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A FAST SECOND-ORDER DISCRETIZATION SCHEME FOR THE LINEARIZED
GREEN-NAGHDI SYSTEM WITH ABSORBING BOUNDARY CONDITIONS

Gang Pang1,*, Songsong Ji2 and Xavier Antoine3

Abstract. In this paper, we present a fully discrete second-order finite-difference scheme with fast eval-
uation of the convolution involved in the absorbing boundary conditions to solve the one-dimensional
linearized Green-Naghdi system. The Padé expansion of the square-root function in the complex plane
is used to implement the fast convolution. By introducing a constant damping parameter into the
governing equations, the convergence analysis is developed when the damping term fulfills some con-
ditions. In addition, the scheme is stable and leads to a highly reduced computational cost and low
memory storage. A numerical example is provided to support the theoretical analysis and to illustrate
the performance of the fast numerical scheme.
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1. Introduction

Under the effect of the gravity, the motion of an irrotational and incompressible fluid is described by the
free-surface Euler equations. Because of the complexity of this system, asymptotic models for the water wave
problem [19] were developed over the years. In particular, the Green-Naghdi model [13] includes the dispersive
effects and writes in the two-dimensional space as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐻𝑡 + div
(︁
𝐻𝑈⃗

)︁
= 0,(︁

𝐻𝑈⃗
)︁

𝑡
+ div

(︁
𝐻𝑈⃗ ⊗ 𝑈⃗ + 𝑝𝐼

)︁
= 0,

𝑝 =
𝑔𝐻2

2
+

1
3
𝐻2𝐻̈, x ∈ R2, 𝑡 > 0.

(1.1)

In the above notations, we designate by 𝐻 the fluid depth and by 𝑈⃗ the depth-averaged horizontal velocity,
(𝑣)𝑡 stands for the derivation of 𝑣 with respect to the time variable 𝑡 and 𝑣̇ is the material derivative. System
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(1.1) describes the bidirectional propagation of dispersive water waves in the shallow water regime [19]. A
one-dimensional simplification of (1.1), linearized around the steady state (𝐻,𝑢) := (𝐻0, 0) + (𝑢1, 𝑢2), with
|(𝑢1, 𝑢2)| ≪ 1, can be derived as the one-dimensional linearized Green-Nagdhi (GN) system [18]⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑢1)𝑡 + (𝑢2)𝑥 = 0,

(𝑢2)𝑡 + (𝑢1)𝑥 = 𝜅(𝑢2)𝑥𝑥𝑡, 𝑥 ∈ R, 𝑡 > 0,

𝑢1(𝑥, 0) = 𝑢1(𝑥), 𝑢2(𝑥, 0) = 𝑢2(𝑥), 𝑥 ∈ R,

lim|𝑥|→+∞ 𝑢1(𝑥, 𝑡) = 0, lim|𝑥|→+∞ 𝑢2(𝑥, 𝑡) = 0, 𝑡 > 0.

(1.2)

Since (1.2) is set in an unbounded domain, then suitable boundary conditions need to be introduced to get
a finite spatial computational domain in view of a discretization. This problem is well-known in the literature
and fits into the framework of designing Absorbing Boundary Conditions (ABCs) and Perfectly Matched Layers
(when a fictitious layer is added) for systems of PDEs. We refer to [4, 8, 14, 26] for overviews of the various
approaches that can be used, their pros/cons and the related discretization aspects and computational difficulties
that are met. For the GN system (1.2), a major contribution has been recently achieved by Kazakova and Noble
in [18]. In this work, exact ABCs for the fully discrete system of linearized Green-Naghdi equations (1.2) was
proposed on staggered grids and the stability of the exact ABCs was proved. Nevertheless, and similarly to
the one-dimensional linear Schrödinger equation, these absorbing boundary conditions require the expensive
evaluation of nonlocal time convolution-type operators at the fictitious boundary points that lead to prohibitive
computational costs and memory storage, in particular for long time computations. In addition, instabilities may
arise if the evaluation of the ABCs through the 𝒵-transform is not carefully implemented (see e.g. [1,9,17,23,27]
for some examples).

Probably the most emblematic linear dispersive PDE analyzed in the literature for constructing ABCs is the
Schrödinger equation. The first scheme with ABCs was introduced by Baskakov and Popov [11] for computational
acoustics based on the parabolic equation. It is now well-known that the resulting scheme with ABCs suffered
from stability issues [4]. Since then, many developments allowed to solve numerous problems related to the
one-dimensional case [2, 4, 5, 8, 9, 12, 16, 17], and extensions of some of the methods were proposed for higher-
dimensional and nonlinear problems [3, 6, 7, 10, 15, 20, 23]. In addition, some of these contributions also include
the numerical analysis of the schemes and the derivation of fast and stable evaluation schemes of the nonlocal
half-order time derivative operator arising in the definition of the ABCs. The case of the GN system remains
much less studied [18] and therefore requires still more understanding. The aim of the present paper is to
contribute to the development of ABCs for (1.2) by deriving alternative efficient formulations, and to carefully
analyze the convergence of the fully discrete scheme.

To this end, we consider the recent approach introduced by Li et al. [21] for the one-dimensional Schrödinger
equation and extend it to the GN system (1.2). More precisely, to overcome the numerical instability, a con-
vergent numerical method, integrating a fast evaluation of the exact ABC, is proposed for solving the Cauchy
problem (1.2). To this end, the GN system is first reformulated in Section 2 under an equivalent form by
introducing a constant damping term, and then a modified Crank–Nicolson scheme is built in Section 3 to
discretize the equivalent problem according to the time variable. More specifically, a semi-discrete ABC for the
temporally discretized problem is derived for the Crank–Nicolson scheme based on the 𝒵-transform. Then, a
second-order finite difference-scheme for the full spatial discretization is considered. A fast algorithm is intro-
duced in Section 4 to approximate the discrete convolution kernel involved in the exact semi-discrete ABC by
using the Padé rational expansion of the square-root function [22]. The damping parameter and the number of
Padé terms are chosen to maintain the convergence order of the resulting discrete scheme [21]. In Section 5, a
convergence analysis for the proposed numerical method is developed, showing that the scheme is second-order
both in space and time. A numerical example illustrates the properties of the scheme in Section 6. Section 7
finally concludes the paper.
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2. Exact ABCs for the one-dimensional linearized Green-Naghdi system

We consider the initial-value problem for the linearized GN system set on the whole space

𝜕𝑡𝑢1(𝑥, 𝑡) + 𝜕𝑥𝑢2(𝑥, 𝑡) = 0,

𝜕𝑡𝑢2(𝑥, 𝑡) + 𝜕𝑥𝑢1(𝑥, 𝑡) = 𝜅𝜕𝑥𝑥𝑡𝑢2(𝑥, 𝑡), ∀𝑥 ∈ R, ∀ 𝑡 > 0,

𝑢1(𝑥, 0) = 𝑢1(𝑥), 𝑢2(𝑥, 0) = 𝑢2(𝑥), ∀𝑥 ∈ R,

lim
|𝑥|→+∞

𝑢1(𝑥, 𝑡) = 0, lim
|𝑥|→+∞

𝑢2(𝑥, 𝑡) = 0, ∀ 𝑡 > 0.

(2.1)

Let us introduce the new unknown functions: 𝑣𝑖(𝑥, 𝑡) = 𝑒−𝜎𝑡𝑢𝑖(𝑥, 𝑡), 𝑖 = 1, 2, where 𝜎 > 0 is a parameter used
to later control the stability of the fast algorithm. It is straightforward to check that the function 𝑣𝑖(𝑥, 𝑡) solves
the following initial-value problem:

𝜕𝑡𝑣1(𝑥, 𝑡) + 𝜎𝑣1(𝑥, 𝑡) + 𝜕𝑥𝑣2(𝑥, 𝑡) = 0,

𝜕𝑡𝑣2(𝑥, 𝑡) + 𝜎𝑣2(𝑥, 𝑡) + 𝜕𝑥𝑣1(𝑥, 𝑡) = 𝜅𝜕𝑥𝑥(𝜕𝑡𝑣2(𝑥, 𝑡) + 𝜎𝑣2(𝑥, 𝑡)), ∀𝑥 ∈ R, ∀ 𝑡 > 0,

𝑣1(𝑥, 0) = 𝑢1(𝑥), 𝑣2(𝑥, 0) = 𝑢2(𝑥), ∀𝑥 ∈ R,

lim
|𝑥|→+∞

𝑣1(𝑥, 𝑡) = 0, lim
|𝑥|→+∞

𝑣2(𝑥, 𝑡) = 0, ∀ 𝑡 > 0.

(2.2)

To obtain exact ABCs for (2.2), we first consider the following exterior problem on the semi-infinite interval
[𝑥+, +∞):

𝜕𝑡𝑣1(𝑥, 𝑡) + 𝜎𝑣1(𝑥, 𝑡) + 𝜕𝑥𝑣2(𝑥, 𝑡) = 0, (2.3a)
𝜕𝑡𝑣2(𝑥, 𝑡) + 𝜎𝑣2(𝑥, 𝑡) + 𝜕𝑥𝑣1(𝑥, 𝑡) = 𝜅𝜕𝑥𝑥(𝜕𝑡𝑣2(𝑥, 𝑡) + 𝜎𝑣2(𝑥, 𝑡)), ∀𝑥 ∈ [𝑥+, +∞), ∀ 𝑡 > 0, (2.3b)
𝑣1(𝑥, 0) = 0, 𝑣2(𝑥, 0) = 0, ∀𝑥 ∈ [𝑥+, +∞), (2.3c)

lim
𝑥→+∞

𝑣1(𝑥, 𝑡) = 0, lim
𝑥→+∞

𝑣2(𝑥, 𝑡) = 0, ∀𝑡 > 0. (2.3d)

The Laplace transform in time (denoted by ̂︀𝑣(𝑠) for a function 𝑣(𝑡)) of system (2.3) yields

(𝑠 + 𝜎)̂︀𝑣1(𝑥, 𝑠) + 𝜕𝑥̂︀𝑣2(𝑥, 𝑠) = 0, (2.4)
(𝑠 + 𝜎)̂︀𝑣2(𝑥, 𝑠) + 𝜕𝑥̂︀𝑣1(𝑥, 𝑠) = 𝜅(𝑠 + 𝜎)𝜕𝑥𝑥̂︀𝑣2(𝑥, 𝑠), ∀𝑥 ∈ [𝑥+,∞), ∀ 𝑠 ∈ C+, (2.5)

lim
𝑥→+∞

̂︀𝑣1(𝑥, 𝑠) = 0, lim
𝑥→+∞

̂︀𝑣2(𝑥, 𝑠) = 0, ∀ 𝑠 ∈ C+, (2.6)

where C+ stands for the right half-space of complex numbers with positive real part. After some manipulations,
one has: (𝑠 + 𝜎)2̂︀𝑣2(𝑥, 𝑠) = (𝜅(𝑠 + 𝜎)2 + 1)𝜕𝑥𝑥̂︀𝑣2(𝑥, 𝑠), 𝑖 = 1, 2, which means that the general solution writes

̂︀𝑣2(𝑥, 𝑠) = 𝑐1(𝑠) exp
(︁
−𝑥
√︀

S(𝑠)
)︁

+ 𝑐2(𝑠) exp
(︁
𝑥
√︀

S(𝑠)
)︁
, (2.7)

where
√
· denotes the square-root with nonnegative real part and

S(𝑠) :=
(𝑠 + 𝜎)2

1 + 𝜅(𝑠 + 𝜎)2
· (2.8)

The behavior of the wave at infinity (2.6) implies that 𝑐2(𝑠) = 0. By differentiating (2.7), we obtain

𝜕𝑥̂︀𝑣2(𝑥, 𝑠) = −
√︀

S(𝑠) ̂︀𝑣2(𝑥, 𝑠), ∀𝑥 ∈ [𝑥+, +∞), ∀ 𝑠 ∈ C+, (2.9)

whose inverse Laplace transform yields an exact absorbing boundary condition for 𝑣2 at 𝑥+

(T * 𝑣2)(𝑥+, 𝑡) := −ℒ−1
[︁√︀

S(𝑠) ̂︀𝑣2(𝑥+, 𝑠)
]︁
(𝑡) = 𝜕𝑥𝑣2(𝑥+, 𝑡), ∀ 𝑡 > 0. (2.10)
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In (2.10), ℒ−1 denotes the inverse Laplace transform with respect to the variable 𝑠 and we have

(T * 𝑣2(𝑥+, ·))(𝑡) =
∫︁ 𝑡

0

T(𝑡− 𝑠)𝑣2(𝑥+, 𝑠) d𝑠.

A similar boundary condition can be derived at a left point 𝑥− < 𝑥+:

(T * 𝑣2)(𝑥−, 𝑡) + 𝜕𝑥𝑣2(𝑥−, 𝑡) = 0, ∀ 𝑡 > 0. (2.11)

These boundary conditions degenerate to the boundary conditions of the wave equation when 𝜅 → 0.
In view of (2.10) and (2.11), the solution of (2.2) is the same as the solution of the following problem in the

bounded domain (𝑥−, 𝑥+)

𝜕𝑡𝑣1(𝑥, 𝑡) + 𝜎𝑣1(𝑥, 𝑡) + 𝜕𝑥𝑣2(𝑥, 𝑡) = 0,

𝜕𝑡𝑣2(𝑥, 𝑡) + 𝜎𝑣2(𝑥, 𝑡) + 𝜕𝑥𝑣1(𝑥, 𝑡) = 𝜅𝜕𝑥𝑥(𝜕𝑡𝑣2(𝑥, 𝑡) + 𝜎𝑣2(𝑥, 𝑡)), ∀𝑥 ∈ (𝑥−, 𝑥+), ∀ 𝑡 > 0,

(T * 𝑣2)(𝑥±, 𝑡) = 𝜕𝜈𝑣2(𝑥±, 𝑡), ∀ 𝑡 > 0,

𝜕𝑡𝑣1(𝑥±, 𝑡) + 𝜎𝑣1(𝑥±, 𝑡)± 𝜕𝜈𝑣2(𝑥±, 𝑡) = 0,

𝑣1(𝑥, 0) = 𝑢1(𝑥), 𝑣2(𝑥, 0) = 𝑢2(𝑥), ∀𝑥 ∈ [𝑥−, 𝑥+],

(2.12)

where 𝜕𝜈 denotes the outward normal derivative at the boundary points 𝑥±.

3. Discretization of the one-dimensional GN system with exact semi-discrete
ABC

In this section, we discretize the one-dimensional linearized Green-Naghdi system in time by using the Crank–
Nicolson scheme and derive an associated exact semi-discrete ABC. Then, we propose a second-order finite-
difference scheme for the spatial discretization. To this end, we first introduce the notations related to the
𝒵-transform in the following subsection.

