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NONLINEAR LUMPED-PARAMETER MODELS FOR BLOOD FLOW
SIMULATIONS IN NETWORKS OF VESSELS

Beatrice Ghitti1,*, Eleuterio Francisco Toro2 and Lucas Omar Müller1

Abstract. To address the issue of computational efficiency related to the modelling of blood flow
in complex networks, we derive a family of nonlinear lumped-parameter models for blood flow in
compliant vessels departing from a well-established one-dimensional model. These 0D models must
preserve important nonlinear properties of the original 1D model: the nonlinearity of the pressure-area
relation and the pressure-dependent parameters characterizing the 0D models, the resistance 𝑅 and the
inductance 𝐿, defined in terms of a time-dependent cross-sectional area subject to pressure changes.
We introduce suitable coupling conditions to join 0D vessels through 0D junctions and construct 0D
networks preserving the original 1D network topology. The newly derived nonlinear 0D models are then
applied to several arterial networks and the predicted results are compared against (i) the reference 1D
results, to validate the models and assess their ability to reproduce good approximations of pressure
and flow waveforms in all vessels at a much lower computational cost, measured in terms of CPU time,
and (ii) the linear 0D results, to evaluate the improvement gained by including certain nonlinearities
in the 0D models, in terms of agreement with the 1D results.
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1. Introduction

One-dimensional (1D) models and zero-dimensional (0D) or lumped-parameter models of blood flow, based
on simplified representations of the components of the cardiovascular system, can contribute strongly to the
study and the deep understanding of the circulatory physiology and pathology. These two families of models
can be derived from the three-dimensional (3D), time-dependent, incompressible Navier–Stokes equations by
exploiting specific features of blood flow, such as the basically cylindrical morphology of the vessels. Usually,
in fluid-structure interaction (FSI) problems, the Navier–Stokes equations are also coupled to the equations of
solid mechanics for the 3D structure, the deformable vessel wall. These 3D models offer great level of detail and
potentially accurate description of relevant quantities, but their numerical discretization is very challenging and
requires high computational resources. Even though they are highly simplified with respect to the local dynamics,
1D and 0D models can then provide reasonably good approximations of more complex models at a much lower
computational effort. Under suitable assumptions on the velocity profile and the tube law relating pressure and
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area, 1D models can provide accurate descriptions of wave propagation phenomena at a lower computational
cost; 0D models can not resolve wave propagation and the spatial variation of physical quantities of interest, but
they are cheaper than 3D and 1D models, representing simple mathematical objects with physical parameters
that can be usually quantified from clinical measurements. The selection of the appropriate dimensionality in
a model representation (from 0D to 3D) depends on problem-specific characteristics (like flow conditions and
spatial/temporal scales), the aim of the application in mind and thus the required level of accuracy by which
the physical process has to be described.

0D cardiovascular system representation and analysis started with the modelling of arterial flow using the well-
known Windkessel model. The first and simplest 0D mono-compartment description is the famous two-element
Windkessel model, which was first proposed by Stephen Hales in 1733, and later formulated mathematically by
Otto Frank in 1899 [31]. The Windkessel model consists of two parallel elements, a capacitor 𝐶, describing the
storage properties of large arteries, and a resistor 𝑅, that describes the dissipative nature of small peripheral
vessels including arterioles and capillaries. Later on, this approach was expanded to cover the modelling of other
cardiovascular components, such as the heart, heart valves and veins, with either mono-compartment or multi-
compartment 0D models, to simulate the global haemodynamics in the whole circulation system, by assuming
a uniform distribution of the fundamental variables (pressure, flow and volume) within any 0D component
of the system. In the multi-compartment approach, suitable 𝑅𝐿𝐶 models for a single vascular segment were
then derived, as building blocks for constructing the entire vessel network model. In this regard, we refer to
the works of Formaggia and Veneziani [11], Milǐsić and Quarteroni [23] and Formaggia et al. [12], where four
typical compartment model configurations suited to the description of a vessel segment were derived, assuming
that mean flow rate and pressure over the whole vessel are equivalent to either the input or the output values.
Lumped-parameter models can also provide boundary conditions for 1D and local 3D models. For instance, in
Alastruey et al. [1], the authors studied the effect of the parameters of the 0D outflow models on the waveforms
propagated in an arterial network, with the aim of providing appropriate outflow 0D models for patient-specific
simulations.

More recently, in a multiscale approach for modelling the whole cardiovascular system, as the one proposed
by Müller and Toro [25,26], 0D models have been used to model the heart, the pulmonary circulation and blood
flow in arterioles, capillaries and venules, while 1D models have been adopted for large vessels of both arterial
and venous networks. Indeed, 1D models have been extensively used to study wave propagation phenomena in
arteries and, more recently, this has been extended also the venous circulation. A deep understanding of pressure
and flow pulse wave propagation in the cardiovascular system and the impact of disease and anatomical variations
on these propagation patterns can provide valuable information for clinical diagnosis and treatment [3,8,14,22].

However, modelling blood flow in highly complex networks, such as the global, closed-loop multiscale model
for the whole cardiovascular system developed in Müller and Toro [25, 26] or the ADAN (Anatomical Detailed
Arterial Network) model proposed by Blanco et al. [4, 5], can result in computationally expensive simulations.
The very high computational cost and execution time increase significantly when long time scales are to be
simulated, taking several minutes per cardiac cycle. The situation is even more severe when, for instance, we
want to face the modelling of several mechanisms that need to be integrated in the cerebral microcirculation,
that are brain perfusion, waste clearance mechanisms and exchange of solutes between blood and various tissue
beds.

Several works concerning lumped-parameter models to simulate arterial blood flow are found in the litera-
ture, which address the issues of execution time and optimization of topological complexity. In [13], the authors
presented a method to optimize/reduce the number of arterial segments included in 1D blood flow models and
to find the model with the fewest number of necessary arteries for a given clinical application, by lumping
distributed 1D segments into 0D Windkessel models, while preserving key features of flow and pressure wave-
forms. Similarly in Epstein et al. [9], in the context of patient-specific 1D blood flow modelling, Epstein et al.
investigated the effect of a reduction in the number of arterial segments in a given distributed 1D model on the
shape of the simulated pressure and flow waveforms, by systematically lumping peripheral 1D model branches
into Windkessel models that preserve the net resistance and total compliance of the original model. In [30], to
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address the issue of execution time and the question of granularity in the context of the modelling of the cere-
bral circulation, the authors proposed a lumped-parameter mathematical model, which was constructed using
a bond graph formulation to ensure mass and energy conservation. In this work, the topology of the original
1D network was fully preserved and the model included arterial vessels with geometric and anatomical data
based on the ADAN model [5]. Furthermore in Mirramezani and Shadden [24], a distributed lumped-parameter
(DLP) modelling framework was proposed to efficiently compute blood flow and pressure in vascular domains
at a computational cost that is orders of magnitude lower than that of computational fluid dynamics (CFD)
simulations. By developing an expression of the generalized resistance ℛ, various sources of energy dissipation,
including viscous dissipation, unsteadiness, flow separation, vessel curvature and bifurcations, were taken into
account.

In the present work, the issue of computational efficiency and execution time, related to the modelling of blood
flow in highly complex networks, has been faced by constructing lumped-parameter models departing from 1D
models for blood flow in deformable vessels. The approach we propose is similar to the one presented in Safaei
et al. [30], but here the main difference and novelty is that, even if they are simpler than the 1D models due
to the fact that the space dependence is completely lost, these 0D models must preserve important properties
of the original 1D models, such as the nonlinearity in the tube law relating the pressure to the cross-sectional
area, and the dependence of the 0D model parameters on the time-varying vessel cross-section.

Indeed, it is important to emphasize that the mechanics of the cardiovascular system can exhibit strong
nonlinearities. These nonlinear effects include, for example, the contribution of the convective acceleration terms
in the momentum equation, the nonlinear relationship between pressure and volume which is observed in real
vessels, the pressure-dependent vessel compliance, the collapse of vessels due to environmental pressure, etc. For
a complete review on these nonlinear phenomena characterizing the cardiovascular system see Shi et al. [35], for
instance. Among these nonlinearities, pressure-dependent constitutive equations and vessel properties represent
an example of great interest. Indeed, in the 0D model description, the values of the different components 𝐶,
𝐿 and 𝑅 are generally taken to be constant. However, since they represent real physical parameters, they are
subject to the same nonlinearities, such as nonlinear constitutive material relations, as any other description of
vascular mechanics [35]. As the vessel diameter changes under changes of pressure, its compliance will change as
will its resistance to flow. Furthermore, the vessel wall exhibits a nonlinear stress-strain curve [15], meaning that
the compliance 𝐶 is also a function of the luminal pressure. These effects are typically included in 1D models,
but neglected in 0D models. In particular, since the diameter changes in the arterial system are relatively small
and the range of arterial pressures over the cardiac cycle is such that the material tends to operate in a relatively
linear region of the stress-strain curve, it is a common practice to neglect the pressure dependence of the arterial
properties [35]. This is not true for veins, at least when they enter a collapsed state.

Several models based on in vivo measurements or theoretical derivations have been proposed to describe
the relation between cross-sectional area and internal pressure exhibited by vessels. Ursino et al. [40, 42] used
an exponential curve to describe the nonlinear pressure-volume relationship in the peripheral and venous com-
partments in the simulation of carotid baro-regulation of pressure pulsation. Fogliardi et al. [10] compared the
linear (i.e. incorporating a constant compliance) and nonlinear (i.e. including a nonlinear pressure-dependent
compliance) formulation of the 𝑅𝐶𝑅 Windkessel model, concluding that no additional physiological informa-
tion was gained when a pressure-dependent compliance was incorporated. In contrast, Li et al. [2,21] examined
the consequences of incorporating a pressure-dependent compliance with exponential variation in a modified
arterial system model given by a three-element 𝑅𝐶𝑅 vessel model and concluded that a pressure-dependent
compliance could more accurately reflect the behaviour of the arterial system. Cappello et al. [7] developed
a one-step computational procedure for estimating the parameters of the nonlinear three-element Windkessel
model of the arterial system incorporating a pressure-dependent compliance. In [41], the authors proposed a
simple mathematical model of intracranial pressure dynamics, where the resistance in the the arterial-arteriolar
cerebrovascular compartment was defined to be inversely proportional to the fourth power of inner radius.

However, when dealing with 0D models suited to the discretization of a single vascular segment [11, 23, 30],
the nonlinearities characterizing the original 1D models have never been taken into account, assuming a linear
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relationship between the pressure and volume of the vascular compartment and constant parameters 𝐶, 𝐿 and
𝑅, which are usually defined in terms of a reference state (𝐴0, 𝑃0).

The main goal of the present work is then to derive lumped-parameter models for blood flow in deformable
vessels in a way that: (i) important nonlinear properties of the 1D models are preserved; and (ii) when these 0D
models are applied to a network of vessels, each 1D vessel is replaced by a “0D vessel” by a per-segment (one-
to-one 1D-to-0D) mapping, so that the topology of the original 1D network is naturally preserved. Concerning
the first point, we firstly require the relation between mean pressure and cross-sectional area to be nonlinear,
as the corresponding tube law in the original 1D model. In this way, the constant compliance 𝐶 is replaced
by the nonlinear pressure-area relation in which the mechanical properties of the vessel wall are embedded. In
addition, the other components 𝐿 and 𝑅 of each 0D vessel are no longer taken to be constant, but are defined
in terms of a time-dependent average cross-sectional area, in order to account for vessel cross-section changes
under changes of pressure. This feature is expected to be relevant when modelling large deviations from a
baseline state, such as hypertension, an haemorrhage or a collapsed state. Actually, remarkable differences will
be also observed when comparing results obtained with the standard linear and the newly derived nonlinear 0D
models even in physiologically normal conditions. Then, these results and observations prove that, by including
these nonlinearities, we obtain more realistic and consistent 0D models with respect to the original 1D model.
Furthermore, the convective terms are not excluded a priori from these nonlinear 0D models. The dimensional
analysis of the 1D equations and an exhaustive investigation of the contribution and relative importance of the
convective terms in both 1D and 0D blood flow models will be crucial in deciding whether these terms can be
reasonably neglected in the 0D models.

In order to validate and test these newly derived 0D models we reproduce several benchmark test cases
proposed in Boileau et al. [6]. We compare the 0D results obtained with the nonlinear 0D models against the
original 1D model for different arterial networks, to assess the ability of such 0D models to produce reasonably
good approximations of pressure and flow waveforms in all vessels of a network with respect to the reference
1D results. Furthermore, the nonlinear 0D results are also compared against the linear 0D results from the 0D
models with linear pressure-area relation and constant parameters, to evaluate the improvement we obtain in
the 0D results when including certain nonlinearities in the lumped-parameter models.

The paper is organized as follows. In Section 2 we briefly introduce the governing equations of 1D blood flow
in compliant vessels and we perform a dimensional analysis of these equations. Then, in Section 3 a family of
nonlinear 0D models is derived departing from the 1D model. First, we describe the derivation procedure and
present the resulting system of ordinary differential equations (ODEs); then, we focus on the main features
characterizing these lumped-parameter models, especially on the nonlinearity preserved in the pressure-area
relation; finally, we conclude this section by considering the different 0D representations for a vessel segment
depending on the different data prescribed at the inlet and outlet of the vessel. Afterwards, in Section 4 we restrict
to the linear case, namely to the standard 0D models with constant parameter, linear pressure-volume relation
and without convective terms, to carry out a stability analysis of the corresponding ODE systems. Thereafter,
in Section 5 we describe how to couple 0D vessels converging to a shared node (bifurcations/junctions of vessels)
and how to couple 0D vessels to terminal Windkessel models. Finally, in Section 6 we perform several benchmark
test problems by applying the derived family of 0D models to different arterial networks of increasing complexity
and discuss the obtained results. We conclude with Section 7, where final remarks are made and perspectives
for future work are outlined.

2. One-dimensional (1D) blood flow model

A well-established formulation of the one-dimensional (1D) blood flow equations in deformable vessels is given
by the following system ⎧⎨⎩

𝜕𝑡𝐴+ 𝜕𝑥𝑞 = 0,

𝜕𝑡𝑞 + 𝜕𝑥

(︂
𝛼
𝑞2

𝐴

)︂
+
𝐴

𝜌
𝜕𝑥𝑝 = 𝑓,

(2.1)
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where 𝑥 ∈ [0, 𝑙], with 𝑙 being the vessel length, is the axial coordinate along the longitudinal axis of the vessel
and 𝑡 > 0 is time; 𝐴(𝑥, 𝑡) is the cross-sectional area of the vessel; 𝑞(𝑥, 𝑡) is the flow rate; 𝑝(𝑥, 𝑡) is the average
internal pressure over a cross-section; 𝛼 is a momentum correction factor, also called Coriolis coefficient, and
𝑓(𝑥, 𝑡) = −𝑘𝑅

𝑞
𝐴 is the friction force per unit length, where 𝑘𝑅 > 0 is the viscous resistance coefficient. Both

parameter 𝛼 and 𝑘𝑅 depend on the assumed velocity profile. Here, the following axisymmetric velocity profile
was prescribed

𝑢𝑥(𝑥, 𝜉, 𝑡) = 𝑢(𝑥, 𝑡)𝑠(𝜉) = 𝑢(𝑥, 𝑡)
𝜁 + 2
𝜁

[︃
1−

(︂
𝜉

𝑟

)︂𝜁
]︃
, (2.2)

where 𝑢𝑥(𝑥, 𝜉, 𝑡) is the axial component of the fluid velocity, 𝑢(𝑥, 𝑡) = 𝑞
𝐴 is the mean velocity on each cross-

section, 𝑠(𝜉) is the assumed velocity profile, 𝜉 is the vessel radial coordinate, 𝑟(𝑥, 𝑡) is the lumen radius and 𝜁
is the velocity profile order. The viscous resistance per unit length of tube 𝑘𝑅 is defined as a function of the
velocity profile as

𝑘𝑅 = −𝜇
𝜌

∫︁
𝜕𝑆

𝜕𝑠

𝜕𝑛⃗𝜕𝑆
d𝛾, (2.3)

where 𝜕𝑆 is the boundary of the vessel cross-section 𝑆 and 𝑛⃗𝜕𝑆 is the outward normal vector to 𝜕𝑆, and which,
for the velocity profile chosen in (2.2), becomes

𝑘𝑅 = 2(𝜁 + 2)𝜋
𝜇

𝜌
, (2.4)

where 𝜌 and 𝜇 are the constant blood density and viscosity, respectively. The momentum correction coefficient
𝛼 is well-defined for unidirectional flow, namely

𝛼 =

∫︀
𝑆
𝑢2

𝑥 d𝜎
𝐴𝑢2

, (2.5)

from which we have that the Coriolis coefficient 𝛼 and the velocity profile order 𝜁 are related by 𝛼 = 𝜁+2
𝜁+1 . The

value 𝜁 = 9, for which 𝛼 = 1.1, defines a flat velocity profile, which is especially valid for large arteries [20]. The
choice 𝛼 = 1, which indicates a completely flat velocity profile, is also commonly used since it simplifies the
analysis of the resulting 1D model. In contrast, for a Poiseuille flow, the parabolic velocity profile is obtained
by setting 𝜁 = 2, for which 𝛼 = 4

3 .
Pressure 𝑝(𝑥, 𝑡) is related to the cross-sectional area 𝐴(𝑥, 𝑡) by the following algebraic relation

𝑝(𝑥, 𝑡)− 𝑝ext(𝑥, 𝑡) = 𝜓(𝐴(𝑥, 𝑡);𝐴0,𝐾,𝑚, 𝑛, 𝑃0), (2.6)

with

𝜓(𝐴(𝑥, 𝑡);𝐴0,𝐾,𝑚, 𝑛, 𝑃0) = 𝐾

[︂(︂
𝐴(𝑥, 𝑡)
𝐴0

)︂𝑚

−
(︂
𝐴(𝑥, 𝑡)
𝐴0

)︂𝑛]︂
+ 𝑃0, (2.7)

where 𝑝ext(𝑥, 𝑡) is the external pressure acting on the vessel and 𝑃0 is the reference pressure at which 𝐴 = 𝐴0.
The above relation describes the elastic deformation of the vessel wall with variations of the transmural pressure,
assuming that viscoelastic effects are negligible. Pressure 𝑝(𝑥, 𝑡) also depends on the reference cross-sectional
area 𝐴0 and on parameters 𝐾, 𝑚 and 𝑛, which take into account geometrical and mechanical properties of the
vessel.

In particular, if we assume all these parameters to be independent of 𝑥 and we consider arterial vessels, then
the factor 𝐾 > 0 in (2.6) denotes the arterial stiffness and it is modelled as in Toro [38] and Formaggia et al.
[12] by

𝐾 ≡ 𝐾𝑎 =
√
𝜋ℎ0𝐸

(1− 𝜈2)
√
𝐴0

, (2.8)

where ℎ0 is the vessel wall thickness, 𝐸 is the Young’s modulus and 𝜈 is the Poisson ratio. We adopt 𝜈 = 0.5,
which implies that the vessel wall is assumed to be incompressible. The parameters 𝑚 and 𝑛 are obtained
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from higher-order models or simply computed from experimental measurements. Typical values for arteries are
𝑚 = 0.5 and 𝑛 = 0.

