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A FAST SECOND-ORDER DISCRETIZATION SCHEME FOR THE LINEARIZED
GREEN-NAGHDI SYSTEM WITH ABSORBING BOUNDARY CONDITIONS

GANG PANG'*, SONGSONG J1?2 AND XAVIER ANTOINE?

Abstract. In this paper, we present a fully discrete second-order finite-difference scheme with fast eval-
uation of the convolution involved in the absorbing boundary conditions to solve the one-dimensional
linearized Green-Naghdi system. The Padé expansion of the square-root function in the complex plane
is used to implement the fast convolution. By introducing a constant damping parameter into the
governing equations, the convergence analysis is developed when the damping term fulfills some con-
ditions. In addition, the scheme is stable and leads to a highly reduced computational cost and low
memory storage. A numerical example is provided to support the theoretical analysis and to illustrate
the performance of the fast numerical scheme.
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1. INTRODUCTION

Under the effect of the gravity, the motion of an irrotational and incompressible fluid is described by the
free-surface Euler equations. Because of the complexity of this system, asymptotic models for the water wave
problem [19] were developed over the years. In particular, the Green-Naghdi model [13] includes the dispersive
effects and writes in the two-dimensional space as

H, + div (HU) —0,
(H(?) +div(Hl7®(7+pI> —0, (1.1)
¢
H? 1 5.
=9 g, x €R2,t > 0.
2 3
In the above notations, we designate by H the fluid depth and by U the depth-averaged horizontal velocity,
(v); stands for the derivation of v with respect to the time variable ¢ and © is the material derivative. System
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(1.1) describes the bidirectional propagation of dispersive water waves in the shallow water regime [19]. A
one-dimensional simplification of (1.1), linearized around the steady state (H,u) := (Ho,0) + (u1,us), with
|(u1,uz)] < 1, can be derived as the one-dimensional linearized Green-Nagdhi (GN) system [18]

(u1)s + (u2)e =0,
(U’Q)t + (ul)m - H(“Q)mmty xT € R,t > O,

up(z,0) = uy (x), uz(x,0) = ug(x), r € R, (1.2)

lim|$|ﬂ+oo up(z,t) =0, lim‘l\|*>+oo ug(x,t) =0, ¢>0.

Since (1.2) is set in an unbounded domain, then suitable boundary conditions need to be introduced to get
a finite spatial computational domain in view of a discretization. This problem is well-known in the literature
and fits into the framework of designing Absorbing Boundary Conditions (ABCs) and Perfectly Matched Layers
(when a fictitious layer is added) for systems of PDEs. We refer to [4,8, 14, 26] for overviews of the various
approaches that can be used, their pros/cons and the related discretization aspects and computational difficulties
that are met. For the GN system (1.2), a major contribution has been recently achieved by Kazakova and Noble
in [18]. In this work, exact ABCs for the fully discrete system of linearized Green-Naghdi equations (1.2) was
proposed on staggered grids and the stability of the exact ABCs was proved. Nevertheless, and similarly to
the one-dimensional linear Schrodinger equation, these absorbing boundary conditions require the expensive
evaluation of nonlocal time convolution-type operators at the fictitious boundary points that lead to prohibitive
computational costs and memory storage, in particular for long time computations. In addition, instabilities may
arise if the evaluation of the ABCs through the Z-transform is not carefully implemented (see e.g. [1,9,17,23,27]
for some examples).

Probably the most emblematic linear dispersive PDE analyzed in the literature for constructing ABCs is the
Schrodinger equation. The first scheme with ABCs was introduced by Baskakov and Popov [11] for computational
acoustics based on the parabolic equation. It is now well-known that the resulting scheme with ABCs suffered
from stability issues [4]. Since then, many developments allowed to solve numerous problems related to the
one-dimensional case [2,4,5,8,9,12,16,17], and extensions of some of the methods were proposed for higher-
dimensional and nonlinear problems [3,6,7,10,15,20,23]. In addition, some of these contributions also include
the numerical analysis of the schemes and the derivation of fast and stable evaluation schemes of the nonlocal
half-order time derivative operator arising in the definition of the ABCs. The case of the GN system remains
much less studied [18] and therefore requires still more understanding. The aim of the present paper is to
contribute to the development of ABCs for (1.2) by deriving alternative efficient formulations, and to carefully
analyze the convergence of the fully discrete scheme.

To this end, we consider the recent approach introduced by Li et al. [21] for the one-dimensional Schrédinger
equation and extend it to the GN system (1.2). More precisely, to overcome the numerical instability, a con-
vergent numerical method, integrating a fast evaluation of the exact ABC, is proposed for solving the Cauchy
problem (1.2). To this end, the GN system is first reformulated in Section 2 under an equivalent form by
introducing a constant damping term, and then a modified Crank—Nicolson scheme is built in Section 3 to
discretize the equivalent problem according to the time variable. More specifically, a semi-discrete ABC for the
temporally discretized problem is derived for the Crank—Nicolson scheme based on the Z-transform. Then, a
second-order finite difference-scheme for the full spatial discretization is considered. A fast algorithm is intro-
duced in Section 4 to approximate the discrete convolution kernel involved in the exact semi-discrete ABC by
using the Padé rational expansion of the square-root function [22]. The damping parameter and the number of
Padé terms are chosen to maintain the convergence order of the resulting discrete scheme [21]. In Section 5, a
convergence analysis for the proposed numerical method is developed, showing that the scheme is second-order
both in space and time. A numerical example illustrates the properties of the scheme in Section 6. Section 7
finally concludes the paper.
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2. ExacTt ABCS FOR THE ONE-DIMENSIONAL LINEARIZED GREEN-NAGHDI SYSTEM
We consider the initial-value problem for the linearized GN system set on the whole space
Opuq (z,t) + Opua(z,t) =0,
Opug(z,t) + Opur(x,t) = KOprrusa(x,t), VreR, Vi >0,
u1(z,0) = up(x), uz(z,0) = ua(x), Vz eR,
lim  wg(x,t) =0, vt > 0.
— 400

(2.1)

lim wq(x,t) =0,
e (=8 =0

x|

Let us introduce the new unknown functions: v;(z,t) = e=“tu;(z,t), i = 1,2, where o > 0 is a parameter used
to later control the stability of the fast algorithm. It is straightforward to check that the function v;(z,t) solves
the following initial-value problem:

Opvr(x,t) + ovy(x,t) + Opva(x,t) =0

Opva(z,t) + ova(x,t) + Opv1 (2, t) = KOyy (Ova(x, t) + ova(z, t)), Ve eR, Vt >0,

v1(x,0) = up (2), va(x,0) = ua(x), Vz e R, (2.2)
lim wvi(z,t) =0, lim wa(z,t) =0, Vit >0.

|| =00 || =00

To obtain exact ABCs for (2.2), we first consider the following exterior problem on the semi-infinite interval
[$+7 +OO)

Owv1(z,t) + ovi(x,t) + Ogva(x,t) =0, (2.3a)
Opva(x,t) + ova(x, t) + Opv1 (2, t) = KOy (Ova(x, t) + ova(x, t)), Vo € [z4,+00), VE>0, (2.3b)
v1(x,0) = 0,v2(x,0) = 0, Va € [z, +00), (2.3¢)

hrf vi(z,t) =0, lirll va(x,t) =0, vt > 0. (2.3d)

The Laplace transform in time (denoted by 9(s) for a function v(t)) of system (2.3) yields

(s+ o)v1(x, ) 4+ 0Va2(x,8) =0, (2.4)

(s + o)va(x, ) + 0x01 (2, 8) = k(s + 0)Duala(x, s), Vo € [y, ), Vs e Cy, (2.5)