3.1. The 𝒵-transform of a sequence of functions

Let us consider a Hilbert space ℋ equipped with an inner product (·, ·)ℋ and induced norm ‖ · ‖ℋ. We
introduce the semi-infinite sequence spaces:

ℓ2(ℋ) =

⎧⎨⎩𝑢 = {𝑢𝑛}∞𝑛=0 : 𝑢𝑛 ∈ ℋ, ‖𝑢‖ℓ2(ℋ) ≡

(︃ ∞∑︁
𝑛=0

|𝑢𝑛|2
)︃ 1

2

< ∞

⎫⎬⎭, (3.1)

and
ℓ20(ℋ) =

{︀
𝑢 = {𝑢𝑛}∞𝑛=0 ∈ ℓ2(ℋ) : 𝑢0 = 0

}︀
, (3.2)

with the inner product: (𝑢, 𝑣)ℓ2(ℋ) ≡
∑︀∞

𝑛=0(𝑢𝑛, 𝑣𝑛)ℋ, ∀𝑢, 𝑣 ∈ ℓ2(ℋ). For any element 𝑢 = {𝑢𝑛}∞𝑛=0 ∈ ℓ2(ℋ), we
define its 𝒵-transform as ̃︀𝑢(𝑧) =

∑︀∞
𝑛=0 𝑢𝑛𝑧𝑛. The following Parseval’s identity holds:

(𝑢, 𝑣)ℓ2(ℋ) =
∫︁

𝜕D
(̃︀𝑢(𝑧), ̃︀𝑣(𝑧))ℋ 𝜈(d𝑧), ∀𝑢, 𝑣 ∈ ℓ2(ℋ). (3.3)

In the above, 𝜈 stands for the normalized Haar measure on the unit circle 𝜕D of the complex plane, and
𝜈(d𝑧) = 1

2𝜋 d𝜃 through the change of variable 𝑧 = 𝑒𝑖𝜃, with 𝜃 ∈ [−𝜋, 𝜋).
For a sequence 𝑢 = {𝑢𝑛}∞𝑛=0 ∈ ℓ2(ℋ), we define the operator 𝑆 by: 𝑆𝑢 = {𝑢𝑛+1}∞𝑛=0. The average operator

𝐸 and the forward difference quotient operator 𝐷𝜏 with step 𝜏 are given by 𝐸 = (𝑆 + 𝐼)/2 and 𝐷𝜏 = (𝑆− 𝐼)/𝜏 ,
respectively. We also introduce the following notations: 𝑆𝑢𝑛 = (𝑆𝑢)𝑛, 𝐸𝑢𝑛 = (𝐸𝑢)𝑛 and 𝐷𝜏𝑢𝑛 = (𝐷𝜏𝑢)𝑛.



SECOND-ORDER DISCRETIZATION SCHEME FOR THE LINEARIZED GN SYSTEM WITH ABCS 1691

3.2. Exact ABCs for the semi-discretized one-dimensional linearized GN system

Let 𝜏 > 0 be the uniform time step such that 𝑁𝜏 = 𝑇 = 𝑡𝑁 , with 𝑇 the maximal time of computation. Let
us set the discrete times as: 𝑡𝑛 = 𝑛𝜏 , 0 ≤ 𝑛 ≤ 𝑁 . System (2.2) is semi-discretized in time following

(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
1 (𝑥) + 𝜕𝑥𝐸𝑣𝑛

2 (𝑥) = 0,

(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
2 (𝑥) + 𝜕𝑥𝐸𝑣𝑛

1 (𝑥) = 𝜅𝜕𝑥𝑥(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
2 (𝑥), ∀𝑥 ∈ R, ∀𝑛 ≥ 0,

𝑣0
1(𝑥) = 𝑢1(𝑥), 𝑣0

2(𝑥) = 𝑢2(𝑥), ∀𝑥 ∈ R,

lim
|𝑥|→+∞

𝑣𝑛
1 (𝑥) = 0, lim

|𝑥|→+∞
𝑣𝑛
2 (𝑥) = 0, ∀𝑛 ≥ 1,

(3.4)

where 𝑣𝑛
𝑖 (𝑥) ≈ 𝑣𝑖(𝑥, 𝑡𝑛), for 𝑖 = 1, 2. We now assume that the initial data 𝑢1 and 𝑢2 are compactly supported

in the interval [𝑥−, 𝑥+]. On [𝑥+, +∞), the semi-discrete problem (3.4) reduces to

(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
1 (𝑥) + 𝜕𝑥𝐸𝑣𝑛

2 (𝑥) = 0,

(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
2 (𝑥) + 𝜕𝑥𝐸𝑣𝑛

1 (𝑥) = 𝜅𝜕𝑥𝑥(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
2 (𝑥), ∀𝑥 ∈ [𝑥+, +∞), ∀𝑛 ≥ 0,

𝑣0
1(𝑥) = 0, 𝑣0

2(𝑥) = 0, ∀𝑥 ∈ [𝑥+, +∞),
lim

𝑥→+∞
𝑣𝑛
1 (𝑥) = 0, lim

𝑥→+∞
𝑣𝑛
2 (𝑥) = 0, ∀𝑛 ≥ 1.

(3.5)

Let us denote by ̃︀𝑢(𝑥, 𝑧) the 𝒵-transform of the sequence {𝑢𝑛(𝑥)}∞𝑛=0. Applying the 𝒵-transform to (3.5), we
obtain

(2− 2𝑧 + 𝜎𝜏(1 + 𝑧))2

𝜏2(1 + 𝑧)2 + 𝜅(2− 2𝑧 + 𝜎𝜏(1 + 𝑧))2
̃︀𝑣2(𝑥, 𝑧)− 𝜕𝑥𝑥̃︀𝑣2(𝑥, 𝑧) = 0, ∀𝑥 ∈ [𝑥+, +∞),

lim
𝑥→+∞

̃︀𝑣2(𝑥, 𝑧) = 0,

with general solution ̃︀𝑣2(𝑥, 𝑧) = ̃︀𝑐1 exp
(︁
−𝑥
√︀

𝑠(𝑧)
)︁

+ ̃︀𝑐2 exp
(︁
𝑥
√︀

𝑠(𝑧)
)︁

, setting, for all 𝜏 > 0 and 𝜎 > 0,

𝑠(𝑧) =
(2− 2𝑧 + 𝜎𝜏(1 + 𝑧))2

𝜏2(1 + 𝑧)2 + 𝜅(2− 2𝑧 + 𝜎𝜏(1 + 𝑧))2
= S

(︂
2(1− 𝑧)
𝜏(1 + 𝑧)

)︂
· (3.6)

The condition at infinity, i.e. lim𝑥→+∞ ̃︀𝑣2(𝑥, 𝑧) = 0, implies that ̃︀𝑐2 = 0, leading to

𝜕𝑥̃︀𝑣2(𝑥+, 𝑧) = −
√︀

𝑠(𝑧)̃︀𝑣2(𝑥+, 𝑧), ∀𝑧 ∈ D, (3.7)

which corresponds to the semi-discretization of (2.9) at 𝑥 = 𝑥+. Note that the functioñ︀𝒯 (𝑧) = −
√︀

𝑠(𝑧) (3.8)

is analytic in the unit disk D. Thus, it admits a power series expansion

̃︀𝒯 (𝑧) =
∞∑︁

𝑗=0

𝒯𝑗𝑧
𝑗 , ∀ 𝑧 ∈ D. (3.9)

Substituting (3.9) and ̃︀𝑣2(𝑥, 𝑧) =
∑︀∞

𝑛=0 𝑣𝑛
2 (𝑥)𝑧𝑛 into (3.7) yields an exact absorbing boundary condition for

(3.4) at the right fictitious boundary point 𝑥 = 𝑥+:

(𝒯 *𝑣2)𝑛(𝑥+)− 𝜕𝑥𝑣𝑛
2 (𝑥+) = 0, ∀𝑛 ≥ 0, (3.10)

where 𝒯 * is the convolution quadrature operator corresponding to the symbol ̃︀𝒯 (𝑧), namely,

(𝒯 *𝑣2)𝑛 =
𝑛∑︁

𝑗=0

𝒯𝑗𝑣
𝑛−𝑗
2 . (3.11)
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To simplify the notations, for a function 𝑣(𝑥, 𝑡), we set: (𝒯 * 𝑣)(𝑥, 𝑡𝑛) =
∑︀𝑛

𝑗=0 𝒯𝑗 𝑣(𝑥, 𝑡𝑛−𝑗). The boundary
condition (3.10) is the semi-discretization of (2.10).

Analogously, by analyzing (3.4) on (−∞, 𝑥−], we derive an exact semi-discrete absorbing boundary condition
at the left point 𝑥 = 𝑥−

(𝒯 *𝑣2)𝑛(𝑥−) + 𝜕𝑥𝑣𝑛
2 (𝑥−) = 0, ∀𝑛 ≥ 1.

Consequently, the semi-discrete problem (3.4), originally defined on the whole space, can be reduced to the
following semi-discrete problem on a bounded domain:

(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
1 (𝑥) + 𝜕𝑥𝐸𝑣𝑛

2 (𝑥) = 0,

(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
2 (𝑥) + 𝜕𝑥𝐸𝑣𝑛

1 (𝑥) = 𝜅𝜕𝑥𝑥(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
2 (𝑥), ∀𝑥 ∈ (𝑥−, 𝑥+), ∀𝑛 ≥ 0,

(𝒯 *𝑣2)𝑛(𝑥±) = 𝜕𝜈𝑣𝑛
2 (𝑥±), ∀𝑛 ≥ 0,

(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
1 (𝑥±) = ∓𝜕𝜈𝑣𝑛

2 (𝑥±), ∀𝑛 ≥ 0,

𝑣0
1(𝑥) = 𝑢1(𝑥), 𝑣0

2(𝑥) = 𝑢2(𝑥), ∀𝑥 ∈ [𝑥−, 𝑥+].

(3.12)

3.3. Spatial discretization

Let 𝑀 be a positive integer and ℎ = (𝑥+ − 𝑥−)/𝑀 the uniform mesh size. We define the mesh points:
𝑥𝑘 = 𝑥− + (𝑘 − 1/2)ℎ, for 𝑘 = 0, 1, · · · , 𝑀 + 1, and 𝑥𝑘+1/2 = 𝑥0 + (𝑘 + 1/2)ℎ, for 𝑘 = 0, 1, · · · , 𝑀 , where
𝑥0 and 𝑥𝑀+1 are two ghost points. In the time-stepping scheme (3.12), we use (𝑣2)𝑛

𝑘 to denote the numerical
approximation of 𝑣𝑛

2 (𝑥𝑘), with 0 ≤ 𝑘 ≤ 𝑀 + 1, and (𝑣1)𝑛
𝑘 to define that of 𝑣𝑛

1 (𝑥𝑘−1/2), with 1 ≤ 𝑘 ≤ 𝑀 + 1. Let
(𝑣2)𝑛 = ((𝑣2)𝑛

0 , · · · , (𝑣2)𝑛
𝑀+1) and (𝑣1)𝑛 = ((𝑣1)𝑛

1 , · · · , (𝑣1)𝑛
𝑀+1). Being given a vector 𝜒 = (𝜒1, · · · , 𝜒𝑀+1) ∈

R𝑀+1 or 𝜔 = (𝜔0, · · · , 𝜔𝑀+1) ∈ R𝑀+2, we introduce the discrete gradients ∇ℎ𝜒 and ∇ℎ𝑤 such that

∇ℎ𝜒 =
(︂

𝜒2 − 𝜒1

ℎ
,
𝜒3 − 𝜒2

ℎ
, · · · ,

𝜒𝑀+1 − 𝜒𝑀

ℎ

)︂
,

∇ℎ𝜔 =
(︂

𝜔1 − 𝜔0

ℎ
,
𝜔2 − 𝜔1

ℎ
, · · · ,

𝜔𝑀+1 − 𝜔𝑀

ℎ

)︂
,

respectively. The linear operator which maps the (𝑀 + 2)-dimensional vector 𝜔 = (𝜔0, · · · , 𝜔𝑀+1) to the
𝑀 -dimensional vector (𝜔1, · · · , 𝜔𝑀 ) will be denoted by 𝒫. In addition, we introduce the Neumann and Dirichlet
data associated with the (𝑀 + 2)-dimensional vector 𝜔 as

𝜕−𝜈 𝜔 =
𝜔0 − 𝜔1

ℎ
, 𝜕+

𝜈 𝜔 =
𝜔𝑀+1 − 𝜔𝑀

ℎ
, 𝛾−𝑤 =

𝜔0 + 𝜔1

2
, 𝛾+𝑤 =

𝜔𝑀+1 + 𝜔𝑀

2
·

Let us define the inner product for two 𝑀 -dimensional vectors 𝜑1 = ((𝜑1)1, · · · , (𝜑1)𝑀 ) and 𝜑2 =
((𝜑2)1, · · · , (𝜑2)𝑀 ) by (𝜑1, 𝜑2)ℎ = ℎ

∑︀𝑀
𝑘=1 (𝜑1)𝑘(𝜑2)𝑘, the inner product for two (𝑀 + 2)-dimensional vectors

𝜔1 = ((𝜔1)0, · · · , (𝜔1)𝑀+1) and 𝜔2 = ((𝜔2)0, · · · , (𝜔2)𝑀+1) by

⟨𝜔1, 𝜔2⟩ℎ =
ℎ

2
(𝜔1)0(𝜔2)0 + ℎ

𝑀∑︁
𝑘=1

(𝜔1)𝑘(𝜔2)𝑘 +
ℎ

2
(𝜔1)𝑀+1(𝜔2)𝑀+1,

and finally the inner product for two (𝑀 + 1)-dimensional vectors 𝜒1 = ((𝜒1)1, · · · , (𝜒1)𝑀+1) and 𝜒2 =
((𝜒2)1, · · · , (𝜒2)𝑀+1) according to: {𝜒1, 𝜒2}ℎ = ℎ

∑︀𝑀+1
𝑘=1 (𝜒1)𝑘(𝜒2)𝑘. In the above expressions, 𝑧 denotes the

complex conjugate of a complex number 𝑧. The induced norms are such that: ‖𝜑‖ℎ =
√︀

(𝜑, 𝜑)ℎ, |𝜔|ℎ =
√︀
⟨𝜔, 𝜔⟩ℎ,

and |||𝜒|||ℎ =
√︀
{𝜒, 𝜒}ℎ.

Let us now introduce a second-order spatial discretization △ℎ, which maps the (𝑀 + 2)-dimensional vector
𝜔 to the 𝑀 -dimensional vector space as

△ℎ𝑤 =
(︂

𝑤0 − 2𝑤1 + 𝑤2

ℎ2
, · · · ,

𝑤𝑀−1 − 2𝑤𝑀 + 𝑤𝑀+1

ℎ2

)︂
·
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Thus, we have the discrete integration by parts formula

(𝒫𝜔2,△ℎ𝜔1)ℎ = −⟨∇ℎ𝜔2,∇ℎ𝜔1⟩ℎ + 𝛾+𝜔2 𝜕+
𝜈 𝜔1 + 𝛾−𝜔2 𝜕−𝜈 𝜔1. (3.13)

Now, we define the vector ∇ℎℋ𝑣𝑛
1 by

∇ℎℋ𝑣𝑛
1 =

(︂
ℋ(𝑣1)𝑛

2 −ℋ(𝑣1)𝑛
1

ℎ
, · · · ,

ℋ(𝑣1)𝑛
𝑀+1 −ℋ(𝑣1)𝑛

𝑀

ℎ

)︂
,

where ℋ is any operator that only applies in the time direction. Similarly, the vector ∇ℎℋ𝑣𝑛
2 is such that

∇ℎℋ𝑣𝑛
2 =

(︂
ℋ(𝑣2)𝑛

1 −ℋ(𝑣2)𝑛
0

ℎ
, · · · ,

ℋ(𝑣2)𝑛
𝑀+1 −ℋ(𝑣2)𝑛

𝑀

ℎ

)︂
·

We can also introduce a vector △ℎℋ𝑣𝑛
2 by

△ℎℋ𝑣𝑛
2 =

(︂
ℋ(𝑣2)𝑛

0 − 2ℋ(𝑣2)𝑛
1 +ℋ(𝑣2)𝑛

2

ℎ2
, · · · ,

ℋ(𝑣2)𝑛
𝑀−1 − 2ℋ(𝑣2)𝑛

𝑀 +ℋ(𝑣2)𝑛
𝑀+1

ℎ2

)︂
·

Then, it is easy to see that the following identities hold: ∇ℎℋ𝑣𝑛
1 = ℋ∇ℎ𝑣𝑛

1 , ∇ℎℋ𝑣𝑛
2 = ℋ∇ℎ𝑣𝑛

2 , and △ℎℋ𝑣𝑛
2 =

ℋ△ℎ𝑣𝑛
2 .