We note that system (2.1) can be rewritten under the classical form of balance laws, that is

𝜕𝑡𝑄 + 𝜕𝑥𝐹 (𝑄) = 𝑆(𝑄), (2.9)

with

𝑄 =

[︃
𝐴

𝑞

]︃
, 𝐹 (𝑄) =

⎡⎢⎣ 𝑞

𝛼
𝑞2

𝐴
+
𝐾𝐴

𝜌

[︂
𝑚

𝑚+ 1

(︂
𝐴

𝐴0

)︂𝑚

− 𝑛

𝑛+ 1

(︂
𝐴

𝐴0

)︂𝑛]︂
⎤⎥⎦, 𝑆(𝑄) =

⎡⎣ 0

−𝑘𝑅
𝑞

𝐴

⎤⎦, (2.10)

where 𝑄 is the vector of conserved variables, 𝐹 is the flux function and 𝑆 is the source term.
We introduce here also the wave speed, denoted by 𝑐, as follows

𝑐 =

√︃
𝐴

𝜌

𝜕𝑝

𝜕𝐴
· (2.11)

2.1. Dimensional analysis

In order to assess the relative importance of each term in the 1D blood flow model (2.1), especially of
convective, pressure and friction terms in the momentum balance equation, we perform here a dimensional
analysis, similar to the analysis performed in Ghigo [16] and Saito et al. [32]. For this purpose, we introduce
the following nondimensional variables

𝑡 = 𝑇0𝑡, 𝑥 = 𝐿0𝑥, 𝐴 = 𝐴0𝐴, 𝑞 = 𝑄0𝑄 = (𝐴0𝑈0)𝑄, (2.12)

where the constants 𝑇0, 𝐿0, 𝐴0 and 𝑈0 are orders of magnitude of the dimensional variables, so that nondimen-
sional variables 𝑡, 𝑥, 𝐴 and 𝑄 are of order 1. In particular, 𝑇0 is the time scale, 𝐿0 is the longitudinal spatial
scale, 𝐴0 is the reference cross-sectional area and 𝑈0 is a reference flow velocity.

The nondimensional equation of conservation of mass reads

𝜕𝐴

𝜕𝑡
+
[︂
𝑇0𝑈0

𝐿0

]︂
𝜕𝑄

𝜕𝑥
= 0. (2.13)

By rewriting the pressure gradient 𝜕𝑥𝑝 in terms of the nondimensional variables (2.12), after straightforward
calculations we get the following nondimensional momentum balance equation

𝜕𝑄

𝜕𝑡
+ 𝛾𝐶

𝜕

𝜕𝑥

(︃
𝛼
𝑄

2

𝐴

)︃
+ 𝛾𝑃

𝜕𝐴

𝜕𝑥
= −𝛾𝐹

𝑄

𝐴
, (2.14)

where the three coefficients for the convective, pressure and friction terms have been introduced, respectively
given by

𝛾𝐶 :=
𝑇0𝑈0

𝐿0
, 𝛾𝑃 :=

𝑇0

𝐿0𝑈0
𝑐2, 𝛾𝐹 :=

𝑘𝑅𝑇0

𝐴0
· (2.15)

The above coefficients are nondimensional quantities and their magnitudes indicate the relative importance of
each of these terms in the momentum balance equation. In Section 6 we will exploit this kind of analysis to
decide whether the convective terms can be neglected or not in the family of nonlinear 0D models we are going
to derive in the next section.
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3. Derivation of zero-dimensional (0D) models

Here we extend the traditional approach of deriving lumped-parameter models for blood flow in a vascular
segment [11, 12, 23], in a way to preserve certain properties (nonlinear characteristics) of the original 1D blood
flow models. The proposed strategy to do so will be extensively described in this section, where we first derive
a family of 0D model for a simple vascular compartment formed by a single vessel and then, by application of
appropriate matching conditions obtained from conservation principles, we couple different 0D models to build
more complex networks of vessels.

3.1. Governing ODE system

First of all, given a vessel with 𝑥 ∈ [𝑥𝐿, 𝑥𝑅] of length 𝑙 = |𝑥𝑅− 𝑥𝐿|, we introduce the integral averages of the
physical quantities of interest over the vessel length, as follows⎧⎪⎪⎨⎪⎪⎩

̂︀𝑄(𝑡) =
1
𝑙

∫︁ 𝑥𝑅

𝑥𝐿

𝑞(𝑥, 𝑡) d𝑥 : mean (volumetric) flow rate,

̂︀𝐴(𝑡) =
1
𝑙

∫︁ 𝑥𝑅

𝑥𝐿

𝐴(𝑥, 𝑡) d𝑥 : mean cross-sectional area,
(3.1)

and we define the volume 𝑉 (𝑡) of the vessel compartment as

𝑉 (𝑡) := ̂︀𝐴(𝑡) 𝑙. (3.2)

Integrating in space the continuity equation in (2.1) over the interval [𝑥𝐿, 𝑥𝑅] leads to the following ordinary
differential equation (ODE) in time for the volume 𝑉 (𝑡)

d
d𝑡
𝑉 (𝑡) +𝑄𝑅(𝑡)−𝑄𝐿(𝑡) = 0, (3.3)

where we have used definition (3.2) to rewrite the mass conservation equation in terms of the volume 𝑉 (𝑡) and
we have set

𝑄𝐿(𝑡) = 𝑞(𝑥𝐿, 𝑡), 𝑄𝑅(𝑡) = 𝑞(𝑥𝑅, 𝑡), (3.4)

to denote the flow at the inlet and outlet of the vessel, respectively.
When considering the momentum balance equation in (2.1), two simplifying assumptions are added in the

standard approach of deriving 0D models [11, 12, 23, 30]: (i) the contribution of the convective term 𝜕𝑥(𝛼𝑞2/𝐴)
is neglected, assuming this term to be small compared to the other terms; (ii) the variation of 𝐴 with respect
to 𝑥 is small compared to that of 𝑝 and 𝑞, replacing 𝐴 in the momentum equation with a constant value for the
area, generally assumed to be the area at rest 𝐴0. Indeed, the first assumption is particularly suited to represent
the peripheral circulation, where blood flow is in general quite slow, while the second assumption is reasonable
when the axial average is carried out over short segments.

However, in order to preserve certain important properties of the original 1D models in deriving the 0D
models, we start integrating in space the momentum equation in (2.1) over the interval [𝑥𝐿, 𝑥𝑅] without consid-
ering the above simplifying assumptions. By including the contribution of the convective term, straightforward
calculations yield

d
d𝑡

(︂
1
𝑙

∫︁ 𝑥𝑅

𝑥𝐿

𝑞 d𝑥
)︂

+
𝛼

𝑙

(︂
𝑄𝑅(𝑡)2

𝐴𝑅(𝑡)
− 𝑄𝐿(𝑡)2

𝐴𝐿(𝑡)

)︂
+

1
𝑙

∫︁ 𝑥𝑅

𝑥𝐿

𝐴

𝜌
𝜕𝑥𝑝 d𝑥 = −𝑘𝑅

𝑙

∫︁ 𝑥𝑅

𝑥𝐿

𝑞

𝐴
d𝑥. (3.5)

Observing that space integrals of the pressure gradient and the viscous force depend on the area 𝐴(𝑥, 𝑡), we
approximate the variable 𝐴 by its spatial average ̂︀𝐴(𝑡), rather than by a constant value 𝐴0 as done in the
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traditional approach, and since this quantity is no longer space-dependent we can bring it outside of these
integrals, to get

d
d𝑡
̂︀𝑄(𝑡) +

𝛼

𝑙

(︂
𝑄𝑅(𝑡)2

𝐴𝑅(𝑡)
− 𝑄𝐿(𝑡)2

𝐴𝐿(𝑡)

)︂
+
̂︀𝐴(𝑡)
𝜌𝑙

∫︁ 𝑥𝑅

𝑥𝐿

𝜕𝑥𝑝 d𝑥 = − 𝑘𝑅̂︀𝐴(𝑡)

(︂
1
𝑙

∫︁ 𝑥𝑅

𝑥𝐿

𝑞 d𝑥
)︂
, (3.6)

that is
d
d𝑡
̂︀𝑄(𝑡) +

𝑘𝑅̂︀𝐴(𝑡)
̂︀𝑄(𝑡) +

̂︀𝐴(𝑡)
𝜌𝑙

(𝑃𝑅(𝑡)− 𝑃𝐿(𝑡)) +
𝛼

𝑙

(︂
𝑄𝑅(𝑡)2

𝐴𝑅(𝑡)
− 𝑄𝐿(𝑡)2

𝐴𝐿(𝑡)

)︂
= 0, (3.7)

where, again, we have set:

𝑃𝐿(𝑡) = 𝑝(𝑥𝐿, 𝑡), 𝐴𝐿(𝑡) = 𝐴(𝑥𝐿, 𝑡), 𝑃𝑅(𝑡) = 𝑝(𝑥𝑅, 𝑡), 𝐴𝑅(𝑡) = 𝐴(𝑥𝑅, 𝑡), (3.8)

to denote the upstream and downstream pressures and cross-sectional areas. We then introduce the following
parameters ⎧⎪⎪⎨⎪⎪⎩

𝐿( ̂︀𝐴) :=
𝜌𝑙̂︀𝐴 : nonlinear inductance,

𝑅( ̂︀𝐴) :=
𝜌𝑘𝑅𝑙̂︀𝐴2

: nonlinear resistance,
(3.9)

to obtain the final form of the 0D momentum equation

𝐿( ̂︀𝐴)
d
d𝑡
̂︀𝑄(𝑡) +𝑅( ̂︀𝐴) ̂︀𝑄(𝑡) + 𝑃𝑅(𝑡)− 𝑃𝐿(𝑡) +

𝛼𝜌̂︀𝐴
(︂
𝑄𝑅(𝑡)2

𝐴𝑅(𝑡)
− 𝑄𝐿(𝑡)2

𝐴𝐿(𝑡)

)︂
= 0. (3.10)

Equations (3.3) and (3.10) are then collected together in the following system of ODEs⎧⎪⎪⎨⎪⎪⎩
d
d𝑡
𝑉 (𝑡) +𝑄𝑅(𝑡)−𝑄𝐿(𝑡) = 0,

𝐿( ̂︀𝐴)
d
d𝑡
̂︀𝑄(𝑡) +𝑅( ̂︀𝐴) ̂︀𝑄(𝑡) + 𝑃𝑅(𝑡)− 𝑃𝐿(𝑡) +

𝛼𝜌̂︀𝐴(𝑡)

(︂
𝑄𝑅(𝑡)2

𝐴𝑅(𝑡)
− 𝑄𝐿(𝑡)2

𝐴𝐿(𝑡)

)︂
= 0.

(3.11)

The state variables of the above system are the volume 𝑉 (𝑡) of the vessel compartment and the mean flow ratê︀𝑄(𝑡) over the vascular segment; the parameters characterizing the 0D model, defined in (3.9), are 𝑅( ̂︀𝐴), which
represents the resistance induced to the flow by the blood viscosity and depends on the chosen velocity profile,
and 𝐿( ̂︀𝐴), which represents the inertial term in the momentum equation and is called inductance of the flow.
These parameters are said to be nonlinear in the sense that they do no longer depend on a constant reference
cross-sectional area 𝐴0, but on the time-dependent average cross-section ̂︀𝐴(𝑡), which in turn, as we will see in
Section 3.2, will depend on the mean pressure 𝑃 (𝑡) acting on the vessel in a nonlinear way. We point out that
it is important to define these vessel properties in terms of a time-varying cross-sectional area ̂︀𝐴, in order to
account also for possible deviations from the baseline state, such as hypertension, vessel collapse or postural
changes. We also remark that if in definition (3.9) the time-dependent area ̂︀𝐴(𝑡) is replaced by the reference
value 𝐴0, then these parameters become constant and coincide with the constant parameters found in standard
0D models, namely

𝐿0 = 𝐿(𝐴0) =
𝜌𝑙

𝜋𝑟20
, 𝑅0 = 𝑅(𝐴0) =

𝜌𝑘𝑅𝑙

𝐴2
0

=
2(𝜁 + 2)𝜇𝑙

𝜋𝑟40
· (3.12)

The ODE system (3.11) also involves input and output quantities, 𝑄𝐿, 𝑃𝐿 and 𝑄𝑅, 𝑃𝑅, respectively, that
need to be defined along with initial conditions in order to close problem (3.11). As we will see in Section 3.3,
depending on the different possible assumptions about the data prescribed at the inlet and at the outlet of the
vessel, we will obtain four different configurations, all of them describing flow and volume/pressure dynamic in
a single vascular segment. Note that these are not boundary conditions, since the continuous space dependence
has been lost in the axial average.
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3.2. Nonlinearity

System (3.11) describes the temporal evolution of volume 𝑉 (𝑡) and mean flow rate ̂︀𝑄(𝑡). At this point, we
are interested in relating the system state variables to another important physical quantity, the mean pressurê︀𝑃 (𝑡). Indeed, the nonlinear 0D model (3.11) is derived without making any assumptions about the pressure
law relating the mean pressure ̂︀𝑃 (𝑡) to the average cross-sectional area ̂︀𝐴(𝑡), or, equivalently, to the volume
𝑉 (𝑡) and the 0D mass conservation equation is obtained for the volume, not for the pressure. Therefore, in the
following, we are going to characterize the relation to compute the pressure ̂︀𝑃 (𝑡) from the area ̂︀𝐴(𝑡).

In the original 1D blood flow model, the pressure 𝑝(𝑥, 𝑡) is related to the cross-sectional area 𝐴(𝑥, 𝑡) by the
elastic tube law (2.6), which is a nonlinear relationship describing the behaviour of vessel walls in response to
changes in the transmural pressure. On the one hand, in the traditional approach of deriving 0D models, where
the convective terms are neglected and the model parameters 𝐿0 and 𝑅0 are constant, pressure ̂︀𝑃 and volume
𝑉 are linearly related via the constant compliance 𝐶0, as follows

̂︀𝑃 (𝑡) = 𝑃0 +
𝑉 (𝑡)− 𝑉0

𝐶0
+ 𝑃ext(𝑡), (3.13)

with

𝐶0 := 𝑙

(︂
𝜕𝐴

𝜕𝑝

)︂⃒⃒⃒⃒
𝐴=𝐴0

= 𝑙
2𝐴0

𝐾
=

3
2
𝜋𝑟30𝑙

𝐸ℎ0
, (3.14)

where the last two expressions of 𝐶0 are specific for arteries. Since coefficient 𝐶0, which represents the mass
storage capacity due to the compliance of the vessel, is constant, the nonlinearity of the 1D pressure-area relation
is lost in the resulting 0D models. Indeed, in the traditional approach, the 0D mass conservation equation is
derived for the pressure ̂︀𝑃 , and not for the volume 𝑉 , by integrating in space both the 1D continuity equation
and the 1D tube law under suitable assumptions (for the complete derivation, see for instance [12]). This
procedure leads to the linear pressure law stated in equation (3.13), where the nonlinearity of the original 1D
pressure-area relation is completely lost.

Here we propose to directly compute the pressure ̂︀𝑃 from the average cross-sectional area ̂︀𝐴 via the nonlinear
tube law (2.6), given by

̂︀𝑃 (𝑡)− 𝑃ext(𝑡) = 𝐾

[︃(︃ ̂︀𝐴(𝑡)
𝐴0

)︃𝑚

−

(︃ ̂︀𝐴(𝑡)
𝐴0

)︃𝑛]︃
+ 𝑃0, (3.15)

which in the case of arteries turns out to be

̂︀𝑃 (𝑡)− 𝑃ext(𝑡) =
𝐾√
𝐴0

[︂√︁ ̂︀𝐴(𝑡)−
√︀
𝐴0

]︂
+ 𝑃0, (3.16)

so that the nonlinearity of the original 1D pressure-area relation of the vessel is fully preserved also in the family
of derived 0D models. In particular, the 0D model (3.11) provides the temporal dynamic of volume 𝑉 , from
which the time-dependent average cross-sectional area ̂︀𝐴 can be easily computed as ̂︀𝐴(𝑡) = 𝑉 (𝑡)/𝑙, to get the
mean pressure ̂︀𝑃 (𝑡) ≡ ̂︀𝑃 ( ̂︀𝐴(𝑡)) via the nonlinear tube law (3.16). The derived family of 0D models is then said
to be nonlinear, together with the fact that parameters 𝐿 and 𝑅 characterizing these 0D models depend on the
time-dependent cross-section ̂︀𝐴(𝑡), rather than on the constant reference value 𝐴0.

Rewriting the linear relation (3.13) in terms of the area ̂︀𝐴 and replacing the explicit expression for the
constant compliance 𝐶0 leads to

̂︀𝐴 = 𝐴0 +
𝐶0

𝑙

(︁ ̂︀𝑃 − 𝑃0 − 𝑃ext

)︁
= 𝐴0

[︂
1 +

2
𝐾

(︁ ̂︀𝑃 − 𝑃0 − 𝑃ext

)︁]︂
, (3.17)
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namely, the average cross-sectional area ̂︀𝐴 depends linearly on pressure ̂︀𝑃 . In contrast, from the nonlinear tube
law (3.16), this dependence is kept quadratic, as follows

̂︀𝐴 = 𝐴0

[︃
1 +

̂︀𝑃 − 𝑃0 − 𝑃ext

𝐾

]︃2

= 𝐴0

⎡⎢⎣1 +
2
𝐾

(︁ ̂︀𝑃 − 𝑃0 − 𝑃ext

)︁
+

(︁ ̂︀𝑃 − 𝑃0 − 𝑃ext

)︁2

𝐾2

⎤⎥⎦· (3.18)

As a consequence, by adopting relation (3.13) or, equivalently (3.17), we are neglecting the second-order term
coming from the tube law (3.16) and thus the nonlinearity of the original 1D pressure-area relation is lost. This
nonlinearity is then fully preserved if, in the derived 0D models, the pressure ̂︀𝑃 is computed from the area ̂︀𝐴
via the nonlinear tube law (3.16).

In conclusion, the ODE system (3.11) involves the mean flow rate ̂︀𝑄, the volume 𝑉 and the mean pressurê︀𝑃 over the entire vessel, where the pressure ̂︀𝑃 is related to the average cross-sectional area ̂︀𝐴, and thus to 𝑉 ,
via the nonlinear tube law (3.16). Furthermore, system (3.11) also depends on the input and output quantities
exchanged by the vessel with the rest of the systems, namely 𝑃𝐿, 𝑄𝐿, which from now on will be denoted by
𝑃in, 𝑄in, and 𝑃𝑅, 𝑄𝑅, which will be instead replaced by 𝑃out, 𝑄out. As we will illustrate in Section 3.3, some
input/output data, along with initial conditions, need to be prescribed in order to close system (3.11).

For the sake of simplicity, from now on we will denote the flow rate ̂︀𝑄 and pressure ̂︀𝑃 just by 𝑄 and 𝑃 ,
respectively.

3.3. 0D vessel configurations

The ODE system (3.11) defines a family of nonlinear 0D models. Indeed, four different 0D models are
obtained depending on the different possible assumptions about the data prescribed at the inlet and outlet of
the vessel. These models determine all the possible configurations of the same 0D vessel, which are the (𝑃in, 𝑄out),
(𝑄in, 𝑃out), (𝑃in, 𝑃out) and (𝑄in, 𝑄out)-type 0D vessels, all of them describing flow and volume/pressure dynamic
in a compliant vessel.

In the following, we will discard the contribution of the convective component in the momentum balance
equation, originally included in the general formulation of the family of nonlinear 0D models (3.11). This
choice, commonly adopted in the literature, will be fully justified in Section 6, where we will extensively discuss
whether it is reasonable or not to incorporate the contribution of the convective terms in the 0D models, also
observing that including these terms in the 0D models is not straightforward as one would expect. Table 1
summarizes the different 0D vessel configurations and the corresponding ODE systems, which will be described
in detail throughout the remaining of this section.

