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SPARSE GRID RECONSTRUCTIONS FOR PARTICLE-IN-CELL METHODS

FABRICE DELUZETY?, GWENAEL FUBIANI®, LAURENT GARRIGUES?,
CLEMENT GUILLETY?3* AND JACEK NARSKI®

Abstract. In this article, we propose and analyse Particle-In-Cell (PIC) methods embedding sparse
grid reconstructions such as those introduced in Ricketson and Cerfon [Plasma Phys. Control. Fusion
59 (2017) 024002] and Muralikrishnan et al. [J. Comput. Phys. X 11 (2021) 100094]. The sparse grid
reconstructions offer a significant improvement on the statistical error of PIC schemes as well as a
reduction in the complexity of the problem providing the electric field. Main results on the convergence
of the electric field interpolant and conservation properties are provided in this paper. Besides, tailored
sparse grid reconstructions, in the frame of the offset combination technique, are proposed to intro-
duce PIC methods with improved efficiency. The methods are assessed numerically and compared to
existing PIC schemes thanks to classical benchmarks with remarkable prospects for three dimensional
computations.
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1. INTRODUCTION

Particle-In-Cell (PIC) discretizations have been among the most used numerical methods in the simulation of
kinetic plasmas for years [3,9,22,31] and are still topical [10,12,14,27]. The method consists in a coupling between
a Lagrangian method for the Vlasov equation, based on the integration of numerical particle trajectories, and a
mesh-based discretization of Poisson’s equation (or Maxwell’s system) for the computation of the self-consistent
field. Despite their simplicity, ease of parallelization and robustness, Particle-In-Cell schemes still contain a
significant drawback: the statistical error originating from the sampling of the distribution function by numerical
particles. This numerical noise decreases slowly with the increase of the average number of particles per cell.
Therefore, a large number of particles may be required, necessitating tremendous computational resources,
specifically for three dimensional simulations for which the desired precision may impose a number of cells as
large as 10%, the number of particles exceeding 10'2. Noise reduction strategies aim at maintaining the accuracy
of computations with a reduced set of particles. They have therefore received a lot of attention with, for instance,
variance reduction methods such as the §f method [11] or the quiet start initialization procedure [31] as well
as filtering methods in either Fourier domain [4], wavelet domain [17] or variants [33].
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Sparse grid methods [6,13], originally developed for the interpolation of high dimensional functions, then
extended to the approximation of partial differential equations [5,18,19,21], have recently been applied, in the
framework of the so-called saprse grid combination technique [7,20], to Particle-In-Cell schemes [8,15,16,24,29].
The aim here is to improve the properties of PIC methods with respect to the statistical error resulting from
the particle sampling. In the sparse grid reconstructions, the numerical approximations are recomposed from
partial representations carried out on a hierarchy of sparse grids with coarse resolutions. Compared to a regular
Cartesian grid, the mean number of particles per cell is larger for any of the sparse grids. This crucial feature
offers either a mitigation of the statistical noise or a decrease of the total number of numerical particles for
a precision comparable to standard PIC discretizations. Besides, considering the thorough studies conducted
during recent years to apply the combination technique to the resolution of PDEs, promising improvements in
the computational efficiency are expected for the resolution of Poisson’s equation (see [7,26,28]) providing the
electric field in the Particle-In-Cell framework. Early implementations of sparse grids Particle-In-Cell schemes
[15,16,29] show computational gains which are forecasted substantial for three dimensional applications.

The objective of the present paper is to provide an overview of the existing Particle-In-Cell discretizations
implementing the sparse grid combination technique, to conduct a formal analysis to explain their merits
and weaknesses and support the development of new methods with improved efficiency. The proofs of the
results provided herein are limited to two dimensional geometries. Nonetheless, they are readily extendable to
an arbitrary number of dimensions, using the same tools, however with an additional complexity of notation
avoided within the present document.

The analyses of standard as well as sparse grid PIC discretizations reveal that, for both methods, the approx-
imation error may be decomposed into three contributions. The precision of the methods is characterized by the
accuracy of the most probable value of the statistics associated to the particle sampling, this component being
referred to as the bias. This is a grid-based error related to both the mesh size (h) and the smoothness of the
solution with a component depending on the mixed derivatives of the solution and another contribution depend-
ing on non-mixed derivatives. The last error component is the so-called numerical noise or particle sampling
error, providing the magnitude of the dispersion of the values attached to a sample of particles. The introduction
of sparse grid reconstructions within PIC discretizations entails an increase of the grid error together with a
significant mitigation of the statistical noise. This outlines the potential of these approaches: sparse grid recon-
structions may be tailored to define different trades-off between the components of the error and finally mitigate
the most detrimental one for the precision of PIC numerical approximations (the statistical noise). This leads
to the derivation of the new sparse-grid methods introduced herein, with an improved numerical efficiency.

A specific attention is payed to the approximation of the electric field which can be computed thanks to
two different approaches. The first one consists in computing the electric field on a refined Cartesian mesh
thanks to the sparse interpolant of the charge density obtained by the combination technique. The second relies
on a computation on each subgrid using the projected density. The electric field interpolant is then obtained
by recombining the local approximants of the sub-grids. The analyses conducted in this paper are aimed at
demonstrating the convergence of the electric field sparse grid interpolant and highlight the differences between
these two approaches. The main results regarding the electric field, given by the Propositions 3.7 and 3.8, point
the strong dependance of the error on the mixed derivatives of the solution, especially for the second approach,
which has proven to be more dependant of the smoothness of the solution. This is a major contribution of
the paper since no convergence properties have already been proposed so far for the electric field, which is the
critical quantity when determining the overall accuracy of PIC discretizations [32].

The paper is organized as follows. In Section 2, the Particle-In-Cell scheme is outlined in its conventional
framework with the definition of the grid-based and the particle sampling errors. In Section 3.1, sparse grids
approximations are introduced in the specific framework of the saprse grid combination technique before being
merged with Particle-In-Cell methods in Section 3.2. In Section 3.3, a generalization of the combination tech-
nique, referred to as offset combination technique, is proposed in order to tune the trade-off between the different
components of the sparse grid approximation error. Section 3.4 is devoted to the introduction of two enhanced
sparse PIC methods to improve the efficiency of the electric field computation. In Section 4, the merits of the
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different methods are investigated thanks to two dimensional computations relating classical plasma physics
test cases: the linear and non linear Landau damping as well as the diocotron instability. The conclusions are
drawn in Section 5, with an emphasize of the remarkable prospects of sparse grid Particle-In-Cell methods for
three dimensional computations.

2. PARTICLE-IN-CELL (PIC)

1. Notations

Let us introduce some notations for multi-variate functions and functional spaces. Let d be the dimension of
the problem considered. For a multi-index a = (av,...,aq) € N¢, a function u defined on the d-dimensional
unit interval Q = [0,1]%, we denote by 0w the partial derivative of u with respect to z; and order «; for
i €{1,...,d}. We introduce the following functional spaces:

C*(Q):={u: Q=R | DPueC(Q), V|8 <al, (2.1)
X*(Q) = {u:Q—=R|DPuecC(Q), VBl < a}, (2.2)

where C(€2) denotes the space of continuous functions on Q, C§(£2) and X§(£2) the spaces of functions vanishing
on the boundary. Let us define order relations on multi-indexes by:

k<l & k<land i€ {l,...,d} st k; <l

and consider the supremum norm for a function u belonging to one of the previous spaces, the [' norm, {*
norm for a multi-index o € N? be:

lulloo = suplu(x)l, e := Z\ail, |@tloo := max fal. (2.5)

For a vector function u: Q — RP, p € N, we introduce the supremum norm notation:

e = ma s (2.6)

Let us also consider the family of d-dimensional anisotropic grids on € called sub-grids, denoted 25, and
parametrized by the multi-index 1 € L:

L= |J L, Li={1eN'[[lh=n+d-1-i,1>1}, (2.7)
i€[0,d—1]
and:
Qp ={m jentcQ, J:=[0,h"] x...x [0, '] c N (2.8)
where hy = (hyy,..., hy,) = 2-1 is called the grid discretization. We consider also a regular isotropic grid,

named Cartesian grld denoted Q( , corresponding to a sub-grid of level n = n - 1 with discretization A, in all
directions, which is typically the underlylng grid in PIC methods or standard interpolation:

Q) = {jhn [J€ T} Q. Jyi= 0,01 N (2.9)
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2.2. Standard Particle-In-Cell (PIC-Std)

In this section, the non-relativistic Vlasov-Poisson system with external magnetic field B is considered:

mg

V-E=2, E=-Vo.

&

Ofs s —
Lo v Vo fs+ L (B4 v x B)-Vofs =0,
{m v Vaf (E+vxB) - Vf (2.10)

In this problem, fs(x,v,t) is the phase-space distribution function attached to the species s; g5, ms are the
corresponding charge and mass, E is the electric field and p is the charge density obtained from the phase-space
distribution of each species:

pxt) = Y pxt) = Ya. [ £lxv.0)dv, (2.11)

The particle distribution fs is represented by a collection of N numerical particles whose positions and velocities
are denoted (x,,vp), for p € [1, N]. The standard PIC scheme consists of four steps repeated at each iteration
in time (see Algorithm 1).