Now, in (3.12), replacing the function 𝑣𝑛
1 (𝑥) by the vector 𝑣𝑛

1 = ((𝑣1)𝑛
1 , · · · , (𝑣1)𝑛

𝑀+1), 𝑣𝑛
2 (𝑥) by 𝑣𝑛

2 =
((𝑣2)𝑛

0 , · · · , (𝑣2)𝑛
𝑀+1) and changing the continuous operator 𝜕𝑥𝑥 with its discrete analogue △ℎ, we obtain the

following fully discrete finite-difference scheme

(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
1 +∇𝑛

ℎ𝐸𝑣𝑛
2 = 0,

(𝐷𝜏 + 𝜎𝐸)𝒫𝑣𝑛
2 +∇ℎ𝐸𝑣𝑛

1 = 𝜅△ℎ(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
2 , ∀𝑛 ≥ 0,(︀

𝒯 * 𝛾±𝑣2

)︀𝑛 − 𝜕±𝜈 𝑣𝑛
2 = 0, ∀𝑛 ≥ 0,

𝑣0
1 = (𝑢1(𝑥1/2), · · · , 𝑢1(𝑥𝑀+1/2)), 𝑣0

2 = (𝑢2(𝑥0), · · · , 𝑢2(𝑥𝑀+1)).

(3.14)

In fact, at 𝑥±, we have 𝜕𝑥𝑣2(𝑥±, 𝑡) = ±𝜕𝜈𝑣2(𝑥±, 𝑡). Therefore, we can write that

𝜕𝑡𝑣1(𝑥±, 𝑡) + 𝜎𝑣1(𝑥±, 𝑡)± 𝜕𝜈𝑣2(𝑥±, 𝑡) = 0.

For (3.14), the expression of 𝑣1 at 𝑥1 can be written as

(𝐷𝜏 + 𝜎𝐸)(𝑣1)𝑛
1 + 𝐸

(𝑣2)𝑛
1 − (𝑣2)𝑛

0

ℎ
= (𝐷𝜏 + 𝜎𝐸)(𝑣1)𝑛

1 − 𝐸𝜕−𝜈 𝑣𝑛
2 = (𝐷𝜏 + 𝜎𝐸)(𝑣1)𝑛

1 − 𝐸(𝒯 * 𝛾−𝑣2)𝑛.

Thus, the boundary condition for 𝑣1 can be supplied by 𝑣2 due to the staggered grid.

4. Fast evaluation of the boundary discrete convolution (𝒯 * 𝛾±𝑣2)
𝑛

In this section, we introduce a fast algorithm for approximating the discrete convolution product (𝒯 * 𝛾±𝑣2)𝑛

arising in (3.14). The stability of the proposed fast algorithm will be analyzed in the next section.

4.1. Rational approximation of the convolution quadrature

In [22], for a nonnegative integer 𝑚 > 0 and Re(𝑠) ≥ −1, the Padé approximation of the function
√

1 + 𝑠 can
be expressed as

√
1 + 𝑠 ≈ 1 +

𝑚∑︁
𝑗=1

𝛼𝑗𝑠

1 + 𝛽𝑗𝑠
,
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where the coefficients are given by

𝛼𝑗 =
2

2𝑚 + 1
sin2

(︂
𝑗𝜋

2𝑚 + 1

)︂
, 𝛽𝑗 = cos2

(︂
𝑗𝜋

2𝑚 + 1

)︂
, 𝑗 = 1, · · · , 𝑚.

Based on this Padé approximation, a rational approximation of the square-root function
√

𝑠 on the closed right
half complex plane can be written as

√
𝑠 =

√
1 + 𝑠− 1 ≈ 1 +

𝑚∑︁
𝑗=1

𝛼𝑗(𝑠− 1)
1 + 𝛽𝑗(𝑠− 1)

≡ 𝑅𝑚(𝑠), Re(𝑠) ≥ 0.

Thus, we deduce

𝑅𝑚(𝑠) = 𝜆−
𝑚∑︁

𝑗=1

1
𝑔𝑗𝑠 + ℎ𝑗

, 𝜆 = 1 +
𝑚∑︁

𝑗=1

𝛼𝑗𝛽
−1
𝑗 ,

ℎ𝑗 = 𝛼−1
𝑗 𝛽𝑗(1− 𝛽𝑗), 𝑔𝑗 = 𝛼−1

𝑗 𝛽2
𝑗 , 𝑗 = 1, · · · , 𝑚.

(4.1)

For all 𝜏 > 0, 𝜎 > 0, and for 𝑠(𝑧) defined by (3.6), we can introduce the rational approximation ̃︀𝒯 (𝑚)(𝑧) of the
symbol ̃︀𝒯 (𝑧) as ̃︀𝒯 (𝑚)(𝑧) := −𝑅𝑚(𝑠(𝑧)), ∀𝑚 ≥ 0. (4.2)

We denote by 𝒯 (𝑚)* the convolution operator analogously defined as (3.11) by replacing the convolution coeffi-
cients with the series expansion coefficients of the function ̃︀𝒯 (𝑚)(𝑧). By considering the rational approximation
𝒯 (𝑚)* of 𝒯 * in (3.14), we obtain the following fully discrete scheme:

(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
1 +∇𝑛

ℎ𝐸𝑣𝑛
2 = 0, (4.3)

(𝐷𝜏 + 𝜎𝐸)𝒫𝑣𝑛
2 +∇ℎ𝐸𝑣𝑛

1 = 𝜅△ℎ(𝐷𝜏 + 𝜎𝐸)𝑣𝑛
2 , ∀𝑛 ≥ 0, (4.4)

(𝒯 (𝑚) * 𝛾±𝑣2)𝑛 − 𝜕±𝜈 𝑣𝑛
2 = 0, ∀𝑛 ≥ 0, (4.5)

𝑣0
1 = (𝑢1(𝑥1/2), · · · , 𝑢1(𝑥𝑀+1/2)), 𝑣0

2 = (𝑢2(𝑥0), · · · , 𝑢2(𝑥𝑀+1)). (4.6)

In fact, equation (4.5) can be solved by the fast algorithm described in the next subsection.

4.2. Fast evaluation of
(︀
𝒯 (𝑚) * 𝛾±𝑣2

)︀𝑛
By applying (4.1) to (4.2), we obtain the sequence of equalities

̃︀𝒯 (𝑚)(𝑧) = −𝜆 +
𝑚∑︁

𝑗=1

1
𝑔𝑗𝑠(𝑧) + ℎ𝑗

= −𝜆 +
𝑚∑︁

𝑗=1

𝜅(2 + 𝜎𝜏 + (𝜎𝜏 − 2)𝑧)2 + 𝜏2(1 + 𝑧)2

(𝑔𝑗 + 𝜅ℎ𝑗)(2 + 𝜎𝜏 + (𝜎𝜏 − 2)𝑧)2 + ℎ𝑗𝜏2(1 + 𝑧)2

= −𝜆 +
𝑚∑︁

𝑗=1

(︂
𝜆𝑗 +

𝑒𝑗𝑧 + 𝑓𝑗

(𝑎𝑗𝑧 + 𝑏𝑗)2 − (𝑐𝑗𝑧 + 𝑑𝑗)2

)︂

= −𝜆 +
𝑚∑︁

𝑗=1

𝜆𝑗 +
𝑚∑︁

𝑗=1

(︂
𝐴𝑗

(𝑎𝑗 + 𝑐𝑗)𝑧 + 𝑏𝑗 + 𝑑𝑗
+

𝐵𝑗

(𝑎𝑗 − 𝑐𝑗)𝑧 + 𝑏𝑗 − 𝑑𝑗

)︂
,

(4.7)

setting

𝜆𝑗 =
𝜅(𝜏𝜎 − 2)2 + 𝜏2

(𝑔𝑗 + 𝜅ℎ𝑗)(𝜏𝜎 − 2)2 + ℎ𝑗𝜏2
, 𝑒𝑗 = 2(𝜅− 𝑔𝑗𝜆𝑗 − 𝜅ℎ𝑗𝜆𝑗)(𝜎2𝜏2 − 4) + 2𝜏2(1− 𝜆𝑗ℎ𝑗),

𝑓𝑗 = (𝜅− 𝑔𝑗𝜆𝑗 − 𝜅ℎ𝑗𝜆𝑗)(2 + 𝜎𝜏)2 + 𝜏2(1− 𝜆𝑗ℎ𝑗),
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𝑎𝑗 =
√︀

𝜅ℎ𝑗 + 𝑔𝑗(𝜎𝜏 − 2), 𝑏𝑗 =
√︀

𝜅ℎ𝑗 + 𝑔𝑗(𝜎𝜏 + 2), 𝑐𝑗 = 𝑖
√︀

ℎ𝑗𝜏, 𝑑𝑗 = 𝑖
√︀

ℎ𝑗𝜏,

𝐴𝑗 =
−𝑒𝑗𝑐𝑗 + 𝑏𝑗𝑓𝑗 − 𝑒𝑗𝑎𝑗 + 𝑓𝑗𝑑𝑗

𝑎2
𝑗 + 𝑏2

𝑗 − 𝑐2
𝑗 − 𝑑2

𝑗

, 𝐵𝑗 =
𝑒𝑗𝑐𝑗 + 𝑏𝑗𝑓𝑗 − 𝑒𝑗𝑎𝑗 − 𝑓𝑗𝑑𝑗

𝑎2
𝑗 + 𝑏2

𝑗 − 𝑐2
𝑗 − 𝑑2

𝑗

·

Therefore, we have

̃︀𝒯 (𝑚)(𝑧) =

⎛⎝−𝜆 +
𝑚∑︁

𝑗=1

𝜆𝑗

⎞⎠+
𝑚∑︁

𝑗=1

∞∑︁
𝑛=0

(︂
𝐴𝑗

𝑏𝑗 + 𝑑𝑗

(︂
−𝑎𝑗 + 𝑐𝑗

𝑏𝑗 + 𝑑𝑗

)︂𝑛

𝑧𝑛 +
𝐵𝑗

𝑏𝑗 − 𝑑𝑗

(︂
𝑐𝑗 − 𝑎𝑗

𝑏𝑗 − 𝑑𝑗

)︂𝑛

𝑧𝑛

)︂
.

Thus, ̃︀𝒯 (𝑚)(𝑧) can be uniformly rewritten as

̃︀𝒯 (𝑚)(𝑧) =
2𝑚+1∑︁
𝑘=1

∞∑︁
𝑛=0

𝐶𝑘(𝛾𝑘)𝑛𝑧𝑛,

which implies that

𝒯 (𝑚)
𝑗 =

2𝑚+1∑︁
𝑘=1

𝐶𝑘(𝛾𝑘)𝑗 ,

with
𝐶2𝑘−1 =

𝐴𝑘

𝑏𝑘 + 𝑑𝑘
, 𝐶2𝑘 =

𝐵𝑘

𝑏𝑘 − 𝑑𝑘
, 𝛾2𝑘−1 = −𝑎𝑘 + 𝑐𝑘

𝑏𝑘 + 𝑑𝑘
and 𝛾2𝑘 = −−𝑎𝑘 + 𝑐𝑘

𝑏𝑘 − 𝑑𝑘
,

for 1 ≤ 𝑘 ≤ 𝑚. We can take 𝐶2𝑚+1 = (−𝜆 +
∑︀𝑚

𝑘=1 𝜆𝑘) and 𝛾2𝑚+1 = 0. Therefore, (𝒯 (𝑚) * 𝛾±𝑣2)𝑛 =∑︀𝑛
𝑗=0 𝒯

(𝑚)
𝑗 (𝛾±𝑣2)𝑛−𝑗 can be implemented by a fast convolution in (4.5).

For fixed 𝑘, by defining

𝒢𝑛
𝑘 [𝑣] := 𝐶𝑘

𝑛∑︁
𝑗=0

(𝛾𝑘)𝑛−𝑗𝑣𝑗 ,

with 1 ≤ 𝑘 ≤ 2𝑚 + 1, we derive that,

𝛾𝑘𝒢𝑛−1
𝑘 [𝛾±𝑣2] + 𝐶𝑘

(︀
𝛾±𝑣2

)︀𝑛 = 𝛾𝑘𝐶𝑘

𝑛−1∑︁
𝑗=0

(𝛾𝑘)𝑛−1−𝑗(︀
𝛾±𝑣2

)︀𝑗 + 𝐶𝑘

(︀
𝛾±𝑣2

)︀𝑛 (4.8)

= 𝐶𝑘

𝑛−1∑︁
𝑗=0

(𝛾𝑘)𝑛−𝑗(︀
𝛾±𝑣2

)︀𝑗 + 𝐶𝑘

(︀
𝛾±𝑣2

)︀𝑛 = 𝐶𝑘

𝑛∑︁
𝑗=0

(𝛾𝑘)𝑛−𝑗(︀
𝛾±𝑣2

)︀𝑗 = 𝒢𝑛
𝑘

[︀
𝛾±𝑣2

]︀
.

Thus, the boundary term (𝒯 (𝑚) *𝛾±𝑣2)𝑛 =
∑︀𝑛

𝑗=0 𝒯
(𝑚)

𝑗 (𝛾±𝑣2)𝑛−𝑗 can be written in the form of fast convolution
by (4.8), namely,

(︁
𝒯 (𝑚) * 𝛾±𝑣2

)︁𝑛

=
2𝑚+1∑︁
𝑘=1

𝐺𝑛
𝑘 [𝛾±𝑣2] =

2𝑚+1∑︁
𝑘=1

𝛾𝑘𝒢𝑛−1
𝑘 [𝛾±𝑣2] + (𝛾±𝑣2)𝑛

2𝑚+1∑︁
𝑘=1

𝐶𝑘. (4.9)

From (4.9), we can see that the computational cost at the 𝑛-th time step is 𝒪(2𝑚 + 1), rather than 𝒪(𝑛) which
is the computational cost of the convolution. Thus, the overall computational cost for all the 𝑛 time steps is
𝒪(𝑛(2𝑚+1)) instead of 𝒪(𝑛2). Therefore, for large time steps 𝑛, the total computational cost is greatly reduced.
Such a cost is much lower than the one proposed in [18] for the linearized Green-Naghdi equation. It is similar
to the techniques introduced for example in [21, 27] to optimize both the memory storage and computational
cost when evaluating convolutions.
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4.3. Properties of the rational approximation ̃︀𝒯 (𝑚)(𝑧)

Let us now prove some properties of 𝒯 (𝑚)
𝑗 used to prove the error estimates.

Proposition 4.1. Let us assume that the condition 𝜎 ≥ 1√
2𝜅

is satisfied, the time step 𝜏 is small enough and
𝑚 is sufficiently large, i.e. it fulfills

2𝑚 + 1 ≥ ln 𝜖

ln(1− 𝛿)
, for some 𝜖 ∈

(︂
0,

𝜇
√

𝜅𝜏3

8

]︂
, (4.10)

with

𝜇(𝜅, 𝜎) =
√

2𝜎

2
√

1 + 𝜅𝜎2
, 𝛿(𝜅, 𝜎) =

√
2𝜎
√

1 + 𝜅𝜎2

𝜎2 +
√

2𝜎
√

1 + 𝜅𝜎2 + 1 + 𝜅𝜎2
· (4.11)

Then, the following inequalities hold

max
𝑧∈𝜕D

⃒⃒⃒ ̃︀𝒯 (𝑚)(𝑧)− ̃︀𝒯 (𝑧)
⃒⃒⃒
≤ 𝜇

𝜏3

2
, (4.12)

Re
𝑛∑︁

𝑘=0

(𝜏𝐷𝜏 + 𝜎𝐸)𝑢𝑘(𝐷𝜏 + 𝜎𝐸)
(︁
𝒯 (𝑚)* 𝑢

)︁𝑘

≤ 0, (4.13)

Re
𝑛∑︁

𝑘=0

(𝐷𝜏 + 𝜎𝐸)𝑢𝑘(𝐷𝜏 + 𝜎𝐸)
(︁
𝒯 (𝑚)* 𝑢

)︁𝑘

≤ 0, ∀𝑛 ≥ 0, (4.14)

for any complex-valued sequence 𝑢 = {𝑢𝑛}∞𝑛=0 such that 𝑢0 = 0.