Hlir_irrl v1(z,8) =0, lir_sr_l va(x,s) =0, Vs e Cy, (2.6)

where C stands for the right half-space of complex numbers with positive real part. After some manipulations,
one has: (s + 0)%*a(x,8) = (k(s + 0)? + 1)0pz02(w, 8), i = 1,2, which means that the general solution writes

oz, 8) = c1(8) exp(—x\/@) + co(s) exp (a:\/%), (2.7)

where /- denotes the square-root with nonnegative real part and

(s +0)*
= . 2.
S(s) 1+ k(s+0)? (2:8)
The behavior of the wave at infinity (2.6) implies that c3(s) = 0. By differentiating (2.7), we obtain
0, 02(x, 8) = —/S(s) Va(z, 5), V& € |24, +0), Vs € Cy, (2.9)

whose inverse Laplace transform yields an exact absorbing boundary condition for vy at x4

(T % v2) (4, 1) = —/:—1[ S(s) ag(u,s)} () = Opva(as,t), V>0 (2.10)
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In (2.10), £~! denotes the inverse Laplace transform with respect to the variable s and we have

t
(Tos(a DO = [ Tl = Soalas ) ds.
0
A similar boundary condition can be derived at a left point z_ < x,:
(Txwvo)(x_,t) + Opva(z_,t) =0, Vi>D0. (2.11)

These boundary conditions degenerate to the boundary conditions of the wave equation when x — 0.
In view of (2.10) and (2.11), the solution of (2.2) is the same as the solution of the following problem in the
bounded domain (z_,z4)

Opv1(z,t) + ovr(z,t) + Opva(x,t) =0,

Opva(x,t) + ova(x,t) + Opv1 (X, t) = KOpr (Orva(z, t) + ova(, 1)), Vo € (x—,x4), YVt >0,

(T *v)(xs,t) = Opva(xy,t), Vit >0, (2.12)
Opv1 (x4, t) + ovy (x4, t) £ Opva(zy,t) =0,

v1(x,0) = uq(x), v2(x, 0) = ua(x), Vo e [zo,zq],

where 0, denotes the outward normal derivative at the boundary points z.

3. DISCRETIZATION OF THE ONE-DIMENSIONAL GN SYSTEM WITH EXACT SEMI-DISCRETE
ABC

In this section, we discretize the one-dimensional linearized Green-Naghdi system in time by using the Crank—
Nicolson scheme and derive an associated exact semi-discrete ABC. Then, we propose a second-order finite-
difference scheme for the spatial discretization. To this end, we first introduce the notations related to the
Z-transform in the following subsection.

3.1. The Z-transform of a sequence of functions

Let us consider a Hilbert space H equipped with an inner product (-,-)» and induced norm | - ||3. We
introduce the semi-infinite sequence spaces:

CH)=u={u"}22g:u" €H, ||lullem = (Z |u”|2> <0 p, (3.1)
n=0

and
(H) = {u={u"}y2, € *(H) : u’ = 0}, (3.2)

with the inner product: (u, v)ezx) = Y peo(u™,0™)y, Yu,v € £2(H). For any element u = {u"}32, € £*(H), we
define its Z-transform as u(z) = Y.~ , u"z". The following Parseval’s identity holds:

(U, v) g2 (1) = /aD(ﬂ(z),E(z))H v(dz), Yu,v € £2(H). (3.3)

In the above, v stands for the normalized Haar measure on the unit circle dD of the complex plane, and
v(dz) = 5=df through the change of variable z = e, with 6 € [-7, 7).

For a sequence u = {u"}°, € £2(H), we define the operator S by: Su = {u"T1}°° ;. The average operator
E and the forward difference quotient operator D, with step 7 are given by E = (S+1)/2 and D, = (S—1I)/,
respectively. We also introduce the following notations: Su™ = (Su)”, Fu™ = (Fu)™ and D,;u™ = (D u)".
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3.2. Exact ABCs for the semi-discretized one-dimensional linearized GN system

Let 7 > 0 be the uniform time step such that N7 =T = ty, with T the maximal time of computation. Let
us set the discrete times as: t,, = n7, 0 < n < N. System (2.2) is semi-discretized in time following

(D + oE)vl(x) + 0, Evy(z) =0,

(Dr + oE)vy(x) + O, EvT (v) = K04e(Dr + 0 E)vg (), vz eR, Vn >0,

(@) = w (@), (@) = ua(a), Ve eR, 34
lim of'(z) =0, lim ovy(x)=0, Vn>1,

|| =00 || =00

where v’ (z) =~ v;(x, t,), for i = 1,2. We now assume that the initial data u; and ug are compactly supported
in the interval [x_,z4]. On [z, +00), the semi-discrete problem (3.4) reduces to

(D + cE)](x) + 0, Evy(z) =0,

(Dr + oE)vy(x) + Oy EvT () = K04e(Dr + o E)vg (), Vo € [z4,4+00), ¥n >0,
R (x) = 0,09(z) = 0, Vz € [z, +00), (3:5)
lnil v (z) =0, lirf vy (z) =0, VYn > 1.

Let us denote by u(z, z) the Z-transform of the sequence {u”(x)}32,. Applying the Z-transform to (3.5), we
obtain

(2—-2z+4+07(1+ 2))?
214+ 2)2+k(2—-224+07(1+ 2
lim vs(x,z) =0,

r—+00

with general solution va(z, 2) = ¢ exp(fx\/s(z)) + ¢ exp (a:ds(z)), setting, for all 7 > 0 and o > 0,

(2—2z+07(1 +2))° o f20-2)\
214224+ k(2 — 22+ 0r(1 4+ 2))* S<T(1+z)>

T 02(0:2) ~ uala(0,2) = 0, V€ [y, +00)

s(z) =

The condition at infinity, i.e. lim,_, 4o U2(x, z) = 0, implies that ¢z = 0, leading to

0z02(x4,2) = —\/8(2)02(x4, 2), Vz e D, (3.7)

which corresponds to the semi-discretization of (2. 9) at ¢ = x4. Note that the function

T(2) = —/s(2) (3.8)

is analytic in the unit disk ID. Thus, it admits a power series expansion
o0
z) :Z'Z}zj, Vz e D. (3.9)

Substituting (3.9) and va(z,z) = > oo, v5(z)2" into (3.7) yields an exact absorbing boundary condition for
(3.4) at the right fictitious boundary point = z4:

(T xvg)"(z4) — Oyvy (z4) =0, Yn >0, (3.10)

where 7 * is the convolution quadrature operator corresponding to the symbol ’f(z), namely,

(Txvp)" =Y _ Ty~ (3.11)
7=0
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To simplify the notations, for a function v(z,t), we set: (7 * v)(z,t,) = Z?ZO’Z} v(x,tp—;). The boundary
condition (3.10) is the semi-discretization of (2.10).
Analogously, by analyzing (3.4) on (—oo, z_], we derive an exact semi-discrete absorbing boundary condition
at the left point x = z_
(Txvg)™(z_) + Opv5(x_) =0, Vn>1.