Algorithm 1. PIC-Std scheme.

Require: Particle positions and velocities (xp, vp), time step At, external magnetic field B.
for each At do
Accumulate the charge density p onto Q;:f) (see details in the following).

Compute E from p on ng:) with finite differences according to:

E=-Vd, Ad=-2. (2.12)
€0
Interpolate E at x,.
Update x, and v, according to:
dx dv Qs
=, == - (E + vp X B)|xx, - (2.13)

end for

Considering a leap frog scheme and a second order finite difference scheme, the time discretization error is
O(At#?) and the field solver error is O(h2) (see Prop. 3.7), where At is the time step, Ay, is the grid discretization
corresponding to the cell size of the Cartesian grid.

2.3. Projection of the density onto the grid

The charge density of any species is approximated on a grid from a collection of numerical particles with a
certain error that we shall make explicit here. For ease of presentation in the following, we consider one type
of particle, ommit time dependance and let f = f;/A be the probability density function associated to the
phase-space distribution fs, where N' = Q/q is the total number of physical particles and Q the total charge
of the particles. Starting from the definition stated by equation (2.11), the density is recast into the following
integral:

s =@ [ de =) dvae. (2.14)

The rewriting in equation (2.14) allow us to define a numerical approximation of the density in the following.
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FIGURE 1. Examples of two-dimensional hierarchical shape function Sp,(x — x;).

Let us consider a sub-grid of level 1 € N¢ with a discretization hj (corresponding to the cell width) and, as
an ersatz of the convolution kernel, a d-dimensional shape function, denoted Sy, and represented on Figure 1,
which is constructed by tensor products of one dimensional hat functions:

Sy (x) : <®Shzk> x), Sp, () = hl_klgo(hl_klm), (2.15)
(x) = max(1l — |z, 0). (2.16)

Substituting the convolution kernel with the shape function, we define the approximation of the density with:

)= [ Sux—e(evavie (2.17)

In order to approximate this multidimensional integral, we consider a Monte Carlo framework using statistical
sampling techniques. Let X be a random variable with the following probability density function, expected value
and variance:

x| fx,v)dv, / £f(€,v)dvde, V(X) :zIE((XfE(X))Q) (2.18)

R4 QxR

The quantity Sp, (x — X) being a random variable and the function defined by € — S, (x — €) being a mesurable
function of R™, owing to Transfer theorem [30], the integral in (2.17) can be recast into an expected value:

pm (%) = QE(Sp, (x — X)). (2.19)

Using an independent random sample (X1, ...,Xys) from the random variable X, one can define an estimator
of the integral by:

phl MZShl 7 (220)

where M is the number of random variables in the sample. To be able to make use of this result in particle
simulations, we note that we can associate the values of the random sample (Xy,...,Xs) with the particle
positions [1] (x1,...,Xar), yielding the following statistical estimator:
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Py (%) = ZShl X —Xp). (2.21)

The expected value and variance of this estimator are defined from the independant random sample
(Xlw"aXN) by

o o
E(pn, (x)) == 1E<NZSm(X - Xp)> , V(o (x)) = V<N28hl (x — Xp)> : (2.22)
p=1 p=1

Definition 2.1. The local error between the density and its statistical estimator is recast into two components:

P = p = (b — E(pn,)) + (E(pn) — p) - (2.23)

VN.hy Bias(pn, )

The first, refered to as the particle sampling error and denoted Vi p,, is a centered random variable corresponding
to the error stemming from the variance of the sampling with a finite number of particles. The second is the
bias of the estimator, denoted Bias(pp,) also reered to as the grid based error. It depends on both the mesh size
and the solution smoothness and measures how close to the density the most probable value of the estimator is.

Proposition 2.2. Let f(-,v) € X?(Q), then the square root variance of the particle sampling error and the
grid-based error are given by:

d 1
1 2\? 9p 2 _1
\% =(2) (—— O(N ) 2.24
Vwn)? (3) (Nhll y ) * ’ (2.24)
Bias(pn, ) Z > biri (i b )BT R (2.25)
m=1{i1,...sim}
C{l,...,d}
i F ik
with:
1
bir i (i e, ) = (12> 0 2 p+ 0K o?). (2.26)
Proof of Proposition 2.2. This result is a generalization to anisotropic grids of the estimates provided for
instance in [30] for Cartesian meshes. O

Remark 2.3. The estimate for a regular isotropic grid, used for regular PIC methods is recovered setting
l=n-1.

3. MERGING PARTICLE-IN-CELL WITH SPARSE GRIDS

3.1. Introduction to sparse grids

8.1.1. Sparse grid notations

In this section, the sparse grid notations will be introduced for the specific framework of the so-called sparse
grid combination technique [7,20]. Let (1,7) € R x N be the level and degree of basis functions defined by
tensor products of unidmensional splines as follows:

SDhlj <®wh1 jl> (31)
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where j € Jj is the index of the basis function. The unidimensional spline functions are defined recursively
starting from the spline of degree 0 that we shall denoted gpﬁ ; and higher order splines of degree r, for r € N*
defined by:

1 g lz—jhi] <

h
lz—ghi] 1 1 m+71 B
Au@={p L gL [ e (32)

_h
2

In this paper, we consider only linear splines and ommit the superscript r in the following. It yields the following
definition for the unidimensional linear splines:

on(@) = p(hy (= jh)), ¢(r) = max(1 —[z],0). (3-3)

Let us introduce the spaces of d-dimensional spline functions with respect to €, and QEIO:), denoted Vj, and
V>, and defined by:

Vi :=span{pn, j | j € N}, Vh(:o) = span{yn,j | j € Jn}, (3.4)

where {¢p, ; | j € J1} is called the nodal basis of the space Vj,, and J; the nodal basis index set. Eventually, we
define the interpolation of a function f onto the spaces V},,, Vh(:o) by:

Iy, f =Y ajen Ly f o= Y WniPha (3.5)

JeN j€Jn

where the coefficients o j are determined by the resolution of a linear system and falls down to the nodal values
of the function for linear splines (a1 ; = f(jh)).

Remark 3.1. The basis functions verify a partition of unit property:

D omg =1 (3.6)

Jen

8.1.2. Sparse grid combination technique

The sparse grid combination technique [7,20] is a method of interpolation using evaluations of the function
on the nodes of sub-grids. The interpolant is obtained by a linear combination of partial representations of the
function on the sub-grids. Let f be a function and fp,, an approximation of this function in the space Vj,, (e.g.
I Vi f), then a sparse grid reconstruction, denoted f,f is defined by linear combination of the contributions f,
of each sub-grid (see Fig. 2):

(d—1
fr o= E a1 fn, where ¢ = (—1)Z< _ ) ifle L, (3.7
i
leL
d—1y . (d=1) . . . . .
and ( ) = a—ioo 18 the notation for the binomial coefficient.

Proposition 3.2. Let f be a sufficiently smooth function and frn, € Vi, such that the following pointwise error
expression holds true:

fo(z Z Do i (@l e VR (3.8)

m=1 {i1,...,im}
c{l,....d}
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FiGURE 2. Illustration of two dimensional sparse grids used in the combination approximation.

then:
15, = fll. < Kh2|loghy|*" + O(h2|log hn|*~?), (3.9)
where for d =2, K = gHal,Z(';hlmhb)”m'
Proof of Proposition 3.2. See [20] for a proof in the two-dimensional and three-dimensional cases. O

The combination technique is remarkable for the reduction of the number of interpolation nodes, explicited
by the relations:

S

= O(h’:zd)7 Z |,y | = O(hﬁizl‘ log hn|d71)a (3.10)

leL

while achieving nearly the same precision than the standard interpolation (with a negligible multiplicative term
| log hn|*71).

Remark 3.3. The sparse grid reconstruction of a nonnegative function is not nonnegative.

3.2. Application to Particle-In-Cell discretizations

In this section, two applications of the sparse grid combination technique to Particle-In-Cell methods are
presented. In the regular PIC approximation, the main drawback is the statistical error decreasing with the
number of particles per cell. Indeed, the particle sampling and the grid based errors scale respectively as

O(l/\/Nh;iL) and O(hZ), hy, being the mesh size of the Cartesian grid denoted QEZO?) and N the total number

of particles. These two error estimates together lead to the following onerous conditions for convergence of the
scheme h?2 < 1, Nhe > 1 which can require an extremely large number of particles, specifically for three
dimensional simulations. The combination technique achieves a representation of a function using a sequence of
sparse grids, coarser than the standard full mesh. This ends up in a reduced number of interpolation nodes and,
accordingly, an increased mean number of particles per cell. This feature motivates the application of sparse
grid techniques to PIC methods.

