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THE MOROZOV’S PRINCIPLE APPLIED TO DATA ASSIMILATION
PROBLEMS

LAURENT BOURGEOIS'™ AND JEREMI DARDE?

Abstract. This paper is focused on the Morozov’s principle applied to an abstract data assimilation
framework, with particular attention to three simple examples: the data assimilation problem for the
Laplace equation, the Cauchy problem for the Laplace equation and the data assimilation problem for
the heat equation. Those ill-posed problems are regularized with the help of a mixed type formulation
which is proved to be equivalent to a Tikhonov regularization applied to a well-chosen operator. The
main issue is that such operator may not have a dense range, which makes it necessary to extend
well-known results related to the Morozov’s choice of the regularization parameter to that unusual
situation. The solution which satisfies the Morozov’s principle is computed with the help of the duality
in optimization, possibly by forcing the solution to satisfy given a priori constraints. Some numerical
results in two dimensions are proposed in the case of the data assimilation problem for the Laplace
equation.
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1. INTRODUCTION

In this article we consider inverse problems of the following type: find a solution u to the Laplace equation
Au = 0 in a domain  of R%, d > 1, from values of u measured on a smaller domain w. Such problem can be seen
as a toy model for data assimilation problems. Data assimilation is a very active domain of applied mathematics
in connection with oceanography, meteorology or life sciences. It can be addressed from a deterministic or a
stochastic point of view, one of the pioneering contribution to the field being [2], a deterministic vision being
exposed in [24], a stochastic one in [22]. The introduction of [15] also offers a nice overview of data assimilation
problems. Despite uniqueness holds for our basic data assimilation problem for the Laplace equation, it is severely
ill-posed, in the sense that existence is obviously not ensured if the measurements are corrupted by noise. In
order to regularize such problem, we introduce a mixed variational formulation which is parametrized by a small
parameter € > 0. Such formulation has the advantage to be well-posed and to provide a solution which is close
to the true solution u. In addition, the regularized solution is searched in the natural energy space in which u
is supposed to belong, typically H'(2), which results from the mixed nature of our formulation. The “mixed”
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terminology comes from the fact that the weak formulation consists of a system of two equations satisfied by
two unknowns, that is the regularized solution u. and a Lagrange multiplier A., which is also searched in the
space H1(Q). The idea of mixed formulation to solve linear ill-posed problems goes back to [3], which concerns
the Cauchy problem for the Laplace equation and can be seen as a variant of the quasi-reversibility method
introduced in [21]. The notion of mixed formulation was more recently recast in a general abstract framework
in [8], in which it is proven that such mixed formulation is equivalent to the classical Tikhonov regularization
for a well-chosen linear injective operator A. In particular, once the mixed formulation has been reformulated
as a Tikhonov regularization, it is natural to apply the classical Morozov’s discrepancy principle to compute a
consistent regularization parameter € as a function of the amplitude of noise §. In [8], this technique was used in
the case of a Cauchy-type problem for the Helmholtz equation set in a waveguide, that is the data was formed
by the trace and the normal derivative of the acoustic field on a subpart of the boundary. It is important to
note that for such a Cauchy-type problem, the underlying operator A has a dense range.

When it comes to the data assimilation problem for the Laplace equation previously introduced, we will
observe that applying the Morozov’s discrepancy principle is not standard any more in the sense that the
corresponding operator A has not a dense range. Indeed, the standard results which justify the Morozov’s
principle for the Tikhonov regularization (see e.g. Thm. 2.17 in [20]) are limited to dense range operators. The
objectives of the present paper are the following. The first objective is to generalize these standard results to
the case when such denseness assumption fails. In particular, we will see that this generalized result requires the
data to satisfy an additional condition which is not trivial to check. A second objective is to extend the duality
method, introduced in the context of Morozov’s discrepancy principle in [4] and revisited in [6,12], to the case
of those operators A which do not have a dense range. This duality method, the origin of which is the theory
developed in [17], later adapted to controllability problems in [25, 26], consists in solving an unconstrained
minimization problem involving a cost function which depends on the adjoint operator A* of A. The main
interest of the duality method in the context of inverse problems consists of an idea introduced in [4, 6] and
reused in the present paper: by applying the operator A to the solution of such minimization problem, we
exactly obtain the Tikhonov solution associated with the Morozov’s choice for . In our paper, we also adapt
another idea, borrowed from [18] in the context of control theory, then transposed in [12] in the context of
inverse problems. It consists in introducing a modification of the cost function involving a compact projection
operator in order to impose some a priori assumptions to the solution which may be useful in practice, while
keeping the objective of satisfying the Morozov’s principle. The third objective is to apply all the previous ideas
to an abstract framework of data assimilation problems, including the toy problem presented at the beginning
of the introduction.

Although we present some numerical results using a finite element method at the end of the paper, the choice
of the discretization parameter h is not discussed in the present paper, such h being supposed to be sufficiently
small so that we can apply the algorithms introduced at the continuous level. The Morozov’s principle for the
discretized Tikhonov regularization is however an interesting subject, addressed for example in [27]. In a long
series of papers, Burman and his collaborators (see e.g. [9-11] for the Laplace, heat and wave equations, respec-
tively) have proposed a weak formulation which is different from ours: there are no regularization parameter
at the continuous level, but sophisticated stabilizers at the discrete level are introduced to obtain a well-posed
problem. In those works, some estimates between the exact solution and the solution to the discrete regularized
problem are obtained with respect to the mesh parameter h, which can be seen as a regularization param-
eter. Similar estimates are obtained for discretized mixed formulations to regularize the Cauchy problem for
the Laplace equation in [5] and a data assimilation problem for a wave-type equation in [14]. Those estimates
are interesting because they provide convergence rates, up to a multiplicative constant which cannot be esti-
mated. The subject of our article is different and also challenging: we wish to choose a particular value of the
regularization parameter.

Our paper is organized as follows. In Section 2, we revisit the Morozov’s principle for the Tikhonov regularized
solutions in the case of an operator which has not a dense range. An abstract framework for data assimilation
problems is introduced in Section 3, to which the results obtained in Section 2 are applied. In Section 4, we
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analyze three particular cases of our general data assimilation framework: the data assimilation problem for the
Laplace equation, the Cauchy problem for the Laplace equation, lastly the data assimilation problem for the
heat equation. Section 5 is dedicated to numerical experiments related to the first particular case. Lastly, an
appendix summarizes the theory of duality in optimization exposed in [17].

2. THE MOROZOV’S PRINCIPLE REVISITED

2.1. The Tikhonov regularization and the Morozov’s principle

We first extend a well-known result related to the Tikhonov regularization for operators which have a dense
range (see e.g. Sect. 2.5 in [20] for the restricted case of a compact operator) to the case of operators which
don’t satisfy this property. Let A : V' — H be a linear bounded operator from the Hilbert space V' to another
Hilbert space H. We assume that A is injective. In what follows, for a family (u.). of functions depending on
the real parameter ¢ > 0, we will frequently use a slight abuse of notations: each time the family (u.). will
be called a sequence, we mean that we may choose any sequence (&, )nen, such that e, — 0 when n — +oc.
Extracting a subsequence of (u.). means that we have extracted a subsequence of that particular sequence of

(n)nen-
Theorem 2.1. For some § > 0, let us assume that the data ¢° € H is such that
o1l <6 < 119l - (2.1)

where g‘i is the orthogonal projection of g° on (Range A)=.
For e > 0, let us denote ug € V the regularized solution associated with data g° in the sense of Tikhonov,
which is defined by the weak formulation

(Aug, A’U)H + €(ug,v)v = (g‘s7 AU)H, Vv e V. (2.2)

There exists a unique € > 0 such that
HAu‘gfg‘;HH =4 (2.3)

Proof. Let us introduce, for £ > 0, the function
s b 5112
E*(e) = [|Aug = g°|[

which is differentiable and satisfies

dE°
g(g) = 2(Aug - 967AUS)H7 Ve >0,
where vg € V is uniquely defined by
(Av?, Av) , +e(vdv), = —(ud,v),,, YweV. (2.4)
By choosing v = v9 in (2.2),

g(e) = —2¢(ug,v¢),, Ve>0.

Then choosing v = v? in (2.4), we find
dE°
de

Obviously dE°/de > 0, and more precisely dE°® /de > 0. Indeed, let us assume that dE°/de = 0. It follows from
the above identity that v = 0, and from (2.4) that ul = 0. From (2.2) we hence infer that (g°, Av)y = 0 for

(€) = 25<HAU§H2 + s|\vg||2v), Ve > 0.
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all v € V, that is ¢° € (Range A)*, in other words ¢° = g‘i. But there is a contradiction with the fact that
H g‘i” g <0< H g‘sH - We conclude that the function E? is a continuous and non-decreasing function in the
interval (0, 400).
Now let us prove that
: Sy — |49 12 ; Sy — |1,002
Eh_I)I(l)E <5>_H9LHH and lim F (5)—Hg HH

g——+00

By choosing v = u? in (2.2), we firstly obtain that
|Aulllsr < [lg°] (25)

and secondly that

Huénv < Hg(sHH (2 6)
e = \/g .
This implies that (u%). converges to 0 in V' when € — 400, and then E°(g) converges to ||g‘5||il when ¢ tends
to +o0.

