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NUMERICAL ANALYSIS OF THE LANDAU–LIFSHITZ–GILBERT EQUATION
WITH INERTIAL EFFECTS

Michele Ruggeri*

Abstract. We consider the numerical approximation of the inertial Landau–Lifshitz–Gilbert equation
(iLLG), which describes the dynamics of the magnetisation in ferromagnetic materials at subpicosecond
time scales. We propose and analyse two fully discrete numerical schemes: The first method is based on
a reformulation of the problem as a linear constrained variational formulation for the linear velocity.
The second method exploits a reformulation of the problem as a first order system in time for the mag-
netisation and the angular momentum. Both schemes are implicit, based on first-order finite elements,
and generate approximations satisfying the unit-length constraint of iLLG at the vertices of the under-
lying mesh. For both methods, we prove convergence of the approximations towards a weak solution of
the problem. Numerical experiments validate the theoretical results and show the applicability of the
methods for the simulation of ultrafast magnetic processes.
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1. Introduction

1.1. Magnetisation dynamics with inertial effects

The understanding of the magnetisation dynamics and the capability to perform reliable numerical simulations
of magnetic systems play a fundamental role in the design of many technological applications, e.g. hard disk
drives. A well-accepted model to describe the magnetisation dynamics in ferromagnetic materials is the Landau–
Lifshitz–Gilbert equation (LLG), which, in the so-called Gilbert form, is given by

𝜕𝑡𝑚 = −𝛾0𝑚×𝐻eff [𝑚] + 𝛼𝑚× 𝜕𝑡𝑚. (1.1)

Here,𝑚 denotes the normalised magnetisation (dimensionless and satisfying |𝑚| = 1), the effective field𝐻eff [𝑚]
(in A m−1), up to a negative multiplicative constant, is the functional derivative of the micromagnetic energy
ℰ [𝑚] (in J) with respect to the magnetisation, while 𝛾0 > 0 and 𝛼 > 0 denote the gyromagnetic ratio (in
m A−1 s−1) and the Gilbert damping parameter (dimensionless), respectively. The first term on the right-hand
side of (1.1) describes the precession of the magnetisation around the effective field. The second term is dissipa-
tive and pushes the magnetisation towards the effective field. The resulting dynamics is a damped precession,
where the magnetisation rotates around the effective field while being damped towards it; see Figure 1a.
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Figure 1. Schematic of the magnetisation dynamics: (a) LLG (precession and damping); (b)
iLLG (precession, damping, and nutation).

In 1996, a pioneering experiment showed that, using femtosecond laser excitations, it is possible to manipulate
the magnetisation of a nickel sample at subpicosecond time scales [16]. This discovery gave impulse to several
theoretical and experimental studies, which gave rise to the field that nowadays is referred to as ultrafast
magnetism [36].

The standard LLG (1.1) is not capable to describe the dynamics of the magnetisation at such short time
scales. Based on the concept of angular momentum in magnetic spin systems, a novel evolution equation has
been recently proposed [19]. This equation, called inertial LLG (iLLG), reads as

𝜕𝑡𝑚 = −𝛾0𝑚×𝐻eff [𝑚] + 𝛼𝑚× 𝜕𝑡𝑚+ 𝜏 𝑚× 𝜕𝑡𝑡𝑚. (1.2)

Here, 𝜏 > 0 denotes the angular momentum relaxation time (in s). In addition to the classical precession and
damping contributions, the right-hand side of (1.2) comprises a third term involving the second time derivative
of the magnetisation. It has been predicted that the effect of this additional contribution on the magnetisation
dynamics consists in the appearance of nutation dynamics – superimposed magnetisation oscillations occurring
at a frequency much higher than the one of the damped precession dynamics; see Figure 1b. Such inertial
dynamics has been experimentally observed for the first time only very recently [32].

1.2. Numerical approximation of LLG and wave map equation

This work is concerned with the numerical analysis of (1.2). As LLG has some similarities with the harmonic
map heat flow into the sphere [30]

𝜕𝑡𝑢−Δ𝑢 = |∇𝑢|2𝑢,

it turns out that iLLG is related to the wave map equation into the sphere [35]

𝜕𝑡𝑡𝑢−Δ𝑢 =
(︁
|∇𝑢|2 − |𝜕𝑡𝑢|2

)︁
𝑢. (1.3)

The numerical approximation of this class of partial differential equations (PDEs) poses several challenges:
nonuniqueness, possible blow-up in time, and low regularity of weak solutions, geometric nonlinearities, a non-
convex pointwise unit-length constraint, intrinsic energy laws as well as (for LLG) the possible coupling with
other PDEs, e.g. the Maxwell equations.

In the last twenty years, several numerical integrators have been proposed. Without claiming to be exhaustive
and, in particular, restricting ourselves to the methods that are akin to the ones proposed in the present work,
we refer to the works [2, 3, 12,14,28] for LLG and to [8, 9, 11,13,15,27] for the wave map equation.