3.3.1. (𝑃in, 𝑄out)-type 0D vessel

Suppose that the data prescribed at the inlet and outlet of the vessel are 𝑃in and 𝑄out, respectively. This first
0D vessel type, the (𝑃in, 𝑄out)-type vessel, is displayed in the first row of Table 1. Then, the temporal dynamic
of the state variables 𝑄 and 𝑉 , which are the unknowns under time derivative, is governed by the following
system of ODEs ⎧⎪⎪⎨⎪⎪⎩

d𝑉
d𝑡

= 𝑄−𝑄out,

d𝑄
d𝑡

=
1

𝐿( ̂︀𝐴)

[︁
𝑃in −𝑅( ̂︀𝐴)𝑄− 𝑃

]︁
,

(3.19)

where, in the above momentum balance equation, the mean pressure 𝑃 depends on the time-dependent area ̂︀𝐴
via the nonlinear relation (3.16). Clearly, for this 0D model, we have 𝑄in = 𝑄. Given the nonlinear resistance
𝑅tot( ̂︀𝐴) of the entire vessel according to formula (3.9), this total resistance has been split and equally distributed
into two resistances in series, 𝑅 and 𝑅𝑑, in order to add the distal resistance 𝑅𝑑 = 𝑅tot( ̂︀𝐴)/2 at the outlet of



NONLINEAR LUMPED-PARAMETER MODELS FOR BLOOD FLOW SIMULATIONS 1589

the vessel, as shown in Table 1. Then, the outlet pressure 𝑃out is directly computed as

𝑃out(𝑡) = 𝑃 (𝑡)−𝑅d𝑄out(𝑡). (3.20)

The above value of the pressure 𝑃out at the outlet of the vessel, obtained by splitting the total vessel resistance
and adding a distal resistance to the vessel, can then be used to enforce the continuity of pressure either at
0D junctions, or in the coupling with terminal elements, as it will be described in Section 5. For the same
motivation, a proximal resistance will be added to the (𝑄in, 𝑃out)-type 0D vessel and both a proximal and a
distal resistance will be appended to the (𝑄in, 𝑄out)-type 0D vessel, as illustrated in Sections 3.3.2 and 3.3.4,
respectively. We observe that this choice does not involve additional hypothesis on the flow since the total vessel
resistance to flow is kept the same and it is just split into two (or more) resistances in series.

We observe that, by adding the usual simplifying assumptions considered in the standard approach of deriving
0D models, namely that the model parameters 𝐿 and 𝑅 are constant, and pressure 𝑃 and volume 𝑉 are linearly
related via the constant compliance 𝐶0, then the well-established formulation of the linear 0D blood flow model
is restored, as follows ⎧⎪⎪⎨⎪⎪⎩

d𝑉
d𝑡

= 𝑄−𝑄out,

d𝑄
d𝑡

=
1
𝐿0

[𝑃in −𝑅0𝑄− 𝑃 ],
(3.21)

where, as discussed in Section 3.2, the following linear relation between 𝑃 and 𝑉 holds

𝑃 − 𝑃ext = 𝑃0 +
𝑉 − 𝑉0

𝐶0
· (3.22)

The (𝑃in, 𝑄out)-type vessel described so far is displayed in the first row of Table 1. This representation is precisely
valid for the linear system (3.21), where the model parameters are constant, the convective terms are neglected
and the pressure 𝑃 is linearly related to the volume 𝑉 via the compliance 𝐶0. However, this description can
still be conveniently used also for the nonlinear 0D model (3.19): the model parameters 𝐿 and 𝑅 are nonlinear,
while the compliance 𝐶 is now replaced by the nonlinear tube law (3.16) relating the mean pressure 𝑃 and the
average cross-sectional area ̂︀𝐴, in which the mechanical properties of the vessel wall are embedded. In general,
the 𝐶-element represents the elastic component of the vessel regardless of how pressure and area are related.
Formulation of the mass conservation equation. By computing the time derivative of both sides of the linear
relation (3.22), the mass conservation equation can be rewritten in terms of pressure 𝑃 , as follows

d𝑃
d𝑡

=
𝑄−𝑄out

𝐶0
· (3.23)

Clearly, this equivalence between the two formulations of the 0D mass conservation equation, the one in (3.21)
describing the dynamic of 𝑉 and the other (3.23) the dynamic of 𝑃 , is no longer true for the nonlinear 0D model
(3.19), since now pressure 𝑃 depends in a nonlinear fashion on the cross-sectional area ̂︀𝐴, and thus on volume
𝑉 , via the tube law (3.16). Indeed, on the one hand, the continuity equation in system (3.19), describing the
time-variation of volume 𝑉 , is an exact relation obtained by directly integrating the 1D equation 𝜕𝑡𝐴+𝜕𝑥𝑞 = 0
over the vessel length 𝑙 = |𝑥𝑅 − 𝑥𝐿|. On the other hand, using the fact that

𝜕𝐴

𝜕𝑡
=
𝜕𝐴

𝜕𝑝

𝜕𝑝

𝜕𝑡
,

the mass conservation equation in system (2.1) integrated along the axial direction can be rewritten as follows

1
𝑙

∫︁ 𝑥𝑅

𝑥𝐿

𝜕𝐴

𝜕𝑝

𝜕𝑝

𝜕𝑡
d𝑥+

1
𝑙
(𝑄𝑅(𝑡)−𝑄𝐿(𝑡)) = 0. (3.24)
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Table 1. Summary of the four possible 0D vessel configurations depending on the different
data prescribed at the inlet and outlet of the vessel: for each 0D vessel type, we report the
associated governing ODE system (middle column) and display its representation in electric
circuit notation (right column). In the linear case, the vessel wall compliance 𝐶 is a constant
parameter, as defined in (3.14); in the nonlinear case, 𝐶 represents the mechanical properties
of the vessel wall embedded in the nonlinear pressure-area relation (3.16).

0D vessel ODE system Representation

(𝑃in, 𝑄out)

⎧
⎪⎪⎨

⎪⎪⎩

d𝑉

d𝑡
= 𝑄−𝑄out

d𝑄

d𝑡
=

1

𝐿( ̂︀𝐴)

[︁
𝑃in − 𝑅( ̂︀𝐴)𝑄− 𝑃

]︁

(𝑄in, 𝑃out)

⎧
⎪⎪⎨

⎪⎪⎩

d𝑉

d𝑡
= 𝑄in −𝑄

d𝑄

d𝑡
=

1

𝐿( ̂︀𝐴)

[︁
𝑃 − 𝑅( ̂︀𝐴)𝑄− 𝑃out

]︁

(𝑃in, 𝑃out)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d𝑉

d𝑡
= 𝑄−𝑄𝑑

d𝑄

d𝑡
=

1

𝐿( ̂︀𝐴)

[︁
𝑃in − 𝑅( ̂︀𝐴)𝑄− 𝑃

]︁

d𝑄𝑑

d𝑡
=

1

𝐿𝑑( ̂︀𝐴)

[︁
𝑃 − 𝑅𝑑( ̂︀𝐴)𝑄𝑑 − 𝑃out

]︁

(𝑄in, 𝑄out)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d𝑉

d𝑡
= 𝑄in −𝑄

d𝑄

d𝑡
=

1

𝐿( ̂︀𝐴)

[︁
𝑃 − 𝑅( ̂︀𝐴)𝑄− 𝑃𝑑

]︁

d𝑉𝑑

d𝑡
= 𝑄−𝑄out

To compute the integral in the above equation, we assume 𝜕𝐴/𝜕𝑝 to be evaluated at 𝐴 = ̂︀𝐴, being ̂︀𝐴(𝑡) the
time-dependent average cross-sectional area of the vessel, namely we introduce the following approximation

𝜕𝐴

𝜕𝑝
≈
(︂
𝜕𝐴

𝜕𝑝

)︂⃒⃒⃒⃒
𝐴= ̂︀𝐴

, (3.25)

so that this quantity is no longer space-dependent and can be brought outside of the integral, to get

1
𝑙

(︂
𝜕𝐴

𝜕𝑝

)︂⃒⃒⃒⃒
𝐴= ̂︀𝐴

∫︁ 𝑥𝑅

𝑥𝐿

𝜕𝑝

𝜕𝑡
d𝑥+

1
𝑙
(𝑄𝑅(𝑡)−𝑄𝐿(𝑡)) = 0, (3.26)

which can be finally rewritten as

𝐶( ̂︀𝐴)
d𝑃 (𝑡)

d𝑡
+𝑄𝑅(𝑡)−𝑄𝐿(𝑡) = 0, (3.27)

where we have introduced the following nonlinear parameter

𝐶( ̂︀𝐴) := 𝑙

(︂
𝜕𝐴

𝜕𝑝

)︂⃒⃒⃒⃒
𝐴= ̂︀𝐴

: nonlinear compliance. (3.28)

The parameter 𝐶( ̂︀𝐴) represents the vessel wall compliance and, like the parameters 𝐿 and 𝑅 defined in (3.9),
is said to be nonlinear, in the sense that it depends on the time-dependent area ̂︀𝐴(𝑡). In the case of the
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(𝑃in, 𝑄out)-type 0D vessel under study, the approximate equation (3.27) becomes

𝐶( ̂︀𝐴)
d𝑃
d𝑡

= 𝑄−𝑄out. (3.29)

The shape of this equation strongly recalls that of equation (3.23) obtained in the linear case, but now, because of
the approximation introduced in (3.25), it is no longer equivalent to the first exact formulation of the continuity
equation in (3.19). For this reason, in the nonlinear 0D model, we will restrict ourselves to consider the mass
conservation equation in terms of the volume 𝑉 , as given in (3.19), which is exact, while the pressure 𝑃 will
be always computed from the nonlinear relation (3.16) in order to fully preserve the nonlinearity of the original
1D tube law.

3.3.2. (𝑄in, 𝑃out)-type 0D vessel

Suppose now that 𝑄in and 𝑃out are given data. The 0D vessel configuration corresponding to these input
data is displayed in the second row of Table 1 and the governing equations of the nonlinear 0D model for the
(𝑄in, 𝑃out)-type vessel read ⎧⎪⎪⎨⎪⎪⎩

d𝑉
d𝑡

= 𝑄in −𝑄,

d𝑄
d𝑡

=
1

𝐿( ̂︀𝐴)

[︁
𝑃 −𝑅( ̂︀𝐴)𝑄− 𝑃out

]︁
.

(3.30)

Here, we clearly have 𝑄out = 𝑄. Furthermore, also for this 0D vessel type, the nonlinear resistance 𝑅tot( ̂︀𝐴) of
the entire vessel, given in formula (3.9), has been split into two equal resistances in series, 𝑅𝑝 and 𝑅, in order
to add the proximal resistance 𝑅𝑝 = 𝑅tot( ̂︀𝐴)/2 at the inlet of the vessel and to explicitly compute the inlet
pressure 𝑃in as

𝑃in(𝑡) = 𝑃 (𝑡) +𝑅𝑝𝑄in(𝑡), (3.31)

which will be used in the coupling procedure between 0D vessels at 0D junctions and in the coupling of a 0D
vessel to terminal elements, in order to enforce the continuity of pressure.

3.3.3. (𝑃in, 𝑃out)-type 0D vessel

With the (𝑃in, 𝑄out) and (𝑄in, 𝑃out)-type vessels at hand, the last two 0D vessel types can be easily constructed
by connecting two basic 0D configurations described so far, as can be clearly seen from Table 1. Indeed, if pressure
is prescribed at both inlet and outlet of the vessel, 𝑃in and 𝑃out, respectively, the corresponding system can be
modelled by connecting a (𝑃in, 𝑄out)-type 0D vessel to a (𝑄in, 𝑃out)-type 0D vessel, yielding the configuration
illustrated in the third row of Table 1. Then, the nonlinear 0D model is governed by the following ODE system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d𝑉
d𝑡

= 𝑄−𝑄𝑑,

d𝑄
d𝑡

=
1

𝐿( ̂︀𝐴)

[︁
𝑃in −𝑅( ̂︀𝐴)𝑄− 𝑃

]︁
,

d𝑄𝑑

d𝑡
=

1

𝐿𝑑( ̂︀𝐴)

[︁
𝑃 −𝑅𝑑( ̂︀𝐴)𝑄𝑑 − 𝑃out

]︁
,

(3.32)

where the quantities 𝑄 and 𝑄𝑑 define the flow rates through the first proximal and the second distal parts of
the 0D vessel, respectively. By construction, the total resistance 𝑅tot( ̂︀𝐴) and inductance 𝐿tot( ̂︀𝐴), as defined in
(3.9), are equally distributed between these two proximal and distal portions of the segment, namely into (𝑅,𝐿)
and (𝑅𝑑, 𝐿𝑑), as shown in Table 1.
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3.3.4. (𝑄in, 𝑄out)-type 0D vessel

Finally, assuming that both flow rates 𝑄in and 𝑄out are prescribed yields the last possible configuration, that
is the (𝑄in, 𝑄out)-type 0D vessel, obtained by connecting a (𝑄in, 𝑃out)-type 0D vessel to a (𝑃in, 𝑄out)-type 0D
vessel and displayed in the bottom row of Table 1. In this case, the resulting system of ODEs reads⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d𝑉
d𝑡

= 𝑄in −𝑄,

d𝑄
d𝑡

=
1

𝐿( ̂︀𝐴)

[︁
𝑃 −𝑅( ̂︀𝐴)𝑄− 𝑃𝑑

]︁
,

d𝑉𝑑

d𝑡
= 𝑄−𝑄out,

(3.33)

where the quantities 𝑉 , 𝑃 and 𝑉𝑑, 𝑃𝑑 define volumes and pressures in the first proximal and in the second distal
compartments of the vascular segment, respectively. The nonlinear resistance 𝑅tot( ̂︀𝐴) over the entire vessel has
been split into a proximal resistance 𝑅𝑝 at the inlet of the vessel, a resistance 𝑅 between the two capacitors
and a distal resistance 𝑅𝑑 at the outlet of the vessel, as shown in Table 1, so that the inlet and outlet pressures
𝑃in and 𝑃out are computed as

𝑃in(𝑡) = 𝑃 (𝑡) +𝑅𝑝𝑄in(𝑡), 𝑃out(𝑡) = 𝑃𝑑(𝑡)−𝑅𝑑𝑄out(𝑡). (3.34)

Admissible choices are also to set either 𝑅𝑑 = 0, so that we just have 𝑃out = 𝑃𝑑, or 𝑅𝑝 = 0, that implies 𝑃in = 𝑃 .
Also for this 0D vessel configuration, the inlet and outlet pressures 𝑃in and 𝑃out will be used, as described in
Section 5, to couple 0D vessels in a network by enforcing the conservation of mass and the continuity of pressure.

4. Stability analysis

In this section, we are interested in studying the stability properties of the systems of ODEs governing the 0D
blood flow models. In particular, for each of the four different 0D vessel configurations presented in Section 3.3,
we will perform the stability analysis of the corresponding linear ODE system with constant parameters 𝐶0, 𝑅0

and 𝐿0, linear pressure-volume relation (3.22) and without convective terms. These systems of ODEs are linear
and inhomogeneous, with periodic forcing terms. We point out that, to the best of our knowledge, such a stability
analysis to investigate the behaviour of the exact solution of an ODE system arising from lumped-parameter
models for blood flow has never been reported before, in the open literature.

When including the convective part into the 0D models, even if the model parameters are still constant
and the pressure-volume relation is kept linear, the convective terms introduce a nonlinear component in the
corresponding ODE systems. It is well-known that the theory on the stability of systems of ODEs is strictly
valid only in the case in which the ODE system is linear. Indeed, in the nonlinear case, the eigenvalues of the
Jacobian matrix associated to the ODE system can not be used to describe the behaviour of the exact solution
of the original problem. The analytical study of the stability properties of the complete ODE systems including
the convective terms turns out to be extremely complicated, if not impossible. Therefore, we limit our study to
the linear case without convective terms. In general, we observed that results obtained for the linear case are
valid also for the nonlinear case, as confirmed by numerical experiments presented in Section 6. Moreover, in
that section, we comment on numerical findings that suggest that the incorporation of convective terms has very
strong implications on the stability of the resulting ODE global system, which in turn results in an extremely
high computational cost and lack of robustness of its numerical treatment.

We first consider the (𝑃in, 𝑄out)-type 0D vessel displayed in the top row of Table 1 and, by adding the
following assumptions:

– the model parameters 𝐿0 and 𝑅0 are constant,
– pressure 𝑃 is linearly related to volume 𝑉 via the constant compliance 𝐶0 according to (3.22),
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the resulting system of ODEs governing such a 0D vessel configuration reads⎧⎪⎪⎨⎪⎪⎩
d𝑉
d𝑡

= 𝑄−𝑄out,

d𝑄
d𝑡

=
1
𝐿0

[𝑃in −𝑅0𝑄− 𝑃 ],
(4.1)

where 𝑅0 denotes the constant resistance between 𝑄 and 𝑃 . The data prescribed at the inlet and outlet of
the vessel, 𝑃in ≡ 𝑃in(𝑡) and 𝑄out ≡ 𝑄out(𝑡), respectively, are given time-dependent functions, that we assume
to be periodic of a certain period 𝑇0 > 0. By using relation (3.22), the momentum equation in (4.1) can be
reformulated in terms of the state variable 𝑉 as follows⎧⎪⎪⎨⎪⎪⎩

d𝑉
d𝑡

= 𝑄−𝑄out,

d𝑄
d𝑡

=
1
𝐿0

[︂
𝑃in −𝑅0𝑄−

𝑉

𝐶0

]︂
,

(4.2)

where, for the sake of simplicity in the notation, in (3.22) we have set 𝑉0 = 𝑃0 = 𝑃ext = 0. Then, the above
ODE system can be rewritten in matrix form as

d𝑥(𝑡)
d𝑡

= 𝐴𝑥(𝑡) + 𝑏(𝑡), (4.3)

where we have set

𝑥(𝑡) =

[︃
𝑉 (𝑡)

𝑄(𝑡)

]︃
, 𝐴 =

⎡⎢⎣ 0 1

− 1
𝐶0𝐿0

−𝑅0

𝐿0

⎤⎥⎦, 𝑏(𝑡) =

⎡⎢⎣−𝑄out(𝑡)

𝑃in(𝑡)
𝐿0

⎤⎥⎦. (4.4)

Namely, 𝑥(𝑡) is the vector of unknowns, the model state variables 𝑉 and 𝑄, 𝐴 is the constant coefficient matrix
and 𝑏(𝑡) is the time-dependent vector periodic forcing function, providing external data to the system. As the
coefficient matrix 𝐴 is constant, we have a non-homogeneous linear system of ODEs with constant coefficients.

The stability of the exact solution of the complete ODE system (4.3) is determined by the real part of the
eigenvalues of the coefficient matrix 𝐴. In particular, we are going to use the following two results:

(i) Given a linear homogeneous system of ODEs with constant coefficients, that is an ODE system of the
form (4.3) with null forcing function 𝑏(𝑡) ≡ 0, a necessary and sufficient condition for this system to be
asymptotically stable is that all eigenvalues of 𝐴 have strictly negative real part.

(ii) If the forcing function 𝑏(𝑡) is periodic and if the homogeneous part of system (4.3) is asymptotically stable,
then the exact solution of the original inhomogeneous problem will converge to the periodic solution of
system (4.3) as 𝑡 increases, for any admissible choice of the initial condition.

These are well-known results and further details and proofs can be found in Appendix A.1.
The eigenvalues 𝜆1,2 associated to matrix 𝐴 are the roots of the following second-degree characteristic poly-

nomial
𝜆2 +

𝑅0

𝐿0
𝜆+

1
𝐶0𝐿0

= 0, (4.5)

whose discriminant is

∆ =
(︂
𝑅0

𝐿0

)︂2

− 4
𝐶0𝐿0

· (4.6)

At this point, we will show that, regardless of the sign of the above discriminant ∆, the eigenvalues associated
to 𝐴 have always strictly negative real part, condition that ensures the asymptotic stability of the homogeneous
part of system (4.3). We distinguish and analyze the following three cases:
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(1) If ∆ < 0, then the eigenvalues 𝜆1,2 of matrix 𝐴 are complex and conjugate, given by

𝜆1,2 = − 𝑅0

2𝐿0
± 𝑖

1
2

√
−∆ = − 𝑅0

2𝐿0
± 𝑖

1
2

√︃
4

𝐶0𝐿0
−
(︂
𝑅0

𝐿0

)︂2

, (4.7)

with strictly negative real part, that is

𝑅𝑒(𝜆1) = 𝑅𝑒(𝜆2) = − 𝑅0

2𝐿0
< 0. (4.8)

(2) If ∆ = 0, then the two eigenvalues associated to matrix 𝐴 are equal, real and strictly negative, namely with
strictly negative real part, that is

𝜆1 = 𝜆2 = − 𝑅0

2𝐿0
< 0. (4.9)

(3) If ∆ > 0, then the eigenvalues 𝜆1,2 of matrix 𝐴 are distinct, real and both negative, given by

𝜆1 = −1
2

(︂
𝑅0

𝐿0
+
√

∆
)︂
, 𝜆2 = −1

2

(︂
𝑅0

𝐿0
−
√

∆
)︂
. (4.10)

From (4.10), the first eigenvalue 𝜆1 is clearly strictly negative, and it is straightforward to verify that the
second eigenvalue 𝜆2 is also strictly negative. Indeed, the following chain of inequalities holds

0 < ∆ =
(︂
𝑅0

𝐿0

)︂2

− 4
𝐶0𝐿0

<

(︂
𝑅0

𝐿0

)︂2

=⇒
√

∆ =

√︃(︂
𝑅0

𝐿0

)︂2

− 4
𝐶0𝐿0

<
𝑅0

𝐿0
, (4.11)

which implies 𝜆2 < 0.