The bias of the estimator of the density on a sub-grid verifies the assumption of equation (3.8). Therefore, the
combination of these projections onto the sub-grids according to equation (3.7) shall lead to cancellations for the
grid-based error. This feature, resulting from the tensor product form of the shape function, is the motivation
for the application of sparse grid combination to PIC methods.
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3.2.1. Discretization on hybrid grids (PIC-Hg)

In this section, a first sparse grid application to PIC methods, introduced in [24], is presented. In order to
take advantage of the cancellations exposed in the precedent section, a sparse grid interpolant of the density is
constructed. The density is accumulated onto each sub-grid, achieving a reduction of the statistical error thanks
to the large cells of the sub-grids, then evaluated onto the Cartesian grid with the combination technique. The
electric field is obtained by resolving the Poisson equation on the Cartesian grid. Let us introduce the sparse
grid reconstruction of the density, denoted p%n, and the electric field, denoted Ej,, , as:

c
A p
Ph, = E alv, pr,  En, ==V, @p,, Ay, Pp, = —Th”, (3.11)
0
IeL

where Vj, and Ay are the discrete gradient and discrete laplacian operators defined by finite differences. Let
us introduce the corresponding scheme in Algorithm 2, that we shall name hybrid grid PIC scheme (owing to
the Cartesian grid and sub-grids considered within the scheme).

Algorithm 2. PIC-Hg scheme.

Require: Particle positions and velocities (xp, vp), time step At, external fixed magnetic field B.
for each At do
for eachl € L do
Accumulate the charge density ppn, onto Qp, (2.21).
Interpolate gy, onto Vi, (3.5).
end for
Combinate the charge density pf, onto Q;Lio) (3.11).

Compute E;, from pf, on QE:) with finite differences (3.11).
Evaluate [ (o) Ep, at x,.
h

Update x, and vp (2.13).
end for

Proposition 3.4. The sparse grid reconstruction of the density conserves the total charge:

/pgn (z)dx = /p(a:) de= Q. (3.12)

Remark 3.5. The positivity of the charge density is not preserved by the sparse grid interpolation (see
Rem. 3.3).

Proposition 3.6. Assuming p € X%(S), then the following estimation holds:

65, = ol < K|0% ... 00|l b2 Nog hal*™ + DlIp| & (Nhn)~* log ha|*~" + O (R2Jlog ha|*™*),  (3.13)

grid-based error particle sampling error

grid-based error

where K and D are constants related to the derivatives of p depending on the dimension of the problem. For
two dimensional computations, it holds:

165, — ol < Kih2|log hy| + K2h? + Dllog hy|(Nhy) "%, (3.14)
grid-based error particle sampling error
3125 25 2 1
Ky = o l10t03p] 0 Ka = 15 (1920l + 1830].), D= 5V8(Qlipll)*.
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The benefit of the sparse grid combination technique as a noise reduction strategy is pointed out by the
equation (3.13). Indeed, owing to the projection of the density onto the sub-grids, the particle sampling error
is significantly reduced:

V(Z cllvhlvN,h,> < O((Nha)~Hloghu 1) < O((VhE) *) = (Vs )b,

leL

where Vi p, (respectively Vy p,) is the particle sampling error of the density projection onto the Cartesian
grid (respectively a sub-grid). The profit is significant for refined grids as well as three dimensional problems.
Conversely, an increase of the grid-based error results from the combination; the grid-based error is increased
from O(h2) to O(h2|loghy,|?"1). Though hZ ~ h2|logh,|?"!, the loss may appear negligible, however the
dominant component of the density error depends on 2dth order derivatives. As a comparison, the grid-based
error of regular PIC methods is dominated by component with dependencies on 2nd order derivatives. This
feature indicates a drawback of the combination technique and may limit the efficiency of the method when the
solution develops strong gradients not aligned with the Cartesian grid. A similar estimation can be stated for
the electric field.

Proposition 3.7. Assuming enough smoothness on the solutions, i.e. ® € C3(Q), p € X2(2) N C3(Q), then
the reconstruction of the electric field verifies:

|y B, — B < K[| V82 ... 02| 2l 1og hul~" + DIVl L (N 1)~ Hlog hal ™! + O (82 10g hul2),

grid-based error particle sampling error grid-based error

(3.15)

where K and D are constants related to the derivatives of E and depends on the dimension of the problem. For
two dimensional computations, the following estimation holds true:

HIV@)EM - EH < K1h2|log hn| + Kzh2 + D(Nhy) "% log hal, (3.16)
hn
= grid-based error particle sampling error
3125 2 1
= vo2o2 D=—"_(0|Vp|s)?
V= o |[VoRaR . (QIVpllo)?

3v8
1 1
Ko = oo (|Voie]|  + [[Vos ) + 5 max(|ofe] .|

3
4 25
b o (vatel|  + [[vosal| ) + 2

%9|,.)
IVoEoll. + 11V 02rll.. )

Proof of Proposition 3.4. Recasting the sums and integral, it holds true:

N
/Pﬁn(x) dx = /ch > % > 0Sh (M —xp)en =2 a=2Q,

leL jeJ p=1 leL

where the two following relations have been used:

Z Shl(jhl - Xp) = (hllhl2)_17 /(phl,j(x) dx = hy, hy,.
jeh

Proof of Propositions 3.6 and 3.7. See Appendix A.
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3.2.2. Discretization on sub-grids (PIC-Sg)

In this section, a second application of the sparse grid combination technique to PIC methods [29] is presented.
This implementation does not use a projection of the density onto the Cartesian grid. The idea is to deposit the
charge density, solve the Poisson equation, differentiate the electric potential on each sub-grid and eventually
interpolate the electric field from the sub-grids at particle positions by means of the combination technique. Let
us introduce the sparse grid reconstruction of the electric field, denoted Ein, defined by the relation:

= ZCIIV’HE}“’ (317)
leL

where Ep, is the approximation of the electrid field on a sub-grid with finite differences. Solving the Poisson
problem on each sub-grid rather than on the Cartesian grid, is likely to speed-up the computations. Indeed, the
gain may be coarsely estimated by the reduced number of cells in all the sub-grids compared to the Cartesian
mesh (see Eq. (3.10)), the result being a linear system with reduced size to solve for this scheme. Let us introduce
the scheme in Algorithm 3, that we shall name the sub-grid PIC scheme in the following.

Algorithm 3. PIC-Sg scheme.

Require: Particle positions and velocities (xp, vp), time step At, external fixed magnetic field B.
for each At do
for eachl € L do
Accumulate the charge density pn, onto Qp, (2.21).
Compute Ej, from pp, on Qp, with finite differences (2.12).
Evaluate Iv, Ej, at x, (3.5).
end for
Combinate Ef, at x, (3.17).
Update x, and v, (2.13).
end for

Proposition 3.8. Assuming enough smoothness on the solutions, i.e. ® € X§(Q)NCE(Q), p € X*(Q)NC5 (),
then the sparse grid reconstruction of the electric field verifies:

| B, — B < (Ku1|[vor.. ote| + Kio| VoL ... 01, 0%]|  +..)h]log hu|"
grid-based error
1 _1
+ D|Vp|| 2, (Nhn) "2 [log hn| " + O (k) | log by |172), (3.18)
particle sampling error grid-based error
where K11, Ki12,..., D are constants depending on the problem dimensionality. For two dimensional compu-

tations, the following estimation holds true:

| B, — B| < Kih3llogha| + Kah2 + D(Nhy) = |log hul, (3.19)
o
grid-based error particle sampling error
Ki = 2 watesa| + 2 (|vaiail +2|vaiota|_ + |vaials).)
)
+ﬁmx(’|5i°’3zp|| +[|0703 | . [|0793 ], + [|01052]]..)

N @(Hvalachn +2||VaRazp| . + || Voiaie| )



1820 F. DELUZET ET AL.
5
+ gy max([[oraze| ., [0tz ),
4 1
K> = o= (||Vora|| , +[[Vazel| ) + 5e ([Votall . + [ VaEe]..)

1 2
+ 56 (IVaie| +[[Vaze| ) + 5 max([[ove] . [o2@]).

D (QIIVpll..)?.

2
3v/8

Proposition 3.9. Assuming a periodic domain, the scheme does preserve the total momentum of the system,

jt(mN//Qde vfn(z, v, t) d:z:d’u) =0, (3.20)
where
iy}
Iz v, t) = Zﬁa(x— x, (1)) (v — v, (t)). (3.21)

The estimation of the error requires stronger assumptions on the smoothness of the electric potential (® €
X§(Q)NCH(Q)) and density (p € X*(Q)NC3(Q)) than for the PIC-Hg scheme (® € C3(Q), p € X%(Q)NC3(Q)),
especially on mixed derivatives. The significant differences with the PIC-Hg scheme are the additional dominant
terms depending on higher mixed derivatives of the solution: ||V} ...95 102p|sc, ..., [|[VO] ... 0P|l which
are (4d — 1)th order derivatives of the density and (4d 4+ 1)th order derivatives of the potential. In comparison,
the dominant terms in the PIC-Hg scheme estimation in equation (3.15) are (2d 4 1)th order for the density,
and the negligible terms are fifth order for the potential.