Consequently, the semi-discrete problem (3.4), originally defined on the whole space, can be reduced to the
following semi-discrete problem on a bounded domain:

(D; + oE)v} (x) + 0, Evy(z) =0,

(Dr + 0By (x) + O, EvT (2) = K0ye (Dr + o E)vg (), Vo € (z_,z4), Yn >0,

(T *v2)" (z+) = 0,05 (x1), Vn >0, (3.12)
(D; + cE)vi(zs) = FOLv5 (24), Yn >0,

V) (x) = ui(z), 05 (z) = up (), Ve lr_,xq]

3.3. Spatial discretization

Let M be a positive integer and h = (x4 — z_)/M the uniform mesh size. We define the mesh points:
xp = x_ + (k—=1/2)h, for k = 0,1,--- ,M + 1, and x4/ = xo + (k+1/2)h, for k = 0,1,--- , M, where
xo and xpr41 are two ghost points. In the time-stepping scheme (3.12), we use (v2)}} to denote the numerical
approximation of v§ (z), with 0 < k < M +1, and (v1)} to define that of v (2x_1/2), with 1 <k < M 4 1. Let

(v2)™ = ((v2)g, - ,(112)’1(4+1) and (v1)" = ((v1)¢,--- ,(vl)’jﬂ_l). Being given a vector x = (x1,* ,XM+1) €
RM+1 or w = (Wo, "+ ,wapr41) € RM+2 we introduce the discrete gradients V;,x and V,w such that
X2 — X1 X3 — X2 XM+1 — XM
V,y = L. XML T XM )
hX < L ) I ) L )
Viw— w1 — Wo wz*wl.” WM+1 — WM
h h ) h ) ) h )
respectively. The linear operator which maps the (M + 2)-dimensional vector w = (wp, - ,wp+1) to the
M-dimensional vector (w1, -+ ,was) will be denoted by P. In addition, we introduce the Neumann and Dirichlet

data associated with the (M + 2)-dimensional vector w as

- Wo—w1 ooy WMyl —WM o Wotwr o WMl twm
6,/(4)— h 761/"")7 h y Y W= 92 y VW= 9
Let us define the inner product for two M-dimensional vectors ¢1 = ((é1)1, - ,(¢1)nm) and ¢o =
((@2)1, -+, (P2)mr) by (é1,02), = hzliwzl (¢1)k(¢2)k, the inner product for two (M + 2)-dimensional vectors
w1 = ((w1)o, -+, (W1)m+1) and wo = ((w2)o,- -+, (w2)ar+1) by
h - [ —
(w1, wa)y, = 5(001)0(012)0 + hz (wi)k(wa)k + §(W1)M+1(w2)M+17
k=1
and finally the inner product for two (M + 1)-dimensional vectors x1 = ((x1)1, " ,(X1)m+1) and x2 =

((x2)1,+*, (x2)m+1) according to: {x1,x2}tn = hZQ/[;{l (x1)k(x2)k- In the above expressions, Z denotes the
complex conjugate of a complex number z. The induced norms are such that: ||¢||, = \/(®, d)n, |w|n = /{w,w)n,
and [[[x[lln = v{x: Xx}n-

Let us now introduce a second-order spatial discretization A, which maps the (M + 2)-dimensional vector
w to the M-dimensional vector space as

Ao — [P0 — 2wy + wo Wy—1 — 2w + Whr41
hw P h2 s ... s h2 .
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Thus, we have the discrete integration by parts formula
(Pwa, Apwr);, = —(Viwa, Viwr ), + 7 w2 0f w1 + v~ w2 8, wy. (3.13)
Now, we define the vector V,Hv{ by

(H(Ul)g —H)t R — H(Ul)"M)
h o h ’

Vi Hul =

where H is any operator that only applies in the time direction. Similarly, the vector V,Hvg is such that

U HOl = (H(Uz)? — H(v2)g H(v2)y 1 — H(Uz)%).

h o ;

We can also introduce a vector A, Hvg by

Ay Ho — (H(Uz)g — 2H(v2)} + H(va)h H(vo) Ry — 2H(v2)Ry + H(Uz)7vf+1)
h U2 — .. .

h? T h?

Then, it is easy to see that the following identities hold: V,Hv] = HV o, ViHvy = HV vy, and ApyHuy =
HAhvg.

Now, in (3.12), replacing the function vf'(z) by the vector v = ((vi)7, -, (v1)};11), v3(x) by vg =
((v2)§,- -+, (v2)3741) and changing the continuous operator d,, with its discrete analogue Ap, we obtain the
following fully discrete finite-difference scheme

(D + oE)v] + Vi Evy =0,

(DT—FO'E)PUS—FV}LEU?ZKA;L(DT—FO'E)US, VTLZO, (3 14)
(T*fyiw)n —dFvy =0, Vn >0, .
U? = (u1($1/2)7 T 7U1(1‘M+1/2))’ vS = (U2(9€0)7"' aU2($M+1))~

In fact, at 24, we have 0,v9(24,t) = £0,v9(x4,t). Therefore, we can write that
Opv1(zy,t) + ovy (x4, t) £ Opva(xy,t) = 0.
For (3.14), the expression of v; at x1 can be written as

(v2)1 — (v2)5 _

(D +0E)(n)T + E W

(Dr +0E) ()T — E0, vy = (Dy + 0E)(v1)} — E(T x vy va)"™.
Thus, the boundary condition for v; can be supplied by vs due to the staggered grid.

4. FAST EVALUATION OF THE BOUNDARY DISCRETE CONVOLUTION (7 * yFuy)"

In this section, we introduce a fast algorithm for approximating the discrete convolution product (7 * yFvg)"
arising in (3.14). The stability of the proposed fast algorithm will be analyzed in the next section.

4.1. Rational approximation of the convolution quadrature

In [22], for a nonnegative integer m > 0 and Re(s) > —1, the Padé approximation of the function /1 + s can
be expressed as

i ;S
Vits=1+ I
;1+ﬂj5
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where the coeflicients are given by

- 2 . 9 g B 9 g .
o = sin , B; =cos , j=1,---,m.
2m+1 2m+1 2m+1

Based on this Padé approximation, a rational approximation of the square-root function /s on the closed right
half complex plane can be written as

f \/1+81N1+Zl—i—ﬁsi)1)_Rm(S), RC(S)ZO

Thus, we deduce

m

1 m
Ru(s)=A-S — 1 =1 57
) jz:;ngJrhj’ +;a]@ 7

hj:aj_lﬁj(l—ﬂj)v gj:aj—l 2 i=1,,m.

(4.1)

For all 7 > 0, o > 0, and for s(z) defined by (3.6), we can introduce the rational approximation 7™ (z) of the
symbol 7 (2) as

T (2) .= =R (s(z)), ¥Ym >0. (4.2)
We denote by 7™« the convolution operator analogously defined as (3.11) by replacing the convolution coeffi-

cients with the series expansion coefficients of the function 7 (m) (z). By considering the rational approximation
T4 of Tx in (3.14), we obtain the following fully discrete scheme:

(Dr +oE)v} + VyEvy =0, (4.3)
(D; + 0E)Pvy + VpEv] = kAR(Dy + o E)vy, Vn >0, (4.4)
(T s yFp)™ — 0F 0 = 0, VYn >0, (4.5)
o) = (ur (1)), -+ ua(@argay2)), v = (ua(@o), -+ ua(ar1))- (4.6)

In fact, equation (4.5) can be solved by the fast algorithm described in the next subsection.

4.2. Fast evaluation of (T(m) * *yiv2)n
By applying (4.1) to (4.2), we obtain the sequence of equalities
m

K(2+or+ (07 —2)2)2 +72(1 + 2)?
T(m) - _ - _
/\+Z /\+Z (9j + khj)2+ 0T+ (07 —2)2)2 + h;T2(1 + 2)?