1.3. Contributions and outline of the present work

In this work, combining techniques developed for LLG and the wave map equation, we introduce, analyse,
and numerically compare two fully discrete numerical schemes for iLLG. For both methods, the spatial discreti-
sation is based on first-order finite elements. The first scheme (Algorithm 3.1) is an extension of the tangent
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plane scheme proposed for (1.1) in [2]. The scheme is based on an equivalent reformulation of (1.2) in the
tangent space. The unit-length constraint is enforced at the vertices of the mesh by projecting to the sphere the
nodal values of the computed approximation at each time-step. The second method (Algorithm 3.2) extends to
iLLG the constraint-preserving angular momentum method proposed for (1.3) in [27]. Following [9], the spatial
discretisation based on finite differences considered in [27] is replaced by a mass-lumped finite element approx-
imation. Since the resulting method leads to the solution of a nonlinear system of equations per time-step,
a linearisation based on a convergent constraint-preserving fixed-point iteration – similar to those considered
in [9, 12] for the methods proposed therein – is discussed and analysed (Algorithm 3.4).

We study well-posedness and stability of the proposed schemes, and determine sufficient conditions which
guarantee that the algorithms satisfy discrete energy laws resembling the one of the continuous problem (see (2.7)
below). Moreover, we prove that they generate sequences of finite element solutions that, upon extraction of
a subsequence, converge towards a weak solution of the problem. The proof is constructive and provides an
alternative proof of existence of weak solutions to (1.2) (first established in [25]). The numerical analysis of iLLG
has been considered so far only in [31], where a semi-implicit method has been proposed and its conservation
properties have been analysed. The present work thus proposes the first numerical schemes that are proven to
be convergent towards a weak solution of iLLG. We note that our analysis, in the spirit of the aforementioned
works [2,3,8,9,11–15,27,28] (concerned with the wave map equation and/or LLG), establishes plain convergence
(without rates) of the finite element approximations under minimal regularity assumptions on the weak solution.
We refer, e.g. to the papers [6,23] (both concerned with LLG) for a different type of analysis showing convergence
(with rates) of the finite element approximations towards a sufficiently regular strong solution to the problem.

The remainder of the work is organised as follows: We conclude this section by collecting some useful notation
used throughout the paper. In Section 2, we present the mathematical model under consideration in detail. In
Section 3, we introduce the proposed numerical schemes and state the main results of the work. Section 4 is
devoted to numerical experiments. Finally, in Section 5, we collect the proofs of the results presented in the
paper.

1.4. Notation

We denote by N = {1, 2, . . .} the set of natural numbers and set N0 := N ∪ {0}. We denote the unit sphere
by S2 = {𝑥 ∈ R3 : |𝑥| = 1}. We denote by {𝑒1, 𝑒2, 𝑒3} the standard basis of R3. For (spaces of) vector-valued
or matrix-valued functions, we use bold letters, e.g. for a generic domain Ω ⊂ R𝑑 (𝑑 = 2, 3), we denote both
𝐿2(Ω; R3) and 𝐿2(Ω; R3×3) by 𝐿2(Ω). We denote by

⟨︀
·, ·

⟩︀
both the scalar product of 𝐿2(Ω) and the duality

pairing between 𝐻1(Ω) and its dual, with the ambiguity being resolved by the arguments. The set of sphere-
valued functions in 𝐻1(Ω) is denoted by 𝐻1(Ω; S2). We also use the notation . to denote smaller than or equal
to up to a multiplicative constant, i.e. we write 𝐴 . 𝐵 if there exists a constant 𝑐 > 0, which is clear from the
context and always independent of the discretisation parameters, such that 𝐴 ≤ 𝑐𝐵. Finally, we write 𝐴 ≃ 𝐵 if
𝐴 . 𝐵 and 𝐵 . 𝐴 hold simultaneously.

2. Mathematical model

Let Ω ⊂ R𝑑 (𝑑 = 2, 3) be a bounded Lipschitz domain. The energy of 𝑚 ∈ 𝐻1(Ω; S2) is described by the
Dirichlet energy functional

ℰ [𝑚] =
1
2
‖∇𝑚‖2𝐿2(Ω). (2.1)

Minimisers 𝑚 ∈ 𝐻1(Ω; S2) of (2.1) satisfy the Euler–Lagrange equations

⟨ℎeff [𝑚],𝜑⟩ = 0 for all 𝜑 ∈𝐻1(Ω) such that 𝑚 · 𝜑 = 0 a.e. in Ω,

which, in strong form, take the form

𝑚× ℎeff [𝑚] = 0 in Ω, (2.2a)
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𝜕𝜈𝑚 = 0 on 𝜕Ω, (2.2b)

where 𝜈 : 𝜕Ω → S2 denote the outward-pointing unit normal vector to 𝜕Ω. Here, ℎeff [𝑚] is defined as the
opposite of the Gâteaux derivative of the energy, i.e.