In conclusion, the eigenvalues associated to the constant coefficient matrix 𝐴 of system (4.3) have always
strictly negative real part. Therefore, the homogeneous part of system (4.3) is asymptotically stable and, as a
consequence, the complete ODE system (4.1) is stable, meaning that, for any choice of the initial condition, the
exact solution will converge to the periodic solution.

Under the assumption that the forcing terms prescribed at the inlet and outlet of the vessel, 𝑄in ≡ 𝑄in(𝑡)
and 𝑃out ≡ 𝑃out(𝑡), respectively, are periodic functions of 𝑡, the stability analysis of the (𝑄in, 𝑃out)-type vessel
is similar to that of the (𝑃in, 𝑄out)-type vessel performed above. Indeed, it is straightforward to check that the
eigenvalues of the coefficient matrix 𝐴 associated to the linear ODE system corresponding to the (𝑄in, 𝑃out)-type
0D vessel are the same to those of the (𝑃in, 𝑄out)-type 0D vessel, thus leading to the same stability properties
of the exact solution of the ODE system.

Next, we move to the (𝑃in, 𝑃out)-type 0D vessel displayed in the third row of Table 1. The governing ODE
system, of which we want to investigate the stability, reads⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d𝑉
d𝑡

= 𝑄−𝑄𝑑,

d𝑄
d𝑡

=
1

𝐿0/2

[︂
𝑃in −

𝑅0

2
𝑄− 𝑃

]︂
,

d𝑄𝑑

d𝑡
=

1
𝐿0/2

[︂
𝑃 − 𝑅0

2
𝑄𝑑 − 𝑃out

]︂
,

(4.12)

where, as usual, the pressure data prescribed at the inlet and outlet of the vessel, 𝑃in ≡ 𝑃in(𝑡) and 𝑃out ≡ 𝑃out(𝑡),
respectively, are assumed to be time-dependent periodic functions of a certain period 𝑇0 > 0. In this case, the
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eigenvalues associated to the constant coefficient matrix 𝐴 of the homogeneous part of system (4.12) are given
by

𝜆1 = −𝑅0

𝐿0
, 𝜆2,3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− 𝑅0

2𝐿0
± 𝑖

1
2
√
−∆, if ∆ =

(︂
𝑅0

𝐿0

)︂2

− 16
𝐶0𝐿0

< 0,

− 𝑅0

2𝐿0
, if ∆ = 0,

− 𝑅0

2𝐿0
± 1

2

√
∆, if ∆ > 0.

(4.13)

Therefore, we conclude that all the above eigenvalues have always strictly negative real part, meaning that
the homogeneous part of system (4.12) is asymptotically stable. As a consequence, for any choice of the initial
conditions, any solution of the inhomogeneous system (4.12) will converge to the periodic one.

We consider now the linear ODE system governing the last 0D vessel configuration, the (𝑄in, 𝑄out)-type 0D
vessel depicted in the bottom row of Table 1, that is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d𝑉
d𝑡

= 𝑄in −𝑄,

d𝑄
d𝑡

=
1
𝐿0

[𝑃 −𝑅0𝑄− 𝑃𝑑],

d𝑉𝑑

d𝑡
= 𝑄−𝑄out,

(4.14)

where 𝑅0 denotes the resistance element between 𝑃 and 𝑃𝑑 only. Algebraic manipulations yield the following
eigenvalues associated to the constant coefficient matrix 𝐴 of the homogeneous part of system (4.14)

𝜆1 = 0, 𝜆2,3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− 𝑅0

2𝐿0
± 𝑖

1
2
√
−∆, if ∆ =

(︂
𝑅0

𝐿0

)︂2

− 16
𝐶0𝐿0

< 0,

− 𝑅0

2𝐿0
, if ∆ = 0,

− 𝑅0

2𝐿0
± 1

2

√
∆, if ∆ > 0.

(4.15)

The eigenvalues 𝜆2,3 have always strictly negative real part regardless the sign of the discriminant ∆, while the
first eigenvalues 𝜆1 turns out to be equal to zero.

In the following, we are going to study the asymptotic properties of system (4.14) in order to find suitable
assumptions on the periodic forcing functions 𝑄in(𝑡) and 𝑄out(𝑡) ensuring the stability of such ODE system, for
both cases ∆ < 0 and ∆ > 0. However, by analyzing the orders of magnitude of typical physiological values of
all geometrical and physical parameters defining the elements 𝑅0, 𝐿0 and 𝐶0, and thus the expression of ∆ in
(4.15), it is easy to check that we always have ∆ < 0. The above expression of ∆ can be reformulated as follows

∆ =
(︂
𝑅0

𝐿0

)︂2

− 16
𝐶0𝐿0

=
1
𝐿0

(︂
𝑅2

0

𝐿0
− 16
𝐶0

)︂
=

1
𝐿0

4
𝜋𝑟30

[𝑓1 − 𝑓2],
(4.16)

with

𝑓1 = (𝜁 + 2)2
𝜇2𝑙

𝜌𝑟30
, 𝑓2 =

8
3
𝐸ℎ0

𝑙
· (4.17)



1596 B. GHITTI ET AL.

Table 2. Quantitative assessment of the two factors 𝑓1 and 𝑓2 defining the discriminant ∆ of
the characteristic polynomial associated to the coefficient matrix 𝐴 of the (𝑄in, 𝑄out)-type 0D
vessel, for the vessels of the aortic bifurcation, the 37-artery network and ADAN56 model.

Network Max Min Mean Std.dev Max Min Mean Std.dev
(𝑓1) (𝑓1) (𝑓1) (𝑓1) (𝑓2) (𝑓2) (𝑓2) (𝑓2)

Aortic 7.19 2.47 5.61 2.72 160 000.00 158 117.65 158 745.10 1086.78
bifurcation
37-artery 315.26 7.30e-02 82.72 97.86 3 076 923.08 17 777.78 227 502.13 563 787.17
network
ADAN56 1837.19 8.96e-03 113.44 313.31 1 777 910.46 5184.12 187 403.52 354 118.73
model

We consider the following order of magnitude ranges in arterial vessels for the variables defining the above
factors 𝑓1 and 𝑓2 ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜌 ∼ 100 [g/cm3],
𝜇 ∼ 10−2 [dyne · s/cm2],
𝑙 ∼ 100 − 101 [cm],
𝑟0 ∼ 10−1 − 100 [cm],
ℎ0 ∼ 10−2 − 10−1 [cm],
𝐸 ∼ 106 − 107 [dyne/cm2].

(4.18)

Then, for the first term 𝑓1, its order of magnitude approximately ranges between 10−3 and 102, while the order
of magnitude of the second factor 𝑓2 is estimated to vary between 104 and 106. Therefore, the second term 𝑓2
is always the largest one, thus ensuring the negativity of ∆. These findings were also confirmed by computing
exact values of 𝑓1, 𝑓2 and ∆ for all vessels of all arterial networks considered in this paper and described in
Section 6. Table 2 displays maximum and minimum values, mean value and corresponding standard deviation
of the two factors 𝑓1 and 𝑓2 defined in (4.17), for the aortic bifurcation model (Sect. 6.4), the 37-artery network
(Sect. 6.5) and the reduced ADAN56 model (Sect. 6.6). Even if there is high variability in the values of these
two factors, we observe that the second factor 𝑓2 is always orders of magnitude larger with respect to the first
factor 𝑓1, thus implying that the discriminant ∆ corresponding to the (𝑄in, 𝑄out)-type 0D vessel and given
in (4.16) is always strictly negative for all vessels of the three arterial networks considered. Then, our case of
interest is the one corresponding to ∆ < 0.

In general, if a linear homogeneous system of ODEs with constant coefficients has a null eigenvalue, then the
coefficient matrix 𝐴 is singular, with non-trivial null space, and any vector of the null space is an equilibrium
point for the system. In other words, the homogeneous system (A.1) does not have a unique equilibrium point,
but a line of equilibria, which can be either stable (but not asymptotically stable) or unstable, depending on
the sign of the other eigenvalues. Hence, an homogeneous system of the form (A.1) with coefficient matrix 𝐴
having a zero eigenvalue is stable if all other eigenvalues of 𝐴 have strictly negative real part, in the sense that
it has an attractive line of equilibria and each equilibrium is stable, but not asymptotically stable.

However, the stability of the homogeneous system is not sufficient to ensure the stability of the corresponding
inhomogeneous system (4.3), but an additional assumption on the periodic forcing function is needed in order
to preserve the stability of ODE system, namely that any solution of (4.3) for any admissible choice of the initial
condition will converge to the periodic one as 𝑡→ +∞.

We state here only the obtained condition, but the full derivation of this assumption on the periodic forcing
function 𝑏(𝑡) is extensively provided in Appendix A.2, first in the scalar case of a single ODE, then for a system
of ODEs, specifically focusing on system (4.14) governing the (𝑄in, 𝑄out)-type 0D vessel.
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Given the inhomogeneous linear ODE system (4.14), whose coefficient matrix 𝐴 has a null eigenvalue 𝜆1 and
two eigenvalues 𝜆2,3 with strictly negative real part, the following condition on the periodic forcing function
𝑏(𝑡) ensures the stability of the exact solution of the ODE system∫︁ 𝑇0

0

[𝑄in(𝑠)−𝑄out(𝑠)] d𝑠 = 0 ⇐⇒
∫︁ 𝑇0

0

𝑄in(𝑠) d𝑠 =
∫︁ 𝑇0

0

𝑄out(𝑠) d𝑠. (4.19)

Namely, under this assumption, the complete inhomogeneous system (3.33) is stable, in the sense that for any
admissible choice of the initial condition the exact solution will converge to the periodic one. This is also a
physically consistent condition: in order for the volume 𝑉 (𝑡) + 𝑉𝑑(𝑡) not to constantly increase/decrease and
asymptotically explode, the integral over a period [0, 𝑇0] of the inflow 𝑄in(𝑡) entering the vessel must equal the
integral over the same period of the outflow 𝑄out(𝑡) leaving the vessel.

Remark 4.1. The present work focuses on arteries. However, we expect that the family of nonlinear 0D models
for blood flow derived in Section 3 can be applied not only to arteries, but also to veins, by appropriately changing
the geometrical and mechanical properties of vessels and the tube law relating the mean internal pressure to the
vessel cross-sectional area. Indeed, in the tube law (2.6), typical values for parameters 𝑚 and 𝑛 for collapsible
tubes, such as veins, are 𝑚 ≈ 10 and 𝑛 = −1.5. A relation for the venous stiffness 𝐾𝑣 can also be derived from
considerations made on the collapse of thin-walled elastic tubes, or, alternatively, 𝐾𝑣 can be estimated from
pulse wave velocities, as described in Mynard [28]. Furthermore, the stability analysis presented in this section
for arterial vessels can be straightforwardly repeated also for veins, in order to study the stability properties of
the corresponding ODE systems.

5. 0D junctions and networks

Equipped with the family of nonlinear 0D models for blood flow derived in Section 3 for a single vessel, we
consider now the coupling of 0D vessels to construct more complex networks of vessels.

Two or more 0D vessels can be coupled through 0D junctions, which satisfy the conservation of mass and also
impose a common pressure on all branches, to ensure the continuity of pressure throughout the 0D junction. We
immediately note that, in contrast to 1D junctions between 1D vessels, where the total pressure continuity can
be enforced, in junction between 0D vessels we enforce pressure continuity only. The choice of imposing pressure
continuity at each 0D junction allows us to always solve a linear coupling problem, whereas it is well-known
that the nonlinear problem to be solved at 1D junctions can become very computationally expensive. However,
on the other hand, in order to arrange compatible segment types into a network, with inlets and outlets coupled
appropriately, restrictions on admissible 0D vessel types are necessary for vessels converging at a 0D junction.
In particular, input data to prescribe at the inlet and outlet of each vessel are defined by the state of their
adjacent compartments, in order to ensure the conservation of mass and continuity of pressure. The coupling of
0D vessels without any restrictions on compatible 0D vessel configurations would be possible by enforcing total
pressure continuity coming at the cost of solving nonlinear coupling problem at each junction node.

The simplest 0D junctions are two-vessel and three-vessel junctions, connecting two or three vessels, respec-
tively, which can be generalized in a generic 0D junction attaching an arbitrary number of 0D vessels. In addi-
tion, in open-loop networks, terminal vessels can be coupled to single-resistance or 𝑅𝐶𝑅 Windkessel elements
to model the cumulative effects of all vessels distal to the terminal segments of the vessel network.

5.1. Two-vessel junction (J2)

To describe the coupling procedure adopted, let us consider, for instance, two (𝑃in, 𝑄out)-type 0D vessels con-
nected in a simple two-vessel junction, as displayed in Figure 1A. Coupling conditions are needed to determine,
at the junction point, the flow rate 𝑄1

out at the outlet of the first (parent) vessel and the pressure 𝑃 2
in at the

inlet of the second (daughter) vessel. By enforcing the conservation of mass, we obtain:

𝑄1
out(𝑡) = 𝑄2(𝑡),
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Figure 1. (A) Example of a 0D representation for a two-vessel junction between two
(𝑃in, 𝑄out)-type 0D vessels. (B) Example of a 0D representation for a bifurcation branch (three-
vessel splitting flow junction): (𝑄in, 𝑄out)-type 0D vessel for parent vessel and (𝑃in, 𝑃out)-type
0D vessels for daughter vessels. (A) J2. (B) J3.

where 𝑄2 is the flow rate state variable in the second vessel; then, by imposing the continuity of pressure, we
get:

𝑃 2
in(𝑡) = 𝑃 1(𝑡)−𝑅1

𝑑𝑄
1
out(𝑡) = 𝑃 1(𝑡)−𝑅1

𝑑𝑄
2(𝑡),

where 𝑃 1 is the pressure state variable in the parent vessel and 𝑅1
𝑑 is the distal resistance at the outlet of the

same vessel, as illustrated in Figure 1B. Note that in the case where 𝑅1
𝑑 = 0, we simply obtain 𝑃 2

in = 𝑃 1.
From this test case, it is straightforward to conclude that all the possible pairs of vessel types that can be

coupled to form a two-vessel 0D junction are such that the outlet of the parent vessel is of pressure type and
the inlet of the daughter vessel is of flow type, or vice versa. All other configurations are not allowed, because
no assumption would be made either on the flow rate 𝑄 or on the pressure 𝑃 at the interface between vessels.

Moreover, we observe that the two-vessel junction may be also used to represent a single 0D vessel with two
0D compartments of the same type coupled in series, either (𝑃in, 𝑄out) or (𝑄in, 𝑃out). Indeed, the per-segment
mapping replaces each 1D vessel of a network by a 0D vessel, which, in turn, can be composed of just one or
more 0D compartments.

5.2. Three-vessel junction (J3)

For the family of three-vessel junctions, we present here the coupling procedure adopted in the case of a
splitting flow junction, where the 0D junction represents the branching point at which the end of the parent
vessel is connected to the inlets of the two daughter vessels, but the coupling conditions to be imposed in a
merging flow junctions, where the 0D junction represents the adjoining point at which the outlets of the two
daughter vessels converge into the beginning of the parent vessel, can be easily derived in a similar way, as
proposed in Safaei et al. [30].

We consider, for instance, a (𝑄in, 𝑄out)-type 0D vessel for the parent vessel and (𝑃in, 𝑃out)-type 0D vessels
for both daughter vessels. By imposing the mass conservation, we get that the flow rate 𝑄𝑃

out at the outlet of
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the parent vessel must be equal to the sum of the two daughter branches’ flows 𝑄𝐷1 and 𝑄𝐷2, that is

𝑄𝑃
out(𝑡) = 𝑄𝐷1(𝑡) +𝑄𝐷2(𝑡).

Then, by enforcing the continuity of pressure, we have that the pressure at the inlet of both daughter vessels
must be equal to the distal pressure in the parent vessel, namely

𝑃𝐷1
in (𝑡) = 𝑃𝐷2

in (𝑡) = 𝑃𝑃
𝑑 (𝑡)−𝑅𝑃

𝑑 𝑄
𝑃
out(𝑡) = 𝑃𝑃

𝑑 (𝑡)−𝑅𝑃
𝑑

(︀
𝑄𝐷1(𝑡) +𝑄𝐷2(𝑡)

)︀
,

where the pressure 𝑃𝑃
𝑑 is the distal pressure state variable in the parent vessel and 𝑅𝑃

𝑑 is the distal resistance
at the outlet of the same vessel, as depicted in Figure 1B. We observe that in the particular case where 𝑅𝑃

𝑑 = 0,
the above condition of continuity of pressure becomes 𝑃𝐷1

in = 𝑃𝐷2
in = 𝑃𝑃

𝑑 .
From this test case, we can then derive the following restrictions on compatible segment types for vessels

converging in a three-vessel splitting flow junction: the outlet of the parent vessel must be of flow type, while
the inlets of both daughter vessels must be of pressure type.

5.3. Generic 0D junction

In the most general situation, a 0D junction connects an arbitrary number of 0D vessels, sharing their inlets
or outlets at the junction point, as displayed in Figure 2.

In order to couple appropriately all the 0D vessels converging at the junction, first of all, a single vessel has to
be chosen as parent vessel (for instance, the vessel with the largest cross-sectional area), while all other vessels
are classified as daughter vessels. As a consequence, the role of each vessel, either parent or daughter, will define
the corresponding vessel type, depending on the inlet/outlet data to be prescribed at the junction point.

For the parent segment, at the vessel end shared at the junction a condition on the flow 𝑄𝑃 is prescribed,
which is computed by imposing the conservation of mass. Indeed, at the junction, the flow rate in each daughter
vessel is known and denoted by 𝑄𝐷𝑗 . For instance, if we refer to the configuration illustrated in Figure 2, the
flow rate 𝑄𝑃

out at the outlet of the chosen parent vessel is given by

𝑄𝑃
out(𝑡) =

𝑁∑︁
𝑗=1

𝑄𝐷𝑗 (𝑡). (5.1)

In equation (5.1), the flow direction in each vessel, namely if the blood stream enters or leaves the 0D junction,
is taken into account by the sign of 𝑄. On the other hand, for each daughter, at the vessel end shared at the
junction a condition on the pressure 𝑃𝐷𝑗 must be prescribed in order to enforce pressure continuity throughout
the 0D junction. Then, this pressure must be equal to the pressure in the parent vessel, that is

𝑃
𝐷𝑗

in/out(𝑡) = 𝑃𝑃 (𝑡) 𝑗 = 1, . . . , 𝑁. (5.2)

5.4. Terminal vessels

In open-loop arterial networks, the cumulative effects of all distal vessels (small arteries, arterioles and
capillaries) at ending locations of terminal arteries have to be taken into account. These effects can be modelled
using either single-resistance or 𝑅𝐶𝑅 Windkessel elements coupled to the terminal arteries.

Each 𝑅𝐶𝑅 Windkessel element is composed of a proximal terminal resistance 𝑅1
𝑤𝑘, a terminal capacitor 𝐶𝑤𝑘

and a distal terminal resistance 𝑅2
𝑤𝑘, as displayed in Figure 3. Pressure 𝑃𝑤𝑘 and flow rate 𝑄𝑤𝑘 in this terminal

element are governed by ⎧⎪⎪⎨⎪⎪⎩
d𝑃𝑤𝑘

d𝑡
=
𝑄−𝑄𝑤𝑘

𝐶𝑤𝑘
,

𝑄𝑤𝑘 =
𝑃𝑤𝑘 − 𝑃𝑣

𝑅2
𝑤𝑘

,
(5.3)
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Figure 2. Example of a generic 0D junction connecting (𝑁+1) 0D vessels: one vessel is chosen
as parent vessel, while all other 𝑁 segments are treated as daughter vessels.