Before proving Proposition 4.1, we need to state a few lemmas. Let us introduce

𝑟(𝑠) :=
√

𝑠− 1√
𝑠 + 1

· (4.15)

Then, by using (3.8), one can prove that the symbol ̃︀𝒯 (𝑧) satisfies the following inequalities.

Lemma 4.2. We have the following inequalities

max
𝑧∈𝜕D

⃒⃒⃒ ̃︀𝒯 (𝑧)
⃒⃒⃒
≤ 1√

𝜅
, min

𝑧∈𝜕D

⃒⃒⃒ ̃︀𝒯 (𝑧)
⃒⃒⃒
≥ 𝜎√

1 + 𝜅𝜎2
· (4.16)

Furthermore, under the condition 𝜎 ≥ 1√
2𝜅

and for 𝑠(𝑧) defined by (3.6), we can prove that

max
𝑧∈𝜕D

Re ̃︀𝒯 (𝑧) ≤ −𝜇(𝜅, 𝜎) = −
√

2𝜎

2
√

1 + 𝜅𝜎2
, (4.17)

max
𝑧∈𝜕D

|𝑟(𝑠(𝑧))| ≤ 1− 𝛿(𝜅, 𝜎), (4.18)

− arctan
(︂

1√
𝜏

)︂
≤ arg

𝑧∈𝜕D

[︃
−
(︀
𝑧−1 − 1

)︀
/𝜏 + 𝜎

(︀
𝑧−1 + 1

)︀
/2

(𝑧−1 − 1) + 𝜎(𝑧−1 + 1)/2
̃︀𝒯 (𝑧)

]︃
≤ arctan

(︂
1√
𝜏

)︂
· (4.19)

Proof of Lemma 4.2. From (2.8), (3.6), (3.8), and setting 𝜌 = 2(1−𝑧)
𝑖𝜏(1+𝑧) , then 𝜌 ∈ R for 𝑧 ∈ 𝜕D, and

̃︀𝒯 (𝑧) = −
√︀

S(𝑖𝜌) = −

(︃ (︀
𝜌2 + 𝜎2

)︀2
𝜅2(𝜌2 + 𝜎2)2 + 1 + 2𝜅𝜎2 − 2𝜌2𝜅

)︃ 1
4

exp(𝑖𝜃/2), (4.20)
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where

𝜃 = arg
(︂

2𝜎𝜌 + 𝑖(𝜌2 − 𝜎2)
2𝜎𝜌 + 𝑖(𝜌2 − 𝜎2 − 1/𝜅)

)︂
· (4.21)

It is straightforward to verify that

⃒⃒⃒ ̃︀𝒯 (𝑧)
⃒⃒⃒

=

(︃
1

𝜅2 + (1 + 2𝜅𝜎2 − 2𝜌2𝜅)/(𝜌2 + 𝜎2)2

)︃ 1
4

, (4.22)

which means that
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒
increases with respect to |𝜌|. Thus, we conclude that

𝜎√
1 + 𝜅𝜎2

≤
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒
≤ 1√

𝜅
, if 𝜌 ∈ R, (4.23)

hence proving (4.16).
From (4.21) we have

𝜃 = arctan
(︂

2𝜎𝜌/𝜅

𝜌4 + (2𝜎2 − 1/𝜅)𝜌2 + 𝜎4 + 𝜎2/𝜅

)︂
:= arctan

(︂
2𝜎𝜌/𝜅

Θ(𝜌)

)︂
· (4.24)

First, we discuss the case 𝜌 ∈ [0, +∞). It is straightforward to show that Θ(𝜌) ≥ 0, for 𝜎 ≥ 1√
2𝜅

. Therefore,
from (4.24), we derive that 0 ≤ 𝜃 ≤ 𝜋/2 for 𝜌 ∈ [0, +∞), which means 0 ≤ 𝜃/2 ≤ 𝜋/4. Similarly, we have
−𝜋/2 ≤ 𝜃 ≤ 0 for 𝜌 ∈ (−∞, 0], and then −𝜋/4 ≤ 𝜃/2 ≤ 0. Thus, this yields

Re ̃︀𝒯 (𝑧) ≤ −
√

2𝜎

2
√

1 + 𝜅𝜎2
,

which proves (4.17).
Recalling that 𝑠(𝑧) = (2−2𝑧+𝜎𝜏(1+𝑧))2

𝜏2(1+𝑧)2+(2−2𝑧+𝜎𝜏(1+𝑧))2 , we deduce

√︀
𝑠(𝑧) = −̃︀𝒯 (𝑧) =

⃒⃒⃒ ̃︀𝒯 (𝑧)
⃒⃒⃒
exp
(︂

𝑖
𝜃

2

)︂
, (4.25)

with cos
(︀

𝜃
2

)︀
≥

√
2

2 for 𝜌 ∈ (−∞, +∞). Using the above expression of
√︀

𝑠(𝑧), we have

|𝑟(𝑠(𝑧))| =

⃒⃒⃒⃒
⃒
√︀

𝑠(𝑧)− 1√︀
𝑠(𝑧) + 1

⃒⃒⃒⃒
⃒ =

⎯⎸⎸⎸⎸⎷1−
4
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒
cos
(︀

𝜃
2

)︀
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒2
+ 2| ̃︀𝑇 (𝑧)| cos

(︀
𝜃
2

)︀
+ 1

≤

⎯⎸⎸⎸⎸⎷1−
2
√

2
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒2
+
√

2
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒
+ 1

≤ 1−

√
2
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒2
+
√

2
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒
+ 1

,

where the last inequality is a consequence of: (1− 𝑥)
1
2 = 1− 1

2𝑥− 1
8𝑥2 + · · · ≤ 1− 1

2𝑥. By considering

√
2𝑟

𝑟2 +
√

2𝑟 + 1
=

√
2(︀

𝑟 +
√

2 + 1/𝑟
)︀ ,
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we see that the minimum value of
√

2|̃︀𝒯 (𝑧)|
|̃︀𝒯 (𝑧)|2+√2|̃︀𝒯 (𝑧)|+1

is attained at
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒
= 𝜎√

1+𝜅𝜎2 , and

√
2
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒2
+
√

2
⃒⃒⃒ ̃︀𝒯 (𝑧)

⃒⃒⃒
+ 1

≥
√

2𝜎
√

1 + 𝜅𝜎2

𝜎2 +
√

2𝜎
√

1 + 𝜅𝜎2 + 1 + 𝜅𝜎2
= 𝛿,

leading to (4.18).
Next, we have the sequence of equalities

arg
𝑧∈𝜕D

[︃
−
(︀
𝑧−1 − 1

)︀
/𝜏 + 𝜎

(︀
𝑧−1 + 1

)︀
/2

(𝑧−1 − 1) + 𝜎(𝑧−1 + 1)/2
̃︀𝒯 (𝑧)

]︃

=
1
2

⎡⎢⎢⎢⎣ arg
𝑧∈𝜕D

(︂
2(𝑧−1−1)
𝜏(𝑧−1+1) + 𝜎

)︂2

1 + 𝜅
(︁

2(𝑧−1−1)
𝜏(𝑧−1+1) + 𝜎

)︁2 + 2 arctan
𝑧∈𝜕D

(︀
𝑧−1 − 1

)︀
/𝜏 + 𝜎

(︀
𝑧−1 + 1

)︀
/2

(𝑧−1 − 1) + 𝜎(𝑧−1 + 1)/2

⎤⎥⎥⎥⎦
=

1
2

[︂
arctan

𝜌∈R

2𝜎𝜌/𝜅

Θ(𝜌)
+ 2 arg

𝜌∈R

𝜌𝑖 + 𝜎

𝜏𝜌𝑖 + 𝜎

]︂
=

1
2

[︂
𝜃(𝜌) + 2 arctan

𝜌∈R

𝜎(1− 𝜏)𝜌
𝜎2 + 𝜏𝜌2

]︂
= arctan

𝜌∈R

2𝜎𝜌/𝜅√︀
(Θ)2 + (2𝜎𝜌/𝜅)2 + Θ

+ arctan
𝜌∈R

𝜎(1− 𝜏)𝜌
𝜎2 + 𝜏𝜌2

= arctan
𝜌∈R

𝐹1(𝜌) + arctan
𝜌∈R

𝐹2(𝜌) = arctan
𝜌∈R

𝐹1(𝜌) + 𝐹2(𝜌)
1− 𝐹1(𝜌)𝐹2(𝜌)

,

(4.26)

with

𝐹1(𝜌) =
2𝜎𝜌/𝜅√︀

(Θ)2 + (2𝜎𝜌/𝜅)2 + Θ
, 𝐹2(𝜌) =

𝜎(1− 𝜏)𝜌
𝜎2 + 𝜏𝜌2

·

For 𝜌 ∈ [0, +∞), we obtain

𝐹1(𝜌)𝐹2(𝜌) ≤ 2𝜎2𝜌2/𝑘

2Θ𝜎2
=

𝜌2/𝜅

Θ
≤ 𝜌2/𝜅

𝜌4 + (2𝜎2 − 1/𝜅)𝜌2 + 𝜎4 + 𝜎2/𝜅
≤ 1/𝜅

(2𝜎2 − 1/𝜅) + 2
√︀

𝜎4 + 𝜎2/𝜅
≤ 1√

3
·

(4.27)
In addition, we have

d
d𝜌

𝐹2(𝜌) =
d
d𝜌

[︂
arctan

𝜎(1− 𝜏)𝜌
𝜎2 + 𝜏𝜌2

]︂
=

𝜎(1− 𝜏)(𝜎2 − 𝜏𝜌2)
(𝜎2 + 𝜏𝜌2)2 + 𝜎2(1− 𝜏)2𝜌2

· (4.28)

Therefore 𝐹2(𝜌) increases with respect to |𝜌| in
[︁
0, 𝜎√

𝜏

]︁
, decreases in

[︁
𝜎√
𝜏
,∞
)︁

, and 𝐹2(𝜌) reaches its maximum
at 𝜎√

𝜏
. Then, (4.26) and (4.27) indicate that we have

arctan
𝜌∈R+

𝐹1(𝜌) + 𝐹2(𝜌)
1− 𝐹1(𝜌)𝐹2(𝜌)

≤
1 + 𝐹2

(︁
𝜎√
𝜏

)︁
1− 1√

3

≤
1 + 1−𝜏

2
√

𝜏

1− 1
2

≤ 1√
𝜏
· (4.29)

Similarly, we can write that

arctan
𝜌∈R−

𝐹1(𝜌) + 𝐹2(𝜌)
1− 𝐹1(𝜌)𝐹2(𝜌)

≥ − 1√
𝜏
· (4.30)

Combining (4.26), (4.29) and (4.30), we prove (4.19). �
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Let us recall that 𝑅𝑚(𝑠) is defined by (4.1). Then, the following result was proved in [22].

Lemma 4.3. Let us define: 𝑒𝑚(𝑠) :=
√

𝑠−𝑅𝑚(𝑠), for 𝑚 = 0, 1, 2, . . . Then, the following identity holds:

𝑒𝑚(𝑠) = 2
√

𝑠
𝑟2𝑚+1(𝑠)

1 + 𝑟2𝑚+1(𝑠)
, if Re(𝑠) ≥ 0 and 𝑠 ̸= 0, (4.31)

where 𝑟(𝑠) is defined by (4.15).

Let us now consider the following lemma.

Lemma 4.4. Under the conditions 𝜎 ≥ 1√
2𝜅

and (4.10), we have the two inequalities

max
𝑧∈𝜕D

Re ̃︀𝒯 (𝑚)(𝑧) ≤ 0, (4.32)

max
𝑧∈𝜕D

Re

[︃(︀
𝑧−1 − 1

)︀
/𝜏 + 𝜎

(︀
𝑧−1 + 1

)︀
/2

(𝑧−1 − 1) + 𝜎(𝑧−1 + 1)/2
̃︀𝒯 (𝑚)(𝑧)

]︃
≤ 0. (4.33)

Proof of Lemma 4.4. From (4.18) in Lemma 4.2 we have: max𝑧∈𝜕D|𝑟(𝑠(𝑧))| ≤ 1 − 𝛿(𝜅, 𝜎). If 𝜎 ≥ 1√
2𝜅

and 𝑚

satisfies (4.10), then one gets |𝑟(𝑠(𝑧))|2𝑚+1 ≤ [1− 𝛿]2𝑚+1 ≤ 1/2. From (4.31), we obtain

max
𝑧∈𝜕D

⃒⃒⃒⃒
⃒ ̃︀𝒯 (𝑧)− ̃︀𝒯 (𝑚)(𝑧)̃︀𝒯 (𝑧)

⃒⃒⃒⃒
⃒ = max

𝑧∈𝜕D

⃒⃒⃒⃒
2𝑟2𝑚+1(𝑠(𝑧))

1 + 𝑟2𝑚+1(𝑠(𝑧))

⃒⃒⃒⃒
≤ max

𝑧∈𝜕D

2|𝑟(𝑠(𝑧))|2𝑚+1

1− |𝑟(𝑠(𝑧))|2𝑚+1 ≤ 4 max
𝑧∈𝜕D

|𝑟(𝑠(𝑧))|2𝑚+1.

Then, equations (4.12), (4.16) and (4.17) imply

max
𝑧∈𝜕D

Re ̃︀𝒯 (𝑚)(𝑧) = max
𝑧∈𝜕D

[︁
Re ̃︀𝒯 (𝑧)− Re

(︁̃︀𝒯 (𝑧)− ̃︀𝒯 (𝑚)(𝑧)
)︁]︁
≤ −𝜇 +

𝜇
√

𝜅

2
max
𝑧∈𝜕D

⃒⃒⃒ ̃︀𝒯 (𝑧)
⃒⃒⃒
≤ −𝜇 + 𝜇/2 ≤ 0,

which proves (4.32).
In addition, for 𝜏 small enough, using (4.19), we have

arg
𝑧∈𝜕D

[︃
−
(︀
𝑧−1 − 1

)︀
/𝜏 + 𝜎

(︀
𝑧−1 + 1

)︀
/2

(𝑧−1 − 1) + 𝜎(𝑧−1 + 1)/2
̃︀𝒯 (𝑚)(𝑧)

]︃

= arg
𝑧∈𝜕D

[︃
−
(︀
𝑧−1 − 1

)︀
/𝜏 + 𝜎

(︀
𝑧−1 + 1

)︀
/2

(𝑧−1 − 1) + 𝜎(𝑧−1 + 1)/2
̃︀𝒯 (𝑧)

(︃
1 +

̃︀𝒯 (𝑚) − ̃︀𝒯̃︀𝒯
)︃]︃

= arg
𝑧∈𝜕D

[︃
−
(︀
𝑧−1 − 1

)︀
/𝜏 + 𝜎

(︀
𝑧−1 + 1

)︀
/2

(𝑧−1 − 1) + 𝜎(𝑧−1 + 1)/2
̃︀𝒯 (𝑧)

]︃
+ arg

𝑧∈𝜕D

(︃
1 +

̃︀𝒯 (𝑚) − ̃︀𝒯̃︀𝒯
)︃

≤ arctan
(︂

1√
𝜏

)︂
+ arg

𝑧∈𝜕D

(︀
1 + 𝑖𝜇

√
𝜅𝜏3/2

)︀
≤ arctan

(︂
1√
𝜏

)︂
+ arctan

(︂√
𝜏

2

)︂
≤ arctan

(︂
4√
𝜏

)︂
·

Thus, for small enough 𝜏 , we deduce (4.33) since

− arctan
(︂

4√
𝜏

)︂
≤ arg

𝑧∈𝜕D

(︃
−
(︀
𝑧−1 − 1

)︀
/𝜏 + 𝜎

(︀
𝑧−1 + 1

)︀
/2

(𝑧−1 − 1) + 𝜎(𝑧−1 + 1)/2

[︁̃︀𝒯 (𝑚)(𝑧)
]︁)︃

≤ arctan
(︂

4√
𝜏

)︂
·

�

Now, we can prove Proposition 4.1, as a consequence of (4.32) and (4.33).
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Proof of Proposition 4.1. Firstly, for small 𝜏 , if 𝜎 ≤ 1√
2𝜅

and 𝑚 satisfies (4.10), then we have: [1− 𝛿]2𝑚+1 ≤
𝜖 ≤ 1/2. Lemma 4.3 then implies

max
𝑧∈𝜕D

⃒⃒⃒⃒
⃒ ̃︀𝒯 (𝑧)− ̃︀𝒯 (𝑚)(𝑧)̃︀𝒯 (𝑧)

⃒⃒⃒⃒
⃒ ≤ max

𝑧∈𝜕D

2|𝑟(𝑠(𝑧))|2𝑚+1

1− |𝑟(𝑠(𝑧))|2𝑚+1 ≤ 4𝜖.