−⟨ℎeff [𝑚],𝜑⟩ =
⟨

𝛿ℰ [𝑚]
𝛿𝑚

,𝜑

⟩
(2.1)
=

⟨︀
∇𝑚, ∇𝜑

⟩︀
. (2.3)

Nonequilibrium magnetisation configurations 𝑚(𝑡) ∈ 𝐻1(Ω; S2) evolve according to LLG (see (1.1)), which in
rescaled form reads as

𝜕𝑡𝑚 = −𝑚× (ℎeff [𝑚]− 𝛼 𝜕𝑡𝑚) in Ω, (2.4)

where 𝛼 > 0. Note that stationary solutions to (2.4) satisfy (2.2a). A simple formal computation reveals
the orthogonality 𝑚 · 𝜕𝑡𝑚 = 0, from which it follows that the dynamics inherently preserves the unit-length
constraint. Moreover, taking the scalar product of (2.4) with ℎeff [𝑚]−𝛼 𝜕𝑡𝑚, one can show that any sufficiently
smooth solution of (2.4) satisfies the energy law

d
d𝑡
ℰ [𝑚(𝑡)] = −𝛼‖𝜕𝑡𝑚(𝑡)‖2𝐿2(Ω) ≤ 0 for all 𝑡 > 0. (2.5)

Hence, the dynamics is dissipative with the dissipation being modulated by the parameter 𝛼.
Inertial effects can be included in the model by adding a term on the right-hand side of (2.4) (see (1.2)). The

resulting equation, iLLG, is given by

𝜕𝑡𝑚 = −𝑚× (ℎeff [𝑚]− 𝛼 𝜕𝑡𝑚− 𝜏 𝜕𝑡𝑡𝑚) in Ω, (2.6)

where 𝜏 > 0. Let 𝑣 := 𝜕𝑡𝑚 and 𝑤 := 𝑚× 𝜕𝑡𝑚 = 𝑚× 𝑣. Using the jargon of kinematics, we refer to these two
quantities as linear velocity and angular momentum, respectively. By construction, 𝑚, 𝑣, and 𝑤 are mutually
orthogonal. Moreover, since |𝑚| = 1 and 𝑚 · 𝑣 = 0, it holds that |𝑣| = |𝑤|. The same computation leading
to (2.5) yields the energy law of iLLG:

d
d𝑡

(︁
ℰ [𝑚(𝑡)] +

𝜏

2
‖𝜕𝑡𝑚(𝑡)‖2𝐿2(Ω)

)︁
= −𝛼‖𝜕𝑡𝑚(𝑡)‖2𝐿2(Ω) ≤ 0 for all 𝑡 > 0. (2.7)

This motivates the definition of the extended energy functional

𝒥 (𝑚,𝑢) = ℰ [𝑚] +
𝜏

2
‖𝑢‖2𝐿2(Ω) for all 𝑚 ∈ 𝐻1(Ω; S2) and 𝑢 ∈ 𝐿2(Ω). (2.8)

With this definition, the quantity decaying over time in the dynamics governed by (2.6) becomes 𝒥 (𝑚, 𝜕𝑡𝑚).
Staying within the framework of kinematics, we can interpret 𝒥 (𝑚, 𝜕𝑡𝑚) as the total energy of the magnetisa-
tion, which comprises the potential energy ℰ [𝑚] and the kinetic energy 𝜏‖𝜕𝑡𝑚‖2𝐿2(Ω)/2.

The initial boundary value problem considered in this work consists of (2.6) supplemented with homoge-
neous Neumann boundary conditions (2.2b), which make the dynamic problem compatible with the stationary
case (2.2), and suitable initial conditions 𝑚(0) = 𝑚0 and 𝜕𝑡𝑚(0) = 𝑣0.

We conclude this section by presenting the definition of a weak solution of (2.6), which is obtained by
extending Definition 1.2 of [4] to the present setting; see also [25].

Definition 2.1. Let 𝑚0 ∈ 𝐻1(Ω; S2) and 𝑣0 ∈ 𝐿2(Ω) such that 𝑚0 · 𝑣0 = 0 a.e. in Ω. A vector field 𝑚 :
Ω × (0,∞) → S2 is called a global weak solution of iLLG (2.6) if 𝑚 ∈ 𝐿∞(0,∞;𝐻1(Ω)) ∩𝑊 1,∞(0,∞;𝐿2(Ω))
and, for all 𝑇 > 0, the following properties are satisfied:

(i) 𝑚 ∈𝐻1(Ω𝑇 ), where Ω𝑇 := Ω× (0, 𝑇 );
(ii) 𝑚(𝑡) →𝑚0 in 𝐻1(Ω) and 𝜕𝑡𝑚(𝑡) → 𝑣0 in 𝐿2(Ω) as 𝑡 → 0;
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(iii) For all 𝜙 ∈ 𝐶∞𝑐 ([0, 𝑇 );𝐻1(Ω)), it holds that∫︁ 𝑇

0

⟨︀
𝜕𝑡𝑚(𝑡),𝜙(𝑡)

⟩︀
d𝑡 = −

∫︁ 𝑇

0

⟨︀
ℎeff [𝑚(𝑡)],𝜙(𝑡)×𝑚(𝑡)

⟩︀
d𝑡 + 𝛼

∫︁ 𝑇

0

⟨︀
𝑚(𝑡)× 𝜕𝑡𝑚(𝑡),𝜙(𝑡)