Since the function E° is non-negative and non-decreasing, it has a limit when ¢ tends to 0. As by (2.5),
(Aul). is bounded, we can extract from (ul). a subsequence, that we still denote (u?)., such that (Au?).
weakly converges to some h € H. In fact, h € Range A because the space Range A is weakly closed. We have,
in view of (2.6),

(40— g7, A0) ] = |20, 0), | < VE ol — 0, oeV,

when € — 0. But we also have
(Aug — g‘s,Av)H — (h — g5,Av)H, Yo eV,

when ¢ — 0. We conclude that h — ¢° € (RangeA)‘. Since we have the decomposition H =
Range A @ (Range A)*, we get that h = gj, where g;;/ is the orthogonal projection of data g’ on Range A4,
while g% — g; = ¢4 . Hence (Au?). weakly converges to g?/ in H, and subsequently, (Aud — ¢?). weakly converges
to fg‘j_ in H.

On the one hand, we have

9% 15, < timinf|| Au? — ¢*|, = liminf B (=) = lim E°(e).

e—0 e—0

On the other hand, we have

E3(e) = ||Aul — ¢°}, = (Aul — g, Au) , — (Aud — % ¢%)
= —e|ulll} — (Aul — ¢°,9%) ,, < —(Aul — ¢°,4°)

which implies that

. 2

lim 5°(e) < (9%,9°) y = |92 |-
We conclude that E?(¢) — ||gf_HiI when ¢ — 0. Finally since E°(0F) = ||g‘i||i1 < 8?2 < E%(+00) = Hg‘sH;,
since E° is a non-decreasing continuous function of ¢, there exists a unique ¢ > 0 such that E°(¢) = 62, which
completes the proof. O

Remark 2.2. In the particular case when the operator A has a dense range, that is (Range A)t = {0}, we
have of course g‘j_ = 0, so that the assumption || g‘j_ || 5 < 0 is automatically satisfied. This is why Theorem 2.1
is a generalization of the result given in [20] (see Thm. 2.17).
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The context of Theorem 2.1 could be the following: we consider an idealized exact problem which consists,
for the exact data g € H, in finding the exact solution u € V' such that

Au = g.

However, in practice such exact problem is impossible to solve, because the exact data g € H is unknown.
Instead, we measure some noisy data ¢ such that

19’ = gll,; =6, (2.7)

where § is the amplitude of noise. The objective is to find a solution in V' from data ¢° which is close to u,
in particular when such noisy data ¢° does not belong to the range of A. The Tikhonov regularization, which
consists in computing ug with the help of (2.2) for some € > 0, is a classical way to approximate u. It is
well-known that for § = 0, that is for exact data g, the corresponding Tikhonov solution u. converges to u in
V when ¢ tends to 0. When § > 0 however, choosing ¢ is not easy. In particular, each time g° ¢ Range A, the
norm ||ul ||y tends to +oc when ¢ tends to 0. The Morozov’s principle is a classical way of choosing ¢ such that
(2.3) is satisfied. The general idea of the Morozov’s principle is the following: since from (2.7) the data ¢° is
corrupted by some noise of amplitude §, a solution to the problem Au® = ¢° might fail to exist, and it is not
worth computing a Tikhonov solution such that Aug ~ ¢% be satisfied with a better accuracy than §. More
precisely, the Morozov’s value € is chosen so that the error HAug — g‘sH 5 made in the resolution of the problem
exactly coincides with the amplitude of noise §. A justification of the Morozov’s rule is given by the following
result. The proof is omitted since it is exactly the one given in Theorem 2.17 of [20] in the restricted case when
A is a compact operator with dense range (in fact, the proof does not use these two assumptions).

Proposition 2.3. With the same assumptions as in Theorem 2.1 and assumption (2.7), let us denote £(8) the
value of € given by (2.3) and ug(é) the corresponding solution to (2.2). Then

%ii%ug(é) =u in V.
Remark 2.4. It should be noted that in the context which is described above, that is H95 — gHH = ¢, where g
is the exact data, the assumption H g‘iH g < 0 is very unlikely to be violated. Indeed, let us denote r=g°—g

1

the perturbation between the noisy and the exact data, and let us use the decomposition r° = r?/ + Ti, with

7’?/ € Range A and 73 € (Range A)*. Since g € Range A, we have

2 2 2
ot 1 = I =2 = |5
so that ||gf_ HH < 4 unless r?/ = 0, that is if and only if the perturbation 7 only has a contribution in (Range 4)=*.

2.2. Interpretation of the Morozov’s principle with duality in optimization

Now let us introduce and study a minimization problem which will be later on related to the Morozov’s
principle. We consider an orthogonal projector P : H — H on a closed subspace of H such that P is compact
and Range P C Range A. The operator P will enable us to enforce the approximate solution to satisfy some
a priori constraints, as will be clarified later.

We consider the problem

(P5)  inf Gh(a), (2.8)
q€H

the functional G% being defined, for all ¢ € H, by

1 *
Gplq) = 1A%l + 8117 = P)alla - (9°.4) (2.9)

where I : H — H is the identity operator and A* : H — V is the adjoint operator of A.
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Lemma 2.5. The function G is coercive if and only if the data g° satisfies ||g‘iHH < 4.

Proof. Let us assume that [|g}||,, < 6 and let us prove that G%(¢q) — +oo when |lg|z — +oo. Assume
on the contrary that there exists some constant C' > 0 and a sequence (gn)nen of elements in H such that
oy, = ||lgn|lg — +oo while G(g,) < C. Let us define z, = ¢,,/||¢n || 1. Since ||z, ||z = 1, there exists a subsequence
of (zn)n, still denoted (z,,)n, such that z, — z in H. We have

2
ay *
7||A 2013 + and||(I — P)znl|gr — an(g‘s,zn)H <C, (2.10)

hence

514 zlly < afn(g s Zn) gy + e
which implies that A*z, — 0 in V and since A*z, — A*z in V, we get that A*z = 0, that is z € Ker A* =
(Range A)*.

Another consequence of (2.10) is

C
0L = P)zaller < (9 20) yy + —

n

C
= (gé’z)Hf (967272")H+07n
C
= (g(JS_VZ)H_ (9572_271)]{"'&7
n

C
= (98 (I =P)2)y = (9" 2 = 2n) y +

C
< ol = P)zllr +[(9° 2 = 20) | + ==

where the second equality comes from the fact that z € (Range A)* and the third one from the fact that
Range P C Range A. Now, since (I — P)z, — (I — P)z in H, we have

S|(I = P)z||g < 1im+mf5|\(1 —P)zy|lu

C
< 1iminf<ugj|yH<z — PYellar + 1(g 5 — )l + a)

n—-+o0o n

=lg% ||, I(I = P)zl|.

Since Hgf_HH < ¢, we obtain that (I — P)z = 0, in particular z € Range P C Range A, which together with
z € (Range A)* implies z = 0.

Suppose finally that (I — P)z, — 0 in H. That P is a compact operator and z, — 0 in H yields Pz, — 0 in
H, hence z, — 0 in H. But this contradicts the fact that ||z,||z = 1 for all n. Then we can find a real ¢ > 0

and a subsequence of (z,)n, still denoted (zy,)n, such that ||[(I — P)zy||g > € for all n. As a result, in view of
(2.10),

c> an(és — (g‘s,zn)H) — +00.

Such contradiction proves that G is coercive if H g‘iH g <0
Let us prove the converse statement, that is H g‘iH g = 0, implies that G‘}, is not coercive. For a € R, by
setting ¢ = ag) € H in G%(q) we get

2
Ghlag) = G408, + adl|(7 = Pak |, — allol |l
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We observe that g} € (Range A)* = KerA*. The operator P is self-adjoint as an orthogonal projector. Since in
addition Range P C Range A, we also observe that g‘i € (Range P)* = KerP. We conclude that

Ghlagy) = a(dllgd |, — gt 7).
I |g2]|,; > 6 then [|g2|l > 6]lg% ;s so that Gh(agi) — —oo when a — +oc. If [|gf ||, = 4, then
G%(ag.) = 0. In both cases, the functional G% is not coercive. O
From Lemma 2.5, by introducing the set
Kp={veV,||[Av—g°||, <4, PAv=Pg’},
we obtain the following theorem.

Theorem 2.6. If Hgi HH < §, the optimization problem (2.8) has at least one solution p° € H. Then ud = A*p®
belongs to the set Kg and we have the identity

]2, + 2G5 (%) = 0. (2.11)

Proof. The functional G% is continuous and convex on H. Existence of a minimizer p° of G% is then a conse-
quence of the coercivity of G‘ISD by Lemma 2.5. Let us define u® = A*p®. We consider two cases.
Let us firstly assume that (I — P)p® # 0. The optimality of G% at p° writes

J

*_ 0 *
A2y = pyp,

I-P)yp’ . (I-P)q),—(¢°q), =0, VgeH,

which implies, since (I — P)2 =1 — P,

0
(T = P)p°ll

We conclude that HAu‘S — g‘SHH =0 and PAu® = Pg°, that is u’ € K%. In addition, we have

Aul — ¢° = — (I —P)p°. (2.12)

165 + 2G5 (%) = ||}, + | Ap° |, +20]|(1 = Py, — 2(4%.57)
= 2(‘4“6 - 9671)5)1{ + %H(I - P)péHH
- 2
= TP,
:07

I-P)y’,p°), +25||(1-P)y°|,

where the third equality is a consequence of (2.12).