Consequently, by using (4.16) and (4.10), we have

max
𝑧∈𝜕D

⃒⃒⃒ ̃︀𝒯 (𝑚)(𝑧)− ̃︀𝒯 (𝑧)
⃒⃒⃒
≤ 4𝜖 max

𝑧∈𝜕D

⃒⃒⃒ ̃︀𝒯 (𝑧)
⃒⃒⃒
≤ 𝜇

𝜏3

2
,

which proves (4.12).
We construct {𝑢𝑘}∞𝑘=0 such that (𝐷𝜏 + 𝜎𝐸)𝑢𝑘 = 0, for 𝑘 ≥ 𝑛 + 1. Thus, one has:

𝑢𝑘+1 =
1− 𝜎𝜏/2
1 + 𝜎𝜏/2

𝑢𝑘,

for 𝑘 ≥ 𝑛 + 1, which shows that the sequence {𝑢𝑘} is such that (𝐷𝜏 + 𝜎𝐸)𝑢𝑘 = 0, for 𝑘 ≥ 𝑛 + 1. From (4.32),
we have

Re
𝑛∑︁

𝑘=0

(𝐷𝜏 + 𝜎𝐸)𝑢𝑘
(︁

(𝐷𝜏 + 𝜎𝐸)𝒯 (𝑚)* 𝑢
)︁𝑘

= Re
∞∑︁

𝑘=0

(𝐷𝜏 + 𝜎𝐸)𝑢𝑘
(︁

(𝐷𝜏 + 𝜎𝐸)𝒯 (𝑚)* 𝑢
)︁𝑘

= Re
(︁

(𝐷𝜏 + 𝜎𝐸)𝑢, (𝐷𝜏 + 𝜎𝐸)𝒯 (𝑚)* 𝑢
)︁2

ℓ
(C)

= Re
∫︁

𝜕D
|̃︀𝑢(𝑧)|2[𝑧−1 − 1 + 𝜎𝜏(𝑧−1 + 1)/2]̃︀𝒯 (𝑚)(𝑧)

[︀
𝑧−1 − 1 + 𝜎𝜏

(︀
𝑧−1 + 1

)︀
/2
]︀
𝜈(d𝑧)/𝜏2

= Re
∫︁

𝜕D
|𝑧|−2|̃︀𝑢(𝑧)|2[2− 2𝑧 + 𝜎𝜏(1 + 𝑧)]̃︀𝒯 (𝑚)(𝑧)[2− 2𝑧 + 𝜎𝜏(1 + 𝑧)] 𝜈(d𝑧)/(4𝜏2)

= Re
∫︁

𝜕D
|𝑧|−2|̃︀𝑢(𝑧)|2 ̃︀𝒯 (𝑚)(𝑧)|[2− 2𝑧 + 𝜎𝜏(1 + 𝑧)]|2 𝜈(d𝑧)/

(︀
4𝜏2
)︀
≤ 0,

(4.34)

which provides (4.13).
In the same way, let us assume that we have: (𝜏𝐷𝜏 + 𝜎𝐸)𝑢𝑘 = 0, for 𝑘 ≥ 𝑛 + 1. Thus, one has

𝑢𝑘+1 =
1− 𝜎/2
1 + 𝜎/2

𝑢𝑘,

for 𝑘 ≥ 𝑛 + 1. As a consequence, we deduce that {𝑢𝑘} satisfies 𝐸𝑢𝑘 = 0, for 𝑘 ≥ 𝑛 + 1, and

Re
𝑛∑︁

𝑘=0

(𝜏𝐷𝜏 + 𝜎𝐸)𝑢𝑘
(︁

(𝐷𝜏 + 𝜎𝐸)𝒯 (𝑚)* 𝑢
)︁𝑘

= Re
∞∑︁

𝑘=0

(𝜏𝐷𝜏 + 𝜎𝐸)𝑢𝑘
(︁

(𝐷𝜏 + 𝜎𝐸)𝒯 (𝑚)* 𝑢
)︁𝑘

= Re
(︁

(𝜏𝐷𝜏 + 𝜎𝐸)𝑢, (𝐷𝜏 + 𝜎𝐸)𝒯 (𝑚)* 𝑢
)︁

ℓ2(C)

= Re
∫︁

𝜕D
|̃︀𝑢(𝑧)|2 ̃︀𝒯 (𝑚)(𝑧)(𝑧−1 − 1) + 𝜎(𝑧−1 + 1)/2

[︀(︀
𝑧−1 − 1

)︀
/𝜏 + 𝜎

(︀
𝑧−1 + 1

)︀
/2
]︀
𝜈(d𝑧)

= Re
∫︁

𝜕D

⃒⃒(︀
𝑧−1 − 1

)︀
+ 𝜎

(︀
𝑧−1 + 1

)︀
/2
⃒⃒2(︃(︀𝑧−1 − 1

)︀
/𝜏 + 𝜎

(︀
𝑧−1 + 1

)︀
/2

(𝑧−1 − 1) + 𝜎(𝑧−1 + 1)/2

)︃̃︀𝒯 (𝑚)(𝑧)|̃︀𝑢(𝑧)|2 𝜈(d𝑧) ≤ 0,

(4.35)

by using (4.33), ending hence the proof of (4.14). �
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5. Error estimates of the scheme

Let us define the two error vectors

𝜀𝑛
1 = ((𝑣1)𝑛

1 − 𝑣1(𝑥1/2, 𝑡𝑛), . . . , (𝑣1)𝑛
𝑀+1 − 𝑣1(𝑥𝑀+1/2, 𝑡𝑛)),

𝜀𝑛
2 = ((𝑣2)𝑛

0 − 𝑣2(𝑥0, 𝑡𝑛), . . . , (𝑣2)𝑛
𝑀+1 − 𝑣2(𝑥𝑀+1, 𝑡𝑛)),

(5.1)

where (𝑣1, 𝑣2) is solution to (2.12) and (𝑣𝑛
1 , 𝑣𝑛

2 ) is the solution to the discrete system (4.3)–(4.6). We first give
the main result concerning the error estimate.

Theorem 5.1. Let us assume that the solutions 𝑢1(𝑥, 𝑡) and 𝑢2(𝑥, 𝑡) to system (2.1), or equivalently, the solu-
tions 𝑣1(𝑥, 𝑡) and 𝑣2(𝑥, 𝑡) of (2.2), are sufficiently smooth. Let us suppose that 𝜎 ≥ 1√

2𝜅
, 𝜏 is small enough and

that 𝑚 satisfies (4.10), with 𝜇 and 𝛿 given by (4.11). Then, we have the error bound

max
1≤𝑛≤[𝑇/𝜏 ]

(︁
‖𝒫𝜀𝑛

2‖
2
ℎ + |∇ℎ𝜀𝑛

2 |
2
ℎ + ‖△ℎ𝜀𝑛

2‖
2
ℎ + |||𝜀𝑛

1 |||2ℎ + ‖∇ℎ𝜀𝑛
1‖

2
ℎ

)︁
≤ 𝒪

(︀
𝜏2 + ℎ2

)︀
.

It is straightforward to check that the error vector (𝜀𝑛
1 , 𝜀𝑛

2 ) satisfies

(𝐷𝜏 + 𝜎𝐸)𝜀𝑛
1 +∇ℎ𝐸𝜀𝑛

2 = 𝑓𝑛
1 , (5.2)

(𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛
2 +∇ℎ𝐸𝜀𝑛

1 = 𝜅△ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2 + 𝑓𝑛

2 , ∀𝑛 ≥ 0, (5.3)
(𝒯 𝑚 * 𝛾±𝜀2)𝑛 − 𝜕±𝜈 𝜀𝑛

2 = 𝑔𝑛
±, ∀𝑛 ≥ 0, (5.4)

𝜀0
1 = (0, · · · , 0) 𝜀0

2 = (0, · · · , 0), (5.5)

where 𝑓𝑛
1 = ((𝑓1)𝑛

1 , . . . , (𝑓1)𝑛
𝑀+1), 𝑓𝑛

2 = ((𝑓2)𝑛
1 , . . . , (𝑓2)𝑛

𝑀 ) and 𝑔𝑛
± are the interior/boundary truncation error

vectors/numbers according to the time and space discretizations, i.e.

(𝑓1)𝑛
𝑗 =

[︁
(𝐷𝜏 + 𝜎𝐸)𝑣1

(︀
𝑥𝑗−1/2, 𝑡𝑛

)︀
−
(︁
𝜕𝑡𝑣1

(︁
𝑥𝑗−1/2, 𝑡𝑛+ 1

2

)︁
+ 𝜎𝑣1

(︁
𝑥𝑗−1/2, 𝑡𝑛+ 1

2

)︁)︁]︁
+
[︁
𝐸(𝑣2(𝑥𝑗 , 𝑡𝑛)− 𝑣2(𝑥𝑗−1, 𝑡𝑛))/ℎ− 𝜕𝑥𝑣2

(︁
𝑥𝑗−1/2, 𝑡𝑛+ 1

2

)︁]︁
, 1 ≤ 𝑗 ≤ 𝑀 + 1, (5.6)

(𝑓2)𝑛
𝑗 =

[︁
(𝐷𝜏 + 𝜎𝐸)𝑣2(𝑥𝑗 , 𝑡𝑛)−

(︁
𝜕𝑡𝑣2

(︁
𝑥𝑗 , 𝑡𝑛+ 1

2

)︁
+ 𝜎𝑣2

(︁
𝑥𝑗 , 𝑡𝑛+ 1

2

)︁)︁]︁
+
[︁
𝐸
(︀
𝑣1

(︀
𝑥𝑗+1/2, 𝑡𝑛

)︀
− 𝑣1

(︀
𝑥𝑗−1/2, 𝑡𝑛

)︀)︀
/ℎ− 𝜕𝑥𝑣1

(︁
𝑥𝑗 , 𝑡𝑛+ 1

2

)︁]︁
− 𝜅
[︁
𝐸(𝑣2(𝑥𝑗−1, 𝑡𝑛)− 2𝑣2(𝑥𝑗 , 𝑡𝑛) + 𝑣2(𝑥𝑗+1, 𝑡𝑛))/ℎ2 − 𝜕2

𝑥𝑣2

(︁
𝑥𝑗 , 𝑡𝑛+ 1

2

)︁]︁
, 1 ≤ 𝑗 ≤ 𝑀, (5.7)

𝑔𝑛
± =

(︁
𝒯 (𝑚) − 𝒯

)︁
* 𝛾±𝑣2(𝑡𝑛) +

[︀(︀
𝒯 * 𝛾±𝑣2

)︀
(𝑡𝑛)−

(︀
T * 𝛾±𝑣2

)︀
(𝑡𝑛)

]︀
+
[︀(︀

T * 𝛾±𝑣2

)︀
(𝑡𝑛)− (T * 𝑣2)(𝑥±, 𝑡𝑛)

]︀
+
[︀
−𝜕±𝜈 𝑣2(𝑡𝑛) + 𝜕𝜈𝑣2(𝑥±, 𝑡𝑛)

]︀
, (5.8)

with 𝑣2(𝑡𝑛) = (𝑣2(𝑥1, 𝑡𝑛), ·, 𝑣2(𝑥𝑀 , 𝑡𝑛)).
The proof of Theorem 5.1 is presented in the next two subsections as a consequence of Propositions 5.2 and 5.3.

5.1. Estimate for truncation errors

Let us first prove the estimate for the truncation errors of the boundary and interior schemes.

Proposition 5.2. Under the conditions of Theorem 5.1, we have the following error estimate

‖∇ℎ𝑓𝑛
1 ‖ℎ + |||𝑓𝑛

1 |||ℎ + ‖𝑓𝑛
2 ‖ℎ +

⃒⃒
𝑔𝑛
±
⃒⃒

+
⃒⃒
𝐷𝜏𝑔𝑛

±
⃒⃒

+
⃒⃒
𝐷2

𝜏𝑔𝑛
±
⃒⃒
≤ 𝐶

(︀
𝜏2 + ℎ2

)︀
, (5.9)

with 𝐷2
𝜏𝑔𝑛
± =

𝑔𝑛+1
± −2𝑔𝑛

±+𝑔𝑛−1
±

𝜏2 , 𝐶 being a strictly positive constant.
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Proof of Proposition 5.2. The proof is separated into three estimates which are summed up at the end to prove
the result.
Estimate of

⃒⃒⃒
𝑔𝑛

±

⃒⃒⃒
. Here, we prove

𝑔𝑛
± = 𝒪

(︀
𝜏2 + ℎ2

)︀
. (5.10)

We divide the proof into two steps.

Step 1. Let us recall that (𝒯 * 𝑣2) is defined by (3.11). We first derive the following bound

|(𝒯 * 𝑣2)(𝑥±, 𝑡)− (T * 𝑣2)(𝑥±, 𝑡)| ≤ 𝒪
(︀
𝜏2
)︀
. (5.11)

By using Taylor’s expansion, it is straightforward to verify that⃒⃒⃒ ̃︀𝒯 (︀𝑒−𝑖𝜏𝜉
)︀
−
(︁
−
√︀

S(𝑖𝜉)
)︁⃒⃒⃒
≤ 𝐶𝜏2|𝜉|3. (5.12)

Since 𝑣2(𝑥, 0) = 𝑣1(𝑥, 0) = 0 for 𝑥 ∈ [𝑥+,∞), thus 𝜕𝑥𝑣1(𝑥+, 0), 𝜕𝑥𝑣2(𝑥+, 0) and 𝜕𝑥𝑥𝑣2(𝑥+, 0) are also equal
to zero. Then (2.3b) leads to the following equality

𝜕𝑡𝑣2(𝑥, 0) = 𝜅𝜕𝑥𝑥(𝜕𝑡𝑣2(𝑥, 0)), ∀𝑥 ∈ [𝑥+, +∞),

implying that 𝜕𝑡𝑣2(𝑥, 0) = 𝐶𝑒
− 𝑥√

𝜅 for 𝑥 ∈ [𝑥+, +∞) and

𝜕𝑡𝜕𝑥𝑣2(𝑥+, 0) = − 𝐶√
𝜅

𝑒
− 𝑥+√

𝜅 . (5.13)

From (2.11), we obtain

𝜕𝑥𝜕𝑡𝑣2(𝑥+, 0) = T(0)𝑣2(𝑥+, 0) + (𝜕𝑡T * 𝑣2(𝑥+, ·))(0) = 0,

and then 𝐶 = 0 in (5.13). Thus, we deduce: 𝜕𝑡𝑣2(𝑥+, 0) = 0. From (2.3a) and (2.3c), we also have
𝜕𝑡𝑣1(𝑥+, 0) = 0. Repeating the same procedure, it is easy to conclude that 𝑣2(𝑥±, 𝑡) and its time derivatives
are zero at 𝑡 = 0. Consequently, by extending 𝑣2(𝑥±, 𝑡) to zero on 𝑡 ∈ (−∞, 0], we obtain a sufficiently
smooth function 𝑣2(𝑥±, 𝑡) defined for 𝑡 ∈ R. We set

(𝒯 * 𝑣2)(𝑥±, 𝑡) :=
∞∑︁

𝑗=0

𝒯𝑗𝑣2(𝑥±, 𝑡− 𝑗𝜏), ∀ 𝑡 ∈ R, (5.14)

which is consistent with definition (3.11) at 𝑡 = 𝑡𝑛. The Fourier transform in time of (5.14) is

ℱ𝑡[(𝒯 * 𝑣2)(𝑥±, 𝑡)](𝜉) =
∫︁

R
(𝒯 * 𝑣2)(𝑥±, 𝑡)𝑒−𝑖𝑡𝜉d𝑡 =

∞∑︁
𝑗=0

∫︁
R
𝒯𝑗𝑣2(𝑥±, 𝑡− 𝑗𝜏)𝑒−𝑖𝑡𝜉d𝑡

= ̃︀𝒯 (︀𝑒−𝑖𝜏𝜉
)︀
ℱ𝑡𝑣2(𝑥±, 𝜉) = −

√︀
S(𝑖𝜉)ℱ𝑡𝑣2(𝑥±, 𝜉) +

(︁̃︀𝒯 (︀𝑒−𝑖𝜏𝜉
)︀

+
√︀

S(𝑖𝜉)
)︁
ℱ𝑡𝑣2(𝑥±, 𝜉)

= ℱ𝑡[(T * 𝑣2)(𝑥±, 𝑡)](𝜉) +
(︁̃︀𝒯 (︀𝑒−𝑖𝜏𝜉

)︀
+
√︀

S(𝑖𝜉)
)︁
ℱ𝑡𝑣2(𝑥±, 𝜉).