⟩︀
d𝑡

− 𝜏

∫︁ 𝑇

0

⟨︀
𝑚(𝑡)× 𝜕𝑡𝑚(𝑡), 𝜕𝑡𝜙(𝑡)

⟩︀
d𝑡− 𝜏

⟨︀
𝑚0 × 𝑣0,𝜙(0)

⟩︀
;

(2.9)

(iv) It holds that

𝒥 (𝑚(𝑇 ), 𝜕𝑡𝑚(𝑇 )) + 𝛼

∫︁ 𝑇

0

‖𝜕𝑡𝑚(𝑡)‖2𝐿2(Ω)d𝑡 ≤ 𝒥
(︀
𝑚0,𝑣0

)︀
. (2.10)

In Definition 2.1, equation (2.9) comes from a variational formulation of (2.6) in the space-time cylinder Ω𝑇 ,
where we integrate by parts in time the inertial contribution in order to lower the requested regularity in time
of 𝑚. The energy inequality (2.10) is the weak counterpart of (2.7).

Remark 2.2. (i) The setting discussed in this section can be obtained from the original equations expressed
in physical units after a suitable rescaling. Let 𝑡 and 𝑥 denote the time and spatial variables (measured
in s and m, respectively). First, we perform the change of variables 𝑡′ = 𝛾0𝑀s𝑡 and 𝑥′ = 𝑥/ℓex, where
𝑀s > 0 and ℓex > 0 denote the saturation magnetisation (in A m−1) and the exchange length (in m) of the
material, respectively. Second, we rescale the energy ℰ [𝑚] (in J), the effective field 𝐻eff [𝑚] (in A m−1),
and the angular momentum relaxation time 𝜏 (in s) in the following way: ℰ ′[𝑚] = ℰ [𝑚]/(𝜇0𝑀

2
s ℓ3ex),

ℎeff [𝑚] = 𝐻eff [𝑚]/𝑀s, 𝜏 ′ = 𝛾0𝑀s𝜏 . Then, using the chain rule, (1.2) can be rewritten as (2.6), where all
“primes” are omitted from the rescaled quantities in order to simplify the notation.

(ii) For ease of presentation, in the micromagnetic energy functional (2.1), we consider only the leading-order
exchange contribution. The numerical treatment of standard lower-order energy contributions (e.g. magne-
tocrystalline anisotropy, Zeeman energy, magnetostatic energy, Dzyaloshinskii–Moriya interaction) is well
understood; see, e.g. [17, 21,26,34].

3. Numerical algorithms and main results

In this section, we introduce two fully discrete algorithms for the numerical approximation of iLLG and we
state the corresponding stability and convergence results.

3.1. Preliminaries

For the time discretisation, we consider a uniform partition of the positive real axis (0,∞) with time-step size
𝑘 > 0, i.e. 𝑡𝑖 := 𝑖𝑘 for all 𝑖 ∈ N0. Given a sequence {𝜑𝑖}𝑖∈N0 , for all 𝑖 ∈ N0, we define 𝑑𝑡𝜑

𝑖+1 := (𝜑𝑖+1 − 𝜑𝑖)/𝑘
and 𝜑𝑖+1/2 := (𝜑𝑖+1 +𝜑𝑖)/2. Interpreting the sequence {𝜑𝑖}𝑖∈N0 as a collection of snapshots of a time-dependent
function, we consider the time reconstructions 𝜑𝑘, 𝜑−𝑘 , 𝜑𝑘, 𝜑+

𝑘 defined, for all 𝑖 ∈ N0 and 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), as

𝜑𝑘(𝑡) :=
𝑡− 𝑡𝑖

𝑘
𝜑𝑖+1 +

𝑡𝑖+1 − 𝑡

𝑘
𝜑𝑖, 𝜑−𝑘 (𝑡) := 𝜑𝑖, 𝜑𝑘(𝑡) := 𝜑𝑖+1/2, and 𝜑+

𝑘 (𝑡) := 𝜑𝑖+1. (3.1)

Note that 𝜕𝑡𝜑𝑘(𝑡) = 𝑑𝑡𝜑
𝑖+1 for all 𝑖 ∈ N0 and 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1).

For the spatial discretisation, we assume Ω to be a polytopal domain with Lipschitz boundary and consider a
shape-regular family {𝒯ℎ}ℎ>0 of tetrahedral meshes of Ω parametrised by the mesh size ℎ = max𝐾∈𝒯ℎ

diam(𝐾).
Moreover, let ℎmin = min𝐾∈𝒯ℎ

diam(𝐾). We denote by 𝒩ℎ the set of vertices of 𝒯ℎ. For any 𝐾 ∈ 𝒯ℎ, let 𝒫1(𝐾)
be the space of first-order polynomials on 𝐾. We denote by 𝒮1(𝒯ℎ) the space of piecewise affine and globally
continuous functions from Ω to R, i.e.