In order to prove the Proposition 3.8, we need to introduce some notations and lemma. Let us introduce Vy,
and Ap, the discrete second order finite difference operators defined on the component grid Qp, by:

d

A= 3 05, Oy, 1 Vi = (527hlku)k:1 E (3.22)
k=1

Op n, s 5; n,  are left-sided, right-sided differences and (52 n, is centered difference:
yhay, yhay yhay,

. w((j+1ig)h) — u(jh _ .
5;h,kU(Jhl) = (( k)hll) ( 1)7 6t,hlku(']h1) =
k

Oy, u(G) = i+ i’“)hl)m; ?((j — i’“)h‘>, (3.24)

u(jh) — u(( —ix)m)
hy,, ’

(3.23)

and i, € N2 is the index whose value is 1 along the kth coordinate and 0 elsewhere. Let us explicit the notation
{i1,...,im} € 1:={0,{1}, {2}, {1, 2}}, for 0 <m < 2, standing for

1] if m=0,
{i1,. - yim}p =] {1} or {2} ifm=1, (3.25)
{1,2} if m = 2.

The quantities (functions, domains, operators, etc.) associated with this notation correspond either to continuous
ones for m = 0, semi-discrete ones for m = 1 or discrete ones for m = 2. Then, we introduce the semi-discrete
operators defined by:
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Apimly = 3 03y, Oy, U+ > R, (3.26)
ke€{it,...,im } ke{l,...,d}
B (v, ovim}

where u is defined on the following hyperplane:

QUin) = {x ez, € {jhli 10<j<hy, } 1<k< m} (3.27)

for m > 1 and Q%l = Q.
In order to prove the Proposition 3.8, we need the following lemma:
Lemma 3.10 (Semi-discrete interpolation error on V3,). Let f € X?> (Q;fll """ i"‘)>, where {i1,...,im} € I and

0 <m <1, then the local error at x € Q;fll’“"m) of the interpolation onto Vy, is:

Ivhlf(il:) — f(il:) = Z Z iy, imsrtsere (:B; hlil e hlim ; hl'r'l ey hlrk ) thrl . hlzrk’ (3.28)
k=1 {ri,...,rx yC{1,...,d}
site {r1,.,re PN, im =0

where

‘dih___m;h,_“,rk(~;hli1,...,hlim; k)H (27> 02 .02 f||. (3.29)

Lemma 3.11 (Truncation error of semi-discrete laplacian). Let f € C* (ng"“’%)), where {i1,...,im} €1
and 0 <m <1, then:

(Ahl - Aﬁf'll"“’i”))f = Z (s hi ) hik (3.30)
ke{1,...,d}
ki1, mrim}
with:
175 (5 o < 12||8kf|\ (3.31)

Lemma 3.12. Let f € CQ( (.. ’")>, w € CO( e i’“)>, where {i1,...,im} €1 and 0 < m < 2, verifying
the semi-discrete problem:

Ay = w, e =0, (3:32)
then the following majoration holds:
i1eei) T 1
Il < ol | (A5) 7 < (3.33)
o0
Proof of Lemmas 3.10-3.12. See Appendix A. (]

Proof of Proposition 3.8. The proof is an outcome of Proposition 3.2, we therefore need that the local error
(Ehn — E) verify the assumption stated by equation (3.8). Unlike the problem discretized on the Cartesian
grid (see proof of Proposition 3.7), the resolution of the Poisson equation on the sub-grids requires more work
because of the anisotropy of the grids, the operator of the problem depending on the discretizations in each
direction, which are different. Thus, invertibility of the operator cannot provide directly an error expansion of
the form of equations (3.8). This problem has been thoroughly studied in [7,28]. We therefore use the framework
introduced in [28] for this proof.
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First the local error can be recast into:
Iv, Ep, —E =1y, (Ey, —E) + Iy, E—-E. (3.34)
In the following of this proof, we ommit the dependance upon the grid discretization in the coefficients of the

form b;, ... ., (~; hig 5oy hlim) for simplicity of notation. Applying Lemma 3.11 for m = 0 and introducing the
estimator of the density, one gets:

2
Ap®+ pr, =Y (bi+ )b, + by ohi hi, + Vi - (3.35)
i=1
Let us introduce the semi-discrete problems:
AV w;=b;+ 7, w; Q) i=12 (3.36)

The equation (3.35) can be recast into:

2 2
Ahl (‘I) + Z wlhi) + ﬁhl = Z(Ahl _ A;Zl))wihi + b1’2h121 h122 + VN,hl
=1 =1

= (w1,2 4 b1,2)hi hi, + VN b,

where the Lemma 3.11 has been used on the right hand side and owing to the Lemmas 3.11 and 3.12, it holds
fori=1,2:

1 1
lwille < §oille + I17illo0)s Neonzlloe < 55 (00s ] + [08n]],)- (3.37)

2

Eventually applying the operators Agll, V1, which commute, Lemma 3.12 and a Taylor expansion:

Vi (@ — @) = & — ®p,, +512h7 hi, (3.38)
=z1h} + 2zoh}, + 2120} b}, + 2N, (3.39)
where
1 ) . 1
lzilloo < g6 (V7 Pl +[IVOi2|), N2nmlle < GIVVNMl (3.40)
1
lz12ll < garg (IVO1030]] . +2/|VOLO32|  + [[VOT 3P| ) + s 2l (3.41)
1 . . . .
vl < g max(05030]] + 03030 0330 + 0450 .42
On the other side, a Taylor expansion gives us the truncation error of the discrete gradient:
s1hi, 1.3 .
Ve -V, o= o s Isille < 51107 ®l0e, i=1,2. (3.43)
Sth2 3
Lemma 3.10, applied first for m = 1 and m = 0, gives us:
Iy, (En, — E) = Ep,, — E +f15hf hi, (3.44)

Iy, E— E = dih}, + da2hi, + d12hi, hi, (3.45)
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where
4 .
()| < o182l + 9321, + N0Essec). & # Ji (3.46)

4 )
il < o (1V022]] ), =12, [dially, < 2 (IVOR03®,). (347)

o = 729

Finally, summing the equations (3.38) and (3.43), applying to equation (3.44) and summing to equation (3.45),
the grid based local error verifies the assumption of equation (3.8):

IVhl Ehl —E= elhi + eghl22 + 8172}7,[21 h’l22 + Zhn (348)
where
le1lleo < l[d1lloc + [IZ1]loc + max(][s1 oo, lIs2]lo0) (3.49)
llez2lloo < [[d2lloc + [|Z2[loc + max(]|s1 oo, lIs2]le0), (3.50)
le12]loc < lld12lloc + [[f12]loc + [1Z1,2]lo0- (3.51)

Finally applying Proposition 3.2 and a argument similar to the proof of Proposition 3.6 for the particle sampling
error, we get the result. (I

Proof of Proposition 3.9. The total momentum of the system is defined as

N
N
P = m//Qde d(x — Xp(L‘))5(V—vp(t))dxdv:E:mﬁvp(t)7 (3.52)

p:1 p=1

SO

N N
dp LN dvy(t) N
— = = E —E t 3.53
dt N dt qN hn (XP( ))’ ( )
p=1 p=1
where E}CLn is the sparse grid reconstruction of the electric field evaluated at particle positions, given by:

Ef (xp(1) =Y a > Bn (i) Sn, (xp(t) — §hn)hu, hu, - (3.54)

leL jeJ

= ¢np,i(p (1))

Exchanging the sums, we get:

chhll hlzZEh] Jh] NZS}“ Xp —Jhl) (3.55)

1eL Jjen

= pn, (1)

Let us consider a sub-grid of level 1 = (I1,l5) € L and the 2-dimensional notations ®71:72 = &, (jh), E/"72 =
Ep, (jl) for a node (j1,72) € Ji. Owing to periodic conditions on the field and the density:

ZEhl Jhl phl Jhl thlcbhl Jhl)Ahch)hl (.]hl)
Jjen JEN

Z <2cpj1’j2(1)j1+1,j2 _ ((I)j1+1,j2)2 4 ((I)j1*17j2)2 _ 2(1)j1J2<I)j11,j2>
- 283

(J1,d2)€

[o,21] xo,2"2]
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TABLE 1. Grid-based error: dominant and marginal terms with dependances on p or ¢ derivatives.

Scheme Dominant term Negligible term
(a) Density grid based error (|[pf, — pllo), dependance on p derivatives
PIC-Std B2 (L 192011 12403 ... 03p

PIC-Hg/PIC-Sg  h2|loghn|" [0 ... 080l 02 (0, 107ll)

(b) Electric field grid based error (||[E — E[|s), dependance on ® derivatives
PIC-Std/PIC-Hg  h? (z‘j:l ||va;*<1>|\oo) W2 VOE ... 90|
PIC-Sg B log ha| " [VO} .. 040l B2 (L, VIOl )

2PIr-dz irgez+1l _ ((I)j17j2+1)2 + (@jl;j2*1)2 — 9pIrJ2Pirsgz—1
! 21, |

A change of index together with the periodicity of the problem yields:

2l 2l 2l 2l
ZQ(I)jl’j2®jl+1’j2 — ZQ@jl,jz@j&*L]é’ Z (@j1*17j2)2 — Z ((I)j1+1,j2)2'
Jj1=0 j1=0 j1=0 j1=0
Thus, owing to equivalent relations in jo, we get the result. O

Remark 3.13. The proof on the conservation of the total momentum cannot be applied to the PIC-Hg scheme.
Indeed, the source term of the Poisson equation does not appear in the field expression in equation (3.55).