Let us recall that ̃︀𝒯 (︀𝑒−𝑖𝜏𝜉
)︀

= −

√︃
𝑆

(︂
2(1− 𝑒−𝑖𝜏𝜉)
𝜏(1 + 𝑒−𝑖𝜏𝜉)

)︂
with

𝑆(𝑠) =
(𝜎 + 𝑠)2

1 + 𝜅(𝜎 + 𝑠)2
·
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Therefore, we have⃒⃒⃒ ̃︀𝒯 (︀𝑒−𝑖𝜏𝜉
)︀

+
√︀

𝑆(𝑖𝜉)
⃒⃒⃒

=

⃒⃒⃒⃒
⃒√︀𝑆(𝑖𝜉)−

√︃
𝑆

(︂
2(1− 𝑒−𝑖𝜏𝜉)
𝜏(1 + 𝑒−𝑖𝜏𝜉)

)︂⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒√︀𝑆(𝑖𝜉)−

√︃
𝑆

(︂
𝑖
2 tan(𝜏𝜉/2)

𝜏

)︂⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒
∫︁ 𝑖

tan(𝜏𝜉/2)
𝜏/2

𝑖𝜉

d
d𝑠

(︁√︀
𝑆(𝑠)

)︁
d𝑠

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
∫︁ 𝑖

tan(𝜏𝜉/2)
𝜏/2

𝑖𝜉

1

(1 + 𝜅(𝜎 + 𝑠))3/2
d𝑠

⃒⃒⃒⃒
⃒

≤ 𝐶

⃒⃒⃒⃒
𝑖
tan(𝜏𝜉/2)

𝜏/2
− 𝑖𝜉

⃒⃒⃒⃒
≤

⃒⃒⃒⃒
⃒
∫︁ 𝜉

0

(︃
1

1 + 𝜏2𝜉2
1

4

− 1

)︃
d𝜉1

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
∫︁ 𝜉

0

𝜏2𝜉2
1

4

1 + 𝜏2𝜉2
1

4

d𝜉1

⃒⃒⃒⃒
⃒

≤ 𝜏2

4

∫︁ |𝜉|

0

𝜉2
1 d𝜉1 ≤ 𝐶𝜏2|𝜉|3.

In addition, for |𝜉| ≤ 1, we obtain

|𝜉|3 ≤ |𝜉|3 + |𝜉|4

1 + |𝜉|
≤ 1 + |𝜉|4

1 + |𝜉|
·

For |𝜉| ≥ 1, we have

|𝜉|3 ≤ |𝜉|3 + |𝜉|4

1 + |𝜉|
≤ 2|𝜉|4

1 + |𝜉|
≤ 2

1 + |𝜉|4

1 + |𝜉|
·

Thus, we deduce

|𝜉|3 ≤ 𝐶
1 + |𝜉|4

1 + |𝜉|
·

By the above two estimates, we have

|𝒯 * 𝑣2(𝑥±, 𝑡)− (T * 𝑣2)(𝑥±, 𝑡)| =
⃒⃒⃒
ℱ−1

𝜉

[︁(︁̃︀𝒯 (︀𝑒−𝑖𝜏𝜉
)︀

+
√︀

S(𝑖𝜉)
)︁
ℱ𝑡𝑣2(𝑥±, 𝜉)

]︁
(𝑡)
⃒⃒⃒

≤
∫︁

R

⃒⃒⃒ ̃︀𝒯 (︀𝑒−𝑖𝜏𝜉
)︀

+
√︀

S(𝑖𝜉)
⃒⃒⃒
|ℱ𝑡𝑣2(𝑥±, 𝜉)|d𝜉 ≤ 𝐶𝜏2

∫︁
R
|𝜉|3|ℱ𝑡𝑣2(𝑥±, 𝜉)|d𝜉

≤ 𝐶𝜏2

∫︁
R

1
1 + |𝜉|

(︀
1 + |𝜉|4

)︀
|ℱ𝑡𝑣2(𝑥±, 𝜉)|d𝜉

≤ 𝐶𝜏2

(︃∫︁
R

1
(1 + |𝜉|)2

d𝜉

)︃ 1
2(︂∫︁

R

(︀
1 + |𝜉|4

)︀2|ℱ𝑡𝑣2(𝑥±, 𝜉)|2d𝜉

)︂ 1
2

= 𝐶𝜏2

(︂∫︁ ∞

0

(︁
|𝑣2(𝑥±, 𝑡)|2 +

⃒⃒
𝜕4

𝑡 𝑣2(𝑥±, 𝑡)
⃒⃒2)︁

d𝑡

)︂ 1
2

.

(5.15)
We finally obtain (5.11).

Step 2. The inequality (4.12) of Proposition 4.1 implies that:
⃒⃒⃒ ̃︀𝒯 (𝑚)(𝑧)− ̃︀𝒯 (𝑧)

⃒⃒⃒
≤ 𝐶𝜏3 for |𝑧| = 1. Since

𝒯 (𝑚)
𝑗 =

∫︁
𝜕D
̃︀𝒯 (𝑚)(𝑧)𝑧−𝑗𝜈(d𝑧) and 𝒯𝑗 =

∫︁
𝜕D
̃︀𝒯 (𝑧)𝑧−𝑗𝜈(d𝑧),

this shows that ⃒⃒⃒
𝒯 (𝑚)

𝑗 − 𝒯𝑗

⃒⃒⃒
≤
∫︁

𝜕D

⃒⃒⃒ ̃︀𝒯 (𝑚)(𝑧)− ̃︀𝒯 (𝑧)
⃒⃒⃒
𝜈(d𝑧) ≤ 𝐶𝜏3.

Thus, the following inequalities hold⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑗=0

𝒯 (𝑚)
𝑗 𝑣𝑛−𝑗

2 −
𝑛∑︁

𝑗=0

𝒯𝑗𝑣
𝑛−𝑗
2

⃒⃒⃒⃒
⃒⃒ ≤ 𝑛∑︁

𝑗=0

⃒⃒⃒
𝒯 (𝑚)

𝑗 − 𝒯𝑗

⃒⃒⃒⃒⃒⃒
𝑣𝑛−𝑗
2

⃒⃒⃒
≤

𝑛∑︁
𝑗=0

𝐶𝜏3 ≤ 𝐶𝜏2,
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which leads to (︁
𝒯 (𝑚) − 𝒯

)︁
* 𝛾±𝑣2(𝑡𝑛) = 𝒪

(︀
𝜏2
)︀
. (5.16)

Besides, equation (5.11) yields (︀
𝒯 * 𝛾±𝑣2

)︀
(𝑡𝑛)−

(︀
T * 𝛾±𝑣2

)︀
(𝑡𝑛) = 𝒪

(︀
𝜏2
)︀
. (5.17)

Since 𝛾+𝑣2 =
(︀
(𝑣2)𝑀+1 + (𝑣2)𝑀

)︀
/2 and 𝑥+ = (𝑥𝑀+1 + 𝑥𝑀 )/2 = 𝑥𝑀+ 1

2
, it follows that⃒⃒(︀

T * 𝛾±𝑣2

)︀
(𝑡𝑛)− (T * 𝑣2)(𝑥±, 𝑡𝑛)

⃒⃒
= 𝒪

(︀
ℎ2
)︀
,

and

𝜕+
𝜈 𝑣2(𝑡𝑛)− 𝜕𝜈𝑣2(𝑥+, 𝑡𝑛) =

𝑣2(𝑥𝑀+1, 𝑡𝑛)− 𝑣2(𝑥𝑀 , 𝑡𝑛)
ℎ

− 𝜕𝑥𝑣2

(︁
𝑥𝑀+ 1

2
, 𝑡𝑛

)︁
= 𝒪

(︀
ℎ2
)︀
,

𝜕−𝜈 𝑣2(𝑡𝑛)− 𝜕𝜈𝑣2(𝑥−, 𝑡𝑛) = −𝑣2(𝑥1, 𝑡𝑛)− 𝑣2(𝑥0, 𝑡𝑛)
ℎ

+ 𝜕𝑥𝑣2

(︁
𝑥 1

2
, 𝑡𝑛

)︁
= 𝒪

(︀
ℎ2
)︀
.

(5.18)

Substituting (5.16)–(5.18) into (5.8) leads to (5.10).

Estimate of
⃦⃦
∇ℎ𝑓𝑛

1

⃦⃦2
ℎ

+ |||𝑓𝑛
1 |||ℎ + ‖𝑓𝑛

2 ‖ℎ. We now prove that

‖∇ℎ𝑓𝑛
1 ‖ℎ + |||𝑓𝑛

1 |||ℎ + ‖𝑓𝑛
2 ‖ℎ ≤ 𝒪

(︀
𝜏2 + ℎ2

)︀
. (5.19)

Recalling (5.6), we estimate the three terms in the expression of (𝑓1)𝑛
𝑗 separately. Firstly, we have

(𝐷𝜏 + 𝜎𝐸)𝑣1

(︀
𝑥𝑗−1/2, 𝑡𝑛

)︀
−
(︁
𝜕𝑡𝑣1

(︁
𝑥𝑗−1/2, 𝑡𝑛+ 1

2

)︁
+ 𝜎𝑣1

(︁
𝑥𝑗−1/2, 𝑡𝑛+ 1

2

)︁)︁
=

(︃
𝑣1

(︀
𝑥𝑗−1/2, 𝑡𝑛+1

)︀
− 𝑣1

(︀
𝑥𝑗−1/2, 𝑡𝑛

)︀
𝜏

− 𝜕𝑡𝑣1

(︁
𝑥𝑗−1/2, 𝑡𝑛+ 1

2

)︁)︃

+ 𝜎

(︃
𝑣1

(︀
𝑥𝑗−1/2, 𝑡𝑛

)︀
+ 𝑣1

(︀
𝑥𝑗−1/2, 𝑡𝑛+1

)︀
2

− 𝑣1

(︁
𝑥𝑗−1/2, 𝑡𝑛+ 1

2

)︁)︃
= 𝒪

(︀
𝜏2
)︀
.

(5.20)

Secondly, the following estimate holds[︁
𝐸(𝑣2(𝑥𝑗 , 𝑡𝑛)− 𝑣2(𝑥𝑗−1, 𝑡𝑛))/ℎ− 𝜕𝑥𝑣2

(︁
𝑥𝑗−1/2, 𝑡𝑛+ 1

2

)︁]︁
= 𝒪

(︀
𝜏2 + ℎ2

)︀
. (5.21)

Thus, from (5.6), (5.20) and (5.21), we deduce

(𝑓1)𝑛
𝑗 = 𝒪

(︀
𝜏2 + ℎ2

)︀
, 1 ≤ 𝑗 ≤ 𝑀 + 1. (5.22)

Similarly, recalling (5.7),

𝐸𝑣2(𝑥𝑗−1, 𝑡𝑛)− 2𝐸𝑣2(𝑥𝑗 , 𝑡𝑛) + 𝐸𝑣2(𝑥𝑗+1, 𝑡𝑛)
ℎ2

− 𝜕2
𝑥𝑣2

(︁
𝑥𝑗 , 𝑡𝑛+ 1

2

)︁
= 𝒪

(︀
𝜏2 + ℎ2

)︀
, (5.23)

we thus obtain
(𝑓2)𝑛

𝑗 = 𝒪
(︀
𝜏2 + ℎ2

)︀
, 1 ≤ 𝑗 ≤ 𝑀. (5.24)

Finally, from (5.22) and (5.24) one gets

|||𝑓𝑛
1 |||ℎ = 𝒪

(︀
𝜏2 + ℎ2

)︀
, ‖𝑓𝑛

2 ‖ℎ = 𝒪
(︀
𝜏2 + ℎ2

)︀
. (5.25)
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In a similar way (using a Taylor’s expansion), one can prove that

‖∇ℎ𝑓𝑛
1 ‖ℎ = 𝒪

(︀
𝜏2 + ℎ2

)︀
, (5.26)

which leads to (5.19).

Estimate of
⃒⃒⃒
𝐷𝜏 𝑔𝑛

±

⃒⃒⃒
. Since we have

𝐷𝜏𝑔𝑛
± =

(︁
𝒯 (𝑚) − 𝒯

)︁
* 𝛾±𝐷𝜏𝑣2(𝑡𝑛) +

[︀
𝒯 * 𝛾±𝐷𝜏𝑣2(𝑡𝑛)−

(︀
T * 𝛾±𝐷𝜏𝑣2

)︀
(𝑡𝑛)

]︀
+
[︀(︀

T * 𝛾±𝐷𝜏𝑣2

)︀
(𝑡𝑛)− (T *𝐷𝜏𝑣2)(𝑥±, 𝑡𝑛)

]︀
+
[︀
−𝜕±𝜈 𝐷𝜏𝑣2(𝑡𝑛) + 𝜕𝜈𝐷𝜏𝑣2(𝑥±, 𝑡𝑛)

]︀
,

(5.27)

it follows that (5.27) can be estimated as (5.8) (replacing 𝑣2(𝑥, 𝑡𝑛) by 𝐷𝜏𝑣2(𝑥, 𝑡𝑛)), which provides

𝐷𝜏𝑔𝑛
± = 𝒪

(︀
𝜏2 + ℎ2

)︀
. (5.28)

In a similar way, we can prove that
𝐷2

𝜏𝑔𝑛
± = 𝒪

(︀
𝜏2 + ℎ2

)︀
. (5.29)

Combing (5.10), (5.19), (5.28) and (5.29), we finally get (5.9). �

5.2. Error estimates

Let us state the error estimate for system (4.3)–(4.6). Theorem 5.1 is then a consequence of Propositions 5.2
and 5.3.