𝒮1(𝒯ℎ) =
{︀
𝑣ℎ ∈ 𝐶0

(︀
Ω

)︀
: 𝑣ℎ|𝐾 ∈ 𝒫1(𝐾) for all 𝐾 ∈ 𝒯ℎ

}︀
.
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Its classical basis is given by the set of the nodal hat functions {𝜙𝑧}𝑧∈𝒩ℎ
, which satisfy 𝜙𝑧(𝑧′) = 𝛿𝑧,𝑧′ for all

𝑧, 𝑧′ ∈ 𝒩ℎ. Let ℐℎ : 𝐶0
(︀
Ω

)︀
→ 𝒮1(𝒯ℎ) denote the nodal interpolant defined by ℐℎ[𝑣] =

∑︀
𝑧∈𝒩ℎ

𝑣(𝑧)𝜙𝑧 for all
𝑣 ∈ 𝐶0

(︀
Ω

)︀
. We denote by ℐℎ : 𝐶0

(︀
Ω

)︀
→ 𝒮1(𝒯ℎ)3 its vector-valued counterpart. We consider the mass-lumped

product
⟨︀
·, ·

⟩︀
ℎ

defined by ⟨︀
𝜓,𝜑

⟩︀
ℎ

=
∫︁

Ω

ℐℎ[𝜓 · 𝜑] for all 𝜓,𝜑 ∈ 𝐶0
(︀
Ω

)︀
. (3.2)

Moreover, we define the mapping Pℎ : 𝐻1(Ω)⋆ → 𝒮1(𝒯ℎ)3 by⟨︀
Pℎ𝑢,𝜑ℎ

⟩︀
ℎ

= ⟨𝑢,𝜑ℎ⟩ for all 𝑢 ∈𝐻1(Ω)⋆ and 𝜑ℎ ∈ 𝒮1(𝒯ℎ)3. (3.3)

Finally, we say that a mesh satisfies the angle condition if all off-diagonal entries of the so-called stiffness matrix
are nonpositive, i.e. ⟨︀

∇𝜙𝑧,∇𝜙𝑧′
⟩︀
≤ 0 for all 𝑧, 𝑧′ ∈ 𝒩ℎ with 𝑧 ̸= 𝑧′. (3.4)

Meshes satisfying (3.4) are sometimes also referred to as weakly acute or nonobtuse meshes and are relevant for
the construction of finite element approximations of elliptic problems satisfying discrete maximum principles.
The validity of (3.4) usually requires restrictive geometric properties of the mesh: For example, a sufficient
condition to hold in 3D is that the measure of all dihedral angles of all tetrahedra of the mesh is smaller than or
equal to 𝜋/2. For more details, we refer the interested reader, e.g. to the papers [7,29] as well as to Section 3.2.3
of [10].

3.2. Numerical algorithms

In the following algorithms, the main identities satisfied by any solution 𝑚 of LLG/iLLG, i.e. |𝑚| = 1 and
𝑚 · 𝜕𝑡𝑚 = 0, are imposed only at the vertices of the mesh 𝒯ℎ. To this end, we define the set of admissible
discrete magnetisations

ℳℎ :=
{︀
𝜑ℎ ∈ 𝒮1(𝒯ℎ)3 : |𝜑ℎ(𝑧)| = 1 for all 𝑧 ∈ 𝒩ℎ

}︀
and, for 𝜓ℎ ∈ 𝒮1(𝒯ℎ)3, the discrete tangent space of 𝜓ℎ

𝒦ℎ[𝜓ℎ] :=
{︀
𝜑ℎ ∈ 𝒮1(𝒯ℎ)3 : 𝜓ℎ(𝑧) · 𝜑ℎ(𝑧) = 0 for all 𝑧 ∈ 𝒩ℎ

}︀
. (3.5)

The discrete counterpart of the functional (2.8) is defined by

𝒥ℎ(𝑚ℎ,𝑢ℎ) = ℰ [𝑚ℎ] +
𝜏

2
‖𝑢ℎ‖2ℎ for all 𝑚ℎ,𝑢ℎ ∈ 𝒮1(𝒯ℎ)3.

3.2.1. Tangent plane scheme

The first method uses the linear velocity 𝑣 = 𝜕𝑡𝑚 as an auxiliary variable. Using the vector identity

a× (b× c) = (a · c)b− (a · b)c for all a,b, c ∈ R3, (3.6)

together with the properties |𝑚| = 1 and 𝑚 · 𝑣 = 0, iLLG can be formally rewritten as

𝜏 𝜕𝑡𝑣 + 𝛼 𝑣 +𝑚× 𝑣 = ℎeff [𝑚]− (ℎeff [𝑚] ·𝑚)𝑚− 𝜏 |𝑣|2𝑚. (3.7)

Following the tangent plane paradigm [2, 3, 5, 14], to obtain a numerical scheme for iLLG, we consider a finite
element approximation of a mass-lumped variational formulation of (3.7) based on test functions fulfilling the
same orthogonality property satisfied by 𝑣. This yields a natural linearisation of (3.7), as the contributions
associated with last two (nonlinear) terms on the right-hand side vanish by orthogonality. More precisely, for all
time-steps 𝑖 ∈ N0, given the current approximations 𝑚𝑖

ℎ ≈ 𝑚(𝑡𝑖) and 𝑣𝑖
ℎ ≈ 𝑣(𝑡𝑖), we compute 𝑣𝑖+1

ℎ ≈ 𝑣(𝑡𝑖+1)
using a discretised version of (3.7), which is based on the discrete tangent space 𝒦ℎ

[︀
𝑚𝑖

ℎ

]︀
introduced in (3.5)

for the spatial discretisation and on the backward Euler method for the temporal discretisation. Then, using
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the available approximations 𝑚𝑖
ℎ and 𝑣𝑖+1

ℎ , we obtain 𝑚𝑖+1
ℎ ≈ 𝑚(𝑡𝑖+1) via a first-order time-stepping, i.e.