_ - 4 6j2’+fj
B (AJ Tz ) <cjz+dj>2> 4.7

__/\+Z/\7+z;( aj—l—cjz—i—b +d; +( cj)z+bj — d)7

setting

k(o —2)% + 12
(g5 + khj)(To —2)% + h;T?’
fj = (Ii — gj)\j — /ﬁhj)\j)(Q + O‘T)2 + 7'2(1 - )\jhj),

)‘j = ej = Q(Ii—gj)\ Iih )\ )(0 T —4)+27 (]. — )\jh]’),
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aj:\/lihj +gj(0'7'—2), bj:\//{hj+gj(UT+2), Cj:i\/th, dj:i\/th,
Aj _ —€;C4 + bjfj — €505 + fjdj Bj _ €;Cj + bjfj —€;a; — fjdj

2 2 2 2 ’ 2 2 2 2

aj +bj —cj —dj ai + b5 — ¢ — d;

Therefore, we have

_ S n B. ci —a:\"
T (z) = [ A A _ % TG n g 3 — 44 n)
) +Z +Zz<b +d; ( bj+dj> : +bj—dj(bj—dj> Z)

j=1n=0

Thus, 7™ (z) can be uniformly rewritten as

2m+1 oo
TM(z)= > Y Crlm)"2",
k=1 n=0
which implies that
2m—+1
7™ = 3" Crlw),
k=1
with 4 B
+ —ar + Cr
C’_zik, C. :7]“, _:—ak and =)
2k—1 br + db, 2k b — dy Y2k—1 be + di 1 Y2k br — dp,

for 1 < k < m. We can take Comy1 = (=X + > py M) and Y241 = 0. Therefore, (7(™) % y¥uy)" =
Z?:o ’]}(m) (y*v2)™ ™7 can be implemented by a fast convolution in (4.5).
For fixed k, by defining

n

= O Y ()"

§=0
with 1 < k < 2m + 1, we derive that,
n—1 )
Wi vl + Cr(vt )" = wCe Y ()" T (vEve)” + Cr(v2)"” (4.8)

j=0

n—1 ) n

=Cr ) _(m)"™ ('Yiw) +C(vF )" = Z 7 (y ’02) =GP [yF vl
=0 =0

Thus, the boundary term (7 (™) sy py)" = Z;L:O ’];.(m) (7Fv2)" 77 can be written in the form of fast convolution
by (4.8), namely,

2m—+1 2m—+1 2m—+1

(T(m) *viw) Z Gy v,] Z GE [YEuse] + (7T v2) Z Cy. (4.9)

From (4.9), we can see that the computational cost at the n-th time step is O(2m + 1), rather than O(n) which
is the computational cost of the convolution. Thus, the overall computational cost for all the n time steps is
O(n(2m+1)) instead of O(n?). Therefore, for large time steps n, the total computational cost is greatly reduced.
Such a cost is much lower than the one proposed in [18] for the linearized Green-Naghdi equation. It is similar
to the techniques introduced for example in [21,27] to optimize both the memory storage and computational
cost when evaluating convolutions.
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4.3. Properties of the rational approximation ’1~'(m)(z)

Let us now prove some properties of ’Z}(m) used to prove the error estimates.

Proposition 4.1. Let us assume that the condition o > \/% is satisfied, the time step T is small enough and

m is sufficiently large, i.e. it fulfills

1 3
2m +1 > ﬁ, for some € € (0, H\/SET },
with
V20 V201 + ko2
w(k,0) = ——=, 4(k,0) = :
21 + ko2 02 +20vV1 + ko2 + 1 + ko2
Then, the following inequalities hold
T (z) - 7(2)| < T
m _ < -
max|T0() - 7(:)| < 7
o k
Re Z (1D; + oE)uF(D; + oF) (T(m) * u) <0,
k=0
o k
Re> " (D, + 0E)uF(D, + 0E) (TW * u) <0, Vn >0,
k=0

for any complez-valued sequence u = {u"}_, such that u® = 0.

Before proving Proposition 4.1, we need to state a few lemmas. Let us introduce

Vi—1
Vsl

Then, by using (3.8), one can prove that the symbol ’f(z) satisfies the following inequalities.

r(s) :=

Lemma 4.2. We have the following inequalities

~ 1 ~ o
< i > 2 .
?é%ﬁ‘ﬂz) < o minTe)| 2 e
Furthermore, under the condition o > \/% and for s(z) defined by (3.6), we can prove that
~ \/QU

max Re7 (2) < —u(k,0) = ————,
2€0D (2) < —plr,0) 2V1+ ko?

< —
max|r(s(z))| < 1 - 6(k, ),

— ar n L ar —(Z_l_l)/T+U(Z_1+1)/2~ z arctan L .
oretan( - ) Szea%l CRENET S PR )] <aeton( - )

Proof of Lemma 4.2. From (2.8), (3.6), (3.8), and setting p = ii((llfz)), then p € R for z € 9D, and

k2(p? 4 02)? + 1+ 2602 — 2p%k

2 4 52)2 T
T(z) = - s<z'p>=—< (e + %) ) oxp(i6/2),

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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where

_ 20p +i(p? — 0?)
b= arg<20p +i(p?—02—1/K) (421)

It is straightforward to verify that

- 1 i
‘T(z)‘ B <H2 + (14 2k02 — 2p%K) /(P + 02)2> 7 (4.22)

which means that "j'(z)‘ increases with respect to |p|. Thus, we conclude that
<—, ifpeR, (4.23)

hence proving (4.16).
From (4.21) we have

20p/kK 20p/kK
0= t = t . 4.24
a“(/fl N P /e P a?/m> a“( 6(p) (4.24)

First, we discuss the case p € [0,+00). It is straightforward to show that ©(p) > 0, for o > \/% Therefore,

from (4.24), we derive that 0 < § < 7/2 for p € [0,+00), which means 0 < 0/2 < w/4. Similarly, we have
—m/2 <6 <0 for p € (—00,0], and then —m/4 < 6/2 < 0. Thus, this yields

~ \/50’
Re7(2) < ————,
(2) < 21 + ko?
which proves (4.17).
Recalling that s(z) = TQ(IJF(ZQ);iz(;f;g'ZZT)()LZ))Q7 we deduce
_ - 0
5(2) = —T(2) = ‘T(Z)‘ exp (i ) (4.25)

with cos(%) > Y2 for p € (—00,+00). Using the above expression of 1/5(z), we have

4‘%(2’)‘008(%)

Vs(z) =1

el = Vi@ 1|y ‘%(z)f +2/T(2)| cos(£) +1
2v2|7(2) V2T (2)
el evaFelsr [Fef s vaEe]«
where the last inequality is a consequence of: (1 — :c)% =1- %:z: - %:z:2 +...<1- %x By considering
V2r V2

PNl (r+v2+1/r)
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|7 (=) +v2| T (2)|+1

we see that the minimum value of is attained at "f(z)’ = and

o
V1t+ko?2’

\/ﬁ‘%(z)’ S V201 + Kko?
\f(z)rﬂ/i\%(z)\ L1 02+ V20V + Ro? + 1+ ko?

leading to (4.18).
Next, we have the sequence of equalities

(z7'=1)/r+o(z"t+1)/2~
l_ (z71=1)4+o0(z1 +1)/2 T(Z)]