Proposition 5.3. If 𝜎 ≥ 1√
2𝜅

, and the order 𝑚 of the Padé approximation fulfills (4.10), the solution of
(4.3)–(4.6) satisfies the following stability estimate:

max
1≤𝑛≤[𝑇/𝜏 ]

(︁
‖𝒫𝜀𝑛

2‖
2
ℎ + |∇ℎ𝜀𝑛

2 |
2
ℎ + ‖△ℎ𝜀𝑛

2‖
2
ℎ + |||𝜀𝑛

1 |||2ℎ + ‖∇ℎ𝜀𝑛
1‖

2
ℎ

)︁
≤ 𝐶𝑇

[︂
max

0≤𝑘≤𝑛−1

(︁
‖∇ℎ𝑓𝑛

1 ‖
2
ℎ +

⃦⃦
𝑓𝑘
2

⃦⃦2

ℎ
+ |||𝑓𝑘

1 |||2ℎ +
⃒⃒
𝐷𝜏𝑔𝑘

±
⃒⃒2)︁

+ max
0≤𝑘≤𝑛

⃒⃒
𝑔𝑘
±
⃒⃒2

+ max
1≤𝑘≤𝑛−1

⃒⃒
𝐷2

𝜏𝑔𝑘
±
⃒⃒2]︂

,

where 𝐶𝑇 is a constant depending on 𝑇 .

Proof of Proposition 5.3. Due to

𝐷𝜏 (𝜀1)𝑛
𝑚 · 𝐸(𝜀1)𝑛

𝑚 =
(𝜀1)𝑛+1

𝑚 − (𝜀1)𝑛
𝑚

𝜏
·

(𝜀1)𝑛+1
𝑚 + (𝜀1)𝑛

𝑚

2
=
|(𝜀1)𝑛+1

𝑚 |2 − |(𝜀1)𝑛
𝑚|2

2𝜏
,

taking the real part of the inner product between the left hand side of (5.2) and 𝐸𝜀𝑛
1 yields

1
2
𝐷𝜏

(︀
|||𝜀𝑛

1 |||2ℎ
)︀

+ 𝜎|||𝐸𝜀𝑛
1 |||2ℎ = −Re {𝐸𝜀𝑛

1 , 𝐸∇ℎ𝜀𝑛
2}ℎ + Re (𝐸𝜀𝑛

1 , 𝑓𝑛
1 )ℎ

≤ 𝜎

4
|||𝐸𝜀𝑛

1 |||2ℎ +
1
𝜎
|𝐸∇ℎ𝜀𝑛

2 |2ℎ +
𝜎

4
|||𝐸𝜀𝑛

1 |||2ℎ +
1
𝜎
|||𝑓𝑛

1 |||2ℎ,

(5.30)

using the inequality

|𝑎𝑏| =
⃒⃒⃒⃒√︂

𝜎

2
𝑎

⃒⃒⃒⃒⃒⃒⃒⃒
⃒
√︂

2
𝜎

𝑏

⃒⃒⃒⃒
⃒ ≤ 1

2

(︂
𝜎

2
𝑎2 +

2
𝜎

𝑏2

)︂
=

𝜎

4
𝑎2 +

1
𝜎

𝑏2.

Summing up over 𝑛, we obtain

|||𝜀𝑛
1 |||2ℎ ≤ 𝒪(𝜏)

(︃
𝑛∑︁

𝑘=0

⃒⃒
∇ℎ𝜀𝑘

2

⃒⃒2
ℎ

+
𝑛−1∑︁
𝑘=0

|||𝑓𝑘
1 |||2ℎ

)︃
. (5.31)
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From (5.2), it is easy to see that: (𝐷𝜏 + 𝜎𝐸)∇ℎ𝜀𝑛
1 +△ℎ𝐸𝜀𝑛

2 = ∇ℎ𝑓𝑛
1 . Next computing the inner product of the

previous expression with 𝐸∇ℎ𝜀𝑛
1 and taking the real part, we deduce

1
2
𝐷𝜏

(︁
‖∇ℎ𝜀𝑛

1‖
2
ℎ

)︁
+ 𝜎‖𝐸∇ℎ𝜀𝑛

1‖
2
ℎ = −Re (𝐸∇ℎ𝜀𝑛

1 , 𝐸△ℎ𝜀𝑛
2 )ℎ + Re (𝐸∇ℎ𝜀𝑛

1 ,∇ℎ𝑓𝑛
1 )ℎ

≤ 𝜎

4
‖𝐸∇ℎ𝜀𝑛

1‖2ℎ +
1
𝜎
‖𝐸△ℎ𝜀𝑛

2‖2ℎ + +
𝜎

4
‖𝐸∇ℎ𝜀𝑛

1‖2ℎ +
1
𝜎
‖∇ℎ𝑓𝑛

1 ‖2ℎ,

which leads to

‖∇ℎ𝜀𝑛
1‖

2
ℎ ≤ 𝒪(𝜏)

(︃
𝑛∑︁

𝑘=0

⃦⃦
△ℎ𝜀𝑘

2

⃦⃦2

ℎ
+

𝑛−1∑︁
𝑘=0

⃦⃦
∇ℎ𝑓𝑘

1

⃦⃦2

ℎ

)︃
. (5.32)

By taking the inner product of (5.3) with (𝜏𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛
2 and then the real part, one gets

Re((𝜏𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛
2 , (𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛

2 +∇ℎ𝐸𝜀𝑛
1 )ℎ = Re((𝜏𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛

2 , 𝜅△𝑛
ℎ(𝐷𝜏 + 𝜎𝐸)𝜀2 + 𝑓𝑛

2 )ℎ. (5.33)

The left hand side of (5.33) can be written as

𝜏‖𝐷𝜏𝒫𝜀𝑛
2‖2ℎ +

𝜎(1 + 𝜏)
2

𝐷𝜏

(︀
‖𝒫𝜀𝑛

2‖2ℎ
)︀

+ 𝜎2‖𝐸𝒫𝜀𝑛
2‖2ℎ + Re((𝜏𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛

2 ,∇ℎ𝐸𝜀𝑛
1 )ℎ. (5.34)

By applying the discrete Green’s formula (3.13), the boundary conditions (4.5), and (4.13), the right hand side
of (5.33) can be rewritten following

− 𝜅⟨∇ℎ(𝜏𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2 ,∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ⟩ℎ + 𝜅Re
(︁
𝛾±(𝜏𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2𝜕±𝜈 (𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2

)︁
+ Re((𝜏𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛

2 , 𝑓𝑛
2 )ℎ

= −𝜅⟨∇ℎ(𝜏𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2 ,∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ⟩ℎ + 𝜅Re
(︁

(𝜏𝐷𝜏 + 𝜎𝐸)𝛾±𝜀𝑛
2 (𝐷𝜏 + 𝜎𝐸)𝜕±𝜈 𝜀𝑛

2

)︁
+ Re((𝜏𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛

2 , 𝑓𝑛
2 )ℎ

= −𝜅⟨∇ℎ(𝜏𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2 ,∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ⟩ℎ + 𝜅Re
(︁

(𝜏𝐷𝜏 + 𝜎𝐸)𝛾±𝜀𝑛
2 (𝐷𝜏 + 𝜎𝐸)

(︁
𝒯 (𝑚) * 𝛾±𝜀2

)︁𝑛)︁
− 𝜅Re

(︁
(𝜏𝐷𝜏 + 𝜎𝐸)𝛾±𝜀𝑛

2 (𝐷𝜏 + 𝜎𝐸)𝑔𝑛
±

)︁
+ Re((𝜏𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛

2 , 𝑓𝑛
2 )ℎ

≤ −𝜅⟨∇ℎ(𝜏𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2 ,∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ⟩ℎ

− 𝜅Re
(︁

(𝜏𝐷𝜏 + 𝜎𝐸)𝛾±𝜀𝑛
2 (𝐷𝜏 + 𝜎𝐸)𝑔𝑛

±

)︁
+ Re((𝜏𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛

2 , 𝑓𝑛
2 )ℎ.

(5.35)

Combining (5.34) and (5.35), we have

𝜏‖𝐷𝜏𝒫𝜀𝑛
2‖2ℎ +

𝜎(1 + 𝜏)
2

𝐷𝜏

(︀
‖𝒫𝜀𝑛

2‖2ℎ
)︀

+ 𝜎2‖𝐸𝒫𝜀𝑛
2‖2ℎ + 𝜅⟨∇ℎ(𝜏𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ,∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2 ⟩ℎ

= 𝜏‖𝐷𝜏𝒫𝜀𝑛
2‖2ℎ +

𝜎(1 + 𝜏)
2

𝐷𝜏

(︀
‖𝒫𝜀𝑛

2‖2ℎ
)︀

+ 𝜎2‖𝐸𝒫𝜀𝑛
2‖2ℎ + 𝜅𝜏 |𝐷𝜏∇ℎ𝜀𝑛

2 |2ℎ

+
𝜅𝜎(1 + 𝜏)

2
𝐷𝜏

(︀
|∇ℎ𝜀𝑛

2 |2ℎ
)︀

+ 𝜅𝜎2|𝐸∇ℎ𝜀𝑛
2 |2ℎ

≤ −Re((𝜏𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛
2 ,∇ℎ𝐸𝜀𝑛

1 )ℎ + Re((𝜏𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛
2 , 𝑓𝑛

2 )ℎ

− 𝜅Re
(︁

(𝜏𝐷𝜏 + 𝜎𝐸)𝛾±𝜀𝑛
2 (𝐷𝜏 + 𝜎𝐸)𝑔𝑛

±

)︁
,

from which we derive

𝐷𝜏

(︀
‖𝒫𝜀𝑛

2‖2ℎ
)︀
+𝐷𝜏

(︀
|∇ℎ𝜀𝑛

2 |2ℎ
)︀
≤ 𝒪(1)

(︀
𝐸
(︀
‖∇ℎ𝜀𝑛

1‖2ℎ
)︀

+ 𝐸
(︀
|𝛾±𝜀𝑛

2 |2
)︀)︀

+𝒪(1)
(︀
‖𝑓𝑛

2 ‖2ℎ + |𝐷𝜏𝑔𝑛
±|2 + 𝐸

(︀
|𝑔𝑛
±|2
)︀)︀

. (5.36)
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This leads to

‖𝒫𝜀𝑛
2‖

2
ℎ + |∇ℎ𝜀𝑛

2 |
2
ℎ ≤ 𝒪(𝜏)

𝑛∑︁
𝑘=0

(︁⃦⃦
∇ℎ𝜀𝑘

1

⃦⃦2

ℎ
+
⃒⃒
𝑔𝑘
±
⃒⃒2

+
⃒⃒
𝛾±𝜀𝑘

2

⃒⃒2)︁
+𝒪(𝜏)

𝑛−1∑︁
𝑘=0

(︁⃦⃦
𝑓𝑘
2

⃦⃦2

ℎ
+
⃒⃒
𝐷𝜏𝑔𝑘

±
⃒⃒2)︁

.

Again taking the inner product of (5.3) with (𝐷𝜏 + 𝜎𝐸)△ℎ𝒫𝜀𝑛
2 and then the real part, we obtain

Re((𝐷𝜏 + 𝜎𝐸)△ℎ𝜀𝑛
2 , (𝐷𝜏 + 𝜎𝐸)𝒫𝜀𝑛

2 +∇ℎ𝐸𝜀1)ℎ = Re((𝐷𝜏 + 𝜎𝐸)△ℎ𝜀𝑛
2 , 𝜅△ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 + 𝑓𝑛
2 )ℎ. (5.37)

The right hand side of (5.37) can be written as

𝜎𝜅𝐷𝜏

(︀
‖△ℎ𝜀𝑛

2‖2ℎ
)︀

+ 𝜅‖𝐷𝜏△ℎ𝜀𝑛
2‖2ℎ + 𝜎2𝜅‖𝐸△ℎ𝜀𝑛

2‖2ℎ + Re((𝐷𝜏 + 𝜎𝐸)△ℎ𝜀𝑛
2 , 𝑓𝑛

2 )ℎ. (5.38)

Now by using the integration by part (3.13), the boundary conditions (4.5), and (4.14), the left term of (5.37)
reads

− ⟨∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2 ,∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ⟩ℎ + Re((𝐷𝜏 + 𝜎𝐸)△ℎ𝜀𝑛
2 ,∇ℎ𝐸𝜀𝑛

1 )ℎ

+ Re
(︁
𝜕±(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2𝛾±(𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2

)︁
= −⟨∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ,∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2 ⟩ℎ + Re((𝐷𝜏 + 𝜎𝐸)△ℎ𝜀𝑛

2 ,∇ℎ𝐸𝜀𝑛
1 )ℎ

+ Re
(︁

(𝐷𝜏 + 𝜎𝐸)𝜕±𝜀𝑛
2 (𝐷𝜏 + 𝜎𝐸)𝛾±𝜀𝑛

2

)︁
= −⟨∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ,∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2 ⟩ℎ + Re((𝐷𝜏 + 𝜎𝐸)△ℎ𝜀𝑛

2 ,∇ℎ𝐸𝜀𝑛
1 )ℎ

+ Re
(︁

(𝐷𝜏 + 𝜎𝐸)
(︀
𝒯 (𝑚) * 𝛾±𝜀2

)︀𝑛(𝐷𝜏 + 𝜎𝐸)𝛾±𝜀𝑛
2

)︁
− Re

(︁
(𝐷𝜏 + 𝜎𝐸)𝑔𝑛

±(𝐷𝜏 + 𝜎𝐸)𝛾±𝜀𝑛
2

)︁
≤ −⟨∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ,∇ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛
2 ⟩ℎ + Re((𝐷𝜏 + 𝜎𝐸)△ℎ𝜀𝑛

2 ,∇𝑛
ℎ𝐸𝜀𝑛

1 )ℎ

− Re
(︁

(𝐷𝜏 + 𝜎𝐸)𝑔𝑛
±(𝐷𝜏 + 𝜎𝐸)𝛾±𝜀𝑛

2

)︁
. (5.39)

Combining (5.38) and (5.39), we deduce

𝜎𝜅𝐷𝜏

(︀
‖△ℎ𝜀𝑛

2‖2ℎ
)︀

+ 𝜅‖𝐷𝜏△ℎ𝜀𝑛
2‖2ℎ + 𝜎2𝜅‖𝐸△ℎ𝜀𝑛

2‖2ℎ + ⟨∇𝑛
ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ,∇𝑛
ℎ(𝐷𝜏 + 𝜎𝐸)𝜀𝑛

2 ⟩ℎ
≤ Re((𝐷𝜏 + 𝜎𝐸)△ℎ𝜀𝑛

2 ,∇𝑛
ℎ𝐸𝜀1)ℎ − Re

(︁
(𝐷𝜏 + 𝜎𝐸)𝑔𝑛

±(𝐷𝜏 + 𝜎𝐸)𝛾±𝜀𝑛
2

)︁
− Re((𝐷𝜏 + 𝜎𝐸)△ℎ𝜀𝑛

2 , 𝑓𝑛
2 )ℎ,

from which we derive that

𝐷𝜏‖△ℎ𝜀𝑛
2‖2ℎ + 𝐷𝜏 |∇ℎ𝜀𝑛

2 |2ℎ ≤ 𝒪(1)
(︀
𝐸
(︀
‖∇ℎ𝜀𝑛

1‖2ℎ
)︀

+ 𝐸
(︀
|𝛾±𝜀𝑛

2 |2
)︀)︀

+𝒪(1)
(︀
‖𝑓𝑛

2 ‖2ℎ + |𝐷𝜏𝑔𝑛
±|2 + 𝐸

(︀
|𝑔𝑛
±|2
)︀)︀
− Re

(︁
(𝐷𝜏 + 𝜎𝐸)𝑔𝑛

±𝐷𝜏𝛾±𝜀𝑛
2

)︁
.