ℐℎ

[︀(︀
𝑚𝑖

ℎ + 𝑘𝑣𝑖+1
ℎ

)︀
/
⃒⃒
𝑚𝑖

ℎ + 𝑘𝑣𝑖+1
ℎ

⃒⃒]︀
, where the nodal projection is employed to ensure that the new approximation

belongs to ℳℎ. Unlike [2, 3, 5] and as in [14], we use the mass-lumped product
⟨︀
·, ·

⟩︀
ℎ
, which enhances the

efficiency of the scheme without affecting its formal convergence order. The resulting scheme is summarised in
the following algorithm.

Algorithm 3.1 (Tangent plane scheme). Input: 𝑚0
ℎ ∈ ℳℎ and 𝑣0

ℎ ∈ 𝒦ℎ

[︀
𝑚0

ℎ

]︀
.

Loop: For all 𝑖 ∈ N0, iterate (i)–(ii):

(i) Compute 𝑣𝑖+1
ℎ ∈ 𝒦ℎ

[︀
𝑚𝑖

ℎ

]︀
such that, for all 𝜑ℎ ∈ 𝒦ℎ

[︀
𝑚𝑖

ℎ

]︀
, it holds that

𝜏
⟨︀
𝑑𝑡𝑣

𝑖+1
ℎ ,𝜑ℎ

⟩︀
ℎ

+ 𝛼
⟨︀
𝑣𝑖+1

ℎ ,𝜑ℎ

⟩︀
ℎ

+
⟨︀
𝑚𝑖

ℎ × 𝑣𝑖+1
ℎ ,𝜑ℎ

⟩︀
ℎ
− 𝑘

⟨︀
Pℎℎeff

[︀
𝑣𝑖+1

ℎ

]︀
,𝜑ℎ

⟩︀
ℎ

=
⟨︀
Pℎℎeff

[︀
𝑚𝑖

ℎ

]︀
,𝜑ℎ

⟩︀
ℎ
. (3.8)

(ii) Define 𝑚𝑖+1
ℎ = ℐℎ

[︀(︀
𝑚𝑖

ℎ + 𝑘𝑣𝑖+1
ℎ

)︀
/
⃒⃒
𝑚𝑖

ℎ + 𝑘𝑣𝑖+1
ℎ

⃒⃒]︀
∈ ℳℎ.

Output: Sequence of approximations
{︀(︀
𝑚𝑖+1

ℎ ,𝑣𝑖+1
ℎ

)︀}︀
𝑖∈N0

.

Algorithm 3.1 is well-defined: The (nonsymmetric) bilinear form on the left-hand side of (3.8) in step (i) is
elliptic, so that existence and uniqueness of a solution 𝑣𝑖+1

ℎ ∈ 𝒦ℎ

[︀
𝑚𝑖

ℎ

]︀
are guaranteed by the Lax–Milgram

theorem; In the nodal projection appearing in step (ii), the denominator is bounded from below by 1, so that
division by zero never occurs.

3.2.2. Angular momentum method

The second method, following [9, 27], uses the angular momentum 𝑤 = 𝑚 × 𝜕𝑡𝑚 as an auxiliary variable.
First, note that

𝑚×𝑤 = 𝑚× (𝑚× 𝜕𝑡𝑚) = −𝜕𝑡𝑚,

where the second identity follows from (3.6), together with |𝑚| = 1 and 𝑚 · 𝜕𝑡𝑚 = 0. Then, we have that

𝜏 𝜕𝑡𝑤 = 𝜏 𝑚× 𝜕𝑡𝑡𝑚
(2.6)
= 𝑚× ℎeff [𝑚]− 𝛼𝑚× 𝜕𝑡𝑚+ 𝜕𝑡𝑚.

We infer the first-order (in time) system

𝜕𝑡𝑚 = −𝑚×𝑤,

𝜏 𝜕𝑡𝑤 = 𝑚× ℎeff [𝑚]− 𝛼𝑚× 𝜕𝑡𝑚−𝑚×𝑤.

For all 𝑖 ∈ N0, given 𝑚𝑖
ℎ ≈ 𝑚(𝑡𝑖) and 𝑤𝑖

ℎ ≈ 𝑤(𝑡𝑖), approximations 𝑚𝑖+1
ℎ ≈ 𝑚(𝑡𝑖+1) and 𝑤𝑖+1

ℎ ≈ 𝑤(𝑡𝑖+1)
are computed by solving a mass-lumped variational formulation of this first-order system, where the time
discretisation is based on the midpoint rule. The resulting scheme is stated in the following algorithm.