Figure 3. 𝑅𝐶𝑅 Windkessel terminal element.

where 𝑄 is the flow rate from the 0D vessel coupled to the 𝑅𝐶𝑅 element and 𝑃𝑣 is the constant outflow pressure.
Depending on the configuration of the 0D vessel coupled to the Windkessel model, either the flow rate 𝑄out

or the pressure 𝑃out must be prescribed at the outlet of the vessel. For instance, in the case of a (𝑃in, 𝑄out)-type
0D vessel, the flow rate 𝑄out has to be assigned at the outlet of the vascular segment, as illustrated in the top
row of Table 1, which is computed from the coupling to the Windkessel element, as follows

𝑄out =
𝑃 − 𝑃𝑤𝑘

(𝑅𝑑 +𝑅1
𝑤𝑘)

, (5.4)

where 𝑃 and 𝑅𝑑 are pressure and (if present) distal resistance in the 0D vessel, respectively. On the other hand,
if we consider, for example, a (𝑄in, 𝑃out)-type 0D vessel, the pressure 𝑃out to be enforced at the outlet of the
vessel, as displayed in the second row of Table 1, can be calculated as

𝑃out = 𝑃𝑤𝑘 +𝑅1
𝑤𝑘𝑄, (5.5)

where 𝑄 is the flow rate in the 0D vessel coupled to the 𝑅𝐶𝑅 element.
Alternatively, if terminal vessels are coupled to single-resistance terminal elements, we simply get

𝑄out =
𝑃 − 𝑃𝑣

(𝑅𝑑 +𝑅𝑤𝑘)
or 𝑃out = 𝑃𝑣 +𝑅𝑤𝑘𝑄, (5.6)

where 𝑅𝑤𝑘 is now the only peripheral resistance to the flow in the terminal element.

6. Numerical experiments

In this section, we validate the ability of the derived nonlinear 0D models to reproduce the essential blood
flow distribution and the main features of pressure and flow waveforms in networks of deformable vessels with
respect to the well-known and widely used 1D blood flow model (2.1), at a much lower computational cost.

We reproduce several benchmark problems proposed in Boileau et al. [6]. First, we consider a simple test case:
a model of blood flow in the aortic bifurcation (Sect. 6.4). Then, we assess the results in two different arterial
networks: the 37-artery network of the aorta and the largest central system arteries constructed in Matthys
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et al. [22], for which in vitro pressure and flow waveforms were acquired in Matthys et al. [22] (Sect. 6.5), and
a reduced version of the ADAN model developed by Blanco et al. [4, 5], which contains the largest 56 systemic
arteries of the human circulation (Sect. 6.6), referred to as ADAN56. For each test case, 0D results of pressure
and flow rate in each vessel of the network are qualitatively and quantitatively compared to the 1D results
obtained from the 1D model (2.1). Furthermore, in order to assess the properties of the newly derived nonlinear
0D models, we also compare the results from the nonlinear and the linear 0D models, where in the latter the
convective terms are neglected a priori , the model parameters are constant and the pressure-volume relation is
linear. For each test case, we provide graphical comparisons supported by error tables.

The numerical methods adopted to solve the 1D and 0D models are described in Section 6.1. The relative
error metrics for pressure 𝑃 and flow rate 𝑄 are introduced in Section 6.2. Before performing the 0D simulations
and compare 0D results to 1D results, a detailed analysis of the contribution and relative importance of the
convective component within the momentum equation is carried out in Section 6.3, to decide whether it is
reasonable or not to neglect the convective terms in the 0D models.

6.1. Numerical methods

6.1.1. Second-order MUSCL-Hancock scheme for the 1D model

System (2.1) governing 1D blood flow is solved using a second-order MUSCL-Hancock numerical scheme [43],
where MUSCL stands for Monotonic Upstream-Centred Scheme for Conservation Laws, with ENO (Essentially
Non-Oscillatory) reconstruction [18,19] and numerical source computed following the ADER approach [37,39].

In order to approximate the solutions of system (2.1), we first discretize the 1D space domain [0, 𝑙] in 𝑀

cells of constant size ∆𝑥, where each cell 𝐼𝑖 =
(︁
𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2

)︁
has centre located in 𝑥𝑖, with 𝑥𝑖± 1

2
= 𝑥𝑖 ± Δ𝑥

2 ,
for 𝑖 = 1, . . . ,𝑀 . The time domain [0, 𝑡end] is also discretized by assuming a constant time step ∆𝑡, which
is restricted according to the usual Courant–Friedrichs–Lewy (CFL) stability condition. Then, if we consider
system (2.1) written under the balance law form (2.9), given the approximate solution 𝑄𝑛

𝑖 at time 𝑡𝑛 in each
cell 𝐼𝑖, we can evolve the numerical solution to time 𝑡𝑛+1 = 𝑡𝑛 +∆𝑡 by using a finite volume method of the form

𝑄𝑛+1
𝑖 = 𝑄𝑛

𝑖 −
∆𝑡
∆𝑥

[︁
𝐹𝑖+ 1

2
− 𝐹𝑖− 1

2

]︁
+ ∆𝑡𝑆𝑖, (6.1)

where 𝐹𝑖+ 1
2

is the numerical flux that approximates the time-integral average over [𝑡𝑛, 𝑡𝑛+1] of flux 𝐹 at the cell
interface 𝑥 = 𝑥𝑖+ 1

2
, while 𝑆𝑖 is the numerical source in cell 𝐼𝑖 that approximates the volume-integral average

over 𝑉 =
[︁
𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2

]︁
× [𝑡𝑛, 𝑡𝑛+1] of the source term 𝑆. Finite volume schemes (6.1) may be interpreted as

resulting from integrating the equations of system (2.9) on the control volume 𝑉 =
[︁
𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2

]︁
× [𝑡𝑛, 𝑡𝑛+1],

where suitable approximations of the integral averages have been introduced.
In this framework, the MUSCL–Hancock approach achieves a second-order extension of the well-known

Godunov’s first-order upwind method by computing the intercell flux 𝐹𝑖+ 1
2

according to the following three
steps:

(I) Data reconstruction and cell boundary values

𝑄𝐿
𝑖 = 𝑃𝑖

(︁
𝑥𝑖− 1

2

)︁
, 𝑄𝑅

𝑖 = 𝑃𝑖

(︁
𝑥𝑖+ 1

2

)︁
, (6.2)

where 𝑃𝑖(𝑥) is the first-degree reconstruction polynomial vector in cell 𝐼𝑖 =
(︁
𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2

)︁
, that is

𝑃𝑖(𝑥) = 𝑄𝑖 + (𝑥− 𝑥𝑖)∆𝑖, (6.3)

with ∆𝑖 being the slope vector associated to the reconstruction polynomial (6.3), here computed by using
the ENO criterion to preserve conservation and non-oscillatory properties.
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(II) Evolution of boundary extrapolated values by a time 1
2∆𝑡 accounting for source term⎧⎪⎪⎨⎪⎪⎩

𝑄
𝐿

𝑖 = 𝑄𝐿
𝑖 −

1
2

∆𝑡
∆𝑥
[︀
𝐹
(︀
𝑄𝑅

𝑖

)︀
− 𝐹

(︀
𝑄𝐿

𝑖

)︀]︀
+

1
2

∆𝑡𝑆
(︀
𝑄𝐿

𝑖

)︀
,

𝑄
𝑅

𝑖 = 𝑄𝑅
𝑖 −

1
2

∆𝑡
∆𝑥
[︀
𝐹
(︀
𝑄𝑅

𝑖

)︀
− 𝐹

(︀
𝑄𝐿

𝑖

)︀]︀
+

1
2

∆𝑡𝑆
(︀
𝑄𝑅

𝑖

)︀
.

(6.4)

(III) Solution of a classical Riemann problem with data
(︁
𝑄

𝑅

𝑖 ,𝑄
𝐿

𝑖+1

)︁
to obtain the similarity solution 𝑄𝑖+ 1

2
(𝑥/𝑡)

to compute the intercell flux
𝐹𝑖+ 1

2
= 𝐹

(︁
𝑄𝑖+ 1

2
(0)
)︁
. (6.5)

As last step, the numerical source is computed imitating the ADER approach [39], as follows

𝑆𝑖 = 𝑆

(︂
𝑄𝑛

𝑖 +
1
2

∆𝑡[−𝐴(𝑄𝑛
𝑖 )∆𝑖 + 𝑆(𝑄𝑛

𝑖 )]
)︂
, (6.6)

where 𝐴 is the Jacobian matrix of system (2.9).
The coupling of several 1D vessels at junction points is treated following the methodology proposed in Sherwin

et al. [34] and extended in Spilimbergo et al. [36] to achieve second-order accuracy also of the coupling procedure
and preserve the global second-order accuracy in space and time over the entire 1D network. As in these cited
papers, also here we will restrict to sub-critical flow conditions, i.e. when |𝑢| < 𝑐, which is a crucial assumption
in ensuring the strictly hyperbolic nature of the PDE system and in determining the type of boundary conditions
that can be applied to the 1D model.

In the case of 𝑁𝐽 vessels converging at a junction 𝐽 (for the networks considered in the present work, we
will have 𝑁𝐽 = 2 for the two-vessel junction and 𝑁𝐽 = 3 for the three-vessel junction, only), the computational
cells involved in the coupling of the 𝑘-th vessel, with 𝑘 = 1, . . . , 𝑁𝐽 , provide the state 𝑄𝑛

𝑘 = [𝐴𝑛
𝑘 , 𝑄

𝑛
𝑘 ]𝑇 at time

𝑡𝑛. Then, in order to couple the 𝑁𝐽 vessels, we have to compute the unknown cross-sectional area 𝐴*𝑘 and flow
𝑄*𝑘 for each vessel converging at node 𝐽 , by imposing: (i) conservation of mass, (ii) continuity of total pressure;
(iii) continuity of the generalized Riemann invariants. Therefore, to achieve the second-order coupling, we will
set 𝑄𝑛

𝑘 = 𝑄MUSCL,𝑛
𝑘 , for 𝑘 = 1, . . . , 𝑁𝐽 , where 𝑄MUSCL,𝑛

𝑘 is the evolved boundary extrapolated value, given
by either 𝑄

𝐿,𝑛

𝑘,1 if the first computational cell of vessel 𝑘 is converging to node 𝐽 , or 𝑄
𝑅,𝑛

𝑘,𝑀 if instead the last
computational cell (𝑀) of vessel 𝑘 converges to node 𝐽 .

The same second-order reconstruction is also adopted for the coupling between terminal vessels and 𝑅𝐶𝑅
Windkessel/single-resistance terminal elements.

The number of computational cells used in the 𝑗-th vessel of each arterial network is defined as

𝑀𝑗 = max
{︂⌈︂

𝑙𝑗
∆𝑥max

⌉︂
, 2
}︂
, (6.7)

where 𝑙𝑗 is the length of vessel 𝑗. For all numerical experiments, before setting the maximum mesh size ∆𝑥max, a
mesh convergence study of the 1D solution was first carried out in order to select a reference sufficiently accurate
1D solution for the comparison with the 0D results. The values of ∆𝑥max, which ensure a 1D mesh-independent
solution, used in the different benchmark problems are displayed, together with all other computational param-
eters for the 1D/0D simulations, in Table 3.

6.1.2. Numerical method for solving the 0D models

In parallel with the fully 1D discretization considered so far, a vascular network can also be entirely modelled
by using 0D vessels. In particular, as discussed in Section 5, in order to arrange compatible segment types into
a structure, the 0D configuration to be used for each vessel of the network has to be chosen so that inlets and
outlets of vessels converging at the 0D junctions are all coupled appropriately. Hence, we end up with just one
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Table 3. Computational parameters adopted in the 1D/0D numerical simulations for the three
arterial networks.

Parameter Aortic bif. 37-artery network ADAN56 model

Δ𝑥max 2mm 1mm 1 mm
CFL number 0.9 0.9 0.9
RK4 time step, Δ𝑡 10−3 s 10−4 s 10−4 s
Cardiac cycle, 𝑇0 1.1 s 0.827 s 1.0 s
Final time, 𝑡end 29.7 s 24.81 s 15.0 s

system of ODEs describing the dynamic of the entire network, where the single subsystems corresponding to
each vessel are not isolated, but are connected to each other via the variables prescribed at the inlets and outlets
of vessels. Indeed, pressures and/or flow rates imposed at the inlet and outlet of each vessel are defined by the
state of the adjacent vessels, in order to ensure the conservation of mass and continuity of pressure.

The resulting ODE system can be written in compact form as follows:

d𝑦(𝑡)
d𝑡

= 𝐹 (𝑡,𝑦(𝑡)), (6.8)

where 𝑦(𝑡) is the unknown vector containing the 2𝑁 state variables (𝑉𝑖(𝑡), 𝑄𝑖(𝑡)), 𝑖 = 1, . . . , 𝑁 , of the 𝑁 vessels
of the network. Then, for all numerical tests, the global ODE system (6.8) is solved using the four-step explicit
fourth-order Runge–Kutta (RK4) method, with appropriate time step to guarantee the stability of the numerical
scheme and the mesh independence of the solution (see Tab. 3 for details).

It is worth also noting that numerical experiments have shown that the restrictions on the allowable time
step ensuring the stability of RK4 method to solve the different arterial networks are the same when using linear
and nonlinear 0D models. Indeed, as can be observed from Table 3, for each arterial network we adopt the same
time step ∆𝑡 to solve both the linear and nonlinear fully 0D network configurations. Then, we conclude that the
coupling between several nonlinear 0D models is not affecting the numerical stability of the discretized model.

6.2. Error calculations

To provide a quantitative assessment of the predicted waveforms compared with the reference 1D solution
and to measure the benefit, if any, that we get by preserving certain nonlinearities of the original 1D model in
the newly derived 0D models, we introduce the following relative error metrics for pressure 𝑃 and flow rate 𝑄:

𝜀RMS
𝑃 =

⎯⎸⎸⎷ 1
𝑛

𝑛∑︁
𝑖=1

(︂
𝑃 0𝐷

𝑖 − 𝑃 1𝐷
𝑖

𝑃 1𝐷
𝑖

)︂2

, 𝜀RMS
𝑄 =

⎯⎸⎸⎷ 1
𝑛

𝑛∑︁
𝑖=1

(︃
𝑄0𝐷

𝑖 −𝑄1𝐷
𝑖

max𝑗

(︀
𝑄1𝐷

𝑗

)︀)︃2

, (6.9)

𝜀SYS
𝑃 =

max
(︀
𝑃 0𝐷

)︀
−max

(︀
𝑃 1𝐷

)︀
max(𝑃 1𝐷)

, 𝜀SYS
𝑄 =

max
(︀
𝑄0𝐷

)︀
−max

(︀
𝑄1𝐷

)︀
max(𝑄1𝐷)

, (6.10)

𝜀DIAS
𝑃 =

min
(︀
𝑃 0𝐷

)︀
−min

(︀
𝑃 1𝐷

)︀
min(𝑃 1𝐷)

, 𝜀DIAS
𝑄 =

min
(︀
𝑄0𝐷

)︀
−min

(︀
𝑄1𝐷

)︀
max(𝑄1𝐷)

, (6.11)

where 𝑖 = 1, . . . , 𝑛 are time points over the cardiac cycle at which the solution is sampled, 𝑃 0𝐷 and 𝑄0𝐷 are
0D pressure and flow, either from the nonlinear or the linear 0D models, and 𝑃 1𝐷 and 𝑄1𝐷 are 1D pressure and
flow at the midpoint of the vessel. We compare the solution obtained using 1D models sampled at this location
since this is a commonly observed variable in this research field. Other choices are possible (like, for example,
averaged quantities over the 1D domain) and would not affect the conclusions of this work (results not reported
here).
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All error metrics are calculated over a single cardiac cycle, once the numerical results are in the periodic
regime. Periodicity is defined as the distance in 𝐿∞-norm between the normalized solutions over two consecutive
cardiac cycles to be smaller than a threshold of 10−3 (pressure and cross-sectional area are normalized by the
mean pressure and mean cross-sectional area, respectively, over the cardiac cycle; flow rate is normalized by the
maximum flow over the cardiac cycle).

6.3. Convective terms

We note that we have made no assumptions yet about the contribution of the convective terms in the family
of nonlinear 0D models governed by the system of ODEs (3.11). A first insight into the role of the convective
term in the momentum balance equation of the 1D blood flow model (2.1) and its relative importance especially
with respect to the pressure term is given by the dimensional analysis of the 1D equations carried out in
Section 2.1 and, in the following, applied to the different arterial networks considered. The coefficients 𝛾𝐶 and
𝛾𝑃 characterizing the convective and pressure terms, respectively, in the nondimensional momentum balance
equation (2.14) are defined in terms of the average flow velocity 𝑈0. Since for all the arterial networks of interest
1D simulations of blood flow have been performed to obtain 1D mesh-independent solutions, the average flow
velocity 𝑈mean

1𝐷 and the maximum flow velocity 𝑈max
1𝐷 can be computed from the 1D results for each vessel of

each network. Then, from the estimated velocities, we are able to quantify the nondimensional coefficients (2.15)
and to assess the contribution and relative importance of the convective, pressure and friction terms within the
momentum equation. Values of the ratios 𝛾𝐶/𝛾𝑃 and 𝛾𝐹 /𝛾𝑃 are displayed for the aortic bifurcation, some vessels
of both the 37-artery network and ADAN56 model in Table 4. Furthermore, for the 37-artery network maximum
and mean values of the ratio 𝛾𝐶/𝛾𝑃 are

(𝛾𝐶/𝛾𝑃 )net37
max =

{︃
0.00259 if 𝑈0 = 𝑈mean

1𝐷 ,

0.00947 if 𝑈0 = 𝑈max
1𝐷 ,

(𝛾𝐶/𝛾𝑃 )net37
mean =

{︃
4.801e-04 if 𝑈0 = 𝑈mean

1𝐷 ,

0.00223 if 𝑈0 = 𝑈max
1𝐷 ,

(6.12)

where the two maximum values of 𝛾𝐶/𝛾𝑃 are found in the left anterior tibial and in the left iliac-femoral III
arteries, respectively, while for the reduced ADAN56 model we have

(𝛾𝐶/𝛾𝑃 )adan56
max =

{︃
0.00791 if 𝑈0 = 𝑈mean

1𝐷 ,

0.09804 if 𝑈0 = 𝑈max
1𝐷 ,

(𝛾𝐶/𝛾𝑃 )adan56
mean =

{︃
0.00195 if 𝑈0 = 𝑈mean

1𝐷 ,

0.02233 if 𝑈0 = 𝑈max
1𝐷 .

(6.13)

where the two maximum values of 𝛾𝐶/𝛾𝑃 are both achieved in the thoracic aorta VI.
The magnitude of these coefficient ratios clearly suggests that the pressure gradient is the dominating term

in the momentum balance equation in (2.1), with respect to the convective and the friction terms. In particular,
from Table 4 we observe that, on the one hand, the frictional losses become more and more important as we
consider vessels of consecutive generations of bifurcation further from the aortic trunk, while, on the other hand,
the pressure term is always significantly dominating over the convective component. As expected, the pressure
gradient represents the main term in the momentum balance equation, while the contribution of the convective
term turns out to be consistently smaller in all vessels of the three arterial networks.

In addition, this analysis shows that overall the ratio 𝛾𝐶/𝛾𝑃 is larger in ADAN56 model than in the 37-artery
network, suggesting that in ADAN56 model the contribution of the convective term is of greater importance.

Equipped with these findings, we conclude that the convective terms can be neglected in the family of
nonlinear 0D models derived in Section 3 according to the following two main motivations:

– the dimensional analysis performed so far shows that the pressure gradient is significantly larger with respect
to the convective term in the 1D momentum balance equation;

– the ultimate goal of our work is to apply this family of nonlinear 0D models to larger and more complex
networks of vessels, such as the global, closed-loop, multiscale model of Müller and Toro [25, 26] and the
complete ADAN model developed by Blanco et al. [4,5], in order to construct hybrid 1D–0D networks in the
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Table 4. Quantitative assessment of the relative importance of the convective, pressure and
friction terms within the momentum balance equation, by computing the ratio between coeffi-
cients 𝛾𝐶 and 𝛾𝑃 and between coefficients 𝛾𝐹 and 𝛾𝑃 , for the vessels of the aortic bifurcation,
the 37-artery network and ADAN56 model.