3.3. Offset combination technique

From the analysis conducted in the precedent sections, the following conclusions may be stated. Sparse grid
reconstructions define a different trade off between the two components of the errors (grid-based and particle
sampling errors) as compared to standard PIC approximations. The particle sampling error is significantly
mitigated thanks to sparse grid approximations. This is an important feature since this component of the error
is generally the most detrimental for the computations and ultimately limits the precision of the approximation.
Contrariwise, the grid-based error is less favorable for the sparse grid approximations: the dominant term
depends on mixed derivatives of the solutions (see Tabs. la and 1b for a comparison of the methods). In this
section, a general framework, that we shall referred to as offset combination technique, is introduced in order
to reduce the grid based error of sparse grid reconstructions. The offset combination technique is motivated by
the property of the dominant term error to be an increasing function of the number of sub-grids involved in the
combination (O(|logh,|?!)) as well as the combined sum of the errors of the partial estimators. The offset
combination consists therefore in both reducing the number of sub-grids considered within the combination and
using sub-grids with increased minimum levels. In this respect, the offset combination borrows some ideas to
the so-called truncated combination [2,24]. However, a more subtle strategy is implemented within the offset
combination in order to select efficiently the subset of sub-grids.

The main drawback of the truncated method is the additional statistical error introduced in the simulation,
because of the smaller cells of the grids considered in the combination, the mean number of particles per cell
is reduced. The offset combination is aimed at mitigating the increase of the statistical noise as well as the
dominant component of the grid based error in return of a deterioration of the error component depending on
the non-mixed derivatives of the solution. The tuning of the balance between the different components of the
error is implemented thanks to the two parameters 79, 1 € N. The index 7y, which is the truncation parameter,
is used to parametrize the minimum discretization level for the sub-grids, with the aim of discarding the most
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FIGURE 3. Schematic depiction of the two dimensional classical combination (left), truncated
combination with 79 = 3 (middle) and offset combination with 7o = 3, 71 = 2 (right).

anisotropic sub-grids from the combination. The parameter 7y, which is the offset parameter, sets the loss of
discretization in the directions aligned with an axis (contributing to the negligible terms of the grid-based error
with non-mixed derivatives) as illustrated on Figure 3. For 7 = (d — 1)7 the offset method boils down to the
truncated combination technique introduced in [2,24]. The set of sub-grids for the offset combination is defined
by:

L(ro,m) == |J Li(ro,m), mo€[lLn], m€[d—1,(d—1)m] (3.56)
i€[0,d—1]
Li(ro,71) :=={le N |[1> 7o, ||, =n+m —i}. (3.57)

Proposition 3.14. Assuming p € X2(), then the following estimation holds true for the offset combination
technique:

_ i _ _1 _
[0h, = Pl o < KN07 ... 03pllcch?, | 108 By |*~" + Dl|pllZ| 0g hin, "~ (N hyy) 72 + O (B2, [1og by |972), (3.58)

grid-based error particle sampling error grid-based error

where the constants are the same constants as in Proposition 3.6 and:

ny=n-—21+ ng=n+m—(d—1). (3.59)

1

d-1

Compared to the estimation of the PIC-Hg scheme (Eq. (3.13)) both the grid-based component and the
particle sampling component of the error are mitigated in the offset method. This is obtained thanks to the
reduced number of sub-grids in the combination which scales with O(|log hy, |*™!) instead of O(|log h,|?™1),
ny; < n. Besides, the use of sub-grids with higher levels, i.e. parametrized by indices 1 with larger |1|;, entails
an offset for both the particle sampling error and the grid-based error, if no > n. Conversely, the negligible
components in the grid-based error are increased by the elimination of the more anisotropic grids, however this
is of no consequence on the accuracy of the numerical method since these components are negligible.

Remark 3.15. The offset combination technique can be applied to either the PIC-Hg scheme or the PIC-Sg
scheme without the loss of their conservativity properties (total charge, total momentum, etc.).



1826 F. DELUZET ET AL.

3.4. Enhancements of the schemes

3.4.1. Objectives

The analyses conducted within Section 3.2 highlight a deterioration of the electric field approximations carried
out by sparse grid PIC methods (see Tab. 1b) compared to standard PIC methods. Similarly to the density
interpolant, this altered precision, more important for the PIC-SG scheme, is due to an increase of the grid
based error component depending on high order cross derivatives of the solution. The corrections proposed
herein address this specific issue.

3.4.2. Oversampled hybrid grid (PIC-OHg)

The PIC-Hg scheme does not take advantage of sparse-grid techniques for the resolution of the electric field,
the potential being carrying out on a Cartesian mesh, unlike the PIC-Sg scheme, which makes the resolution
more expansive than the latter. This computation may be expansive for refined discretizations and particularly
for three dimensional problems. The benefit of this approach is a reduced dependency of the electric field
approximation to the solution cross derivatives (compared to the PIC-Sg scheme, see Tab. 1b). The strategy
introduced to alleviate the numerical cost of the electric field computation, consists in using grids with different
resolutions for the charge density deposition and the electric field computation. Precisely, the electric field is
carried out on a full mesh Q(Oo) while the density is projected onto a sequence of sub-grids associated to a
more refined (oversampled) full mesh Q(OO) where hi = hy, - han, An € N. The corrected scheme, that we shall
name the oversampled hybrid grid PIC scheme is similar to the PIC-Hg scheme, except that the sub-grids are
considered in the following index set:

L= U L, ii::{ieNd|‘i‘1:ﬁ+d717i,121}. (3.60)

Before the Poisson equation is solved, the density is deposited onto Q;lono) from the values of the sparse grid

interpolant on Qﬁ:’)? which is denoted piﬁ:

& (Ghn) th (iha)pn, j(ihz)  for j e J,, (3.61)
"ieJs

where wy,, w; correspond to the volume of a cell of the grid considered:

-1 -1

Wy, = 21 . wh = 21 ) (3.62)

Jj€Jn j€Jn

Remark 3.16. The total charge of the density is conserved by the projection onto leono) and by reconstruction

n Qg;o), i.€e.

> o (ha)wn = / p(x)dx = Q. (3.63)

i€y

3.4.3. Enhanced sub-grids (PIC-ESg)

This correction consists in enhancing the sub-grids for the resolution of the electric field by introducing sub-
grids more refined than those used for the projection of the density. The sub-grids carrying the electric field are
considered with discretization hj = hy - han, An € N being a parameter denoting the additional depth of these
enhanced sub-grids. The corrected scheme, that we shall name enhanced sub-grid PIC scheme is similar to the
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PIC-Sg scheme except that after the projection, on each sub-grid, the partial representation of the density is
interpolated to the enhanced sub-grid (25, with standard interpolation:

ﬁhi(ihi) = Za17j90h17j(ihi)’ for i € Jj, (3.64)
JeN

where the coefficients oy j are determined by interpolation conditions. Eventually, the electric field is computated
on the enhanced sub-grids and reconstructed on the non-enhanced sub-grids in a way similar to equation (3.61).

4. NUMERICAL SIMULATIONS

4.1. General settings

In the following, we consider the electrons immersed in a uniform, immobile, background of ions: p;(x) =
Q./ fQ dx. The domain is a square Q := [0, L]¢, whose dimensions depend on the Debye length L « Ap,

Ap = v/€0T./qeno, with the following charge, mass and temperature for the electrons ¢. = 1.602 x 107! C,
me = 9.109 x 1073 kg, T, = 1eV. Periodic boundary conditions are considered for the particles, the electric
potential and the electric field. The time discretization depends on the plasma frequency: ¢, At o< w, Lw, =
v/qeng/meeg. The particles are pushed with a leap-frog temporal scheme following the equations of motion.

A series of numerical tests is carried out in two dimensional geometries: a Landau damping in both the
linear and the non-linear regimes as well as a diocotron instability. These tests are performed with the standard
Particle-In-Cell scheme (PIC-Std), the sub-grid Particle-In-cell scheme (PIC-Sg), the hybrid grid Particle-In-cell
scheme (PIC-Hg), the enhanced sub-grid Particle-In-Cell (PIC-ESg) scheme and the oversampled hybrid grid
Particle-In-Cell scheme (PIC-OHg), respectively presented in Section 2.2, 3.2.1, 3.2.2, 3.4.3, 3.4.2. The schemes
are implemented either with the classical, when not specified, or the offset combination technique. The results
are compared without any filtering methods for both sparse and standard schemes. Throughout this section we
will refer to the mean number of particle per cell, denoted P,, relating the amount of statistical noise in the
simulation and introduced in [29]. This quantity depends on the underlying Cartesian grid or the sub-grids used
in the combination.

