝑞 /∈ 𝐵𝛿.

We have the following theorem, which is a consequence of Theorem 2.8 when 𝑃 = 0.

Theorem A.5. For 𝑔𝛿 ∈ 𝐻 satisfying assumption (2.1), the problem (P) given by (A.1) has a unique solution
𝑢𝛿 ∈ 𝑉 .

Now let us derive the dual problem (P*).

Proposition A.6. The dual problem which corresponds to the primal problem (A.1) is equivalent to

(P*) inf
𝑞*∈𝐻*

𝐺𝛿
0(𝑞*) = inf

𝑞*∈𝐻

(︂
1
2
‖𝐴*𝑞*‖2𝑉 * + 𝛿 ‖𝑞*‖𝐻* −

⟨︀
𝑔𝛿, 𝑞*

⟩︀
𝐻,𝐻*

)︂
. (A.3)

Proof. Let us form the dual problem (P*) which, after some simple computations, is defined by

(P*) sup
𝑞*∈𝐻

−Φ*(0, 𝑞*) = sup
𝑞*∈𝐻

(︀
−𝐿*(𝐴*𝑞*)− 𝜒*𝐵𝛿

(−𝑞*)
)︀
.

It remains to compute 𝐿* and 𝜒*𝐵𝛿
.

It is easy to see that

𝐿*(𝑣*) =
1
2
‖𝑣*‖2𝑉 * .

For 𝑞* ∈ 𝐻*, we have
𝜒*𝐵𝛿

(𝑞*) = sup
𝑞∈𝐻

(︁
⟨𝑞, 𝑞*⟩𝐻,𝐻* − 𝜒𝐵𝛿

(𝑞)
)︁
,

that is

𝜒*𝐵𝛿
(𝑞*) = sup

𝑞∈𝐻, ‖𝑞−𝑔𝛿‖𝐻≤𝛿

⟨𝑞, 𝑞*⟩𝐻,𝐻* =
⟨︀
𝑔𝛿, 𝑞*

⟩︀
𝐻,𝐻*

+ 𝛿 sup
𝑞∈𝐻, ‖𝑞‖𝐻≤1

⟨𝑞, 𝑞*⟩𝐻,𝐻*

=
⟨︀
𝑔𝛿, 𝑞*

⟩︀
𝐻*,𝐻

+ 𝛿 ‖𝑞*‖𝐻* .

The problem (P*) is hence

(P*) sup
𝑞*∈𝐻*

−Φ*(0, 𝑞*) = sup
𝑞*∈𝐻

(︁
− 1

2
‖𝐴*𝑞*‖2𝑉 * − 𝛿 ‖𝑞*‖𝐻* +

⟨︀
𝑔𝛿, 𝑞*

⟩︀
𝐻,𝐻*

)︁
and we finally obtain problem (A.3). �
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By applying Theorem A.4 using the identification 𝑉 * = 𝑉 and 𝐻* = 𝐻 by the Riesz theorem, we can now
emphasize the link between the solution to the primal problem (P) and the solutions to the dual problem (P*).

Proposition A.7. If the assumption (2.1) is satisfied, the problem (P*) has solutions. In addition, the solution
𝑢𝛿 to the primal problem (P) given by (A.1) and the solutions 𝑝𝛿 to the dual problem (P*) given by (A.3) are
related to each other by 𝑢𝛿 = 𝐴*𝑝𝛿.

Proof. Let us check that we satisfy the assumptions of Theorem A.4. Clearly Φ given by (A.2) is a convex
function of (𝑢, 𝑞) and inf(P) < +∞ since problem (P) has a (unique) solution. Let us use the decomposition
𝑔𝛿 = 𝑔𝛿

�+𝑔𝛿
⊥, with 𝑔𝛿

� ∈ Range 𝐴 and 𝑔𝛿
⊥ ∈ (Range 𝐴)⊥. In virtue of assumption (2.1), we have 𝛿⊥ =

⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

< 𝛿.
Let us choose 𝑢0 ∈ 𝑉 such that ‖𝐴𝑢0 − 𝑔𝛿

�‖𝐻 ≤ (𝛿 − 𝛿⊥)/2. For any 𝑞 ∈ 𝐻 such that ‖𝑞‖𝐻 ≤ (𝛿 − 𝛿⊥)/2, we
have ⃦⃦

𝐴𝑢0 − 𝑞 − 𝑔𝛿
⃦⃦

𝐻
≤

⃦⃦⃦
𝐴𝑢0 − 𝑔𝛿

�

⃦⃦⃦
𝐻

+
⃦⃦
𝑔𝛿
⊥

⃦⃦
𝐻

+ ‖𝑞‖𝐻 ≤ 𝛿,

that is 𝑞 → Φ(𝑢0, 𝑞) = 𝐿(𝑢0) < +∞ is constant in a neighborhood of point 0. We can then apply Theorem A.4.
In particular, it implies that (P*) has solutions and that

inf(P) = sup(P*) < +∞.

From now on we identify 𝑉 * and 𝐻* with 𝑉 and 𝐻, respectively. Let 𝑝𝛿 be a solution of (P*), the above
relationship implies that

1
2
‖𝑢𝛿‖2𝑉 = −1

2

⃦⃦
𝐴*𝑝𝛿

⃦⃦2

𝑉
− 𝛿 ‖𝑝𝛿‖𝐻 +

(︀
𝑔𝛿, 𝑝𝛿

)︀
𝐻

. (A.4)

We already know from the proof of Theorem 2.6 in the case when 𝑃 = 0 that⃦⃦
𝐴*𝑝𝛿

⃦⃦2

𝑉
+ 𝛿 ‖𝑝𝛿‖𝐻 −

(︀
𝑔𝛿, 𝑝𝛿

)︀
𝐻

= 0,

which together with (A.4) implies that
1
2
‖𝑢𝛿‖2𝑉 =

1
2

⃦⃦
𝐴*𝑝𝛿

⃦⃦2

𝑉
.

Since we also have
‖𝐴(𝐴*𝑝𝛿)− 𝑔𝛿‖𝐻 = 𝛿,

we conclude that 𝐴*𝑝𝛿 ∈ 𝑉 solves the primal problem (P), that is 𝐴*𝑝𝛿 = 𝑢𝛿. �

Remark A.8. It is remarkable that the primal problem (P) is more difficult to solve in practice than the dual
problem (P*), which is unconstrained.

Remark A.9. The solution 𝑢𝛿 to the primal problem (P) coincides with the Tikhonov solution 𝑢𝛿
𝜀 to problem

(2.2) associated with the Morozov value 𝜀(𝛿).
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[7] L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Prob. Imaging 4 (2010)
351–377.

[8] L. Bourgeois and A. Recoquillay, A mixed formulation of the Tikhonov regularization and its application to inverse PDE
problems. ESAIM: M2AN 52 (2018) 123–145.

[9] E. Burman and L. Oksanen, Data assimilation for the heat equation using stabilized finite element methods. Numer. Math.
139 (2018) 505–528.

[10] E. Burman, P. Hansbo and M.G. Larson, Solving ill-posed control problems by stabilized finite element methods: an alternative
to Tikhonov regularization. Inverse Prob. 34 (2018) 035004.

[11] E. Burman, A. Feizmohammadi, A. Münch and L. Oksanen, Space time stabilized finite element methods for a unique contin-
uation problem subject to the wave equation. ESAIM: M2AN 55 (2021) S969–S991.
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