𝑈0 = 𝑈mean
1𝐷 𝑈0 = 𝑈max

1𝐷

Test case Vessel name 𝛾𝐶/𝛾𝑃 𝛾𝐹 /𝛾𝑃 𝛾𝐶/𝛾𝑃 𝛾𝐹 /𝛾𝑃

Aortic bifurcation
Aorta 2.537e-05 7.915e-05 0.00233 7.584e-04
Iliac artery 2.027e-05 1.214e-04 9.479e-04 8.303e-04

37-artery network

Aortic arch II 1.047e-04 2.085e-05 0.00266 1.050e-04
Thoracic aorta II 1.071e-04 7.530e-05 0.00273 3.802e-04
L subclavian I 2.199e-04 0.00174 0.00195 0.00518
R iliac-femoral II 3.344e-04 0.00393 0.00327 0.01227
L ulnar 5.963e-04 0.00734 0.00120 0.01041
R anterior tibial 7.988e-04 0.01186 0.00200 0.01878
R ulnar 6.389e-04 0.00603 0.00105 0.00775
Splenic 0.00121 0.01436 0.00223 0.01948

ADAN56 model

Aortic arch I 0.00106 8.842e-05 0.02354 4.168e-04
Thoracic aorta III 0.00249 5.660e-05 0.03793 2.209e-04
Abdominal aorta V 0.00228 3.677e-04 0.04167 0.00157
R common carotid 7.868e-04 9.420e-04 0.01311 0.00384
R renal 0.00453 0.00157 0.01482 0.00284
R common iliac 0.00224 0.00126 0.03577 0.00505
R internal carotid 0.00106 0.00324 0.00994 0.00993
R radial 0.00256 0.03949 0.01074 0.08010
R internal iliac 0.00189 0.00230 0.01100 0.00555
R posterior interosseous 0.00135 0.08253 0.00329 0.12892
R femoral II 1.271e-04 0.00247 0.03294 0.03983
R anterior tibial 0.00102 0.04334 0.01833 0.18414

attempt of facing the issues of computational efficiency and execution time. These newly derived 0D models
would then be applied not to all vessels of the network, but to small vessels where it is well-known that the
convective terms are negligible.

Finally, it is worthy to note that numerical experiments (not reported) have shown that including the convec-
tive terms into the 0D models is not a straightforward operation. Indeed, numerical difficulties arise in solving
the resulting 0D models even by using implicit methods and ODE solvers for stiff problems. We claim that
these numerical issues are not related to the instability or stiffness of the ODE systems to be solved, but that
the source of these problems lies in the fact that, according to the coupling approach described in Section 5,
the input data to be prescribed at the inlet/outlet of the vessels converging at the 0D junction are defined
by the state of their adjacent compartments, but in each 0D vessel no interaction between the input data and
internal vessel state is enforced. This coupling procedure is indeed different from the approach usually adopted
for 1D junctions, where in the Riemann problem to be solved at the 1D junction the unknown boundary state
vectors are connected not only among themselves, but also to the vessel initial condition states via non-linear
waves. As a consequence, this produces ambiguity in determining which are the correct flow rates 𝑄𝐿, 𝑄𝑅 and
cross-sections 𝐴𝐿, 𝐴𝑅 to be used in the convective terms difference originally included in (3.11).

In conclusion, dealing with convective terms in 0D blood flow models is clearly an open problem which, to the
best of our knowledge, has never been addressed in previous scientific works. Indeed, in the standard derivation
of 0D blood flow models, convective terms are commonly neglected under the assumption that the contribution
of the convective terms difference is small compared to the other terms in the momentum balance equation and
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can thus be discarded. No further discussion is found in the literature about this topic, which remains to be
further investigated.

6.4. Aortic bifurcation model

We simulate the abdominal aorta branching into the two iliac arteries using a single-bifurcation model,
consisting of a three-vessel junction [6]. Both iliac arteries are coupled to a 𝑅𝐶𝑅 Windkessel terminal element
of the rest of the systemic circulation. The geometrical and mechanical properties of this model are summarized
in Table 5. 1D/0D initial areas 𝐴(𝑥, 0)/ ̂︀𝐴(0) are computed using the tube law (2.6) with 𝑃0 = 𝑃𝑑 and 𝐴0 = 𝐴𝑑.
The inflow boundary condition 𝑄in(𝑡) is an in vivo signal taken from Xiao et al. [44] and available in the
Supporting Information of Boileau et al. [6].

For the 0D simulations, the abdominal aorta (parent vessel) is discretized using a (𝑄in, 𝑄out)-type 0D vessel,
while both iliac arteries (daughter vessels) are represented as (𝑃in, 𝑃out)-type 0D vessels. Flow rate 𝑄in at the
inlet of the parent vessel is given by the periodic inflow boundary condition; flow rate 𝑄out at the outlet of the
aorta and pressure 𝑃in at the inlet of both iliac arteries are determined by imposing the coupling conditions at
a 0D junction; pressure 𝑃out at the outlet of both parent vessels is defined by the adjacent 𝑅𝐶𝑅 Windkessel
terminal element. The computational parameters of the 1D/0D simulations are chosen according to Table 3.

Figure 4 shows a qualitative comparison of pressure and flow waveforms for the aortic bifurcation model.
We can observe that, compared to the reference 1D results, the amplitude and the shape of these waveforms
are well-captured by both the nonlinear and linear 0D results, with differences between the two 0D models
that can not be appreciated in the scale of the figures. However, the 0D solution becomes less accurate when
using the linear pressure-volume relation and constant parameters 𝐶0, 𝑅0 and 𝐿0 in the 0D simulations. This
is evident in the systolic phase of the pressure waveform, where the systolic peak corresponding to the linear
0D results is higher with respect to the reference 1D results, while the pressure peak is perfectly captured by
the nonlinear 0D model. These observations are confirmed also by the quantitative assessment. Relative errors
were determined with respect to the 1D solution and are displayed in Table 6. Relative errors for pressure and
flow rate are consistently very small, relative root mean square errors are all smaller than 0.5% for the pressure
and smaller than 1% for the flow rate. Furthermore, relative errors in the nonlinear 0D results are in general
smaller than the corresponding relative errors in the linear 0D results.

6.5. 37-artery network

We consider the arterial network presented in Matthys et al. [22], for which in vitro pressure and flow
measurements were acquired at multiple locations. This arterial tree is made up of 37 silicone vessels representing
the largest central systemic arteries of the human vascular system. For the detailed topology of the network,
the reader is referred to Matthys et al. [22]. At the inlet of the ascending aorta, the flow rate measured in vitro
is prescribed as the inflow boundary condition 𝑄in(𝑡). Terminal vessels are coupled to single-resistance terminal
models. In all vessels, initial 1D/0D cross-sectional areas 𝐴(𝑥, 0)/ ̂︀𝐴(0), corresponding to the zero initial pressure
prescribed, are computed using the tube law (2.6) with reference pressure 𝑃0 = 𝑃𝑑 = 0 and cross-sectional area
𝐴0 = 𝐴𝑑. General parameters of this arterial network are given in Table 7. For a complete set of parameters, we
refer the reader to the Supplementary Information of Boileau et al. [6]. We note that, differently from Matthys
et al. [22] and Boileau et al. [6], the 1D results we present in this work do not include vessel tapering. For
each vessel, the reference constant radius 𝑟0, from which the reference cross-sectional area 𝐴0 is computed, is
obtained as the mean value between the cross-sectional radii at the inlet and outlet of the vessel, 𝑟in and 𝑟out

respectively, given in Matthys et al. [22] and Boileau et al. [6]. We point out that this is a limitation of our
study that will be addressed in future works.

For the 0D simulations, the first vessel of the arterial network, the ascending aorta, is discretized using
a (𝑄in, 𝑄out)-type 0D vessel, terminal vessels, which are coupled to single-resistance terminal elements, are
represented as (𝑃in, 𝑃out)-type 0D vessels, while all other vessels, which are not at the extremities of the network,
are modelled as two-split (𝑃in, 𝑄out)-type 0D vessels. Results are shown for two aortic segments (aortic arch II
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Table 5. Geometrical and mechanical properties of the aortic bifurcation model.

Property Value

Blood density, 𝜌 1.060 g/cm3

Blood viscosity, 𝜇 0.04 dyne · s/cm2

Velocity profile order, 𝜁 9

Diastolic pressure, 𝑃𝑑 9.46̂ · 104 dyne/cm2

External pressure, 𝑝ext 0
Aorta Iliac

Length, 𝑙 8.6 cm 8.5 cm
Radius at diastolic pressure, 𝑟𝑑 0.86 cm 0.60 cm
Area at diastolic pressure, 𝐴𝑑 2.3235 cm2 1.1310 cm2

Wall thickness, ℎ 1.032mm 0.72 mm
Young’s modulus, 𝐸 5.0 · 106 dyne/cm2 7.0 · 106 dyne/cm2

WK resistance, 𝑅1 – 6.8123 · 102 dyne · s/cm5

WK compliance, 𝐶 – 3.6664 · 10−5 cm5/dyne
WK resistance, 𝑅2 – 3.1013 · 104 dyne · s/cm5

Outflow pressure, 𝑃out – 0

Initial cross-sectional area, 𝐴(𝑥, 0)/ ̂︀𝐴(0) 1.8062 cm2 0.94789 cm2

Initial velocity, 𝑢(𝑥, 0)/𝑈(0) 0 0
Initial pressure, 𝑝(𝑥, 0)/𝑃 (0) 0 0

and thoracic aorta II), two vessels of the first generation of bifurcations (left subclavian I and right iliac-femoral
II), two of the second generation (left ulnar and right anterior tibial) and two of the third generation (right ulnar
and splenic). Qualitative comparisons between nonlinear 0D, linear 0D and reference 1D solutions are shown
in Figure 5 for the aortic segments and in Figures 6–8 for the vessels of first, second and third generations,
respectively. Table 8 displays the relative errors computed for both nonlinear and linear 0D results with respect
to 1D results.

As expected, when we move to a more complex network, the differences between 0D and 1D results become
more significant, even when adopting the nonlinear 0D models. In Figures 5–8 we observe that, especially in the
flow waveforms, some oscillations are amplified, while other oscillations are not captured by the 0D models with
respect to the reference 1D solution. However, if we focus on the nonlinear 0D results, we can conclude that
they are quite satisfactory: overall, the predicted pressure and flow waveforms are in good agreement with the
1D results and, given the complexity of the flow to be simulated, the essential features, shape and amplitude, of
these waves are well-captured. Furthermore, from this benchmark problem we clearly see how the nonlinearity
included in the 0D models, through the nonlinear pressure-area relation and the nonlinear parameters, strongly
improves the 0D results, especially the pressure waveforms: in general, the linear 0D solution overestimates
the systolic peak in pressure, while the pressure peak reproduced by the nonlinear 0D results is much more in
agreement with the reference 1D results.

All these observations are confirmed also by the quantitative assessment presented in Table 8. Relative errors
in the nonlinear 0D results are overall smaller than the corresponding relative errors in the linear 0D results.
Indeed, when moving from the linear to the nonlinear 0D models, the RMS relative errors decrease and, in
particular, the systolic relative errors in pressure are significantly reduced, suggesting that overall the proposed
family of nonlinear 0D models is able to better reproduce pressure and flow waveforms and to capture their
essential features, such as the systolic peak of the pressure wave. Indeed, since the nonlinearity mostly enters
in the evaluation of the pressure via the nonlinear pressure-area relation, this improvement is mainly reflected
on the pressure waveforms, as expected. For the nonlinear 0D results, RMS relative errors are all smaller than
6.0% for the pressure and smaller than 15.0% for the flow rate; systolic relative errors are all smaller than 4.0%
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Figure 4. Aortic bifurcation. Comparison between 1D, nonlinear 0D and linear 0D results in
the abdominal aorta (A) and in the iliac arteries (B). 1D/Q 1D: 1D numerical solution at the
midpoint of the vessel; P 0DNL/Q 0DNL: 0D numerical solution from the nonlinear 0D models;
P 0DL/Q 0DL: 0D numerical solution from the linear 0D models.

Table 6. Aortic bifurcation. Relative errors (in %) for pressure and flow between for both
nonlinear (0D-NL) and linear (0D-L) 0D results with respect to the 1D results (1D) at the
midpoint of the vessel, computed according to the relative error metrics (6.9).

Vessel 0D model 𝜀RMS
𝑃 (%) 𝜀RMS

𝑄 (%) 𝜀SYS
𝑃 (%) 𝜀SYS

𝑄 (%) 𝜀DIAS
𝑃 (%) 𝜀DIAS

𝑄 (%)

Abdominal aorta
0D-NL 0.231 0.620 −0.027 0.424 −0.013 0.127
0D-L 0.437 0.680 0.551 0.970 −0.482 0.092

Iliac arteries
0D-NL 0.149 0.406 0.051 −0.484 0.010 0.212
0D-L 0.462 0.695 0.823 1.010 −0.458 −0.445
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Table 7. General model parameters of the 37-artery network.

Property Value

Blood density, 𝜌 1.050 g/cm3

Blood viscosity, 𝜇 0.025 dyne · s/cm2

Velocity profile order, 𝜁 9
Young’s modulus, 𝐸 1.2 · 107 dyne/cm2

Diastolic pressure, 𝑃𝑑 0
External pressure, 𝑝ext 0
Outflow pressure, 𝑃out 4.2663 · 103 dyne/cm2 (3.2mmHg)
Initial velocity, 𝑢(𝑥, 0)/𝑈(0) 0
Initial pressure, 𝑝(𝑥, 0)/𝑃 (0) 0

for the pressure and smaller than 6.0% for the flow rate, with an exception in the right iliac-femoral II artery,
where the systolic peak in the flow rate seems to be slightly overestimated.

6.6. Reduced ADAN56 model

The last benchmark model considered is a reduced version of the anatomically detailed arterial network
model developed by Blanco et al. [4,5]. This model contains the largest 56 vessels of the human arterial system,
as described in Blanco et al. [5]. General properties of this arterial model are shown in Table 9, while for the
topology of the network and a complete set of parameters, we refer the reader to Boileau et al. [6]. The inflow
boundary condition 𝑄in(𝑡), inspired from one of the inflow signals reported in Murgo et al. [27], is taken from
Boileau et al. [6]. Terminal vessels are coupled to 𝑅𝐶𝑅 Windkessel terminal elements. In the tube law (2.6),
we set 𝑃0 = 𝑃𝑑 = 105 dyne/cm2 and 𝐴0 = 𝐴𝑑, from which the 1D/0D initial cross-sectional areas 𝐴(𝑥, 0)/ ̂︀𝐴(0)
corresponding to the prescribed initial pressure are computed in all vessels. The vessel wall thickness is computed
using the following empirical expression [5]

ℎ = 𝑟0

[︁̃︀𝑎 exp(̃︀𝑏𝑟0) + ̃︀𝑐 exp(̃︀𝑑𝑟0)
]︁
, (6.14)

where 𝑟0 is the reference radius, related to 𝐴0, ̃︀𝑎 = 0.2802, ̃︀𝑏 = −5.053 cm−1, ̃︀𝑐 = 0.1324 and ̃︀𝑑 = −0.1114 cm−1.
As for the 37-artery network, also here we do not consider vessel tapering, but we assume all vessels to have
a constant reference cross-sectional area 𝐴0, related to the constant reference radius 𝑟0 computed as the mean
value between the proximal and distal radii given in Boileau et al. [6].

For the 0D simulations, the choice of the 0D vessel configurations is the same as that for the 37-artery network:
the first vessel of the arterial model, that is the first portion of the aortic arch, is of (𝑄in, 𝑄out)-type; terminal
vessels are of (𝑃in, 𝑃out)-type and coupled to 𝑅𝐶𝑅 Windkessel terminal elements; all other vessels of the network
are modelled as two-split (𝑃in, 𝑄out)-type 0D vessels. Results are shown for three aortic segments (aortic arch
I, thoracic aorta III and abdominal aorta V), three first-generation vessels (right common carotid, right renal
and right common iliac), three second-generation vessels (right internal carotid, right radial and right internal
iliac) and three third-/fourth-generation vessels (right posterior interosseous, right femoral and right anterior
tibial). Qualitative comparisons between nonlinear 0D, linear 0D and reference 1D solutions are illustrated in
Figure 9 for the aortic segments and in Figures 10–12 for the vessels of first, second and third/fourth generations,
respectively. Table 10 summarizes the relative errors computed for both nonlinear and linear 0D results with
respect to 1D results.

As for the 37-artery network considered in Section 6.5, for this arterial model we also observe that, even if
some oscillations in the pressure and flow waveforms are amplified, there is globally a good agreement between
the nonlinear 0D predicted results and the reference 1D results. Overall, pressure and flow profiles are reproduced
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Figure 5. 37-artery network. Comparison between 1D (at vessel midpoint), nonlinear 0D and
linear 0D results in two aortic segments. (A) Aortic arch II. (B) Thoracic aorta II.

with a reasonably good level of accuracy; the main features, shape and amplitude, of the waveforms are well-
captured by the nonlinear 0D models, even if the differences between 1D and 0D results are not negligible. For
instance, in Figure 12, we note that for these vessels of third and fourth generations of bifurcations the 0D
waveforms are slightly delayed to the right with respect to the 1D waves. However, once again, we note that
generally, by preserving in the 0D models adopted the nonlinearity of the original 1D model, the 0D results are
strongly improved with respect to the linear case also for this benchmark arterial network. This is quite evident
in the pressure waves, where the systolic pressure is well-reproduced by the nonlinear 0D models. There are
only few isolated cases where the linear 0D results seem to be better than the nonlinear ones, as, for example, in
the right radial artery, where from Figure 11B we can observe the systolic peak in pressure to be approximated
better by the linear 0D solution, rather than by the nonlinear 0D solution.

The quantitative assessment presented in Table 10 supports all these observations. From the linear to the
nonlinear 0D results, the RMS relative errors computed with respect to the reference 1D results are reduced,
suggesting that the nonlinear 0D models are able to better reproduce the overall dynamics of pressure and flow
rate in all vessels. Furthermore, also in this case, the systolic relative errors for pressure are confirmed to be, in
general, significantly smaller in the nonlinear 0D results with respect to the linear ones, illustrating the ability
of the nonlinear 0D models to capture and reproduced the essential features of pressure and flow waveforms.
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Figure 6. 37-artery network. Comparison between 1D (at vessel midpoint), nonlinear 0D and
linear 0D results in two first-generation vessels. (A) Left subclavian I. (B) Right iliac-femoral
II.

For the nonlinear 0D results, RMS relative errors are all smaller than 12.0% for the pressure and smaller than
18.0% for the flow rate; systolic relative errors are all smaller than 4.0% for the pressure and smaller than 10.0%
for the flow rate, with an exception in the right anterior tibial artery, where the peak in the flow rate waveform
seems to be underestimated, as confirmed by Figure 12C.

6.7. CPU times

With this work, by constructing nonlinear 0D blood flow models to replace the original 1D model in not
necessarily all, but in certain vessels of a network (according to some a priori model selection criteria), we
aim at obtaining cheap simulations of blood flow in large and highly complex vascular networks, by drastically
reducing their computational cost and execution time, while still preserving a good level of details in the results.

In Table 11 we compare the mean CPU times per cardiac cycle measured to perform the fully 1D and fully
0D (nonlinear and linear) simulations for the three arterial networks. 1D and 0D simulations were executed
in Python, running on a Linux Ubuntu 18.04 machine with Gold Intel R○ Xeon R○ 6130 processor (2.1 GHz,
3.7 GHz Turbo, 16C/32T, 10,4 GT/s 2UPI, 22 MB Cache). From Table 11, we first observe that the CPU time
gradually increases with increasing network complexity. We note that, in the fully 1D simulations, the mean
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Figure 7. 37-artery network. Comparison between 1D (at vessel midpoint), nonlinear 0D and
linear 0D results in two second-generation vessels. (A) Left ulnar. (B) Right anterior tibial.