2
2(z71-1)
<T<z—1+1> + ‘7)

arg
z€0D

1 -1 1+1)/2
=1 g B e s Cas,
2€8D 2(z=1-1) z€ 271 — o(z
c 1+K(7‘Ez*1+1) +J)
(4.26)
1 20p/kK pi+o 1 o(l—"1)p
= - |arct 2 = ~10(p) + 2arctan Z— 22
e G0 +2me £ a0+ 2o S
= arctan 200k + arctan M
PER  /(©)2 + (20p/K)? + © pER 0% +Tp
Fi(p) + Fa(p)
= arctan F} + arctan F =arctan —————
pER 1(r) pER () peR 1 — F1(p)Fs(p)
with 200/ % )
op/k o(l—1)p
Fi(p) = 5 > )=~ —5
(©)2+ (20p/K)2+© o?+7p
For p € [0,400), we obtain
202p% /k 2/k 2/k 1/k 1
Fi(p)F2(p) < pg :/J/ =7 2 ,0/2 T e S / < —
200 © T pt+ (202 = 1/R)p P+ ot + 02Kk T (202 — 1/Kk) +2\/0* +02/k T V3
(4.27)
In addition, we have
d d o(l—="1)p o(l1—7)(c% —7p?)
d _ ¢ _ : 4.28
=5 {arc T | T @ )+ o1 1) (4.28)

Therefore F5(p) increases with respect to |p| in [0, \%], decreases in [\%, oo)7 and Fy(p) reaches its maximum

at —=. Then, (4.26) and (4.27) indicate that we have
1+ F (L) 14 1=
F F 2 77 L 1

arctan —2P) T F2(0) RARAD QR p J (4.29)

pert 1= Fi(p)Fa(p) 1- % 1-1 V7
Similarly, we can write that

F F: 1
arctan 1) + Fa(p) > — (4.30)

pek— 1= Fi(p)F2(p) N
Combining (4.26), (4.29) and (4.30), we prove (4.19). O
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Let us recall that R,,(s) is defined by (4.1). Then, the following result was proved in [22].
Lemma 4.3. Let us define: ep,(s) := /s — Rin(s), form =0,1,2,... Then, the following identity holds:

T2nr+1(s)

em(s) :2\/51—&—7“277’”1(5)’

if Re(s) >0 and s #0, (4.31)

where 7(s) is defined by (4.15).
Let us now consider the following lemma.

Lemma 4.4. Under the conditions o > \/%Tc and (4.10), we have the two inequalities

max Re7 (™ (2) <0, (4.32)
(2_1—1)/T+0'( +1)/2 = (m)
max Re oD to( 1112 T (z)| <0. (4.33)

Proof of Lemma 4.4. From (4.18) in Lemma 4.2 we have: max,cgp|r(s(z))| < 1 —4d(k,0). If 0 > \/% and m
satisfies (4.10), then one gets |r(s(z))[2™ 1 < [1 — 6]°™ " < 1/2. From (4.31), we obtain

T(z) — T (2)

< < 4max|r 2mtl
z€dD 1 — ‘T(S(Z))|2m+1 ZEBDI ( ( ))|

max
z€0D

2r2m 1 (s(2)) ‘

1edb| 1+ r2mH(s(2))

Then, equations (4.12), (4.16) and (4.17) imply

Fom () — F() - Re(F(z) - 7™ _ M _
Zné%ﬁReT (z)fzné%ﬁ{ReT(z) Re(T(z) T (z))] A+ gé%ﬁ"f( )’S w4 p/2 <0,

which proves (4.32).
In addition, for 7 small enough, using (4.19), we have

('=1)/r+o(z1+1)/2~,,
l_ (z71=1)4+o0(z1 +1)/2 i )(Z)]

11 “141)/2~ m) _ T
= arg —< JT+ol+1)/ T)[1+ e — T
ceab | (7' =1 +o(z7t+1)/2 T
(== —1)/T+U( _1+1)/2~ T(m)—
= arg |— + ar 14 ———
“eop [ ET=1)+o(z"+1)/2 ‘eop
1 4
< arctan| — | + arg (1 +1 /2) < arctan( ) + arctan( ) < arctan<>~
CORE TGl v
Thus, for small enough 7 , we deduce (4.33) since

_ arctan(‘l < arg (_ (z'=1)/r+o(z"t+1)/2 VW@)D - arctan(\;)_

arg
z€0D

ﬁ) ~ zeoD (7t =D+o(z"1+1)/2

Now, we can prove Proposition 4.1, as a consequence of (4.32) and (4.33).
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Proof of Proposition 4.1. Firstly, for small 7, if 0 < \/% and m satisfies (4.10), then we have: [1 — 5]2m+1 <
€ <1/2. Lemma 4.3 then implies

T(2) — T (z)

max
z€0D

Consequently, by using (4.16) and (4.10), we have

o
|7 - 7)

< e max"f(z) <
2€0D

which proves (4.12).
We construct {uf}2° ) such that (D, + oE)u* =0, for k > n + 1. Thus, one has:

1+UT/2

for k > n + 1, which shows that the sequence {u*} is such that (D, + cE)u* = 0, for k > n + 1. From (4.32),
we have

i D, +0E) uk((DT +oE)T™ u)k = Rei (D + UE)uk((DT +oE)T(™ « u)k
k=0 k=0

= Re((DT + 0E)u, (Dy + 0 E)T™ « u)Z(C)

= Re g ()T —1+or(z 1+ 1)/2]T"™ (2 )zt =1+07(27' +1)/2] v(de)/T? (4.34)

= Re /{m 12| 2|u(2)|°[2 = 22 + o (1 + 2)]T "™ (2)[2 — 22 + o7(1 4 2)] v(d2)/(472)

= Re/ 12| 72[a(2) 2T (2)][2 — 22 + o7(1 + 2)]|P v(dz)/ (47%) <0,
oD

which provides (4.13).
In the same way, let us assume that we have: (7D, + oE)uk =0, for k > n + 1. Thus, one has

k+1 _ 1*0/21@
1—|—0/2 ’

for k > n+ 1. As a consequence, we deduce that {uk} satisfies Fuk = 0, for k >n+1, and
no_. k > k
Re Z (1D, + o E)uF ((DT + o BE)T ™ u) =Re Z (D7 + o E)u* ((DT + o B)T ™ u)
— k=0

= Re((TDT + oE)u, (Dy + o E)T ™ u) o

= Re 8D|a(z)|2%<m>(z)(z—1 Doz T+ 1)/2[(z" 1) /r+ ozt +1)/2] v(d2)

(4.35)

B . . o TP =1/t 1) /2 200 ey 2
= e am‘(z _1)+0(2 +1)/2’ < (z71=1)4+o(z7141)/2 )T( )(Z)‘u(z” v(dz) <0

by using (4.33), ending hence the proof of (4.14). O
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5. ERROR ESTIMATES OF THE SCHEME

Let us define the two error vectors

5? = ((Ul)? - vl(xl/Qat’n)a ey (’Ul)%+1 - Ul(xM+l/27tn))v

€2 = (02)8 — 0220, b - (02) 11 — vaE@rr41, ), (5:1)

where (v1,v2) is solution to (2.12) and (v}, v%) is the solution to the discrete system (4.3)—(4.6). We first give
the main result concerning the error estimate.

Theorem 5.1. Let us assume that the solutions uy(x,t) and us(x,t) to system (2. 1) or equivalently, the solu-
tions vi(x,t) and va(x,t) of (2.2), are sufficiently smooth. Let us suppose that o > \/T T is small enough and

that m satisfies (4.10), with p and 6 given by (4.11). Then, we have the error bound

2 2 2 2
cmme (IPEFIE + Vachlh + 12515 + IEEIIE + IVact ) < O+ 2).

It is straightforward to check that the error vector (¢7,e%) satisfies

(D + 0 E)Pely + Vi, Ee} = kAn(Dy + oE)el + f2, Vn >0, (5.3)
(T x~vFes)" — Oy el = gt Vn >0, (5.4)
(1):<0770) 5(2):(07;())7 (55)
where fI' = ((f1)T,-- ., (f1)41)s 2 = (f2)T5-- ., (f2)}) and g2 are the interior/boundary truncation error

vectors/numbers according to the time and space discretizations, i.e.