Let us on the contrary assume that (I — P)p® = 0. Then the functional G% is not differentiable at point p°.
The optimality however writes 0 € 9G%(p?), where G%(p°) denotes the subdifferential of G% at point p°. In
view of (2.9), and by using the classical rules for subdifferential computations, we have

0GH(p°) = AAD’ —g° +6(I — P)a(|| - [|#)(0)-

Since (|| - ||#)(0) is the unit ball of H centered at 0, that 0 € dG%(p°) implies that ||Au’ fg‘;”H < 4. In
addition, we have

0 (2,0 : ) : ) : ~6
G = inf G < f G = f G
P(p ) qlgH P(q) - qeRlilngeP P(q) qeRlilngeP (Q),
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where )
&(0) = 1A%} ~ (6°,0)
Since p® € Range P, in fact we have

S (o) = () =  inf C%(q).
Gp") =G0 = _inf  G%(q)

The optimality of G’ in Range P at point p’ writes
(A*p‘s,A*q)v — (95, q)H =0, Vq € RangeP,

which amounts to
Au’ — ¢° € (Range P)* = KerP. (2.13)

We conclude that u® € K%. In addition,

][5 +2G650°) =[]}, + |4° |1}, —2(s°.0°)
=2(Au’ —¢°,p")
P— ()7

the last equality being a consequence of (2.13). The proof is complete. O

In order to give a precise meaning to u?, we need the following lemma.

Lemma 2.7. For all v € K\ {u®}, it holds that ||[v|lv > ||u’||y.

Proof. Assume that v € K% and let us introduce ¢ = g° — Av, which satisfies ||q||z < § and Pg = 0. We have
1 1
5 (vl = [u’[I5) = SVl + GH(r°)
1 1
= Sllellt + 3140 [l5 + 617 = Pl = (9°.0°)
1 1
= ol + S + ol — P, — (Av.0) , — (a0)
1 1
= Soll} + 181 — o)y + 81T = P — (= Pas’)

1
= Sllo =’y + 81T = Pyl — (0 (7 = P")

v

1 5112
e
where the first equality is a consequence of (2.11), while the fourth one is a consequence of Pq = 0 and the last

inequality uses that ||¢||g < 0. The proof is complete. a

Theorem 2.8. If HgiHH < 6, for any solution p° € H to the minimization problem (2.8), u® = A*p? € V is
the unique solution to the minimization problem

(@p)  int_ |0 (2.14)
veEKY,
Proof. We first remark that the optimization problem (2.14) has a unique solution. Indeed, the set K f; is convex,

closed and non-empty (it contains u’ from Thm. 2.6). In addition, the cost function to minimize is coercive and
strictly convex. Lemma 2.7 shows that u’ coincides with the unique solution to such problem (2.14). O
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Remark 2.9. An important consequence of Theorem 2.8 is that u® = A*p® does not depend on the solution
p° to the optimization problem (2.8).

0

The following result specifies in which sense u° is an approximation of the exact solution wu.

Theorem 2.10. Let us assume that g° satisfies (2.1) and (2.7). If in addition Pg® = Pg, then

limu’ =u in V.
§—0

Proof. We have
|Au = g°a = llg = ¢°lu =6

and PAu = Pg°, so that u € K%. By Lemma 2.7 we obtain that |u’||y < ||uly. From the sequence (u%)s in V,
we can then extract a subsequence still denoted (u%)s, such that u® — w in V when § — 0. Besides, we have
both Au’ — ¢ in H and Au® — Aw in H, hence Aw = ¢, that is w = u from the injectivity of A. As a result,
u® — v in V. Then ) )

|u® — ully, = ||u6||v + [Jull? - 2(u5,u)v <2(u-— u‘s,u)v,
and we get that u® — wu in V. We easily conclude that all the sequence (u°)s, and not only a subsequence,
converges to u in V. (I

We wish now, in the particular case when P = 0, to relate the solutions p’ which minimize the functional
GY (note that G coincides with the functional G, given by (2.9) when P = 0) to the classical solution of the
Tikhonov regularized problem associated with operator A when the regularization parameter is chosen according
to the Morozov’s discrepancy principle. We hence consider the minimization problem

1
* . 5 B - * 112 _ )
() inf G0 = inf (1A%l + 0ol — (¢".0) ) (215)

The solutions to problem (£?*) will enable us to obtain a practical method to compute the Morozov’s value
€(0) > 0 given by Theorem 2.1 and the corresponding Tikhonov solution u‘g. In the appendix, we show how the
problem (2.15) can be derived in a constructive way by using the theory exposed in [17].

Theorem 2.11. If the noisy data g° satisfies the assumption (2.1), the problem (2*) given by (2.15) has at
least one solution, and u® = A*p® coincides with the Tikhonov solution ul of problem (2.2) where €(68) is the

unique value of € > 0 such that HAug — g5||H =6 according to Theorem 2.1. Lastly, p® # 0 and
6
19° )l 22

e(9)

Proof. From Theorem 2.6, we already know that the problem (£2*) has solutions which are denoted p°. Let us

verify that p® # 0. Actually, let us take g = g‘s/HgéHH. For € > 0, we have

€2 L su2
Golea) = S 14%gtlly +2(6 = [19°ll )

If ¢ is sufficiently small, G (egf) has the sign of § — Hg‘SHH < 0, hence there exists ¢ € H such that G(q) <

0= Gg(O)7 and the solutions p® do not vanish. From the proof of Theorem 2.6 in the case P = 0, in particular
in view of (2.12), if we denote u’® = A*p’, we directly obtain that u’ satisfies the Morozov’s principle

14w = g°[|;; =

and the equation

5
A*(Aud) + u’ = A*g.
2 =
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We hence conclude that if we take £(6) = &/||p’|| s, the function u’ satisfies A*(Au’) + &(§)u’ = A*g%, which
means that it is the unique solution u® to the problem (2.2) associated with that (&) and furthermore satisfies
the Morozov’s principle. (I

Remark 2.12. In the case when P = 0, the above theorem provides a strategy to find the Tikhonov/Morozov
solution associated with noisy data ¢°. Tt consists in finding first a solution to problem (£?*). The Morozov
solution is then obtained by applying A* to any solution of (£7*).

In the case when the operator P is not 0, for p° the solutions to problem (27%), the corresponding solutions
u® = A*p® can not be related to the Tikhonov problem (2.2). However, since ||Au5 - g5|| y < 0, they satisfy
the Morozov’s principle in the sense of an inequality instead of an equality when § = || q° — gH ;- The role of
the operator P is to impose that PAu® = Pg?, which ensures that some particular reliable features of the data
¢° are satisfied exactly by Au’. For example, the noise often affects the high frequencies of the measurements.
Hence we are tempted to be more confident in the low frequencies of the data than in their high frequencies. It
is then natural to impose that a finite number of low frequency components of the data be exactly satisfied by
the approximate solution, which can be achieved by using a specific operator P. We will present some examples
of projector P in the case of the data assimilation problem for the Laplace equation.

3. AN ABSTRACT FRAMEWORK FOR DATA ASSIMILATION PROBLEMS

In this section we introduce a general framework for a class of data assimilation problems. The three appli-
cations that we will present in the next section are particular cases of such general framework. Let us consider
V, M and O three Hilbert spaces, b a bilinear continuous mapping on V' x M and the corresponding operator
B :V — M such that

(Bu, A\)ar = b(u, A), Y(u,\) €V x M,

as well as a continuous operator C' : V' — O. We assume that the operator A : V. — H = M x O such that
Au = (Bu,Cu) is injective. We formulate our abstract data assimilation problem as follows: for data f € O,
find v € V such that Bu =0 and Cu = f.

By the injectivity of A, such problem has at most one solution but in many situations, it is ill-posed because
A is not onto. This is why we propose, for € > 0, the following regularized weak formulation: for f € O, find
(e, Ae) € V x M such that for all (v,u) € V x M,

{g(us,v)v + (Cue, Cv), + b(v, Ae) = (f,Cv)o

bue, ) — (Aey )y = 0. (3.1)

As recalled in the introduction, the principal motivation for introducing such variational mixed formulation is
to find an approximate solution to our ill-posed problem in the space V', which is the natural space of the true
solution u. In addition, when it comes to the discretization with the Finite Element Method, it enables us to
consider simple conforming finite elements. Alternatively, if we directly apply the ideas of [21], for instance, the
approximate solution has to be searched in a space more regular than V' and the discretization requires some
more cumbersome finite elements, as can be seen in [7].

Remark 3.1. We have chosen here to restrict ourselves to the homogeneous equation Bu = 0 instead of a
non-homogeneous equation Bu = ¢ for some ¢ € M, in order to handle one single data f instead of a couple
of data (¢, f), and hence simplify the analysis. The fully non-homogeneous case is for example addressed in
[8], where a Cauchy problem for the Helmholtz equation in the presence of both noisy Dirichlet and Neumann
data is considered. This increases the difficulty to apply the Mororov’s principle since the two Cauchy data are
independently perturbed by some noise while a single regularization parameter is at one’s disposal.

The weak formulation (3.1) is justified by the following theorem.