CPU times needed to solve the 37-artery network and ADAN56 model are approximately comparable, even
if the second arterial network is larger than the first one. This observation can be justified by the fact that,
because of the very fine mesh we are using to perform the 1D mesh-independent simulations, the time step ∆𝑡,
computed according to the CFL condition, results to be smaller in the 37-artery network (∆𝑡 u 6.05e-05 s) than
in the ADAN56 model (∆𝑡 u 1.3e-04 s), thus increasing the CPU time demanded to solve the first network.
Furthermore, most importantly, the computational cost of the 0D simulations in all arterial networks is strongly
reduced by orders of magnitude with respect to the corresponding 1D simulation, while the difference between
the CPU times of nonlinear and linear 0D simulations is negligible. In Table 11, in the columns of the CPU
times corresponding to the 0D simulations, the speed-up gained when passing from the fully 1D simulation to
the fully 0D simulation (either linear or nonlinear) is also indicated between brackets, measured as the ratio
CPUtime1D/CPUtime0D. For the 37-artery network, the mean CPU time required to perform the fully 1D
simulation with mesh-independent results is about 6245.1 s, while the CPU time demanded for the nonlinear,
fully 0D simulation is significantly reduced to approximately 27.0 s, with a speed-up in the simulation of more
than 230 times. Similarly, for the reduced ADAN56 model, the fully 1D simulation with mesh-independent
results is performed with a mean CPU time of about 6492.7 s, while the CPU time demanded for the nonlinear,
fully 0D simulation is decreased to approximately 84.9 s, with a speed-up in the simulation of more than 75
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Figure 8. 37-artery network. Comparison between 1D (at vessel midpoint), nonlinear 0D and
linear 0D results in two third-generation vessels. (A) Right ulnar. (B) Splenic.

times. These results prove that the derived family of nonlinear 0D models may represent a powerful tool to
improve the computational efficiency of blood flow simulations, while still preserving and well reproducing the
main features of pressure and flow waveforms in networks of vessels. Of course, we expect this to be even more
pronounced when this methodology will be applied to more complex networks, such as the global, closed-loop,
multiscale cardiovascular model developed by Müller and Toro [25, 26], the ADAN model presented by Blanco
et al.[4, 5] and the comprehensive 1D model of the entire adult cardiovascular system reported by Mynard and
Smolich [29]. Indeed, in these networks, the number of vessels and spatial scales change drastically and, since
we expect to always use 1D models for the larger vessels, the agreement in the results and the gain in terms of
computational efficiency and execution time will be strongly improved by using hybrid 1D–0D networks.

We observe that, in many practical situations and applications, the mesh-independence of the 1D solution
may not be necessary and cheaper 1D models may be employed. In this case, the computational cost of the
fully 1D simulations would be considerably reduced with respect to that of the 1D mesh-independent model
and thus, also the speed-up obtained by adopting the 0D models would be not as relevant. However, our main
goal here is to investigate and assess the ability of the newly derived nonlinear 0D models to reproduce the
physics and physical properties of blood flow through the vessel, when compared to the original 1D model. For
this reason, it is important to have mesh-independent 1D results, to ensure that the physics of the problem
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Table 8. 37-artery network. Relative errors (in %) for pressure and flow between for both
nonlinear (0DNL) and linear (0DL) 0D results with respect to the 1D results (1D) at the
midpoint of the vessel, computed according to the relative error metrics (6.9).

Vessel 0D model 𝜀RMS
𝑃 (%) 𝜀RMS

𝑄 (%) 𝜀SYS
𝑃 (%) 𝜀SYS

𝑄 (%) 𝜀DIAS
𝑃 (%) 𝜀DIAS

𝑄 (%)

Aortic arch II
0D-NL 0.638 6.218 −0.205 5.532 0.983 7.135
0D-L 2.780 7.641 4.958 5.443 −1.568 7.967

Thoracic aorta II
0D-NL 0.868 7.803 0.308 2.543 −0.161 −6.772
0D-L 3.028 10.085 5.438 2.576 −2.150 5.367

L subclavian I
0D-NL 1.193 10.638 0.251 −4.304 0.369 −13.605
0D-L 3.114 12.584 5.610 −6.796 −2.372 −16.745

R iliac-femoral II
0D-NL 2.560 13.841 1.786 10.405 −2.846 −6.015
0D-L 6.286 20.628 8.489 11.780 −3.264 −10.194

L ulnar
0D-NL 2.839 7.199 2.401 −2.167 −1.141 −1.025
0D-L 4.653 9.115 5.924 −3.247 −4.483 −2.019

R anterior tibial
0D-NL 5.291 7.785 3.600 −1.957 −2.675 4.733
0D-L 10.635 11.526 7.854 −2.466 −8.565 0.104

R ulnar
0D-NL 2.766 8.322 1.855 0.160 −1.248 −2.766
0D-L 3.829 8.849 4.992 4.683 −3.301 −0.366

Splenic
0D-NL 1.748 4.970 0.805 −0.422 −0.584 2.417
0D-L 3.571 7.517 4.717 −0.519 −2.388 −0.251

Table 9. General parameters of the reduced ADAN56 model.

Property Value

Blood density, 𝜌 1.040 g/cm3

Blood viscosity, 𝜇 0.04 dyne · s/cm2

Velocity profile order, 𝜁 2
Young’s modulus, 𝐸 2.25 · 106 dyne/cm2

Diastolic pressure, 𝑃𝑑 105 dyne/cm2

External pressure, 𝑝ext 0
Outflow pressure, 𝑃out 0
Initial velocity, 𝑢(𝑥, 0)/𝑈(0) 0
Initial pressure, 𝑝(𝑥, 0)/𝑃 (0) 𝑃𝑑

is reproduced by the 1D model as accurately as possible. In addition, as pointed out above, we expect really
impressive improvements in terms of computational efficiency when this methodology will be applied to much
more complex networks and models, where the heterogeneity of spatial and/or temporal scales is relevant and
also non mesh-independent simulations are really expensive.

Finally, we remark that the CPU time analysis presented in this section represents a preliminary study to
get a first insight and estimate of the impact of using 0D models on the computational cost and efficiency
of the simulations. More than the single CPU time values, the 1D/0D CPU time ratios are more relevant
and informative about the speed-up obtained with respect to the reference 1D simulations. This analysis was
performed using Python as programming language. We believe that what may drastically increment/decrement
the speeds-up reported in this work is how efficiently 1D and 0D model discretizations are implemented, rather
than the specific choice of the programming language. Indeed, in the case of serial code, we expect these
ratios/speeds-up to be approximately maintained also when moving to another programming language (like
C++), even if this would not be necessarily true in the case of a parallel code implementation.
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Figure 9. ADAN56 model. Comparison between 1D (at vessel midpoint), nonlinear 0D and
linear 0D results in three aortic segments. (A) Aortic arch I. (B) Thoracic aorta III. (C) Abdom-
inal aorta V.

Figure 10. ADAN56 model. Comparison between 1D (at vessel midpoint), nonlinear 0D and
linear 0D results in three first-generation vessels. (A) Right common carotid. (B) Right renal.
(C) Right common iliac.
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Figure 11. ADAN56 model. Comparison between 1D (at vessel midpoint), nonlinear 0D and
linear 0D results in three second-generation vessels. (A) Right internal carotid. (B) Right radial.
(C) Right internal iliac.

Figure 12. ADAN56 model. Comparison between 1D (at vessel midpoint), nonlinear 0D and
linear 0D results in three third- and fourth-generation vessels. (A) Right posterior interosseous.
(B) Right femoral II. (C) Right anterior tibial.
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Table 10. ADAN56 model. Relative errors (in %) for pressure and flow between for both
nonlinear (0DNL) and linear (0DL) 0D results with respect to the 1D results (1D) at the
midpoint of the vessel, computed according to the relative error metrics (6.9).

Vessel 0D model 𝜀RMS
𝑃 (%) 𝜀RMS

𝑄 (%) 𝜀SYS
𝑃 (%) 𝜀SYS

𝑄 (%) 𝜀DIAS
𝑃 (%) 𝜀DIAS

𝑄 (%)

Aortic arch I
0D-NL 1.010 3.230 0.479 1.331 −0.361 0.808
0D-L 1.790 4.147 1.210 0.955 −1.075 −3.114

Thoracic aorta III
0D-NL 1.200 4.131 0.649 2.303 −1.332 5.122
0D-L 2.198 6.403 3.011 2.788 −1.412 8.198

Abdominal aorta V
0D-NL 1.735 9.719 1.740 −7.392 0.732 13.722
0D-L 3.447 12.800 5.656 −7.777 −0.319 16.683

R common carotid
0D-NL 1.111 6.857 1.272 6.378 −0.926 0.372
0D-L 2.081 9.335 4.937 7.623 −0.694 −1.530

R renal
0D-NL 1.281 3.211 1.230 0.118 0.398 −0.780
0D-L 2.765 5.940 4.733 3.339 −0.429 −2.143

R common iliac
0D-NL 2.119 9.885 1.522 −7.062 2.242 8.388
0D-L 3.718 13.111 5.680 −5.566 1.030 9.935

R internal carotid
0D-NL 2.268 5.845 3.489 3.459 −0.712 4.082
0D-L 3.552 8.918 7.456 5.690 −1.081 2.035

R radial
0D-NL 3.324 4.985 1.529 −3.377 0.453 11.274
0D-L 3.586 5.514 −0.319 −7.678 −0.358 13.079

R internal iliac
0D-NL 2.620 6.387 −0.204 −8.080 2.152 10.220
0D-L 4.012 8.659 3.104 −7.054 1.711 7.333

R post. inteross.
0D-NL 3.275 4.132 0.134 −1.734 0.998 −0.9951
0D-L 3.801 4.737 −2.797 −4.547 0.469 −0.155

R femoral II
0D-NL 4.888 16.954 −2.224 −7.812 6.997 −0.868
0D-L 7.103 21.109 1.012 −15.742 7.955 0.225

R anterior tibial
0D-NL 11.454 14.681 −1.044 −19.454 5.643 3.510
0D-L 14.342 17.424 −0.949 −27.568 6.699 3.128

Table 11. Comparison between mean CPU times per cardiac cycle (in seconds) of the 1D,
nonlinear 0D (0D-NL) and linear 0D (0D-L) simulations for the aortic bifurcation model, the
37-artery network and ADAN56 model. The speed-up gained in the 0D simulation (either linear
or nonlinear) with respect to the 1D simulation is also reported between brackets, measured as
the ratio CPUtime1D/CPUtime0D.

CPU time per card.cycle

Test case
1D sim. 0D-NL sim. 0D-L sim.

(speed-up) (speed-up)

Aortic bifurcation 51.251 0.400 (128.096) 0.332 (154.179)
37-artery network 6245.066 27.010 (231.215) 19.566 (339.424) 19.923 (313.455)
ADAN56 model 6492.655 84.887 (76.486) 78.486 (82.724)

6.8. Analysis of relative contributions of single nonlinear terms

In this section, we perform the analysis of the relative contributions of considering as nonlinear single com-
ponents of the 0D models (resistance, inductance and pressure-area relation) in determining pressure and flow
waveforms and in producing more accurate 0D results. Indeed, in Sections 6.5 and 6.6, we found that, for both
the 37-artery network and ADAN56 model, overall considering nonlinear pressure-area relation and nonlinear
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parameters 𝐿 and 𝑅 in the 0D blood flow models strongly improves their ability of accurately predict pressure
and flow waveforms, which are in good agreement with the reference 1D results. Here, we want to investigate and
assess the contribution to the 0D model accuracy obtained by including only a single component as nonlinear
and to compare these different possible scenarios with the previously considered ones where all components are
either linear or nonlinear.

To this aim, we performed, for both the 37-artery network and ADAN56 model, a new set of fully 0D
simulations, where in each simulation a single nonlinear term is activated in the 0D models (either the resistance
𝑅, the inductance 𝐿 or the pressure-area relation), while all the other components are kept linear. The obtained
0D results are then compared to the available fully-linear and fully-nonlinear 0D results.

Figures 13 and 14 display the error analysis carried out for the 37-artery network and ADAN56 model,
respectively. For each type of 0D model (fully-linear, with nonlinear resistance, with nonlinear inductance,
with nonlinear pressure-area relation and fully-nonlinear), the errors in the predicted 0D results are computed
with respect to the reference 1D results in the different relative error metrics (6.9). In each boxplot, errors are
compared over the entire network and in several specific vascular regions, namely the aorta, right arm and right

Figure 13. 37-artery network. Boxplots comparing the errors computed in the different relative
error metrics (6.9) with respect to the reference 1D results for (in each boxplot, from left to
right): fully-linear 0D results (all-LIN), 0D results with nonlinear resistance (NL-R), 0D results
with nonlinear inductance (NL-L), 0D results with nonlinear pressure-area relation (NL-Tl)
and fully-nonlinear 0D results (all-NL). In each boxplot, errors are compared over the entire
network (yellow) and in several specific vascular regions: aorta (blue), right arm (green) and
right leg (red). Relative errors for pressure 𝑃 are shown in the top row boxplots (from left
to right boxplots: RMS, systolic and diastolic errors), while relative errors for flow rate 𝑄 are
reported in the bottom row boxplots. In each box, the box mid-line represents the median
value, the box itself corresponds to the interquartile range (IQR), while the lines (whiskers)
extending from the box indicate the minimum and maximum values.
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Figure 14. ADAN56 model. Boxplots comparing the errors computed in the different relative
error metrics (6.9) with respect to the reference 1D results for (in each boxplot, from left to
right): fully-linear 0D results (all-LIN), 0D results with nonlinear resistance (NL-R), 0D results
with nonlinear inductance (NL-L), 0D results with nonlinear pressure-area relation (NL-Tl) and
fully-nonlinear 0D results (all-NL). In each boxplot, errors are compared in the entire network
(yellow) and in several specific vascular regions: aorta (blue), right arm (green) and right leg
(red). Relative errors for pressure 𝑃 are shown in the top row boxplots (from left to right
boxplots: RMS, systolic and diastolic errors), while relative errors for flow rate 𝑄 are reported
in the bottom row boxplots. In each box, the box mid-line represents the median value, the box
itself corresponds to the interquartile range (IQR), while the lines (whiskers) extending from
the box indicate the minimum and maximum values.

leg, to examine whether specific features of the performance of the different 0D models emerge in any of the
vascular districts considered. In all boxplots, for all error metrics, 0D model types and vascular regions, we
report the median value, the interquartile range (IQR) and the minimum and maximum values of the error
data. The IQR is computed as the difference between the 75th (upper) and 25th (lower) quartiles of each error
dataset.

From this error analysis, several observations and outcomes are worthy to be pointed out. Overall, the fully-
nonlinear scenario improves the performance of the corresponding 0D blood flow models and the accuracy of
the predicted results with respect to the fully-linear scenario; in few isolated cases, the fully-nonlinear and
fully-linear results are comparable, with no significant gain obtained when all the nonlinearities are included
in the 0D models, but also with no relevant worsening. Furthermore, when activating single nonlinear terms
in the 0D models, the nonlinear inductance 𝐿 results to be the most determining nonlinear component which
brings the major benefits to these models in terms of reduction of errors with respect to the reference 1D
solution. Indeed, the contribution of this nonlinear parameter alone is significant in accurately defining both
pressure and flow waveforms, with errors having small median values and small variability (small-sized IQR). The
nonlinear pressure-area relation also plays a considerable role in defining more accurate pressure results. This
fact is evident when looking at the boxplots for the relative systolic errors, for both arterial networks considered.
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Finally, it is worth mentioning that the main motivation for the introduction of nonlinear components, especially
the pressure-area relation, regards the application of these 0D models to situations in which large deviations
from a baseline state are to be considered, such as hypertension, an haemorrhage, a collapsed state or postural
changes. Indeed, in these non physiological conditions, the combined contribution of the nonlinear pressure-area
relation and of the nonlinear pressure-dependent parameters is expected to play an important role in accurately
predicting the corresponding haemodynamic states.

7. Concluding remarks and future work

In this paper we have extended the well-known family of lumped-parameter models for blood flow in a vas-
cular segment, in order to construct 0D models that preserve important properties of the original 1D model.
In particular, the main features characterizing these models are: (i) the nonlinearity in the pressure-area rela-
tionship and (ii) the nonlinearity in the model parameters 𝑅 and 𝐿, which depend on the average time-varying
cross-sectional area. The different 0D vessel configurations depending on the data prescribed at the inlet and
outlet of the vessel have been described; 0D junctions have been introduced to couple 0D vessels in a network.

In order to validate the newly derived family of nonlinear 0D models, fully 1D and fully 0D simulations
have been performed and compared for three different benchmark arterial networks, showing that, even if there
are discrepancies between 0D and 1D results, these nonlinear 0D models are able to capture and reproduce
the essential features of pressure and flow waveforms. Furthermore, remarkable differences between linear and
nonlinear 0D results have been observed in these physiologically normal cases and we expect that these differences
will be even more relevant when addressing large deviations from the baseline haemodynamic states, like, for
example, when simulating hypertension or haemorrhagic events.

Our ultimate goal is to construct hybrid 1D–0D networks, where certain vessels are treated 1D, while others
are modelled as 0D vessels. Indeed, our work is primarily motivated by the attempt of facing the issues of
computational efficiency and execution time, related to the modelling of blood flow in highly complex networks.
Potential applications of the proposed framework will regard for instance the ADAN model developed by Blanco
et al. [4, 5] and the global, closed-loop, multiscale mathematical model for the human cardiovascular system of
Müller and Toro [25,26]. By approximating not necessarily all, but some vessels of such complex networks with
these nonlinear 0D models, defining the different 0D vessel configurations, we expect that the computational
cost and execution time of the resulting hybrid 1D–0D vessel networks will be dramatically reduced with respect
to the fully 1D networks, even for long term simulations, and that the results will be significantly improved
with respect to the fully 0D networks, still preserving the topology of the original 1D network and without
losing any essential information with respect to the full 1D model. For this purpose, future work will include to
find relevant a priori model selection criteria to define an adaptive model selection strategy that will allow to
determine, given a network, the most suitable model to be used for each vessel of the network, either the 1D
model or the newly derived nonlinear 0D models.

Moreover, we will consider purely 0D and hybrid 1D–0D couplings in order to find appropriate coupling con-
ditions between 1D/0D vessels that do not require any restrictions on the admissible 0D vessel types converging
at a junction.

Finally, in the proposed nonlinear lumped-parameter models we will incorporate additional aspects of the
pressure-area relation, such as the viscoelastic properties of vessel walls, in order to derive more realistic and
reliable 0D models.

Appendix A. Stability analysis

A.1. First-order ordinary differential equations with periodic forcing function.

It is a well-known result that, given a linear homogeneous system of ODEs with constant coefficients, that is

d𝑥(𝑡)
d𝑡

= 𝐴𝑥(𝑡), (A.1)



NONLINEAR LUMPED-PARAMETER MODELS FOR BLOOD FLOW SIMULATIONS 1621

the stability of the exact solution of such ODE system is determined by the real part of the eigenvalues of the
coefficient matrix 𝐴. Precisely, a necessary and sufficient condition for the ODE system (A.1) to be asymptotically
stable is that all eigenvalues of 𝐴 have strictly negative real part. If this is the case, then there exist positive
constants 𝛼, 𝛽 such that ⃦⃦

𝑒𝐴𝑡
⃦⃦
≤ 𝛽𝑒−𝛼𝑡, 𝑡 ≥ 0. (A.2)

Proof of this result can be found in classical books on ordinary differential equations, see for instance [17,33].
Here, we want to prove that, when a periodic forcing function 𝑏(𝑡) is added to system (A.1) to obtain the

inhomogeneous ODE system (4.3), if the homogeneous part is asymptotically stable, then any solution of the
complete non-homogeneous system will converge to a periodic solution as 𝑡 increases. Namely, the periodic
solution of the inhomogeneous linear problem (4.3) is an attracting stable solution for the system.