Algorithm 3.2 (Nonlinear angular momentum method). Input: 𝑚0
ℎ ∈ ℳℎ and 𝑣0

ℎ ∈ 𝒦ℎ

[︀
𝑚0

ℎ

]︀
.

Initialisation: Define 𝑤0
ℎ = ℐℎ

[︀
𝑚0

ℎ × 𝑣0
ℎ

]︀
∈ 𝒦ℎ

[︀
𝑚0

ℎ

]︀
.

Loop: For all 𝑖 ∈ N0, compute
(︀
𝑚𝑖+1

ℎ ,𝑤𝑖+1
ℎ

)︀
∈ ℳℎ×𝒦ℎ

[︀
𝑚𝑖+1

ℎ

]︀
such that, for all (𝜑ℎ,𝜓ℎ) ∈ 𝒮1(𝒯ℎ)3×𝒮1(𝒯ℎ)3,

it holds that ⟨︀
𝑑𝑡𝑚

𝑖+1
ℎ ,𝜑ℎ

⟩︀
ℎ

= −
⟨
𝑚

𝑖+1/2
ℎ ×𝑤𝑖+1/2

ℎ ,𝜑ℎ

⟩
ℎ
, (3.9a)

𝜏
⟨︀
𝑑𝑡𝑤

𝑖+1
ℎ ,𝜓ℎ

⟩︀
ℎ

=
⟨
𝑚

𝑖+1/2
ℎ × Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁
,𝜓ℎ

⟩
ℎ
− 𝛼

⟨
𝑚

𝑖+1/2
ℎ × 𝑑𝑡𝑚

𝑖+1
ℎ ,𝜓ℎ

⟩
ℎ

−
⟨
𝑚

𝑖+1/2
ℎ ×𝑤𝑖+1/2

ℎ ,𝜓ℎ

⟩
ℎ
. (3.9b)

Output: Sequence of approximations
{︀(︀
𝑚𝑖+1

ℎ ,𝑤𝑖+1
ℎ

)︀}︀
𝑖∈N0

.
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In the following proposition, we show that the pointwise constraints |𝑚| = 1 and 𝑚 ·𝑤 = 0 are inherently
preserved by Algorithm 3.2 (at the vertices of the mesh). Its proof is deferred to Section 5.1.

Proposition 3.3. Let 𝑖 ∈ N0. The approximations generated by Algorithm 3.2 satisfy 𝑚𝑖+1
ℎ ∈ ℳℎ and 𝑤𝑖+1

ℎ ∈
𝒦ℎ

[︀
𝑚𝑖+1

ℎ

]︀
.

The computation of
(︀
𝑚𝑖+1

ℎ ,𝑤𝑖+1
ℎ

)︀
satisfying (3.9) involves the solution of a nonlinear system of equations.

An effective implementation requires a linearisation.
Let 𝑢𝑖

ℎ := 𝑚
𝑖+1/2
ℎ and 𝑧𝑖

ℎ := 𝑤
𝑖+1/2
ℎ . Performing simple algebraic manipulations, we rewrite (3.9) with

respect to the unknowns 𝑢𝑖
ℎ and 𝑧𝑖

ℎ:

2
⟨︀
𝑢𝑖

ℎ,𝜑ℎ

⟩︀
ℎ

+ 𝑘
⟨︀
𝑢𝑖

ℎ × 𝑧𝑖
ℎ,𝜑ℎ

⟩︀
ℎ

= 2
⟨︀
𝑚𝑖

ℎ,𝜑ℎ

⟩︀
ℎ
, (3.10a)

2𝜏
⟨︀
𝑧𝑖

ℎ,𝜓ℎ

⟩︀
ℎ
− 𝑘

⟨︀
𝑢𝑖

ℎ × Pℎℎeff

[︀
𝑢𝑖

ℎ

]︀
,𝜓ℎ

⟩︀
ℎ

−2𝛼
⟨︀
𝑢𝑖

ℎ ×𝑚𝑖
ℎ,𝜓ℎ

⟩︀
ℎ

+ 𝑘
⟨︀
𝑢𝑖

ℎ × 𝑧𝑖
ℎ,𝜓ℎ

⟩︀
ℎ

= 2𝜏
⟨︀
𝑤𝑖

ℎ,𝜓ℎ

⟩︀
ℎ
. (3.10b)

Starting from this formulation, in the following algorithm we introduce a linear fixed-point iteration (similar in
spirit to those considered in [9, 12]), which provides an effective implementation of Algorithm 3.2.

Algorithm 3.4 (Linearised angular momentum method). Input: 𝑚0
ℎ ∈ ℳℎ and 𝑣0

ℎ ∈ 𝒦ℎ

[︀
𝑚0

ℎ

]︀
.

Initialisation: Define 𝑤0
ℎ = ℐℎ

[︀
𝑚0

ℎ × 𝑣0
ℎ

]︀
∈ 𝒦ℎ

[︀
𝑚0

ℎ

]︀
.