Theorem 3.2. For all € > 0, the weak formulation (3.1) has a unique solution. Furthermore, if there exists
u €V such that Bu =0 and Cu = f, then (us, A\c) — (u,0) in V x M when ¢ — 0.
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Proof. The weak formulation (3.1) is equivalent to: find (ue, A\c) € V' x M such that for all (v,pu) € V x M,
A((ue, Ae); (0, 1)) = L((v, 1),
with
A((u, A); (v, 1)) = e(u, v)v + (Cu, Cv)o +b(v, A) = blu, p) + (A ), L((v, 1)) = (f, Cv)o.
If suffices to apply the Lax-Milgram Lemma, the coercivity of A being ensured by
A((u, N); (u, X)) = eflull§, + ICulE + A7, = min(e, 1) ([[ullf + [A7,)-

Now assume that there exists u € V' such that Bu = 0 and Cu = f. By the injectivity of A, such u is uniquely
defined. Since Bu = 0 and Cu = f, the system (3.1) implies that for all (v, u) € V x M,

{s(us,v)v + (Clue —u),Cv)o + b(v,Ac) =0
b(ue - u, :U’) - ()\€7M)M =0.

Choosing v = u. — u in the first equation and p = A in the second equation, taking the difference of the two
obtained equations implies that for all € > 0,

e(ue — uyue)y +[1C(us —u)[[§ + A3, = 0. (3.2)

Identity (3.2) implies that (ue — u,uc),, <0, hence (u.). is bounded in V. There exists a subsequence of (u.).,
still denoted (u.)e, which weakly converges to some w € V. From (3.2), we also deduce that (Cu.). converges
to Cu in O and that ()\.) converges to 0 in M. From the second equation of (3.1), we have that Bu. = A,
which implies that (Bu.)e converges to 0. Since the sequences (Bu.). and (Cu.). weakly converges to Bw in
M and Cw in O, respectively, we obtain that Bw = 0 = Bu and Cw = Cu. The injectivity of A = (B, () yields
w = u. It remains to remark that

lue — uH%/ = (Ue — U, ue )y — (U, ue — )y, < —(u,ue — )y,

which implies that the weak convergence of (u.) implies the strong convergence of (u.) in V. A classical
contradiction argument proves that all the sequence (u.)., and not only the subsequence, tends to w in V' when
€ tends to 0. (]

Remark 3.3. Reading the above proof carefully shows that Theorem 3.2 also holds if the mapping v € V' —
|v]|y € R4 is no more a norm in V' but only a semi-norm, provided the mapping v € V — (|jv]|? +||Cv||3)"/? €
R, is a norm in V such that V, equipped with such a norm, is complete.

We now offer a link between the weak formulation (3.1) and the Tikhonov regularization (2.2). For f € O,
finding v € V such that Bu = 0 and Cu = f is equivalent to finding u € V such that Au = g, where

g=(0,f) € H.

Proposition 3.4. The pair (us,A:) € V x M is the solution to problem (3.1) if and only if u. is the solution
to the problem: find u. € V such that for allv € V,

(Aug, Av) gy + e(ue,v)y, = (9, Av)g (3.3)

for g=1(0,f) € H, and A\c = Bu,.
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Proof. The function u. € V satisfies the problem (3.3) if and only if
(Bue, Bv)p + (Cue, Cv)o + e(ue, v)y = (0, Bv)ar + (f,Cv)o, Yv €V,
that is, setting A\. = Bu,,
e(ue,v)y + (Cue, Cv)o + (Bv, o)y = (f,Cv)o, Yv eV,

and
(Bu67/"L)M - (AEa,U/)M = 07 v,u’ € M7

which is equivalent to formulation (3.1). O

That the problem Au = g is ill-posed and the above equivalence between the Tikhonov regularization for
the operator A and the mixed formulation (3.1) prevents us from setting ¢ = 0 in (3.1). In particular, such
ill-posedness implies that the bilinear form b does not satisfy the inf-sup condition, as shown in [3,8].

If we now consider, for § > 0, some noisy data f° € O, let us denote (ul,\%) € V x M the solution to
problem (3.1) associated with data f°. From Proposition 3.4, we get that u? is the solution to problem (3.3) for
g% = (0, f%) and that A\’ = Bul. From Theorem 2.1 applied to operator A = (B, C) from V to H = M x O, we

immediately obtain the following result.

Corollary 3.5. Let us denote (Xj_,fj) € M x O the orthogonal projection of data (O, f‘s) € M x O on
(Range A)* and assume that

IV + 1720 < 02 < 10112

There exists a unique € > 0 such that

2
12211

+|cul - 1|17 = 82

Remark 3.6. Corollary 3.5 is close to Theorem 2.10 in [8]. However, here we point out that the statement
of such theorem is not correct in the sense that the following assumption should have been added: using the
notations of [8], the operator A = (A, B) shall have a dense range. In particular, that A has a dense range is
not a consequence of the fact that the operators A and B both have a dense range, contrary to what is claimed
in [8]. Fortunately, the property that the operator A has a dense range is actually true in the particular case
considered in [8], which is very similar to the Cauchy problem for the Laplace equation addressed hereafter (see
Sect. 4.2, in particular Lem. 4.7).

In order to compute the value of £ and the Morozov’s solution u¢ given by Corollary 3.5 by using duality, we
wish to give a more explicit form of the minimization problem (2.8) as well as the Fréchet derivative of G% in the
data assimilation framework. This Fréchet derivative will be required to solve the minimization problem with
the help of an iterative gradient method. More generally, we consider two orthogonal projectors Py; : M — M
and Pp : O — O on a closed subspace of M and O, respectively, such that Py, and Po are compact. We hence
obtain an orthogonal projector P = (Pys, Po) : M x O — M x O which is compact and assume in addition that
Range P C Range A. We are hence in a position to state the following proposition.

Proposition 3.7. Let us identify the spaces V*, M*, O* with V., M, O, respectively. The dual problem (2.8)
reduces to

CEONN N JCA (34)

with for (\*, f*) e M x O,

Gp(\*, ") = %IIB*/\* +C Y+ 81 = PYX, f)llarxo — (£, F)o- (3-5)
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Let us define u* € V' by the weak formulation
(u*,v)y =bv,\*) + (f*,Cv)o, YveV. (3.6)

For (I — P)(\*, f*) # 0, the two partial Fréchet derivatives 9\G% € M and 0;G% € O of G% at point (\*, f*)
are given by the weak formulation

0

T PO ) (M — Pa)X e, Vi€ M (3.7)

(GAG(;UM)M = b(u", ) +

and the identity
0

0;G% = Cu* +
e 1T = P)O, f)wxo

(Io — Po)f* - f°, (3.8)

respectively.

Proof. Formula (3.5) is obtained having in mind that ¢° = (0, f%), for f° € O, and by observing that since
Av = (Bv,Cv)prxo for all v € V| we have for all (\*, f*) € M* x O*, A*(\*, f*) = B*A\* + C* f*. In addition,
(I — PO, ) = (I — Pu)XN, (Io — Po)f*). Differentiating (3.5), the partial derivative 9yG% is given,
introducing u* = B*A\* + C*f* € V| by

)
I = P)(A*, f*)llmxo

which implies (3.6) and (3.7), while the partial derivative ;G is given, for h € O, by

(OAG'p, i)ar = (u*, B* )y + ((Inr = Pa)A*, )

)
1T = P)(A*, f) <o

which implies (3.8). O

(05GP, h)o = (u*,C*h)y + ((Io = Po)f*,h)o = (f°,h)o,

4. SOME APPLICATIONS

4.1. The data assimilation problem for the Laplace equation

Let us consider a bounded Lipschitz domain @ ¢ R¢, d > 1, and a subdomain w €  of class C?. The data
assimilation problem for the Laplace equation consists here, for some data f € L?(w), in finding u € H'(Q) such
that Au =0 in Q (in the sense of distributions) and u|, = f. Clearly, such problem has at most one solution in
virtue of Holmgren’s theorem, but is ill-posed, since any harmonic solution in €2 is infinitely smooth in €.

The data assimilation problem for the Laplace equation is a particular case of the general framework exposed
in Section 3. It corresponds to spaces V. = H(Q), M = H}(Q), O = L?(w), the bilinear form b on H'(Q)x Hg (2)
such that b(u,\) = [, Vu-VAdz, and the associated operator B : H'(€2) — H{(Q) such that (Bu, Ay = b(u, \)
for all (u,\) € H'(Q) x HZ(£2), while the operator C' : H*(f)) — L?(w) is the restriction operator. The space
H(Q) is equipped with the H! semi-norm.

Lemma 4.1. For f € L?(w), u € HY(Q) satisfies the data assimilation problem for the Laplace equation if and
only if Bu=0 and Cu = f.

Proof. The solution u € H'(Q) satisfies the data assimilation problem iff u|, = f and
b(u, p) = / Vu-Vudr =0, Vuc H}(Q),
Q

in other words iff Bu =0 and Cu = f. O
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The injectivity of the operator A = (B, C) is a direct consequence of Holmgren’s Theorem. The corresponding
formulation (3.1) is: for f € L?*(w), find (ue, \e) € HY(Q) x HZ(£2) such that for all (v,u) € HY(Q) x H (),
{Efg(usv—i—VuE -Vo)dz+ [ ucvdr+ [ Vo-Vi.de = [ fode,
(4.1)
Jo Vue - Vpdz — [ VA - Vudz = 0.
A Poincaré-type inequality implies that the mapping v — ([, |Vol? de + N v?dx)'/? is an equivalent norm to
the standard norm on H'(Q). In view of Remark 3.3, the term [, u. vda in (4.1) could therefore be dropped.

With a view to applying Corollary 3.5, let us identify (Range A)*, which is the aim of the next lemma. In
what follows, we identify the space HZ(w) with the space of functions in HZ(€2) which vanish in Q \ ©.