(fl);l = [(DT +oE)n (xj_1/27 tn) — (6&)1 (xj_l/% tn+%) +ov; (.’Ej_l/z, thr%))]
+ [E(UQ(xj,tn) —ua(@j_1,tn)) /B — D2 (xj_1/2,tn+%)], 1<j<M+1, (5.6)
(5= (2 0Byt = (o0 ) + 11

+ [E(Ul (%1172, tn) = vi(2j-1/2,tn)) /P — Bzvr (xj, tn+;)}

%[E(Uz(%_htn)fzvz(% W) 241, ) /H2 — & v2<:cj,tn+ )} 1<j <M, (5.7)
g = (T09) = T) e unlta) + [(Te ) () = (T2 702) (1)
+ (T %75 0) (t) — (T w2) (s t)] + [~0Fva(tn) + ol t)] (58)

with va(t,) = (va(x1,tn), -, vo(Tar, tn)).
The proof of Theorem 5.1 is presented in the next two subsections as a consequence of Propositions 5.2 and 5.3.

5.1. Estimate for truncation errors
Let us first prove the estimate for the truncation errors of the boundary and interior schemes.
Proposition 5.2. Under the conditions of Theorem 5.1, we have the following error estimate

VRN + I+ 15, + [92] + |Drgk| + [D2gh] < C(r* + h?), (5.9)

n—1

with D2g% = gi_2++gi C being a strictly positive constant.
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Proof of Proposition 5.2. The proof is separated into three estimates which are summed up at the end to prove
the result.

Estimate of ‘ gi‘ Here, we prove

gt =0(m* + h?). (5.10)
We divide the proof into two steps.
Step 1. Let us recall that (7 * vs) is defined by (3.11). We first derive the following bound

(T xva) (s, t) — (T*ve)(zs,t)| < O(T). (5.11)
By using Taylor’s expansion, it is straightforward to verify that
(%(e-iff) - (—\/S(ig)ﬂ < or2e). (5.12)

Since va(x,0) = v1(x,0) = 0 for & € [z, 00), thus d,v1(z+,0), Ozve(x4,0) and Jppva(2z4,0) are also equal
to zero. Then (2.3b) leads to the following equality

Oz (x,0) = KDyy (Opv2(2,0)), Va € [14,+00),
implying that O;ve(z,0) = Ce V= for x € [24,+00) and

0,0y v9(14,0) = — ¢ vr. (5.13)

BE

From (2.11), we obtain
8138{[12(504,_7 0) = T(O)U2($+, 0) + (ﬁtT * UQ(I’+, ))(0) = 0,

and then C' = 0 in (5.13). Thus, we deduce: Oyva(x4+,0) = 0. From (2.3a) and (2.3c), we also have
Orv1(x4,0) = 0. Repeating the same procedure, it is easy to conclude that ve(x4,t) and its time derivatives
are zero at t = 0. Consequently, by extending ve(x4,t) to zero on t € (—o0,0], we obtain a sufficiently
smooth function vy(x4,t) defined for t € R. We set

(T *v)(ws,t) == Y Tjva(ws,t —j7), VtER, (5.14)
j=0

which is consistent with definition (3.11) at ¢ = t,,. The Fourier transform in time of (5.14) is
Fi[(T xvo)(zy,t)](€) = /(T *vg) (zx, t)e edt = Z/ Tjva(2g,t — j)e”"edt
R o /R
7=0

= %(67”5)}}@2(xi,5) = —/S(i&) Frva(r+, &) + (%(67”5) + S(if))ftvz(xi,@
— (T o)) + (F(e7) + /ST Frvnlas. €).

) =B

CED
S(s) = 1+ k(o +s)°

Let us recall that

with
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Therefore, we have

7 (e7) + V/SGg)|

==

/508 - \/ 2tan( Tg/z))‘

T(1+e7¢
-tan(7T&/2) ta“(Tf/Q)
7z d T2 1
= / ( S(s)) ds| = 372 ds
i€ ds it (L+ k(o +s))
242
t 2 ¢ 1 ¢ A
Scw ifﬁ/ 22_1 dglz/ — §1
7/2 0 lJrT451 0 1+T51
€]

<—— €2dg < Cor?ep.
4 0

In addition, for || < 1, we obtain
[

&P < <
=g = 1
For €| > 1, we have
3 4 4 4
1+ ¢ 1+ [¢] 1+ [¢]
Thus, we deduce
1+
g < c2HEL
1+ ¢

By the above two estimates, we have
T % va(a,t) — (T %0 (2a, t |7‘}“£1K €Y 1 /S( )fm 2y, € }()\
/‘7(67”6 +4/S ‘|ff’02 x4,8)dE < Cr /|§| | Froa(zs, £)]dE

<cT/R1 (1 + [€[") |Frva(as, €)|de

( +‘§| >%(/R(l""|€|4)2|ftv2($ia€)2d§>;
(L

1
2
|U2 za, ) + |0} va (24, )’2) dt)

=Cr?

(5.15)
We finally obtain (5.11).

Step 2. The inequality (4.12) of Proposition 4.1 implies that: "ZN'(m)(z) - ’f(z)‘ < O3 for |z| = 1. Since

T = [ T iu(dz) and T = | T(2)27w(dz),
oD oD
this shows that
T 1| < /mjﬂwz) T(2)|v(az) < C7°
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which leads to

Besides, equation (5.11) yields
(T* ’YiUQ) (tn) - (T * ViUQ)(tn) = 0(7—2)'
Since vt vy = ((v2) 41 + (v2)5y)/2 and 24 = (Tpr41 +201)/2 = Tprq L, it follows that

[(T # v F02) (tn) — (T % v2)(zs, tn)| = O(R?),

and
O vs(bn) — Dyva(1 ) = U2($M+1,tn)h— v2(@m,tn) 0,05 (xM+%;tn) — o),
07 va(tn) — Oyva(z_, ty) = v tn) ;UZ(xO’t”) + 9,02 (ac%,tn> = O(h?).

Substituting (5.16)—(5.18) into (5.8) leads to (5.10).
. 2
Estimate of |V f7||, + [IIF71l|n + 1| £3|ln. We now prove that
IV 4 I+ 1 < O(7% + B2).
Recalling (5.6), we estimate the three terms in the expression of (f; );1 separately. Firstly, we have
(Dq— + O'E)U1 (%4/27 tn) — (8,51}1 (J?j,l/g, tn-i—%) +ov1 (.ﬁj,l/g, tn-l—%))

_ (Ul(xj1/2»tn+1) —v1(zj-1/2,tn) —8tv1(9€- 1/2,¢ +1)>
3=1/2>tnt 3

T

n 0(1}1 (irj—l/Qatn) +2U1 (xj—l/Qatn+1) — ((Ej_l/27tn+é)> _ O(TQ).

Secondly, the following estimate holds
[E(UQ(J:J'? tn) —v2(zj_1,tn))/h — Ozva (%4/2, tn+%)} =0(r* + 1?).
Thus, from (5.6), (5.20) and (5.21), we deduce
(f)] =0 +h%), 1<j<M+1
Similarly, recalling (5.7),

E’Ug(:l?j_l,tn) — 2EU2(I’j,tn) + EUQ(Ij+1,tn>
h2

— 0%y (zj,tn%) — O(r2+h?),

we thus obtain
(f2)] =O(r*+h%), 1<j<M.

Finally, from (5.22) and (5.24) one gets

1l =0 + k%), |f3 = O(r* + h?).