N —2n
N N27"
C - —1 —1 - ) (42)
nhil L+ (n—1)ha'L  3n—1
N N2~
P, = - (4.3)

nihy L+ (ng — Dhot L 30— 17

where the grid discretization now depends on the domain size (h,, = 27"L) and ny, ngs are defined in equations
(3.59). The mean number of particles per cell is therefore provided by equations (4.1)—(4.3) for the PIC-Std
scheme, the PIC-Sg, PIC-Hg, PIC-ESg, PIC-OHg schemes with the classical combination technique and the
offset combination technique.

In any of the following test cases, the total charge of the density is exactly conserved (to machine precision
~ 10716) for the PIC-Std, PIC-Hg scheme and PIC-OHg schemes with any combination technique which
confirms the Propositions 3.4 and 3.16. Recalling that within the PIC-Sg or the PIC-ESg scheme, because
the density is never fully projected onto a grid since we only proceed a partial projection onto each sub-grid and
combine the resulting partial electric fields, the conservation of density is therefore not assessed numerically for
these schemes.
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TABLE 2. Linear Landau damping: Configuration of the methods.

Scheme Grid size h, P. N Nsia /N

PIC-Std 276 (647 cells) 500 2.048 x 10° 1
PIC-Sg/PIC-Hg 27° (642 cells) 500 5.440 x 10° 4

Evolution of the electric field
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FIGURE 4. Linear Landau damping: evolution of the electric field.

4.2. Landau damping

As a first test case, we consider the evolution in time of a perturbation known as the Landau damping, in the
linear and non-linear regimes. When a plasma is slightly perturbed from an equilibrum state, it returns to its
equilibrium with an exponential damping. A perturbation in the electron distribution of an equilibrium state is

considered:
1 2wx 21 —vii3
flx,v) = 27T<1+a1cos(61L >> <1+0¢2c05<ﬂ2Ly)>e 7 (4.4)

where Hng = v} 4 vg, i 2 is the magnitude and f3; 2 is the period of the perturbation in each dimension.

4.2.1. Linear regime

The perturbation considered in the distribution of electrons has to be small enough so that a linear approx-
imation is valid. Under this assumption, the electric field decreases exponentially fast in time according to
a damping rate [23]. The motivation here is to recover this damping rate with the different schemes. Let us
parametrize the perturbation with oy = ag = 0.05, 51 = Sz = 1 in equation (4.4), L = 22\p, At = %wp’l and
the final time T = 25w;1. The grid discretization is chosen so that h,, ~ 0.34\p, the configuration of the grid
and particles is indicated in Table 2. Interpolations in the combination technique are done with linear splines
for all the methods. The numerical results are represented in Figure 4a. Both the PIC-Hg, PIC-Sg, PIC-Std
schemes agrees well with the damping rate. Besides, there are four times less total particles in the simulation

for the sparse grid schemes.

4.2.2. Non-linear regime

When the perturbation of the equilibrium state is considered large enough to invalidate the linear approxi-
mation, the precedent analytic damping rate is not available anymore. In order to assess the efficiency of the
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TABLE 3. Non-linear Landau damping: Configuration of the methods.

Scheme Parameters Grid size hy P. N Nget/N
Ref (PIC-Std) 2 T (128% cells) 4000 6.553 x 107 1
PIC-Std ~7 (1282 cells) 1000 1.638 x 107 4
PIC-Sg / PIC-Hg 7 (1287 cells) 1000  2.560 x 10°  25.6
PIC-Sg / PIC-Hg (offset) (7°,7') = (1,0) 277 (128% cells) 1000 1.792 x 10°  36.6

methods, the results will be compared to the PIC-Std scheme in the same configuration of grid discretization. A
larger perturbation than for the linear case is considered with oy = 0.2, as = 0.15, 81 = 4, B2 = 3 in equation
(4.4) and let L = 60Ap, At = 20 p . The grid discretization is chosen so that h,, >~ 0.47Ap, the configuration
of the grid, particles and schemes is indicated in Table 3. Interpolations in the combination technique are done
with linear splines for each of the methods.

A first series of simulations is performed with different grid resolutions, numbers of particles per cell and total
number of particles in order to get a comparison of the projection error between the methods at initial time.
It is therefore possible to assess precisely the precision of the density projected onto the grid for the different
methods by comparison with the analytic expression of the initial electron density (pex). The error of the density
in L? or supremum norm is defined as:

llp— PCXHP

||peXI|p

&(p) =

where pey is the analytic density at initial time. The integrals in the L? norm expressions are approximated
with a Riemann sum on the Cartesian grid. The numerical results are represented in Figure 5. The results for
the PIC-Sg scheme are not represented because at initial time the scheme is equivalent to the PIC-Hg scheme.
On the left figure, for any of the methods, the precision is limited by the particle sampling error for quite coarse
grid resolutions, as soon as the number of cells is larger than 2° in each direction. Though the total number
of particles is increased with the mesh refinement, the mean number of particles per cell remains unchanged,
which explains the non decreasing error observed on the plots of Figure 5 (proportional to f for the standard

method). This highlights that, though the number of particles per cell is consequent (five hundred or one
thousand), it should be increased further to obtain an optimal precision and reduce the particle sampling error
to a value comparable to the grid based error. This outlines an important characteristic of PIC methods: the grid
based error is marginal compared to the particle error. This proves that gains may be expected from numerical
methods with a better control of the statistical noise, hence the interest for sparse grid reconstructions. On the
right figure the grid discretization is frozen so that the grid based error is constant, proportional to h2 for all
the methods which testify that the multiplicative term |logh,|?~! in the error expression of the sparse grid
methods is negligible. When the number of particle increases, the particle sampling error converges (in the L?
norm) to zero at the rate N ~2. The global error converges to the grid-based error. For refined grids with more
than 26 cells in each direction, the amount of statistical noise of the PIC-Hg scheme with one hundred particles
per cell is equal to that of the PIC-Std scheme run with five hundred particles per cell. This amounts to a total
number of particles 32 times less for the sparse method compared to the standard method.

The second series of simulation for the non-linear Landau damping is dedicated to the time evolution of the
perturbation. First, the conservation of the total momentum is investigated for the different methods. To this
end, let us introduce the following error for the momentum:

MmeVp(to) — mevp(t)
NZ . , (4.6)
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FI1GURE 8. Non linear Landau damping: electron density.

where v, (t) is the velocity of the pth particle at time ¢ and vy, := \/2¢.T./m. is the thermal velocity of the
electrons. The default of momentum conservation is represented as a function of time in Figures 6a and 6b with
P. =500. As predicted by the analysis conducted before, the total momentum is exactly conserved (to machine
precision) for the PIC-Sg with any of the classical combination technique or the offset combination technique,
as well as the PIC-Std scheme. The conservation default for the PIC-Hg, PIC-OHg and PIC-ESg schemes is
observed to remain marginal (~10~%) and bounded independently of time.

The projection onto the Cartesian grid and a section in the z-direction of the electron density are proposed
in Figures 7 and 8 after two periods of oscillation of the electric field (at time 7" = 6.3w,, 1) for the different
configurations of Table 3. Since the density is never projected onto the Cartesian grid within the PIC-Sg and
PIC-ESg schemes, we perform an interpolation on the Cartesian grid according to the combination technique
for the diagnostics.

First, it appears that the reduction of the numerical noise is manifest for all the methods using sparse
grid reconstructions. It is an essential property since, this error, due to the undersampling of the distribution
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function, is the most detrimental in the precision of numerical methods. This better control of the numerical
noise is obvious on the density plots displayed on Figures 7 and 8. Though the estimated mean number of
particles per cell is equal to 1000 for the PIC-Hg, PIC-Sg, PIC-OHg (offset combination) and PIC-ESg (offset),
the magnitude of the dispersion is observed to be comparable, or even less, to that of the PIC-Std scheme with
4000 particles per cell which amounts to a total number of particles 25, or 36 times greater (see Tab. 3). It is also
noticeable that sparse grid approximations do not introduce too much numerical diffusion, the extrema of the
numerical approximations being comparable whatever the scheme. Second, the grid-based error can be observed,
particularly on the plots of the PIC-Sg and PIC-Hg methods Figure 8. This error reproduces the patterns of
the coarsest grid levels. This error is specific to sparse grid approximations of the density and analysed to be
dominated by the component scaling with O (nh%) This latter term results from the accumulation of error on the
different levels of sub-grids and is reduced thanks to the offset combination technique. The smearing of the grid
structure on the error plots related to the computations performed with the offset combination technique can be
observed on Figure 8. Indeed, in these computations the number of sub-grids considered for the reconstruction is
reduced considering n; < n (from 2n — 1 = 13 sub-grids to 2ny — 1 = 7 sub-grids). The control of the numerical
noise (with approximately the same number of total particles), though expected deteriorated, due to the use of
more refined grids compared to the original methods, remains very effective improving significantly the quality
of the numerical results. For these methods, still a good control of the numerical diffusion shall be pointed out.
Similarly, the increase of the negligible grid-based component (see Prop. 3.14) reveals to remain marginal on
the precision of the numerical approximation.