The exact solution of system (4.3) obtained with the method of variation of parameters reads

𝑥(𝑡) = 𝑒𝐴𝑡𝑥0 + 𝑒𝐴𝑡

∫︁ 𝑡

0

𝑒−𝐴𝑠𝑏(𝑠) d𝑠 = 𝑒𝐴𝑡𝑥0 +
∫︁ 𝑡

0

𝑒𝐴(𝑡−𝑠)𝑏(𝑠) d𝑠, (A.3)

where 𝑥(0) = 𝑥0 and 𝑒𝐴𝑡 is the matrix exponential. Under the assumption of periodic forcing function 𝑏(𝑡), i.e.
𝑏(𝑇0) = 𝑏(0) for some period 𝑇0 > 0, we are able to obtain a particular solution of (4.3), that is its periodic
solution satisfying 𝑥(𝑇0) = 𝑥(0), by choosing appropriately the initial condition 𝑥0. By enforcing this last
condition, after straightforward calculations, we find that the initial condition 𝑥𝑃

0 which provides a periodic
solution of system (4.3) is given by

𝑥𝑃
0 =

(︀
𝐼 − 𝑒𝐴𝑇0

)︀−1
𝑒𝐴𝑇0

∫︁ 𝑇0

0

𝑒−𝐴𝑠𝑏(𝑠) d𝑠. (A.4)

At this point, we want to show that, if we start from any initial position different from the one which produces
the periodic solution, the values of the corresponding solution will converge to the values of the periodic solution
as 𝑡 increases. Let 𝑥𝑃 be the periodic solution corresponding to the initial condition 𝑥𝑃

0 and let 𝑥𝑁𝑃 be any
other solution of system (4.3) associated to some initial condition 𝑥𝑁𝑃

0 . Then, by computing the norm of the
difference between the two solutions and applying (A.2), the following inequality holds⃦⃦

𝑥𝑃 (𝑡)− 𝑥𝑁𝑃 (𝑡)
⃦⃦

=
⃦⃦
𝑒𝐴𝑡
(︀
𝑥𝑃

0 − 𝑥𝑁𝑃
0

)︀⃦⃦
≤ 𝛽𝑒−𝛼𝑡

⃦⃦
𝑥𝑃

0 − 𝑥𝑁𝑃
0

⃦⃦
, (A.5)

from which it clearly follows that 𝛽𝑒−𝛼𝑡 → 0 as 𝑡 → +∞, that is the sought result. In conclusion, if the
forcing function 𝑏(𝑡) is periodic and if the homogeneous part of system (4.3) is asymptotically stable, then the
exact solution of the original inhomogeneous problem will converge to the periodic solution of system (4.3) as
𝑡 increases, for any admissible choice of the initial condition 𝑥(0) = 𝑥0 = [𝑉 (0), 𝑄(0)]𝑇 . As a consequence, the
stability of the exact solution of the complete ODE system (4.3) is determined by the real part of the eigenvalues
of the coefficient matrix 𝐴.

A.2. First-order system of ordinary differential equations with null eigenvalue.

Here, as discussed is Section 4, we derive the additional assumption on the periodic forcing function 𝑏(𝑡),
which is needed to preserve the stability of the solution of an inhomogeneous ODE system of the form (4.3)
whose coefficient matrix 𝐴 has a null eigenvalue (and all other eigenvalues with strictly negative real part). This
assumption will ensure that the stability of the homogeneous system (which is stable, but not asymptotically
stable) is inherited also by the corresponding inhomogeneous system, namely that any solution of (4.3) for any
admissible choice of the initial condition will converge to the periodic one as 𝑡→ +∞.

This condition on the periodic forcing function is first derived in the scalar case for a single equation; then,
the obtained result is extended to the case of a system of ODEs, specifically to system (4.14) governing the
linear (𝑄in, 𝑄out)-type 0D vessel.
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A.2.1. Scalar case.

Let us start from the scalar case of a single ODE and consider the following mass conservation equation

d𝑉
d𝑡

= 𝑄in −𝑄out. (A.6)

For a scalar ODE, the coefficient matrix 𝐴 in (4.3) is reduced to a single constant coefficient 𝑎, which in the case
of the above equation is equal to zero and plays the role of the null eigenvalue of matrix 𝐴. As a consequence, the
right-hand side of equation (A.6) only depends on the scalar, periodic forcing function 𝑏(𝑡) = 𝑄in(𝑡)−𝑄out(𝑡),
where 𝑄in(𝑡) and 𝑄out(𝑡) represent the inflow entering the vessel and the outflow leaving the vessel, respectively,
and are both periodic signals with the same period 𝑇0 > 0. The exact solution of equation (A.6) is

𝑉 (𝑡) = 𝑉 (0) +
∫︁ 𝑡

0

𝑏(𝑠) d𝑠, (A.7)

with initial condition 𝑉 (0). At this point, we are interested in studying the asymptotic properties of such a
solution, namely the behaviour of 𝑉 (𝑡) as 𝑡 approaches +∞.

Let 𝑡 = 𝑛𝑇0 + 𝜏 , with 𝑛 ∈ N sufficiently large and 0 ≤ 𝜏 < 𝑇0. Then, we have

𝑉 (𝑡) = 𝑉 (𝑛𝑇0 + 𝜏) = 𝑉 (0) +
∫︁ 𝑛𝑇0+𝜏

0

𝑏(𝑠) d𝑠

= 𝑉 (0) +
∫︁ 𝑛𝑇0

0

𝑏(𝑠) d𝑠+
∫︁ 𝑛𝑇0+𝜏

𝑛𝑇0

𝑏(𝑠) d𝑠

= 𝑉 (0) + 𝑛

∫︁ 𝑇0

0

𝑏(𝑠) d𝑠+
∫︁ 𝜏

0

𝑏(𝑠) d𝑠,

(A.8)

where, in the last equality, we have used the periodicity of the forcing term 𝑏(𝑡). In the above expression of
the exact solution 𝑉 (𝑡), the initial volume 𝑉 (0) is a fixed finite quantity, the second integral,

∫︀ 𝜏

0
𝑏(𝑠) d𝑠, is also

finite, since it is the integral of a continuous periodic function over a fraction of its period [0, 𝑇0]. Therefore,
studying the asymptotic behaviour of the solution 𝑉 (𝑡), that is

lim
𝑡→+∞

𝑉 (𝑡) (A.9)

is completely equivalent to study

lim
𝑛→+∞

𝑛

∫︁ 𝑇0

0

𝑏(𝑠) d𝑠. (A.10)

We distinguish the following three cases:

lim
𝑛→+∞

𝑛

∫︁ 𝑇0

0

𝑏(𝑠) d𝑠 =

⎧⎪⎨⎪⎩
+∞ if 𝑏 > 0,
−∞ if 𝑏 < 0,
0 if 𝑏 = 0,

(A.11)

where we have set

𝑏 :=
∫︁ 𝑇0

0

𝑏(𝑠) d𝑠. (A.12)

In other words, if the integral average of the periodic forcing function 𝑏(𝑡) over its period [0, 𝑇0] is different
from zero, either positive or negative, then the solution of equation (A.6) will diverge either to +∞ or to −∞,
depending on the sign of 𝑏, as 𝑡→ +∞. On the other hand, if the integral average of 𝑏(𝑡) over its period is zero,
then any solution 𝑉 (𝑡) of (A.6) will be bounded, namely

lim
𝑡→+∞

⃒⃒
𝑉 (𝑡)

⃒⃒
< +∞ ⇐⇒ 𝑏 = 0 ⇐⇒ 1

𝑇0

∫︁ 𝑇0

0

𝑏(𝑠) d𝑠 = 0, (A.13)
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and will converge to the periodic one, that is

𝑉 (𝑛𝑇0 + 𝜏) 𝑛→+∞−−−−−→ 𝑉 (0) +
∫︁ 𝜏

0

𝑏(𝑠) d𝑠. (A.14)

We point out that this result is also physically consistent. Indeed, for equation (A.6) the condition stated in
(A.13) simply becomes

1
𝑇0

∫︁ 𝑇0

0

[𝑄in(𝑠)−𝑄out(𝑠)] d𝑠 = 0 ⇐⇒
∫︁ 𝑇0

0

𝑄in(𝑠) d𝑠 =
∫︁ 𝑇0

0

𝑄out(𝑠) d𝑠, (A.15)

which means that, in order for the volume 𝑉 (𝑡) not to constantly increase/decrease and asymptotically explode,
the inflow entering the vessel and the outflow leaving the vessel must be balanced over each period.

A.2.2. ODE system case.

Let us now extend the previous result to the case of a system of ODEs, specifically to system (4.14). For any
admissible choice of the initial conditions 𝑥0 = [𝑉 (0), 𝑄(0), 𝑉𝑑(0)]𝑇 , the general solution of (4.14) is given by
the formula in (A.3), where the constant coefficient matrix 𝐴 and the periodic forcing function 𝑏(𝑡) are

𝐴 =

⎡⎢⎢⎢⎣
0 −1 0

2
𝐶0𝐿0

−𝑅0

𝐿0
− 2
𝐶0𝐿0

0 1 0

⎤⎥⎥⎥⎦, 𝑏(𝑡) =

⎡⎢⎢⎣
𝑄in(𝑡)

0

−𝑄out(𝑡)

⎤⎥⎥⎦. (A.16)

In general, if an 𝑛 × 𝑛 matrix 𝐴 is diagonalizable, with linearly independent eigenvectors 𝑣1,𝑣2, . . . ,𝑣𝑛 and
corresponding eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑛, then, denoted by 𝑆 the matrix whose columns are the eigenvectors of
𝐴, we have

𝑆−1𝐴𝑆 =

⎡⎢⎢⎣
𝜆1 0 · · · 0
0 𝜆2 · · · 0
...

...
. . .

...
0 0 · · · 𝜆𝑛

⎤⎥⎥⎦ = 𝐷. (A.17)

The exponential of the diagonal matrix 𝐷 is easily written as

𝑒𝐷 =

⎡⎢⎢⎢⎣
𝑒𝜆1 0 · · · 0
0 𝑒𝜆2 · · · 0
...

...
. . .

...
0 0 · · · 𝑒𝜆𝑛

⎤⎥⎥⎥⎦ (A.18)

and thus, it is straightforward to check that, under the assumption that 𝐴 is diagonalizable, the corresponding
matrix exponential 𝑒𝐴𝑡 can be computed as follows

𝑒𝐴𝑡 = 𝑆

⎡⎢⎢⎢⎣
𝑒𝜆1𝑡 0 · · · 0

0 𝑒𝜆2𝑡 · · · 0
...

...
. . .

...
0 0 · · · 𝑒𝜆𝑛𝑡

⎤⎥⎥⎥⎦𝑆−1 = 𝑆𝑒𝐷𝑡𝑆−1. (A.19)

Then, by introducing the above result in (A.3), the exact solution of an inhomogeneous ODE system of the
form (4.3) with diagonalizable coefficient matrix 𝐴 can be reformulated as

𝑥(𝑡) =
(︀
𝑆𝑒𝐷𝑡𝑆−1

)︀
𝑥0 +

∫︁ 𝑡

0

(︁
𝑆𝑒𝐷(𝑡−𝑠)𝑆−1

)︁
𝑏(𝑠) d𝑠, (A.20)
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As observed at the beginning of this paragraph, if the coefficient matrix 𝐴 has a zero eigenvalue and all
other eigenvalues with strictly negative real part, then the homogeneous part of system (4.3) is stable, but
not asymptotically stable, with an attractive line of equilibrium points. Therefore, to study the asymptotic
properties of the exact solution of the inhomogeneous system (4.3) obtained by introducing a periodic forcing
function 𝑏(𝑡), we have to focus on the integral term in (A.20), to study its behaviour as 𝑡 tends to +∞. We set

̃︀𝑆(𝑡) := 𝑆𝑒𝐷𝑡𝑆−1. (A.21)

By restricting to the order 𝑛 = 3 of the coefficient matrix of system (4.14), after straightforward calculations,
we get that the 𝑖th component of the integrand vector function in (A.20), obtained by multiplying the 𝑖th row
of matrix ̃︀𝑆 by the vector forcing function 𝑏(𝑡) and using the fact that 𝜆1 = 0, is given by(︁ ̃︀𝑆(𝑡− 𝑠)

)︁
𝑖
𝑏(𝑠)

=
3∑︁

𝑗=1

(︁ ̃︀𝑆(𝑡− 𝑠)
)︁

𝑖𝑗
𝑏𝑗(𝑠)

=
1
|𝑆|

[︁
(𝑣22𝑣33 − 𝑣23𝑣32)𝑣1𝑖 + (𝑣23𝑣31 − 𝑣21𝑣33)𝑣2𝑖𝑒

𝜆2(𝑡−𝑠) + (𝑣21𝑣32 − 𝑣22𝑣31)𝑣3𝑖𝑒
𝜆3(𝑡−𝑠)

]︁
𝑏1(𝑠)

+
1
|𝑆|

[︁
(𝑣13𝑣32 − 𝑣12𝑣33)𝑣1𝑖 + (𝑣11𝑣33 − 𝑣13𝑣31)𝑣2𝑖𝑒

𝜆2(𝑡−𝑠) + (𝑣12𝑣31 − 𝑣11𝑣32)𝑣3𝑖𝑒
𝜆3(𝑡−𝑠)

]︁
𝑏2(𝑠)

+
1
|𝑆|

[︁
(𝑣12𝑣23 − 𝑣13𝑣22)𝑣1𝑖 + (𝑣13𝑣21 − 𝑣11𝑣23)𝑣2𝑖𝑒

𝜆2(𝑡−𝑠) + (𝑣11𝑣22 − 𝑣12𝑣21)𝑣3𝑖𝑒
𝜆3(𝑡−𝑠)

]︁
𝑏3(𝑠)

(A.22)

with |𝑆| = det(𝑆), for 𝑖 = 1, . . . , 3. As both eigenvalues 𝜆2,3 have strictly negative real part, the presence of the
exponential factors 𝑒𝜆2𝑡 and 𝑒𝜆3𝑡 ensures the convergence of the corresponding terms as 𝑡→ +∞, independently
of any assumption on the periodic forcing function 𝑏(𝑡). On the other hand, since 𝑒𝜆1𝑡 = 𝑒0 = 1 for any 𝑡 ≥ 0,
when integrating the corresponding terms without decaying exponential factor, namely∫︁ 𝑡

0

𝑣1𝑖

|𝑆|
[(𝑣22𝑣33 − 𝑣23𝑣32)𝑏1(𝑠) + (𝑣13𝑣32 − 𝑣12𝑣33)𝑏2(𝑠) + (𝑣12𝑣23 − 𝑣13𝑣22)𝑏3(𝑠)] d𝑠 (A.23)

for 𝑖 = 1, . . . , 3, we need to introduce additional assumptions on the periodic forcing function 𝑏(𝑡) in order for
the above integral terms, and hence the solution of system (4.14), not to explode as 𝑡→ +∞.

As done in the scalar case, let 𝑡 = 𝑛𝑇0 + 𝜏 , with 𝑛 ∈ N sufficiently large and 0 ≤ 𝜏 < 𝑇0. Then, using explicit
expressions of the components of 𝑏(𝑡) given in (A.16), we have that the integral in (A.23) can be rewritten as
follows

𝑣1𝑖

|𝑆|

∫︁ 𝑛𝑇0+𝜏

0

[𝛼1𝑄in(𝑠)− 𝛼2𝑄out(𝑠)] d𝑠, for 𝑖 = 1, . . . , 3, (A.24)

where we have set
𝛼1 := (𝑣22𝑣33 − 𝑣23𝑣32), 𝛼2 := (𝑣12𝑣23 − 𝑣13𝑣22). (A.25)

If we discard the multiplicative factor 𝑣1𝑖

|𝑆| , where 𝑣1𝑖 is the 𝑖th element of the eigenvector 𝑣1 associated to the
null eigenvalue 𝜆1, for all the three components of the solution of system (4.14) we obtain the same integral,
which, by exploiting the periodicity of 𝑄in(𝑡) and 𝑄out(𝑡), becomes∫︁ 𝑛𝑇0+𝜏

0

[𝛼1𝑄in(𝑠)− 𝛼2𝑄out(𝑠)] d𝑠 = 𝑛

∫︁ 𝑇0

0

[𝛼1𝑄in(𝑠)− 𝛼2𝑄out(𝑠)] d𝑠+
∫︁ 𝜏

0

[𝛼1𝑄in(𝑠)− 𝛼2𝑄out(𝑠)] d𝑠. (A.26)

The second integral in the above expression is finite, since it is the integral of the linear combination of two
continuous, periodic functions, with the same period [0, 𝑇0], over a fraction of their period. Then, by means of
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the same procedure used in the previous scalar case, also here we can observe that, in order for each component
of the solution of system (4.14) not to diverge either to +∞ or to −∞ as 𝑡→ +∞, namely

lim
𝑡→+∞

|𝑥𝑖(𝑡)| < +∞ for 𝑖 = 1, . . . , 3, (A.27)

and to converge to the periodic solution, a necessary and sufficient condition is∫︁ 𝑇0

0

[𝛼1𝑄in(𝑠)− 𝛼2𝑄out(𝑠)] d𝑠 = 0 ⇐⇒ 𝛼1

∫︁ 𝑇0

0

𝑄in(𝑠) d𝑠 = 𝛼2

∫︁ 𝑇0

0

𝑄out(𝑠) d𝑠. (A.28)

We recall that this result is strictly valid only in the case where the coefficient matrix 𝐴 is diagonalizable and,
from linear algebra, it is well-known that an 𝑛×𝑛 matrix is diagonalizable if it has 𝑛 independent eigenvectors,
which is true, for example, when the matrix has 𝑛 distinct eigenvalues.

It is easy to check that the matrix 𝐴 of system (4.14) given in (A.16) is diagonalizable in both cases ∆ > 0
and ∆ < 0, described in (4.15). If ∆ > 0, matrix 𝐴 has three real and distinct eigenvalues

𝜆1 = 0, 𝜆2,3 = − 𝑅0

2𝐿0
±
√

∆
2

(A.29)

and corresponding set of linearly independent eigenvectors

𝑣1 =

⎡⎢⎢⎣
1

0

1

⎤⎥⎥⎦, 𝑣2 =

⎡⎢⎢⎣
1(︃

𝑅0

2𝐿0
+
√

∆
2

)︃
−1

⎤⎥⎥⎦, 𝑣3 =

⎡⎢⎢⎣
1(︃

𝑅0

2𝐿0
−
√

∆
2

)︃
−1

⎤⎥⎥⎦; (A.30)

while, if ∆ < 0, matrix 𝐴 has three distinct eigenvalues, one equal to zero and the other two complex and
conjugate, given by

𝜆1 = 0, 𝜆2,3 = − 𝑅0

2𝐿0
± 𝑖

√
−∆
2

(A.31)

and corresponding set of linearly independent eigenvectors

𝑣1 =

⎡⎢⎢⎣
1

0

1

⎤⎥⎥⎦, 𝑣2 =

⎡⎢⎢⎣
1(︂

𝑅0

2𝐿0
+ 𝑖

√
−∆
2

)︂
−1

⎤⎥⎥⎦, 𝑣3 =

⎡⎢⎢⎣
1(︂

𝑅0

2𝐿0
− 𝑖

√
−∆
2

)︂
−1

⎤⎥⎥⎦. (A.32)

Equipped with explicit expressions of the eigenvectors of the coefficient matrix 𝐴, we can then compute factors
𝛼1 and 𝛼2 given in (A.25) and defining the linear combination between the inflow function 𝑄in(𝑡) and the
outflow function 𝑄out(𝑡) in the integral (A.28). We obtain

𝛼1 = 𝛼2 =

{︃
−
√

∆, if ∆ > 0,
−𝑖
√
−∆, if ∆ < 0,

(A.33)

so that condition (A.28) on the periodic forcing function 𝑏(𝑡) simply becomes∫︁ 𝑇0

0

[𝑄in(𝑠)−𝑄out(𝑠)] d𝑠 = 0 ⇐⇒
∫︁ 𝑇0

0

𝑄in(𝑠) d𝑠 =
∫︁ 𝑇0

0

𝑄out(𝑠) d𝑠, (A.34)

which is exactly the same physically consistent condition found in the scalar case to get asymptotically the
periodic solution.
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