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)
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In a similar way (using a Taylor’s expansion), one can prove that

[VafTlln =O(r* + h?), (5.26)
which leads to (5.19).
Estimate of ’D.rg;‘. Since we have

D.g} = (T(m) — T) * 'yiDTvg(tn) + [T* 'yiDTvg(tn) — (T * PyiDTvg)(tn)]

+ [(T * 'yiDTvg)(tn) — (T * Dyv9) (x4, tn)] + [—8l,iDTv2(tn) + 0, D va(xy, tn)], (520
it follows that (5.27) can be estimated as (5.8) (replacing ve(x,t,) by Dyva(z,ty)), which provides
D.git = O(7% + h?). (5.28)
In a similar way, we can prove that
DZgh =O(r* + h?). (5.29)
Combing (5.10), (5.19), (5.28) and (5.29), we finally get (5.9). O

5.2. Error estimates

Let us state the error estimate for system (4.3)—(4.6). Theorem 5.1 is then a consequence of Propositions 5.2
and 5.3.

Proposition 5.3. If 0 > \/%, and the order m of the Padé approximation fulfills (4.10), the solution of
(4.3)—(4.6) satisfies the following stability estimate:

2 2 2 2 2
wmax (P15 +19n5 5+ I Aneg I+ IR + 1Vnet )

< cT[ max (V7 4+ 175 5 + IAENR + Dok [7) + max |oh "+ max D264 [
where Cr is a constant depending on T.

Proof of Proposition 5.3. Due to

n+l n n+1 n n+lig n |9
D ()" - E(e))" = (€1),, - —(E)m () 2+ (E1)m _ 1(e1) |2T |(e1),m] 7

taking the real part of the inner product between the left hand side of (5.2) and Ee} yields

1 n n n n n n
5 D= (et [l7) + olll et ||z = —Re {Eet, EVaes b + Re (Eel, f1),, (5.30)
5.30

o 9 1 9 O 9 1
< MBI + —1EVres ] + 2Bt + I
using the inequality

— < 2 2 2 2'
|ab]| 2<2a —|—b>—a +=b

g g

Summing up over n, we obtain

eI < O(r <Z|Vh6’§|h+2||fllllh> (5.31)



1706 G. PANG ET AL.

From (5.2), it is easy to see that: (D, + 0 E)Vypel + ApEel = V), f7'. Next computing the inner product of the
previous expression with EV el and taking the real part, we deduce

D-(IIVae? 1) + ol EVast; = ~Re (Evha?,EAhgg) + Re (EV3el, Vi f),

a
< IEVRETE + ||EAh€§||h++ IEVhet|lh + ~ IIVhf1 I7,

which leads to
et < o) (Sl sy + St ) 532

By taking the inner product of (5.3) with (7D, 4+ 0 E)Pe¥ and then the real part, one gets
Re((7D; + 0cE)Pey, (D; + 0E)Pey + Vi Eel), = Re((tD; + 0 E)Pey, kA (D + 0E)es + f3),.  (5.33)
The left hand side of (5.33) can be written as

o(l+7)

T D-Pe5l; + ==

D, (|Pes|7) + o?|| EPeS|; + Re((rDy + o E)Pey, Vi, Eel),,. (5.34)

By applying the discrete Green’s formula (3.13), the boundary conditions (4.5), and (4.13), the right hand side
of (5.33) can be rewritten following

— K(V(rDy + 0 E)ed, Vi (Ds + 0 B)eL), + kRe (’Vi(TDT T oE)ep ot (D, + aE)sg)
+ Re((1D- + 0 E)Pey, f3'),
= —k(Vp(rDs + 0E)eY, Vi(Dr + 0 E)el), + ﬁRe((TDT Y oE)Eey(Ds + aE)a,,isg)
+Re((rD, + 0E)Pe}, f1),,

ny (5.35
= —k(Vi(rDy + 0E)el, Vi(Dy + o E)ed)n + ﬁRe((TDT + oBE)yEe8 (D, + oE) (TW * »yigz) ) (5.35)

- HRG((TDT +oE)y*ed (D, + JE)gl) + Re((tD, + 0 E)Pey, f3),,
< —k{Vp(tD; 4+ cE)ey, Vi (D, + cE)el),
— HRG((TDT +oE)y*el (D, + oE)gi) + Re((tD- + 0cE)Pey, f3),,.

Combining (5.34) and (5.35), we have

o(l+7)
2

= 7||D-Pe3|[;, +

71D Pe3 i + D, (|Pe5 ) + o*|EP3|[5 + K(Vi(7Ds + 0 E)ey, Vi(Dr + 0 E)el)n

DD, ([P + 02| EPRIE + wID- Vach i

ko(l+T1 " n
+ %DT(IV}LEQ%) + ko?|EVeR|?

< —Re((tD; + 0E)Pey, Vi Eel), + Re((tD; + 0 E)Pey, f3),
— HRG((TD-,— + oE)y*ted(D, + aE)gi),

from which we derive

D, (|IPeyI7)+D-(1Vnes ) < O (E(IVret i) + E(v 5 1) +O@) (1515 + D=1 + E(lg2 %)) (5.36)
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This leads to

n—1

) (1751 + 1D-gk[).

IPe31l: +19neslh < 0@ Y- (IIVaet s + ok [+ v¥es[*) + o(r
k=0 k=0

Again taking the inner product of (5.3) with (D, + 0 E)A,Pel and then the real part, we obtain

Re((D, + 0E)Aneld, (D, + 0 E)YPel + Vi Eer), = Re((Dy + 0 E)Anel, kAp(Dy + 0 E)ely + f2),.  (5.37)
The right hand side of (5.37) can be written as

oD, (| Ares||7) + &l Dy Lneb |7 + k| ELReS | + Re((Dy + 0 E)Apel, £3),- (5.38)

Now by using the integration by part (3.13), the boundary conditions (4.5), and (4.14), the left term of (5.37)
reads

—(Vi(Dr 4+ 0E)ey, Vi(Dr + 0E)ey), + Re((Dr + 0 E)Apey, Vi Eel),
+ Re(m (D: + JE)sg)
= —(Vi(Dr + 0E)ey, Vi (Dr + 0E)eb)y, + Re((Dy + 0E)Apel, Vi Eel),
-I-Re((D +oE)0*el (D, +UE)'yisg)
—(Vi(Dr + 0E)ey,Vi(Dr + 0E)ey ), + Re((Dr + 0 E)Apey, Vi Eel),,
e( (D, + 0E)(T(m xy%ey)" (Dy + 0E)y 52) - Re(m(DT + oE)yiag)
—(Vi(Dr + 0E)ey, Vi(Dr + 0E)ey)p, + Re((Dr + 0 E)Apey, Vi E€t),
—Re( (Dr +0E)g} (D, +O’E)’}/i€g).

(5.39)
Combining (5.38) and (5.39), we deduce

ok Dy (| 2nesll7) + Kl Dr Anes |l + okl EAReL |7 + (Vi(Dr 4+ 0E)ey, Vi (Dr 4+ 0E)e}),
< Re((Dr + oE)Apey, Vi Eey), — Re((DT +oE)g (D, + aE)7i5§> —Re((Dr + o E)Apey, f3)
from which we derive that
D ||Anes i + D7 Vagh|i < O (E([Vretlli) + E(Ives]?))

+OW)(If3 1} + Drgi* + E(g[?)) — Re((Dr + 0 E)gE Drre} ).

Summing up the index n and using a summation by parts in time for ZZ;& Re ( ~Eek (D, + UE)gi)
obtain

(1wt + 9] < 0 (el o+ laal 127057 )

,_.