4.3. Diocotron instability

In this test case, we consider a hollow profile in the electron distribution, confined by a uniform magnetic
field B [25], with the following Maxwellian distribution of electrons:

L L2
(P=%1l,-%)

~ve 2(0.03L)2 —lvi3

flx,v) = 0.03L(2m)? ez , 7 st //QXRdf(x,v)dxdv:l (4.7

where |x — %H; = (z — £)% + (y — £)?. The external magnetic field is considered uniform along the z-axis
B = (0,0,B,) (B, =2.5x 107° T) and strong enough so that the electron dynamics is dominated by advection
in the self-consistent field E x B. The instability caused by the magnetic field deforms the initially axisymmetric
electron density distribution, leading, in the nonlinear phase, to the formation of a discrete number of vortices.
As we expect fine scale structure to form in the process, a high discretization in space is required to reproduce
these structures. Again, this test case defines a demanding benchmark for sparse grid approximations very likely
to outline the grid error introduced with these reconstructions.

Let the parameters be L = 22\p, At = 0.1wp’1, the system is observed at time T = 54w;1. The numericals
results will be compared to the PIC-Std scheme with a grid composed of 256 x 256 cells and P, = 200 particles
per cells as indicated in Table 4. The interpolations are implemented using linear splines while splines of degree
two are used for the density visualization. Following steps of proof of Proposition 3.6, one can see that the
use of spline of degree two, even restricted to the visualization of the density on the grid, provides a better
representation of the density.

The projection of the electron density onto the Cartesian grid and a section in the z-direction (at x = %)
at time T for the different configurations of Table 4 are represented in Figures 9 and 10. The numerical results
are presented only for the PIC-OHg scheme and not for the PIC-Hg scheme because the resolution of the
Poisson problem for the latter is exceedingly costly in comparison to the others methods. Besides, the same
accuracy is achieved with either the PIC-OHg scheme or the HG scheme, hilighting the benefit of the oversampled
correction of the scheme. The discretizations of the sparse grid schemes with the classical combination technique
(hn = 2710 h; = 2719) are chosen higher than the standard ones (h,, = 278) because the sparse grid schemes fail
to reproduce the fine-scale structures depending on cross derivative terms. Indeed, we have shown in Section 3
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TABLE 4. Diocotron instability: Configuration of the numerical methods.

Scheme Parameters QGrid size hn P. N Nget/N
Ref (PIC-Std) 278 (2567 cells) 200 2.621 x 107 1
PIC-Std 278 (2567 cells) 40 2621 x10° 5
PIC-OHg An =2 278 (2567 cells) 40 1187 x 10° 11
PIC-SG 2710 (10242 cells) 40  1.187 x 10° 11

PIC-ESg / PIC-OHg (offset) (7%, 7%, An) = (4,4,1) 27% (2562 cells) 40  1.802x 10° 7.25

that the grid-based error component depending on mixed derivatives scales with O(nh%) for the sparse grid
schemes (compared to O(hy) for the standard scheme).

Despite the use of a more refined grid discretization, we observe on the plots of the section in the z-direction
(Fig. 10) that the PIC-Ohg and PIC-Sg schemes with the classical combination technique still fail to reproduce
correctly the fine-scale structure of the density. Indeed, where the solution has steep gradients (y = 5.5, y = 9
in Fig. 10) the sparse grid schemes show a bit of numerical diffusion. The correction of the schemes with the
offset combination technique achieves a fair representation of the density and even reproduce some fine-scale
structures that are faded by the statistical noise of the PIC-Std scheme with P, = 40 (see the zooms on Fig. 10).
The improvement is manifest on the plot of the section in the z-direction (Fig. 10) where the numerical diffusion
introduced by the sparse grid schemes has been mitigated. Here again the sparse grid techniques achieve an
improvement on the statistical noise with the same mean number of particles per cell (and thus less total
particles in the simulation) than the regular PIC approximation (see the plot of the section in the z-direction
for the density in Fig. 10). Though this test case is a very demanding benchmark for sparse grid approximations
a reduction of the total number of particles is achieved (see Tab. 4) and all the fine-scale structures appearing
in the reference solution are well reproduced by the corrected schemes.

5. CONCLUSIONS

In this paper, we have presented, analysed and proposed Particle-In-Cell numerical methods embedding
sparse-grid reconstructions by means of the combination technique. These methods have been numerically
experienced and compared against regular PIC methods. Sparse-grid PIC approaches offer a reduction of the
memory cost of the method (see Fig. 10) thanks to a better control of the statistical noise which entails a decrease
of the particle number. A reduction of cost for the computation of the electric field is also accessible, owing
to the reduced number of cells composing sparse-grids (O(|log hy,|*"'h; ') instead of O(h,?) for a Cartesian
mesh). The analyses conducted within this document show that the approximation error may be decomposed
into a particle error and a grid based error. Two components define the grid based error, one depending on
mixed derivatives and the other depending on non-mixed derivatives of the solution, with a balance between
these two contributions depending on the numerical methods. The particle error is related to the sampling of the
distribution function by particles and characterizes the dispersion of the sampling. One can conclude that the
Sub-grid (PIC-Sg) and Hybrid-grid (PIC-Hg) schemes achieve both a fair representation of the density with an
improved control of the statistical noise compared to regular PIC schemes. Nonetheless, the grid based error is
deteriorated, due to the increase of the component depending on the solution high order cross derivatives. This
increase is more substantial for three dimensional computations. Similar conclusions may be drawn from the
formal analysis stating the first convergence (and rate of convergence) results for the electric field sparse grid
approximation established within this document (see Props. 3.7 and 3.8 for the PIC-Sg and PIC-Hg schemes).
Furthermore, the PIC-Sg scheme is proved to be compliant with the conservation properties of standard PIC
methods (total charge and momentum), except positivity. The offset technique is introduced to decrease the
dominant component of the grid based error in sparse grid PIC methods. This framework permits to tune the
balance between the different components of the error and improve the quality of PIC sparse grid approximations.
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Besides, enhancements of the PIC-Sg and PIC-Hg schemes are proposed in order to improve the efficiency of
sparse grid methods regarding the computation of the electric field.

The numerical experiments performed on various classical test cases, consolidate the results of the formal
analyses and illustrate conclusively the gain brought by sparse grid reconstructions in particular when combined
with the offset method, to improve the sampling error without introducing a significant numerical diffusion.
Despite the simplicity of the implementation and the restriction to two dimensional geometries, the proposed
numerical investigations provide a glimpse of PIC method implementing sparse-grid reconstructions. However
the full potential of the method can only be achieved by three dimensional computations. This is strikingly
illustrated by the plots of Figure 10 relating the number of particles (N) required in either a 2d or a 3d
computation to guarantee a similar statistical noise in both the regular and the sparse grid PIC methods.

It is manifest that the reduction of particles with the sparse grid schemes is significantly larger for three
dimensional computations: for grid with more than five hundred cells (in each dimension), the number of particles
run in the standard method for two dimensional computations is larger than that of sparse grid methods for
three dimensional computations. Though these projections may be mitigated by implementation issues, the
perspectives offered by the offset method together with the enhancement of the schemes introduced in this
paper promise a leap forward in the efficiency of PIC numerical methods for three dimensional computations.

Future works will be chiefly dedicated to the optimization and parallelization of the sparse grid PIC methods.
Shared memory parallelization with OpenMP and acceleration on Graphics processing unit (GPU) of the code
are such on-going works. Besides, the investigations of cubic splines for the shape function in order to improve
the quality of the approximations and a heuristic way of tuning the parameters 7y, 71 of the offset combination
technique shall be also considered.

APPENDIX A.

The following lemma is useful for the proof of Proposition 3.6.

Lemma A.1. Let X be the random variable defined by equation (2.18) and k € L, then

Q'S (S itk — X)Shu (G — Xomesones <  2) 12 1 0ty ). (A1)
Lo 3 hes o
,]

Proof of Proposition 3.6. In order to apply the Proposition 3.2, the local error shall verify the relation stated
by equation (3.8). The local error can be recast into:

Ivhlﬁhl —pP= IVhl (ﬁhl - p) + IVhlp —pP= IVhIVN,hl +IVhlBiaS(ﬁh1) + IVhlp —p- (AQ)
———
particle sampling error grid-based error

— Grid-based error: from Lemma 3.10, one gets:

o 1
Iy, Bias(pn,) = (th1 8tp + i, 03p) + —o=hi hi, 07 5p + O (i, hi,) (A3)

1296

Iv,p—p= 57 (hzlaﬂ’ + hi,d3p) + 729 hzlh 0320 + O(hi,, hi,).- (A4)

Eventually, the assumption (3.8) is verified for the grid based error with:

al('ahll) 10861 +O(hl21)> a2('7h12) 10882 +O(h )
625
al,Q('vhllahb) - 11664ala2p+0(h )

From the Proposition 3.2, we get the result for the grid based error.
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— Particle sampling error: the following estimate bound holds:

V(Z clIVh,IVNJH) S Z |Ck||cl|’COV(IthVN}hk7IVhIVN,hl) . (A5)

1€L (k,1)eL?