Summing up the index 𝑛 and using a summation by parts in time for
∑︀𝑛−1

𝑘=0 Re
(︁
𝐷𝜏𝛾±𝜀𝑘

2 · (𝐷𝜏 + 𝜎𝐸)𝑔𝑘
±

)︁
, we

obtain

𝜏−1
[︁
‖△ℎ𝜀𝑛

2‖
2
ℎ + |∇ℎ𝜀𝑛

2 |
2
ℎ

]︁
≤ 𝒪(1)𝜏−1

(︁⃒⃒
𝛾±𝜀𝑛

2

⃒⃒2 +
⃒⃒
𝑔𝑛−1
±

⃒⃒2
+
⃒⃒
𝑔𝑛
±
⃒⃒2 +

⃒⃒
𝐷𝜏𝑔𝑛−1

±
⃒⃒2)︁

+𝒪(1)
𝑛∑︁

𝑘=1

(︁⃦⃦
∇ℎ𝜀𝑘

1

⃦⃦2

ℎ
+
⃒⃒
𝛾±𝜀𝑘

2

⃒⃒2
+
⃒⃒
𝑔𝑘
±
⃒⃒2)︁

+𝒪(1)
𝑛−1∑︁
𝑘=0

(︁⃦⃦
𝑓𝑘
2

⃦⃦2

ℎ
+
⃒⃒
𝐷𝜏𝑔𝑘

±
⃒⃒2)︁

+𝒪(1)
𝑛−1∑︁
𝑘=1

⃒⃒
𝐷2

𝜏𝑔𝑘
±
⃒⃒2

.

(5.40)
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By the discrete Sobolev imbedding theorem⃒⃒
𝛾±𝜀𝑛

2

⃒⃒2 ≤ 𝒪(︀𝜖−1
1

)︀
‖𝒫𝜀𝑛

2‖
2
ℎ + 𝜖1|∇ℎ𝜀𝑛

2 |
2
ℎ,

and choosing 𝜖1 small enough from (5.40), we have

‖△ℎ𝜀𝑛
2‖

2
ℎ + |∇ℎ𝜀𝑛

2 |
2
ℎ ≤ 𝒪(1)

(︁
‖𝒫𝜀𝑛

2‖
2
ℎ +

⃒⃒
𝑔𝑛−1
±

⃒⃒2
+
⃒⃒
𝑔𝑛
±
⃒⃒2 +

⃒⃒
𝐷𝜏𝑔𝑛−1

±
⃒⃒2)︁

+𝒪(𝜏)
𝑛∑︁

𝑘=1

(︁⃦⃦
∇ℎ𝜀𝑘

1

⃦⃦2

ℎ
+
⃒⃒
𝛾±𝜀𝑘

2

⃒⃒2
+
⃒⃒
𝑔𝑘
±
⃒⃒2)︁

+𝒪(𝜏)
𝑛−1∑︁
𝑘=0

(︁⃦⃦
𝑓𝑘
2

⃦⃦2

ℎ
+
⃒⃒
𝐷𝜏𝑔𝑘

±
⃒⃒2)︁

+𝒪(𝜏)
𝑛−1∑︁
𝑘=1

⃒⃒
𝐷2

𝜏𝑔𝑘
±
⃒⃒2

.

(5.41)

Combining (5.31), (5.32), (5.37) and (5.41) together yields

‖△ℎ𝜀𝑛
2‖

2
ℎ + |∇ℎ𝜀𝑛

2 |
2
ℎ + ‖𝒫𝜀𝑛

2‖
2
ℎ + ‖∇ℎ𝜀𝑛

1‖
2
ℎ + |||𝜀𝑛

1 |||2ℎ
≤ 𝒪(1)

(︁⃒⃒
𝑔𝑛−1
±

⃒⃒2
+
⃒⃒
𝑔𝑛
±
⃒⃒2 +

⃒⃒
𝐷𝜏𝑔𝑛−1

±
⃒⃒2)︁

+𝒪(𝜏)
𝑛∑︁

𝑘=1

(︁⃦⃦
∇ℎ𝜀𝑘

1

⃦⃦2

ℎ
+
⃦⃦
△ℎ𝜀𝑘

2

⃦⃦2

ℎ
+
⃒⃒
𝛾±𝜀𝑘

2

⃒⃒2
+
⃒⃒
𝑔𝑘
±
⃒⃒2)︁

+𝒪(𝜏)
𝑛−1∑︁
𝑘=0

(︁⃦⃦
𝑓𝑘
2

⃦⃦2

ℎ
+
⃦⃦
∇ℎ𝑓𝑘

1

⃦⃦2

ℎ
+ |||𝑓𝑘

1 |||2ℎ +
⃒⃒
𝐷𝜏𝑔𝑘

±
⃒⃒2)︁

+𝒪(𝜏)
𝑛−1∑︁
𝑘=1

⃒⃒
𝐷2

𝜏𝑔𝑘
±
⃒⃒2

≤ 𝒪(𝜏)
𝑛∑︁

𝑘=1

(︁⃦⃦
∇ℎ𝜀𝑘

1

⃦⃦2

ℎ
+
⃦⃦
△ℎ𝜀𝑘

2

⃦⃦2

ℎ
+
⃒⃒
∇ℎ𝜀𝑘

2

⃒⃒2
ℎ

+
⃦⃦
𝒫𝜀𝑘

2

⃦⃦2

ℎ

)︁
+𝒪(𝜏)

𝑛−1∑︁
𝑘=0

(︁⃦⃦
𝑓𝑘
2

⃦⃦2

ℎ
+
⃦⃦
∇ℎ𝑓𝑘

1

⃦⃦2

ℎ
+ |||𝑓𝑘

1 |||2ℎ +
⃒⃒
𝐷𝜏𝑔𝑘

±
⃒⃒2)︁

+𝒪(𝜏)
𝑛∑︁

𝑘=0

⃒⃒
𝑔𝑘
±
⃒⃒2

+𝒪(𝜏)
𝑛−1∑︁
𝑘=1

⃒⃒
𝐷2

𝜏𝑔𝑘
±
⃒⃒2

+𝒪(1)
(︁⃒⃒

𝑔𝑛−1
±

⃒⃒2
+
⃒⃒
𝑔𝑛
±
⃒⃒2 +

⃒⃒
𝐷𝜏𝑔𝑛−1

±
⃒⃒2)︁

.

(5.42)

Applying the discrete Gronwall’s inequality [25], we derive (5.3). The proof of Proposition 5.3 is complete. �

We remark that, From Proposition 4.1, for very small values of 𝜅, we have: 𝑚 ∼ 𝜏𝜅−1/2.
From Theorem 5.1 and since 𝑒𝜎𝑡𝑣𝑖 = 𝑢𝑖, in order to achieve the accuracy of 𝒪

(︀
𝜏2 + ℎ2

)︀
, we

have 𝑚 ∼ (| log(𝜏)|+ | log(𝜎)|+ | log(𝐶)|)𝜅−1/2 and the time steps fulfill 𝑁 ∼ 𝐶1/2𝑒𝜎𝑇/2𝑇/𝜏 ,
where 𝐶 depends on 𝜅. Thus, the resulting total computational complexity is 𝒪(𝑚𝑛) ∼
(| log(𝜏)|+ | log(𝜅)|+ | log(𝐶)|)𝐶1/2𝑒𝜅−1/2𝑇/2𝑇/

(︀
𝜅1/2𝜏

)︀
. Here, the constant 𝐶 is not given by an explicit

formula. From Proposition 4.1, we see that we can design a fast and stable approximation of the boundary
condition due to the damping coefficient 𝜎. Without any damping factor, then the approximate boundary
condition can lead to some instabilities, similarly to [18].

6. Numerical examples

We now provide two illustrative numerical examples to validate the theoretical results derived in the preceding
sections. In the calculations, we always take 𝜎 = 1/

√
2𝜅 and adapt the number of Padé expansion terms (see

Thm. 5.1) following the rule

𝑚 =
ln 𝜖

2 ln(1− 𝛿)
, 𝜖 =

𝜇
√

𝜅𝜏3

8
,
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with 𝜇 and 𝛿 given by (4.11). Therefore for 𝑁 fixed (with 𝑁𝜏 = 𝑇 ), the total computational cost to efficiently
evaluate the convolution is 𝒪(𝑚𝑁) = 𝒪(𝑁 log(𝑁)) [21] by (4.9).

Example 6.1. To demonstrate the performance of our numerical scheme, we first consider a Gaussian initial
distribution for the free-surface elevation and zero distribution for velocity, i.e.

𝑢1(𝑥, 0) = exp(−400(𝑥− 0.5)), (6.1)

and 𝑢2(𝑥, 0) = 0. The initial data is negligibly small outside the spatial domain of computation [0, 1]. In this
numerical test, we chose 𝜅 = 10−2. In addition, we set the maximal time at 𝑇 = 1.

We report on Figure 1a the amplitude of the numerical surface elevation 𝑢1 with ABCs on the computational
domain. We set 𝑁 = 𝑀 = 640. The reference solution

(︀
𝑢ref

1 , 𝑢ref
2

)︀
is computed for 𝜏 = ℎ = 1

2560 with a CN
scheme, in a very large computational domain to avoid any influence of the boundary condition. We also draw on
Figure 1b the amplitude of the velocity 𝑢2. Furthermore, on Figures 1c and 1d, we plot the error log10 |𝑢ref

𝑗 −𝑢𝑗 |,
𝑗 = 1, 2, in the domain of computation. As observed, the numerical and reference solutions are very similar, the
error being related to the second-order accuracy of the scheme. There is no reflection related to the absorbing
boundaries. Finally, we report on Figures 1e and 1f the 𝐿∞-error max𝑥∈[0,1] |𝑢𝑗(𝑥, 1) − 𝑢ref

𝑗 (𝑥, 𝑇 )|, 𝑗 = 1, 2, at
final time 𝑇 = 1, when recursively doubling the parameters of the discretization grid, i.e. 𝑀 = 𝑁 from 80 to
640. A second-order convergence rate in 𝐿∞-norm is observed.

Example 6.2. To observe the dispersive behavior of the GN system, we consider now the following initial
distribution for the free-surface elevation

𝑢1(𝑥, 0) = exp(−400(𝑥− 0.5)) sin(20𝜋𝑥), (6.2)

and set to zero the initial velocity, i.e. 𝑢2(𝑥, 0) = 0. The initial data 𝑢1 is small outside the spatial computation
domain [0, 1] so that it can be considered as numerically compactly supported. We fix 𝜅 = 10−3 and the maximal
evolution time 𝑇 = 1.

We first plot on Figure 2a the modulus of the numerical surface elevation 𝑢1 computed with ABCs on the
computational domain, for 𝑁 = 𝑀 = 1280. The reference solution

(︀
𝑢ref

1 , 𝑢ref
2

)︀
is computed with 𝜏 = ℎ = 1

6400 in
a large enough domain with a CN scheme so that we do not see the effect of the boundary condition. Similarly,
we draw on Figure 2b the amplitude of the velocity 𝑢2. In addition, on Figures 2c and 2d, we report the error
log10 |𝑢ref

𝑗 − 𝑢𝑗 |, 𝑗 = 1, 2, in the computational domain. As it can be observed, the numerical and reference
solutions superpose, up to the second-order error of the scheme. No spurious reflection can be detected near
the absorbing boundaries. For completeness, we plot on Figures 2e and 2f the 𝐿∞-error max𝑥∈[0,1] |𝑢𝑗(𝑥, 1) −
𝑢ref

𝑗 (𝑥, 𝑇 )|, 𝑗 = 1, 2, at final time 𝑇 = 1, when recursively doubling the parameters of the discretization grid,
i.e. 𝑀 = 𝑁 from 160 to 1280. We observe a second-order convergence rate in 𝐿∞-norm.

To end, the CPU time (log scale, sec.) vs. 𝑁 (log scale) is reported on Figure 3 for the fast evaluation of the
convolution operator, fixing the number of spatial grid points to 𝑀 = 160. The total number of time steps 𝑁
increases from 𝑁 = 1.2 × 105 to 𝑁 = 7.2 × 105, with step 1.2 × 105. We observe a slope equal to 1, showing
that the cost is linear according to log(𝑁), i.e. as 𝒪(𝑁 log 𝑁) for the computational time.

We draw on the left of Figure 4 the amplitude of the velocity 𝑢2 until 𝑇 = 2 to display the stability for
a longer simulation time. In addition, on the right of Figure 4, we report the error log10 |𝑢ref

2 − 𝑢2|, in the
computational domain. One can see the wave goes out of the computational domain. The error also increases
due to the relation 𝑒𝜎𝑡𝑣𝑖(𝑥, 𝑡) = 𝑢𝑖(𝑥, 𝑡).

7. Conclusion

The one-dimensional linearized Green-Naghdi system in an unbounded domain was reformulated into an
initial boundary-value problem in a bounded domain with transparent boundary conditions. A fully discrete
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Figure 1. (Example 6.1) Illustration of the accuracy of the scheme for both the bound-
ary reflection and the convergence rate. (a) Surface elevation 𝑢1. (b) Velocity 𝑢2. (c) Error
log10

(︀⃒⃒
𝑢ref

1 − 𝑢1

⃒⃒)︀
. (d) Error log10

(︀⃒⃒
𝑢ref

2 − 𝑢2

⃒⃒)︀
. (e)

⃦⃦
𝑢1(·, 𝑇 )− 𝑢ref

1 (·, 𝑇 )
⃦⃦

𝐿∞[0,1]
vs. 1/𝑁 (log

scale). (f)
⃦⃦
𝑢2(·, 𝑇 )− 𝑢ref

2 (·, 𝑇 )
⃦⃦

𝐿∞[0,1]
vs. 1/𝑁 (log scale).
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Figure 2. (Example 6.2) Illustration of the accuracy of the scheme for both the bound-
ary reflection and the convergence rate. (a) Surface elevation 𝑢1. (b) Velocity 𝑢2. (c) Error
log10

(︀⃒⃒
𝑢ref

1 − 𝑢1

⃒⃒)︀
. (d) Error log10

(︀⃒⃒
𝑢ref

2 − 𝑢2

⃒⃒)︀
. (e)

⃦⃦
𝑢1(·, 𝑇 )− 𝑢ref

1 (·, 𝑇 )
⃦⃦

𝐿∞[0,1]
vs. 1/𝑁 (log

scale). (f)
⃦⃦
𝑢2(·, 𝑇 )− 𝑢ref

2 (·, 𝑇 )
⃦⃦

𝐿∞[0,1]
vs. 1/𝑁 (log scale).
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Figure 3. Computational time for the evaluation of the convolution by the fast algorithm vs.
𝑁 (for 𝑀 = 160).

Figure 4. (Example 6.2) Left: numerical 𝑢2(𝑥, 𝑡) for (𝑥, 𝑡) ∈ [0, 1] × [0, 2]. Right: error
log10 |𝑢

𝑟𝑒𝑓
2 − 𝑢2| for (𝑥, 𝑡) ∈ [0, 1]× [0, 2].

Crank–Nicolson finite-difference method was proposed to solve the reformulated initial boundary-value problem
but with an exact semi-discrete ABC. A fast convolution algorithm is introduced to deal with the convolutions
for the exact semi-discrete ABC by using the Padé rational expansion. A criterion determining the damping
term was proposed to guarantee the convergence. In this case, it was proved theoretically that the corresponding
numerical scheme can achieve a second-order accuracy both in space and time. A numerical example validates
the accuracy and efficiency of the proposed numerical method.

The problem that still needs to be solved is that the damping term 𝑒−𝜎𝑡 should satisfies the stability condition
𝜎 ≥ 1√

2𝜅
. For a small dispersion parameter 𝜅, the damping term 𝑒−𝜎𝑡 which decays too fast will bring some

numerical errors due to the relation 𝑒𝜎𝑡𝑣𝑖(𝑡) = 𝑢𝑖(𝑡). We will deal with this problem in the forthcoming paper.
Extensions to higher-dimensional problems still need further investigations. Finally, the variable coefficients
and nonlinear cases of the Green-Naghdi system remain open problems as well as the case of the two-layer
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Green-Naghdi system. These questions will be addressed in further works based on microlocal analysis techniques
[3, 5, 7].
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[22] Y.Y. Lu, A Padé approximation method for square roots of symmetric positive definite matrices. SIAM J. Matrix Anal. App.
19 (1998) 833–845.
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