Lemma 4.2. We have that
(Range A)*" = {(u,h) € H}(w) x L*(w), Ap=h}.
Proof. Let us consider (i, h) € H}(Q) x L?(w). We have (u, h) € (Range A)* if and only if for all v € H()
(Bu, pp)m + (Cv,h)o =0,

that is

/Vv-Vudx—F/vhdx:O,
Q w

Ap=1,h inQ
Op =0 on 0N).

which is equivalent to

(4.2)

Here, 1,, is the indicator function of the set w. Hence, (u,h) € (Range A)* implies that u satisfies Ay = 0 in
Q\w, p=0and d,u = 0 on 99, hence p =0 in Q\ @ from uniqueness of the Cauchy problem. We obtain that
=0 and d,pu = 0 on dw, and from a standard regularity result and the fact that w is of class C2, we conclude
that p € Hg(w). Conversely, it is straightforward to check that if (u,h) € {(u, h) € Hf(w) x L*(w), Ap = h},
then in particular (u, h) € H} () x L?(w) and satisfies (4.2), which finally yields (u, h) € (Range A)*. O

In the following lemma, we specify the orthogonal projection of (0, f) € H(Q2) x L?*(w) on (Range A)~.

Lemma 4.3. The projection of (0, f) € H}(Q) x L?(w) on (Range A)* is the pair (AL, f1) € H}(Q) x L*(w),
where \) is the unique solution in H3(w) of the weak formulation set in the subdomain w:

/A)\J_A/,de‘"/V)\J_'V/,de:/fAﬂ,dl'7 Yy € HE (w), (4.3)

and fJ_ = A)\J_

Proof. Let us find the orthogonal projection (A1, f1) € H}(Q) x L?(w) of any pair (), f) € H}(Q) x L?(w) on
(Range A)*. Such orthogonal projection is characterized by

(AL, f1) € (Range A)*,
(>‘_)\J_uf_fJ_) 1 (Ma h)7 V(N’ah) € (RangeA)L7
which from Lemma 4.2 is equivalent to

ALEHS(LU) and fLZA)\L,
JoVIA=AL)-Vpde+ [ (f— fi)hdz =0, Vupe Hi(w) and h=Apu,
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and then to
)\J_EHg(w) and fJ_:A)\J_7 (44)
L,ANL Apdz+ [ VAL -Vpde = [ fApdz+ [ VA-Vudz, VYue Hf(w). .
The result follows by setting A = 0. (]

Remark 4.4. Tt should be noted that (4.3) is a fourth-order problem, which from the numerical point of
view requires some cumbersome finite elements. In the case of the heat equation, computing the corresponding
projection on (Range A)L is even more complicated, as can be seen on (4.13).

We can now apply Corollary 3.5 to the data assimilation problem. Let f° € L?(w) and (A%, f¢) the orthogonal
projection of (0, f°) on (Range A)*, which can be computed with the help of Lemma 4.3. If we assume that
52 512 2 5112
||)‘LHH3(Q) + ||fl||L2(u) <ot <|f HL2(w)’

then there exists a unique € > 0 such that
/}V)\g|2dm+/|ug — £ dz = 62,
Q w

where (ul, A?) is the unique solution to the problem (4.1) for data f?.

Remark 4.5. By choosing = A in the weak formulation (4.3), we notice that
2 2
2 By + 1781 = [ £°88 a

In order to compute the Morozov parameter ¢ and the corresponding solution uS which are given above,
one may be tempted to solve the minimization problem given by (3.4) (3.5) following the strategy exposed
in Remark 2.12. Let us see how Proposition 3.7 is specified in the case of the data assimilation problem for
the Laplace equation, in particular as concerns the computation of the Fréchet derivative of G(ISD. In view of
Proposition 3.7, the solution u* € H(Q) is given, for (\*, f*) € H}(Q) x L?(w), by the weak formulation

/(u*v+Vu*-Vv)dx: VU-V/\*dx—F/f*vdx, Yo € HY(Q). (4.5)
Q w

Q
The dual problem (2.8) then amounts to

P inf G (N, f* 4.6
CONNINS SN O (16)
with for (A*, f*) € H(Q) x L?(w),
* * 1 * * * * * *
GHO 1) = 50" O, Py + 81 = PO, £ ngarsasr — [ £° £ da (47)

with

(L = P)YN, ) yxr2w) = \//Q IV(Inr — Pa)A*|2 do +/ |(Io — Po) f*|*dz.

The two partial derivatives 0,G% € H}(Q) and 9;G% € L*(w) of the Fréchet derivative of G% at point (A*, f*)
are given by the weak formulation

0
V()G ~Vudx=/Vu*~Vudx+ /VI —Py)N*-Vpdz, Ve HYQ
[, veesa) ‘ [T = PYO P gy Jn © M~ P ()
(4.8)

and the formula 5
0;Gp = u*lo + (Io—Po)f* = f°. (4.9)

(L = P)YN*, ) g w2 w)
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4.2. The Cauchy problem for the Laplace equation

We again consider a bounded Lipschitz domain © ¢ R?, d > 1, such that its boundary 95 is partitioned into
two sets I' and T'. More precisely, I' and [ are non empty open sets for the topology induced on 992 from the
topology on R, that is 90 =TUT and T NT = .

The Cauchy problem consists here, for some data f € L*(T), in finding u € H*() such that

Au=0 1inQ
u=f on Tl (4.10)
d,u=0 onl,

where v is the outward unit normal to 02. This kind of problem arises when we have d,u = 0 and measure
uw = f on some accessible part I' of the boundary of the structure, while the complementary part T' of the
boundary is not accessible. In practice those measurements are contaminated by some noise. Due to Holmgren’s
theorem, the Cauchy problem (4.10) has at most one solution. However it is ill-posed in the sense of Hadamard:
existence may not hold for some data f, as for example shown in [1].

Let us show that the problem (4.10) is a particular case of the general framework exposed in Section 3. It
corresponds to spaces V = H'(Q), M = {\ € H'(Q2), A| =0}, O = L*(T"), the bilinear form b on V x M such
that b(u,\) = [, Vu- VAdz, and the associated operator B : V' — M such that (Bu, )y = b(u, A) for all
(u,\) € V x M, while the operator C' : H*(2) — L?(T') is the trace operator. Due to Poincaré inequality, the
space M can be equipped with the H' semi-norm.

Lemma 4.6. For f € L*(T'), u € H*(Q) satisfies problem (4.10) if and only if Bu =0 and Cu = f.
Proof. The solution u € H'(Q) satisfies problem (4.10) iff u|r = f and

b(u, p) = /QVU -Vpdz =0, Yue€ HY(Q) suchthat uls=0,

in other words iff Bu = 0 and Cu = f. ]

The injectivity of the operator A = (B, () is a direct consequence of uniqueness for the Cauchy problem.
Hence we have checked that all properties of the general framework exposed in Section 3 are satisfied. The
corresponding formulation (3.1) is: for f € L*(T), find (uc,A.) € HY(Q) x {\ € H(Q), M|z = 0} such that for
all (v, ) € HY(Q) x {\ € HY(Q), M|z =0},

{5f9(u€v+Vu5 -Vo)dz + [pucvds+ [, Vo VA.dz = [ fods,
(4.11)
Jo Vue - Vpdr — [, VA - Vpdr = 0.
As in the previous application, by a Poincaré-type inequality the mapping v — ([, |Vv|? dz + [ v? ds) 255 a

norm which is equivalent to the standard norm on H*(2). Then thanks to Remark 3.3, the term Jo e vda in
(4.11) could be dropped.

With a view to applying Corollary 3.5, let us identify (Range A)L. Contrary to the previous data assimilation
case, such space is reduced to {0}.

Lemma 4.7. The operator A has a dense range, or equivalently, (Range A)* = {0}.
Proof. Let us assume that (u,h) € M x O = {\ € H(Q), M|z = 0} x L*(T) satisfy, for all v € V = H(Q),
(B’U, :u’)]\/[ + (va h)O =0,

that is

/Vv-Vudw—i—/vhds:O.
Q r
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Choosing v = ¢ € C§°(€2) implies that Ay = 0 in the sense of distributions. Then, by the Green formula, we
have that for all v € H'(Q),

(0,00 18) 1172090 117200 + /F vhds =0,
where (,+) ;r1/2(90) 7-1/2(5) denotes duality pairing between H'Y2(0Q) and H~1/2(99). Considering & as the
extension of h by 0 on 99, we get that for all v € H(£),
<v, oL+ }~L>

H1/2(8Q),H-1/2(8Q) -
hence 0,1 + h = 0 on 99, that is Oyt =0 on I and Oypt+h =0 on I'. From uniqueness of the Cauchy problem
applied to u, we conclude that p = 0 in €, which implies in turn that ~ = 0 in I'. This completes the proof. [J

We are now in a position to apply Corollary 3.5 in the simple case when (Range A)+ = {0}. Let us consider
some data f° € L%(T') such that Hf5||%2(r) > 0. There exists a unique € > 0 such that

/\wgde/yug_féfds:aa
Q r
where (ul, A?) is the unique solution to the problem (4.11) for data f°.

Remark 4.8. As a conclusion of Sections 4.1 and 4.2, strictly speaking the Morozov’s principle is easier to
apply in the case of the Cauchy problem than in the case of the data assimilation problem for the Laplace
equation. Indeed, the underlying operator A has a dense range for the Cauchy problem while it has not for the
data assimilation problem. As far as we know, such fact has never been highlighted so far. However, in view of
Remark 2.4, the additional condition to check when A has not a dense range is very unlikely to be violated.