Let us look at the covariance of a pair of sub-grids. Since any of the random variables Iy, Vn,n, are centered,
equations (2.23), (3.5) and the Cauchy—Schwarz inequality gives:

Nl=

‘ Cov (Iv,lk VN e Ivi, VN,hl)

- ‘ E (IVh’k VN e Iv’ll VN )

< (V(va V)V (T, o) )

where, owing to the linearity of the expected value:

V(IvthN,hk)Z > EVN e (0 VN (71 iPhs -
(1.j)e?

From equations (2.22) and (2.23), the linearity of the expected value, then recasting the sum upon (p, q) €
[[1,N]]2 into two sums, whether if p is equal to ¢ or not, which contain N and N(N — 1) terms, and by
independancy of the random variables of the sample in the latter case, we have:

E(VN h (i) VN o (3hac)) = E Py (1) pro (3hac)) — E (P (i) ) E(pny (Pxc) )
- % ( D E(Shy (e — Xp)Shy (i — X))
(p,q)

€[1,N]?

N N
- (Z E(Sh, (ihy — Xp») (Z E(Sh, (jhk — Xq>>>>

p=1 q=1

= %2 E(Sh, (ihk — X)Sp, (jhx — X)) — E(Sp, (ihk — X)) (Sh, (jhx — X))

—0(1)

Finally, owing to Lemma A.1 we get:

(St ) < @012 (maxial) (2) Ll o L
thl hy — el 1 3 Nhn+1 N

leL
16 5 Ql|plls n
- 1) 7
=9 N O\

and we get the following bound on the square root variance:

29 3 ([logha |2 ? [log ha ) *
2 1 [ [log |2 . .
v(ZCIIVMVm> < 3V8(Qlrl) ( N, ) T\ v, 0

leL

O

Proof of Lemma A.1. Let us consider the one-dimensional problem which can be extended to the two dimen-
sional case by tensor product of the convolution kernel.Owing to the symmetry of the function ¢, it holds:

—ih —jh
QE(Sn. (s - X)Sn, bk - X)) = @ [[ R};@(f - ’%(5 : k)f(f,v,t)dédv
X k
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1 . .
=0Q —oy+J =) fGhe + yhg,v,t)dy dv
axr Mk

where the change of variable y = h;l(g — jhi) has been applied. There are two cases to consider either if
j —1 =0 or not.

— If ¢ = j, a Taylor expansion upon the probability density and because of the symmetry of the function ¢ all
y-terms with odd exponent vanish:

QE(S1, (it — X)S, itk — X)) = L9 [™ o ay+ o(a)

. 0
2”(}‘L7:““)/1(1+y)2dy+0(h§)
_ 2p(jhx)

2

because supp ¢ = [—1,1].
— If 4 # j, then y and y + j — ¢ are in the support of ¢ if and only if |j — i| = 1. A Taylor expansion upon the
probability density gives:

1

QE(Sn, (il — X)Sn, (1 — X)) = LI ( /0

o U(y)dy + /07 U(y) dy) + O (),

where

U(y) == p(y)ely +Jj —1).

Note that the y-terms with odd exponent no longer vanish because ¥ is not symmetrical. We have:

0 0 ifj—i=1,
/lq’(y)dy_{l ifj—i=—1,

— 6
1

ik Loifj—i=1
U(y)dy =< 6 ’
/0 (v)dy {0 if j—i=—1.
Eventually, using the partition of unit property of the basis function of equation (3.6), one gets:

. ‘ 2 |lplloo
> QRS e~ XSk~ X))on e < 5 IO 4 O(h), (A7)
(i.)eJ}

Proof of Proposition 3.7. Only the guidelines of the proof are provided, the details being specified for that of
Proposition 3.8. First the error can be recast into:

IV;E:,Q)Eh" —E = IV}EZO) (Eh71 — E) + IV}E:/O)E — E. (AS)

Applying Lemma 3.10 to each component of the electric field we get the following estimate:

16

4
I E — Ellw < — (||0?E||» 2B
I v, | 727(”51 oo + IO E| )+729

(10705 |- (A.9)
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From Lemma 3.11 the following estimate can be stated:

An, ®(§hn) = =p(ihn) + % (012 (3hn) + 03 ®(ihn)) + O(hy), (A.10)

Ay, denoting the finite difference discrete Laplacian. Introducing the sparse grid reconstruction of the density
and using invertibility of the finite difference operator, one gets:

B() ~ P, i) = A (55, o) — plih) + T3 O10GH,) + 040 GR) +O(R) ). (A1)

where ®;, is the solution of the discrete problem defined in equation (3.11). Applying the finite difference
gradient operator, denoted Vy, , to equation (A.11), owing to linearity and commutativity of the operators Vy,,
and Agﬂl and introducing the following truncation error of the discrete gradient:

h2
V‘I)(jhn) - vhnq)(jhn> = ?nv3q)(jhn) + O(hi), (A'12)
one gets summing equations (A.11) and (A.12):
. . - . . h . .
B ) — B(ha) = 87 (Vi (5, o) = plitn) + 15, (010(50,) + 030 (h,)) + ¥, O(3) )
h? .
+ ?”v?’@(jhn) +O(h3).

From Lemma 3.12, we have:

_ 1
18, lloo < 5 (A.13)
Using Taylor expansions, we get:
Vi, (05, = p) = V(6h, = p) + Chy (o, = p), (A.14)
Vh, (01® + 03®@) = V(0{® + 03®@) + O(h,), Vi, O(h2) = O(h2) (A.15)

where C' is a constant. Eventually, applying Lemma 3.10 to each component of last equation, one gets the
result. (]

Proof of Lemma 3.10. Let x € Q;jll’”"im), owing to the partition of unit property of the basis functions (3.6):

Iy, f(x) = f(x) = D (F(h1) = f(x))m (). (A.16)
J€N
Let us introduce the notation (yi, j,,Y1,.5,) € R? defined by:

jk—:T’; if k& {i1,...,im},

Al
0 else. ( 7

Jh—x= (ylhjuylz,b)hla Yl g = {

Because of the support of the basis functions:

lon ;(X)[ =0 < max(|y, j |, [Y.5.]) > 1, (A.18)
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and the sum in equation (A.16) falls down to four terms verifying max(|yi, j |, [y, 5.]) < 1. Let k € [1,...,2 —m]
and 71,...,7g such that {ry,...,7} C {1,2} and {r1,...,76} N {i1,...,im} = 0, then a Taylor expansion of f
in dimensions 71, ..., gives the relation:

. agl s agk ( ) « e 3 3
fimy= 3 Sty gt e o (R ). (A.19)
aeNF
loefoo <2
whose sum with basis functions vanishes for odd exponent:
DUttt g =0 i 3i€ {1k} stoa;odd (A.20)
Jje€N
The first result follows with:
—k
Cinvenimirors =208 ORISR i ems + O(RE R, (A.21)

J€N

where the sum can be recast into:

2 2 . o .
E :ylrl e Yl ey PR0E = Yl gy Yl e (1 Yy Jn) (1 Yi, Jrk,)
jen

2
2
+ yl'"l Jry T .ylrk—l’jrk—lylrk: I (1 o ?erl) e (1 N yl*kflvjf‘kfl) (1 ~ Y, ’j”c)

2 2
+ ...+ Yoy sirg =+ Yoy i, (1 =Y, ’jﬁ) ce (1 Y, JW) s (A22)

and because the functions y — y%(1 — y), y — y(1 — y)? are bounded on [0, 1] by %, the following estimation
holds:

k
4
Zyzﬁ AR wrk Phj| < 2’“<27> (A.23)

Jjeh
which gives the results. O

Proof of Lemma 3.11. For all k € {1,...,d}such that k ¢ {i1,... i}, since f € C4(Q§fll"“’im)), a Taylor
expansion in dimension k gives the relations:

4 44

L . h
F(G+ik)h) = (i) = Z b FORS + O (ki) (A.24)
a= 1
()’
. . —y
F(G = i) = fGm) =D O+ O(h,). (A.25)
a=1 ’
Then adding the two relations, dividing by hlzk and summing upon the dimensions k, one gets the result. O

Proof of Lemma 8.12. Let ¥ € C? (Qsll """ i’"’)) be a nonnegative function defined by:

v = ((=n5) + (=3) ) (20
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such that 0 < ¥ < % and A;fll"”’iM)\IJ =1, because the finite difference scheme is exact for quadratic functions.
Thus:

A (f 4 w0 ®) > 0, (A.27)
and a maximum principle gives a bound for the function:
f <A+ llwllae ¥l < [ flan + llwlloo¥joa oo (A.28)
1
< [l flaallee + g”wHoo
< <l
—|w]|so-
-8

because flapn = 0. The same argument with — f gives us the result. (]
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