+00) S (10t} + b + 1ot ) + o) S (11 + 1Pt ) 5 )

=0

T
—_
b
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By the discrete Sobolev imbedding theorem
n!2 —_ n2 n|2
”Yiﬁz‘ < O(€; 1)||7952 I + el Vaesly,,
and choosing €; small enough from (5.40), we have

—112 2 —112
lanes il + Vacslh < 0 (IPesI; + 957 + o2 + [Drgt ™)

3
-

+0) L (IVnetl + reil" + ) + 00 (I + -5 1) (5
et k=0

n—1
7)Y |D2gk |
k=1
Combining (5.31), (5.32), (5.37) and (5.41) together yields
1A8ReB 15 + [Vaes [ + 1P5 15 + IVaet i + IRl
<o) (|gr '+ |1 + [Drg ')
+0() Y (IVnetlly + 1 2neh ] + e + [o4])

k=1

n—1

+0(r) X (1815 + N0t + I + | Dol
k=0

)+ o igi\g
’H (5.42)

n

) S (I9nebly + 1ones s + [Vaeh]y + [ Peb])y)
k=1
n—1

+0() S (I + 190 FE 5 + N + | Dogk
k=0

+om) Y |dh|* + o Z\ 245 + o1 (\gl Yot gt P + [ Drgl 1|)
k

=0

2

3

Applying the discrete Gronwall’s inequality [25], we derive (5.3). The proof of Proposition 5.3 is complete. [

We remark that, From Proposition 4.1, for very small values of k, we have: m ~ 7k~ Y/2,
From Theorem 5.1 and since e’v; = wu;, in order to achieve the accuracy of 0(72+h2), we
have m ~ (Jlog(7)| + |log(o)| + |log(C)|)x~*/? and the time steps fulfill N ~ CY2e7T/2T/7,
where C depends on k. Thus, the resulting total computational complexity is O(mn) ~
(|log(7)| + |10g(:‘<&)|+|IOg(C)|)Cl/26'€71/2T/2T/(FL1/2T). Here, the constant C is not given by an explicit
formula. From Proposition 4.1, we see that we can design a fast and stable approximation of the boundary
condition due to the damping coefficient o. Without any damping factor, then the approximate boundary
condition can lead to some instabilities, similarly to [18].

6. NUMERICAL EXAMPLES

We now provide two illustrative numerical examples to validate the theoretical results derived in the preceding
sections. In the calculations, we always take o = 1/ v2k and adapt the number of Padé expansion terms (see
Thm. 5.1) following the rule

Ine _py/ET?

olmn(1—0) 8

m =
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with p and § given by (4.11). Therefore for N fixed (with N7 = T'), the total computational cost to efficiently
evaluate the convolution is O(mN) = O(N log(N)) [21] by (4.9).

Example 6.1. To demonstrate the performance of our numerical scheme, we first consider a Gaussian initial
distribution for the free-surface elevation and zero distribution for velocity, i.e.

up(x,0) = exp(—400(x — 0.5)), (6.1)

and ug(z,0) = 0. The initial data is negligibly small outside the spatial domain of computation [0, 1]. In this
numerical test, we chose x = 1072. In addition, we set the maximal time at 7 = 1.

We report on Figure 1a the amplitude of the numerical surface elevation u; with ABCs on the computational
domain. We set N = M = 640. The reference solution (uﬁef, ugd) is computed for 7 = h = ﬁ with a CN
scheme, in a very large computational domain to avoid any influence of the boundary condition. We also draw on
Figure 1b the amplitude of the velocity us. Furthermore, on Figures 1c and 1d, we plot the error log,, |u§ef—uj [,
j =1,2, in the domain of computation. As observed, the numerical and reference solutions are very similar, the
error being related to the second-order accuracy of the scheme. There is no reflection related to the absorbing
boundaries. Finally, we report on Figures le and 1f the L*-error max,¢jo,1j |u;j(w, 1) — u§6f(x,T)|, j=1,2 at
final time 7' = 1, when recursively doubling the parameters of the discretization grid, i.e. M = N from 80 to
640. A second-order convergence rate in L°°-norm is observed.

Example 6.2. To observe the dispersive behavior of the GN system, we consider now the following initial
distribution for the free-surface elevation

u1(x,0) = exp(—400(x — 0.5)) sin(207z), (6.2)

and set to zero the initial velocity, i.e. us(z,0) = 0. The initial data u; is small outside the spatial computation
domain [0, 1] so that it can be considered as numerically compactly supported. We fix £ = 1073 and the maximal
evolution time 7' = 1.

We first plot on Figure 2a the modulus of the numerical surface elevation u; computed with ABCs on the
computational domain, for N = M = 1280. The reference solution (u{ef, ugef) is computed with 7 =h = Wloo in
a large enough domain with a CN scheme so that we do not see the effect of the boundary condition. Similarly,
we draw on Figure 2b the amplitude of the velocity us. In addition, on Figures 2c and 2d, we report the error
logy, |u5—ef —uj], 7 = 1,2, in the computational domain. As it can be observed, the numerical and reference
solutions superpose, up to the second-order error of the scheme. No spurious reflection can be detected near
the absorbing boundaries. For completeness, we plot on Figures 2e and 2f the L*-error maxgepo,1] |u;j(z, 1) —
uﬁCf(x,T)|, j = 1,2, at final time T' = 1, when recursively doubling the parameters of the discretization grid,
i.e. M = N from 160 to 1280. We observe a second-order convergence rate in L°°-norm.

To end, the CPU time (log scale, sec.) vs. N (log scale) is reported on Figure 3 for the fast evaluation of the
convolution operator, fixing the number of spatial grid points to M = 160. The total number of time steps N
increases from N = 1.2 x 10° to N = 7.2 x 10°, with step 1.2 x 10°. We observe a slope equal to 1, showing
that the cost is linear according to log(NV), i.e. as O(N log N) for the computational time.

We draw on the left of Figure 4 the amplitude of the velocity us until 7' = 2 to display the stability for
a longer simulation time. In addition, on the right of Figure 4, we report the error logy, [usf — uz|, in the
computational domain. One can see the wave goes out of the computational domain. The error also increases
due to the relation e”tv;(z,t) = u;(z, ).

7. CONCLUSION

The one-dimensional linearized Green-Naghdi system in an unbounded domain was reformulated into an
initial boundary-value problem in a bounded domain with transparent boundary conditions. A fully discrete
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FiGURE 4. (Example 6.2) Left: numerical ug(z,t) for (z,t) € [0,1] x [0,2]. Right: error
log o |us® — usy| for (z,t) € [0,1] x [0,2].

Crank—Nicolson finite-difference method was proposed to solve the reformulated initial boundary-value problem
but with an exact semi-discrete ABC. A fast convolution algorithm is introduced to deal with the convolutions
for the exact semi-discrete ABC by using the Padé rational expansion. A criterion determining the damping
term was proposed to guarantee the convergence. In this case, it was proved theoretically that the corresponding
numerical scheme can achieve a second-order accuracy both in space and time. A numerical example validates
the accuracy and efficiency of the proposed numerical method.

The problem that still needs to be solved is that the damping term e~ should satisfies the stability condition
o> r For a small dispersion parameter s, the damping term e~°% which decays too fast will bring some
numerical errors due to the relation e”v;(t) = u;(t). We will deal with this problem in the forthcoming paper.
Extensions to higher-dimensional problems still need further investigations. Finally, the variable coefficients
and nonlinear cases of the Green-Naghdi system remain open problems as well as the case of the two-layer
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Green-Naghdi system. These questions will be addressed in further works based on microlocal analysis techniques
[3,5,7].
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