4.3. The data assimilation problem for the heat equation

Let us consider again some domains w € {2 having the same properties as in Section 4.1. Let us introduce
T>0,aswellas Q =Q x (0,7), ¢ =w x (0,T), E =90 x (0,T) and 0 = dw x (0,T). The data assimilation
problem for the heat equation consists, for some data f € L?(q), in finding u € L?(0,7; H*(f)) such that
0w — Au =0 in @ (in the sense of distributions) and u|, = f. As for the Laplacian case, such problem has at
most one solution in virtue of Holmgren’s theorem but is ill-posed.

In view of the general framework exposed in Section 3, the data assimilation problem for the heat equation
corresponds to spaces V = L%(0,T; HY(Q2)), M = H}(Q), O = L?(q), the bilinear form b on L2(0,T; H*(Q)) x M
such that b(u, A) = [,,(~u A+ Vu- V) dz dt, and the associated operator B : L*(0, T; H'(2)) — Hg(Q) such
that (Bu, Ay = b(u, A) for all (u, \) € L2(0,T; H*(Q))x H} (Q), while the operator C : L2(0,T; H'(Q2)) — L?(q)
is the restriction operator. The space H}(Q) is equipped with the H! semi-norm in Q. We have the following
lemma, the proof of which is very similar to the proof of Lemma 4.1.

Lemma 4.9. For f € L?(q), uw € L*(0,T; H*(Q)) satisfies the data assimilation problem for the heat equation
if and only if Bu=0 and Cu = f.

The injectivity of the operator A = (B,C) is a direct consequence of Holmgren’s Theorem. The cor-
responding formulation (3.1) is: for f € L?(q), find (ue,\.) € L?(0,T; HY(Q)) x H}(Q) such that for all
(v, ) € L(0, T; H'(Q)) x Hg(Q),

5fQ(uEv+Vu6 - Vo) dxdt—i—fq ugvdxdt—ka(—v@t)\g + Vo -VA)dzdt = quvdxdt,

(4.12)
Jo(mue Opp+ Vue - V) dwdt — [ (9eA Oppe + VA - Vi) dzdt = 0.

It remains to identify (Range A)=.
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Lemma 4.10. Denoting H, = H}(0,T; L?(w)) N L2(0, T; HZ (w)), we have that
(Range A)* = {(u,h) € Hy x L*(q), O+ Ap=h}.

Proof. Let us consider (u,h) € H(Q) x L*(w). We have (u,h) € (RangeA)’ if and onmly if for all
v e L2(0,T; H(Q))
(Bva:u’)]\/[ + (vah)o =0,

that is
/(—vatu—i—Vv~Vu)dxdt+/uhdacdt:0,
Q

q

which is equivalent to

Op +Ap =140 in@Q
p=0 on X.

We observe that (u,h) € (Range A)* implies that p satisfies Oyp + Ap = 01in Q\ G, = 0 and d,pu = 0 on
3, hence p = 0 in @ \ g from uniqueness of the lateral Cauchy problem for the heat equation. We obtain that
pw=0and O, =0 on o. As a result, for (u,h) € (Range A)*, we have u € H}(0,T; L?(w)) N L2(0,T; HZ(w))
and Oyt + Ap = h in q. The converse statement is straightforward. O

Let us specify the orthogonal projection of (0, f) € H}(Q) x L?(q) on (Range A)~.
Lemma 4.11. The projection of (0, f) € H}(Q) x L?(w) on (Range A)* is the pair (AL, f1) € H}(Q) x L*(w),
where \| is the unique solution in H, of the weak formulation set in the subdomain q:

/(&AJ_ +ANL)(Oup+ Ap) dxdt—l—/(at)\l Op+ VAL -Vu)dedt = /f(@t,u—&-A,u) dedt, Vue H,, (4.13)
a q q

and fJ_ = at)\J_ +AAJ_

The proof is omitted since it is similar to the proof of Lemma 4.3. Applying Corollary 3.5 to our problem, we
get that for f0 € L?(g) and (X%, £9) the orthogonal projection of (0, f°) on (Range A)*, which can be computed
with the help of Lemma 4.11, if we assume that

HAiHiIg(Q) + HfiHiQ(q) <9< ”féH%Z(Q)’

then there exists a unique £ > 0 such that
/ (@22 + |VN[*) dwat + /yug — P dzdt = 62,
Q q
where (ul, A?) is the unique solution to the problem (4.12) for data f°.

5. NUMERICAL EXPERIMENTS

All our numerical experiments concern the data assimilation problem for the Laplace equation which is
addressed in Section 4.1, in the two-dimensional case (d = 2). We have used the Freefem library [19] for all our
finite element computations. The domain € is the square (0,1) x (0, 1), while for w we consider three different
domains, all having the same surface |w| = 0.4 ||, and which are represented on Figure 1.

The domain 1 is the delicate case of interior data, the domain 2 is the easier case of exterior data, while the
domain 3 is an intermediate case where the data are distributed.
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FIGURE 1. Three different domains w (the domain w is hatched). Left (domain 1): a disk.
Middle (domain 2): the exterior of a disk. Right (domain 3): 5 small disks.

5.1. Illustration of Theorem 2.1

We first want to show a numerical illustration of Theorem 2.1 in the case of the data assimilation problem
for the Laplace equation exposed in Section 4.1. Let us consider the harmonic function u(x,y) = 1 — 23 + 3zy?
and f = ul,, for w corresponding to domain 2 in Figure 1. For a given amplitude of noise §, the first thing to do
is, in view of assumptions (2.1) and (2.7), to produce some noisy data g° = (¢°, f%) € H}(Q) x L?(w) = H such
that ||g‘i||H <i< ||g‘§||H and ||g5 — g||H =4, where g = (0, f). Here we choose 6 = 0.1. Note that in our data
assimilation abstract framework, we have assumed that ¢° = 0. However, with a view to building compatible
noisy data more easily, for our validation of Theorem 2.1 we tolerate that ¢° # 0. The consequence is that the
weak formulation (4.1) becomes: find (u, \2) € H*(Q) x H}(Q) such that for all (v, u) € HY(Q) x H(Q),

{efﬂ(ugv—l—Vug Vo)de + [ udvdr+ [, Vo VX dz = [ fouda,
(5.1)
Jo Vul -Vpdz — [ VA - Vpde = [, V- Vpdae.

Note that contrary to (4.1), the right-hand side of the second equation in (5.1) is not 0 any more. On the one
hand we introduce the function w = (x +y?)/4 and set (¢;, fy) = (Aw,wl,). On the other hand we introduce
the indicator function f(z,y) = 1 if 22 +y% > 1 and f(z,y) = 0 otherwise. For such f € L%(w), let us introduce
(01, f1) € HYQ) x L?(w) the orthogonal projection of (0, f) on (Range A)* given by Lemma 4.3 and more
precisely by the weak formulation (4.3). We have hence obtained a palr gy g E (¢y,fy) € Range A and a pair

g1 = (L1, f1) € (Range A)*. The idea is to search some noisy data ¢° = in the form

9’ =g+agy+ B9,
where «, § > 0 are uniquely defined such that

)
lotlly =5 llg"—lly =
2
A straightforward computation yields
16°1%, = 9113 + 62 + 20(f, ) 12w,

Observing that (f, fy)r2() > 0, we conclude that HgéHH
assumptions (2.1) and (2.7). Using this noisy data ¢°, for ¢ > 0 we compute

5a>=uAuz—gé||H:W'W?Qd“/'“?‘f“dx’
Q w

> ¢, that is our artificial noisy data ¢° satisfies both
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FIGURE 2. Graph of the function E? of e. The horizontal lines correspond to the values H g‘i H g=
5/2, |

9’ - QHH =6 and Hg‘SHH > §, respectively.

where (u2,\2) € H*() x H}(Q) is the solution to problem (5.1). The computation of (u2,A\2) is based on a
Finite Element Method, the space H!(Q) being approximated with the help of the classical P1 finite elements
based on triangles. The resolution of problem (4.3) is also based on a FEM, the space H?(w) being approximated
by the C! conforming Hsieh—Clough-Tocher triangular finite elements (see e.g. [13] for a description of such
element). In both cases, the mesh size is h = 1/20. The graph of the function E? of ¢ is plotted on Figure 2.
We observe that the function E° is non increasing with E°(07) = g% ||, = 6/2 and E°(+00) = ||¢°||,, > 4,
in accordance with Theorem 2.1, which seems to indicate that the chosen mesh size h is sufficiently small.
The important conclusion is that the application of the Morozov’s principle seems to be relevant even for the
discretized problem, and not only for the continuous one.

5.2. Validation of the duality method

After having observed that the computation of the Morozov’s solution associated with the regularized problem
(4.1) actually makes sense after discretization, it is now natural to test the duality method to obtain such
solution, which consists in minimizing the functional G§ given by (4.7) and then applying the operator A*
to the obtained solution. Again, the Finite Element Method is used, the space H'(Q2) being approximated by
P1 finite elements, while the space L?(w) is approximated with PO finite elements. The minimization of GJ is
an iterative method based on the computations of the partial derivatives d\G§ and 8ng given by (4.8) and
(4.9), respectively. Note that an alternative technique consists, in order to avoid minimizing the non-quadratic
functional G, to find, for n > 1, the minimum (X!, f) € H} () x L?(w) of the quadratic functional

* * 1 * * * * * *
HIO %) = 310 O 1) sy + n O, £ Brgapnney = [ £° £ da (5.2)

where u* is the solution to problem (4.5) and where e, = /[|(A,_1, fr—1)ll H1(@)xL2(w)- This technique was
introduced in [16], where it is proved that in the case when the operator A has a dense range, the sequence
formed by the minima of the quadratic problems converges to the unique minimum of the non-quadratic one.
Despite we have not extended this result to the case when A does not have a dense range, which is the case with
our data assimilation problem for the Laplace equation, such alternative technique seems to work in the sense
that, at the numerically level, the sequence (A%, f¥), converges to the same minimizer as the one obtained by
directly minimizing the functional G§ in HE () x L?(w) given by (4.7).
In what follows, we will consider two kinds of harmonic function u given either by

u(z,y) = ax (1 —2° + 3zy?) (5.3)
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FIGURE 4. Comparison of the Morozov’s solution and the exact solution (5.3) for domain 1.
Left: function u’. Right: function u — u°. Relative error is |lu — u°|| g1 (q)/||ul| g1 (0) = 0.55.

uw(z,y) = o sin(4(1 — y))el®, (5.4)

where aq is calibrated such that [|ul|p~(q) = 1 and set f = ul., for w one of the three domains described in
Figure 1. We design a noisy data f° by adding a pointwise random quantity to f in such a way that

1F2 = Fllzee) = 0l fllze) =6,

where 0, is some prescribed relative noise, that is 8, = 2%, 6, = 5% or ¢, = 10%.

In Figure 3, we have plotted the exact solution u given (5.3). In the Figures 4-6 below and for 6, = 10%, we
have plotted the solution u’ obtained from the minimization of G (the so-called Morozov’s solution) and their
difference u — u%, for w being either of the domains 1, 2 and 3, respectively.

In Figure 7, we have plotted the exact solution u given (5.4). In Figures 8-10 below and for 6, = 10%, we
have again plotted the Morozov’s solution u° and the difference u — u°, for the three different domains w.

From these numerical results, for both exact solutions given by (5.3) and (5.4), we observe that the recon-
struction is the worst for domain 1, the best for domain 2 and intermediate for domain 3.

In Figure 11, for the exact solution (5.4), the domain 3 and ¢, = 10%, we have plotted the error [[ul —ul| g1 (o)
as a function of e, where (ug, )\g) is the solution to problem (4.1) for data f°. On the same graph, the value
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F1GURE 5. Comparison of the Morozov’s solution and the exact solution (5.3) for domain 2.
Left: function u’. Right: function u — u®. Relative error is |lu — u’| g1y /||l 1 () = 0.33.

03
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-0.1

FIGURE 6. Comparison of the Morozov’s solution and the exact solution (5.3) for domain 3.
Left: function u’. Right: function u — u®. Relative error is |lu — u’| g1 /||ull 1 () = 0.52.

FIGURE 7. Exact solution (5.4).
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Ficure 8. Comparison of the Morozov’s solution and the exact solution (5.4) for domain 1.
Left: function u’. Right: function u — u%. Relative error is |lu — u’| g1y /||l 1 () = 0.60.
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FIcure 9. Comparison of the Morozov’s solution and the exact solution (5.4) for domain 2.
Left: function u’. Right: function u — u%. Relative error is |lu — u’| g1y /||ull g1 () = 0.20.

of &(8) corresponding to the Morozov choice, which is associated to the Morozov’s solution u°, is represented.

We clearly see that for £ < £(§), the error reaches a plateau, which indicates that the Morozov choice for € is a
relevant value. Indeed, from a numerical point of view, selecting a value of ¢ smaller than £(§) would deteriorate
the condition number of the matrix to invert without improving the quality of the reconstruction in terms of
the error [Jul — ul| 1 (0)- In addition, the presence of a plateau instead of a clear minimum is a consequence of
the discretization. In practice we observe that the function § — £(4) is non decreasing (see e.g. [6] for a similar
case). Such monotonicity property cannot be proved theoretically without making assumptions on the mapping
S foe L¥(w).

Now let us analyze the influence of the surface of the domain w, that is |w| = a|Q|, with & = 1/5, a = 1/4,
a=1/3 and a = 2/5, for w being the domain 3, u given by (5.3) and J,, = 5%. The obtained results are given
in the Table 1 below. As expected, the larger is the measure of w, the better is the quality of the identification.

We complete this numerical section by testing the minimization of the functional (4.7) when the projector
P = (Py, Po) is different from 0. Let us first consider an example of projector Pp, that is the operator
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F1cure 10. Comparison of the Morozov’s solution and the exact solution (5.4) for domain 3.
Left: function u’. Right: function u — u%. Relative error is |lu — u’| g1 /||l 1 () = 0.40.
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FIGURE 11. Error |[ud — u|z1(q) as a function of e. The blue line represents the Morozov value.

TABLE 1. Influence of o = |w|/|€2| on the error between the exact and the Morozov’s solution.

5
lu=? Il g1 0

flu *U5||L2(w)

5
lu=ulll 2,

5
o fu-vllae Tl it (o T2 o)
1/5 0.50 0.55 0.02 0.10
1/4 0.47 0.52 0.02 0.092
1/3 041 0.46 0.018 0.072
2/5  0.3555 0.3909 1.6991 1072 6.0638 1072

Po : L?(w) — L?(w) such that

Pof = |w1|</wfdx> l,, VfeL*w).

This choice is motivated by the following remark: let us assume that for a given x € w, the value of (f — f°)(x)
is a random function of 0 mean value. By ergodicity, computing the mean value of f°(x) at point x for all
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realization amounts to compute, for a given realization, the mean value of f¢ on w. This is why we impose

/u5dx:/f5dx

for the regularized solution u’, that is PoCu® = Pof?. Let us secondly consider an example of operator
Py HY(Q) — HA(Q). We remark that the regularized solution u® to the problem (4.1) does not satisfy
the equation Au® = 0 exactly, contrary to the exact solution u. Let us introduce the eigenvalues A, and the
corresponding normalized eigenfunctions ¢, (||¢n|z2(0) = 1) of the Dirichlet-Laplacian operator —A in
for n € N, that is ¢, € H}(Q) and —Ap, = A\, in Q. We also denote, for some N € N, the finite set
In = {0,---,N} and the subspace of M defined by My = Span{y,, n € Inx}. We assume that P, is the
orthogonal projector on Mpy. On the one hand, we observe that Bu = 0 is equivalent to

/Vu-Vudx:O, VpEH&(Q)(z)/Vu~chndx=O, Vn € N <= Au=0.
Q Q

5

On the other hand, imposing Py, Bu’ = 0 to the regularized solution u’ exactly means that

(Bu‘s,(pn)Hé(Q) =0, Vne€ Iy < ; vl - Vp,de =0, Vn € Iy < <Au5,<p">H,1

(Q),HL () =0, Vn € Iy.

We conclude that Py Bu® = 0 is equivalent to the fact that the restriction of the linear form Au’ to the
subspace My is null. In a sense, we have partially enforced the constraint Au’ = 0. Based on the previous
definitions of the operators Py; and Pp, the operator P = (Pyy, Po) : H}(Q) x L?(w) — H}(Q) x L*(w) is an
orthogonal projector which is compact. Unfortunately, such operator P does not satisfy the required property
Range P C Range A. Indeed, proving that Range P C Range A amounts to prove that (A, f1) = 0 for any pair
(A, f) € Range P, where (A1, f1) € H}(Q) x L?(w) is the orthogonal projection of (A, f) on (Range A)L. The
pair (A1, f1) is characterized by (4.4). Since f is a constant function in w and A = 25:0()\, ©n)r2(Q)¥Pn in Q,
this characterization amounts to

{ AL € H3(w) and f; =AM,

[ AN Apdz + [, VAL Vade = SN N (fo Aenda) ([, o pde), VYu e H3(w). (5:5)
If Ay = 0, we obtain from (5.5) that Zév pntpn = 0 in w, denoting pn, = An(A,©)r2(q). From the Lebeau-
Robbiano spectral inequality shown in [23], we obtain that wu, = 0 for n = 0,--- N, and we conclude that
A = 0. Hence A | does not vanish unless A\ = 0.

In order to restore the property Range P C Range A, let us rather consider the eigenvalues A2 and the
corresponding normalized eigenfunctions ¥ of the Dirichlet-Laplacian operator —A in Q \ @ for n € N, that
is 0 € HY(Q\w) and —ApY = X0 in O\ @. These functions ¥, extended by 0 in w, are functions in
H}(2) which are still denoted ¢, with a slight abuse of notation. The operator Py, : H}(Q) — HI(Q) is
then defined as the orthogonal projection of a function in H{}(2) on the (N + 1) first functions 2, which
amounts to partially enforce the constraint Au® = 0 in Q \ @ instead of Q. Finally, we form the operator
PY = (PY;,Po) : HYQ) x L*(w) — H}(Q) x L*(w), which is a compact orthogonal projector. Since the
functions ¢! vanish in w, from (5.5) for (\,, ¢,) replaced by (A2, "), we observe that Range P C Range A4,
which implies that P° is an admissible projector.

As a numerical experiment, we now minimize the functional (4.7) for the admissible projector P = (P]?/I, Po)
given above with N = 4, that is Bu® has null contributions on the first 5 eigenfunctions ¢?. The exact solution
is given by (5.3), the domain w corresponds to the domain 3 in the Figure 1 with |w| = 0.4]9], and we test
three different values of the relative noise 9,., that is 2%, 5% and 10%. In the Table 2 below, we compare how
the constraints PoCu® = Pp f° and P&Bud = 0 are satisfied with or without the projector PY. More precisely,
we compute [ u’dz, which has to be compared to [ f°dx, as well as HP](\)/[Bu‘SHHé(Q).
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TABLE 2. Comparison of how the constraints PoCu’ = Po f° and PJ;Bu’ = 0 are satisfied,
with and without projection.

fw u’ dz ||PJ€IBU6HH[}(Q)
5 f £d Without With Without With
" w r projection  projector P°  projection projector P°
2%  0.1654 0.1649 0.1654 1.4016107° 4.237310°°
5%  0.1653 0.1641 0.1653 1.2481107° 2.554410°°
10% 0.1657 0.1617 0.1657 2.8569107% 1.207310°°

TABLE 3. Influence of the projector PY on the error between the exact and the Morozov’s solution.

5 5
a0l g1 (g a1l 2y

S5 S5
or lu = vl (a) S llw —u’ll L2 T2
2%  0.2630 0.2892 8.91051073 3.1800 1072
5%  0.3573 0.3929 1.7038 1072 6.0805 102
10% 0.4774 0.5250 3.31451072 1.18291071

TABLE 4. Comparison of how the constraints PoCu® = Pof° and Py;Bu® = 0 are satisfied,
with and without projection.

fu u’ dz ”PA{BU’&”H&(Q)
s [ fda Without  With Without With
" w projection projector P projection projector P
2%  0.1654 0.1649 0.1654 3.275610°% 1.787910~*
5%  0.1653 0.1641 0.1653 8.1457107% 5.2360107°
10%  0.1657 0.1617 0.1657 2.5715107% 1.862910*

TABLE 5. Influence of the projector P on the error between the exact and the Morozov’s
solutionInfluence of the projector P on the error between the exact and the Morozov’s solution.

S5 §
lu—u HHl(Q) lu—u HL2(W)

S5 S5
or ”u_u HHl(ﬂ) ”“HHl(n) ”u_u HLQ(u) ”u”Lz(u)
2%  0.2648 0.2911 9.04491072 3.22801072
5%  0.3573 0.3929 1.7056 102 6.0871 1072
10%  0.4767 0.5252 3.31191072 1.18201071

The Table 2 is complemented by the Table 3 below, which provides the error between the exact and the
Morozov’s solution in the presence of the projector P°. The line which corresponds to 6, = 5% in Table 3 has to
be compared with the line which corresponds to o = 2/5 in Table 1. There are almost the same. As a conclusion,
using the projector PY in the functional (4.7) given above is an efficient way to impose some constraints on
the solution u’, in particular for large amplitudes of noise, without increasing the error between the regularized
solution and the exact one.

Lastly, it is tempting to produce the same Tables 2 and 3 as before by using the more natural but non
admissible projector P = (Py, Po) instead of P° = (PY,, Po), that is Tables 4 and 5 below. In view of the
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numerical results, and despite the operator P is not admissible, it seems to be satisfactory from the point of view
of its objectives: its enables us to enforce the constraints without deterioring the error between the Morozov
solution and the exact solution.

APPENDIX A. ON DUALITY IN OPTIMIZATION

In this appendix, we give a brief review of the theory of duality in optimization exposed in [17]. We consider
an optimization problem (&£?) denoted the primal problem :

() inf Pv),

where V is a Hilbert space, F': V — R a function # +o0. Here we have denoted R = R U {400}. We recall the
definition of the conjugate function, where V* denotes the dual space of V and (-, '>V,v* denotes the duality
bracket between V and V*.

Definition A.1. The congugate function F* : V* — R of F is defined, for u* € V*, by

Fe(u) = sup (0. — Flw)).

Then we introduce the notion of perturbed problem. We consider a function ® : V x H — R, where H is
another Hilbert space, and ® satisfies
®(v,0) = F(v).

For all ¢ € H, we consider the perturbed problem (Z,):

(2,)  inf @(,0)

Then we define the dual problem of problem (£?) with respect to the perturbation ®. Let ®* : V* x H* — R
be the conjugate function of ®. The dual problem, denoted (£*), is the following optimization problem:

(27)  sup —@*(0,¢").
q*€H*

We have the following proposition.

Proposition A.2.
(—o0 <) sup(L*) <inf(Z) (< +4o0).

Proof. For ¢* € H*, we have

(I)*(O’q*) = sup (<u’ 0>V,V* + <Q7 q*>H,H* - (I)(u?q))’
ueV,qeH

so that, for all u € V,
®*(0,q%) > (0,q*>H’H* - ®(u,0) = —P(u,0).

We hence have Yu € V, Vg* € H*, —0*(0,¢*) < ®(u,0), and finally sup(#*) < inf(2). ]
Remark A.3. Equality is not satisfied in general: when sup(27*) # inf(Z?), we say that there is a duality gap.
The following theorem, which is proved in [17], guarantees equality sup(Z?*) = inf(2).

Theorem A.4. We assume that ® is conver and that inf(?) < +oo. If there exists ug € V such that ¢ —
D (ug, q) is finite and continuous at point 0, then inf(P?) = sup(FP*) < +oo and the problem (F*) has solutions.
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Let us apply the above general theory to the primal problem:

inf L(v) (A.1)
veKS
with )
L(v) = §Hvll%f, K§={veV;||Av—¢°|u <6},

where A : V — H is a bounded injective operator and g’ € H. The problem (A.1) is indeed in the form (),
that is

AR

if we define
F(u) = L(u) + xp, (Au),

and

where Bs C H is the closed ball of center g° and radius d, x g, is the indicator function defined by
XxBs(q) =0 if ¢ € Bs
XB;s(q) =+oo  if g ¢ Bs.

We have the following theorem, which is a consequence of Theorem 2.8 when P = 0.

Theorem A.5. For g° € H satisfying assumption (2.1), the problem () given by (A.1) has a unique solution
5
u’ eV.

Now let us derive the dual problem (22*).

Proposition A.6. The dual problem which corresponds to the primal problem (A.1) is equivalent to

() iut G =t (G140

2 * _ 5 *
q*eH* q*€H 1% +6Hq HH* <g ,q >H,H*> (AS)

Proof. Let us form the dual problem (£?*) which, after some simple computations, is defined by

(%)  sup —9%(0,¢") = sup (fL*(A*q*) — X}‘g(;(fq*)).
qx€H qx€H
It remains to compute L* and xJp, .

It is easy to see that

* * 1 *
L) = 7l

For ¢* € H*, we have

X5, (¢7) = sup (<q7 4 ) e — XBs (Q)),
qeH

that is

X, (") = sup (¢ g =900 )y e+ D (@ q )y
qeH, |lq—g°||m <8 ’ q€H, |lqlln<1

=" 0" ) gy g 00 -

The problem (27*) is hence

* * * 1 Xk * *
(27 s —00.0°) = suwp (=540} =5l - +(9"47) -
q*€ ’

q*€H*

and we finally obtain problem (A.3). O
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By applying Theorem A.4 using the identification V* =V and H* = H by the Riesz theorem, we can now
emphasize the link between the solution to the primal problem (4?) and the solutions to the dual problem (42*).

Proposition A.7. If the assumption (2.1) is satisfied, the problem (F?*) has solutions. In addition, the solution
u® to the primal problem (2) given by (A.1) and the solutions p° to the dual problem (2*) given by (A.3) are
related to each other by u® = A*p’.

Proof. Let us check that we satisfy the assumptions of Theorem A.4. Clearly ® given by (A.2) is a convex

function of (u, ¢) and inf(%?) < 400 since problem (&) has a (unique) solution. Let us use the decomposition

¢’ = g‘/;/ +49 , with g?/ € Range 4 and ¢} € (Range A)*. In virtue of assumption (2.1), we have §, = Hgi HH < 4.

Let us choose ug € V such that ||Aug — g?HH < (6 —41)/2. For any ¢ € H such that ||¢||lg < (6 —d1)/2, we
have

|Auo —q =g, < | Auo = g]|| + gt |1, + llallur <5,

that is ¢ — ®(uo,q) = L(ug) < 400 is constant in a neighborhood of point 0. We can then apply Theorem A 4.
In particular, it implies that (£?*) has solutions and that

inf(Z2) = sup(&*) < +o0.
From now on we identify V* and H* with V and H, respectively. Let p® be a solution of (£2*), the above
relationship implies that
1 1, .. 512
§||U5||\2/ = —§HA P‘SHV =5 1p°a + (gé,pé)ﬁr (A.4)

We already know from the proof of Theorem 2.6 in the case when P = 0 that

. S112
HA p6||v + 0 |Ip° e — (96=p6)H =0,
which together with (A.4) implies that
1 1, . 512
Sl = gl
Since we also have
1AA"D°) = ¢’ =,
we conclude that A*p® € V solves the primal problem (), that is A*p® = u°. O

Remark A.8. It is remarkable that the primal problem (£?) is more difficult to solve in practice than the dual
problem (£7*), which is unconstrained.

Remark A.9. The solution u® to the primal problem (£2) coincides with the Tikhonov solution u¢ to problem
(2.2) associated with the Morozov value £(6).
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