Loop: For all 𝑖 ∈ N0, iterate (i) and (ii):

(i) Let 𝑢𝑖,0
ℎ = 𝑚𝑖

ℎ and 𝑧𝑖,0
ℎ = 𝑤𝑖

ℎ. For all ℓ ∈ N0, iterate (i-a) and (i-b):
(i-a) Compute 𝑢𝑖,ℓ+1

ℎ ∈ 𝒮1(𝒯ℎ)3 such that, for all 𝜑ℎ ∈ 𝒮1(𝒯ℎ)3, it holds that

2
⟨
𝑢𝑖,ℓ+1

ℎ ,𝜑ℎ

⟩
ℎ

+ 𝑘
⟨
𝑢𝑖,ℓ+1

ℎ × 𝑧𝑖,ℓ
ℎ ,𝜑ℎ

⟩
ℎ

= 2
⟨︀
𝑚𝑖

ℎ,𝜑ℎ

⟩︀
ℎ
; (3.11)

(i-b) Compute 𝑧𝑖,ℓ+1
ℎ ∈ 𝒮1(𝒯ℎ)3 such that, for all 𝜓ℎ ∈ 𝒮1(𝒯ℎ)3, it holds that

2𝜏
⟨
𝑧𝑖,ℓ+1

ℎ ,𝜓ℎ

⟩
ℎ

+ 𝑘
⟨
𝑢𝑖,ℓ+1

ℎ × 𝑧𝑖,ℓ+1
ℎ ,𝜓ℎ

⟩
ℎ

= 𝑘
⟨
𝑢𝑖,ℓ+1

ℎ × Pℎℎeff

[︁
𝑢𝑖,ℓ+1

ℎ

]︁
,𝜓ℎ

⟩
ℎ

+ 2𝛼
⟨
𝑢𝑖,ℓ+1

ℎ ×𝑚𝑖
ℎ,𝜓ℎ

⟩
ℎ

+ 2𝜏
⟨︀
𝑤𝑖

ℎ,𝜓ℎ

⟩︀
ℎ
;

(3.12)

until ⃦⃦⃦
𝑢𝑖,ℓ+1

ℎ − 𝑢𝑖,ℓ
ℎ

⃦⃦⃦
ℎ

+
⃦⃦⃦
𝑧𝑖,ℓ+1

ℎ − 𝑧𝑖,ℓ
ℎ

⃦⃦⃦
ℎ
≤ 𝜀. (3.13)

(ii) Let ℓ𝑖 ∈ N0 be the smallest integer for which the stopping criterion (3.13) is met. Define 𝑚𝑖+1
ℎ := 2𝑢𝑖,ℓ𝑖+1

ℎ −
𝑚𝑖

ℎ and 𝑤𝑖+1
ℎ := 2𝑧𝑖,ℓ𝑖+1

ℎ −𝑤𝑖
ℎ.

Output: Sequence of approximations
{︀(︀
𝑚𝑖+1

ℎ ,𝑤𝑖+1
ℎ

)︀}︀
𝑖∈N0

.

The well-posedness and the conservation properties of Algorithm 3.4 are the subject of the following propo-
sition. Its proof is postponed to Section 5.1.

Proposition 3.5. Let 𝑖 ∈ N0. Suppose that 𝑚𝑖
ℎ ∈ ℳℎ.

(i) For all ℓ ∈ N0, (3.11) and (3.12) admit unique solutions 𝑢𝑖,ℓ+1
ℎ and 𝑧𝑖,ℓ+1

ℎ in 𝒮1(𝒯ℎ)3. Moreover, it holds

that
⃦⃦⃦
𝑢𝑖,ℓ+1

ℎ

⃦⃦⃦
𝐿∞(Ω)

≤ 1.



NUMERICAL ANALYSIS OF THE INERTIAL LANDAU–LIFSHITZ–GILBERT EQUATION 1207

(ii) There exist 𝑘0 > 0 and 𝐶 > 0 such that, if 𝑘 < 𝑘0 and 𝑘 < 𝐶ℎmin, then, for all ℓ ∈ N0, it holds that⃦⃦⃦
𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ

⃦⃦⃦
ℎ

+
⃦⃦⃦
𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⃦⃦⃦
ℎ
≤ 𝑞

(︁⃦⃦⃦
𝑢𝑖,ℓ+1

ℎ − 𝑢𝑖,ℓ
ℎ

⃦⃦⃦
ℎ

+
⃦⃦⃦
𝑧𝑖,ℓ+1

ℎ − 𝑧𝑖,ℓ
ℎ

⃦⃦⃦
ℎ

)︁
(3.14)

for some 0 < 𝑞 < 1. The constants 𝑘0, 𝐶, and 𝑞 depend only on the shape-regularity of 𝒯ℎ and the problem
data.

(iii) Under the assumptions of part (ii), the stopping criterion (3.13) is met in a finite number of iterations. If
ℓ𝑖 ∈ N0 denotes the smallest integer for which (3.13) holds, the new approximations 𝑚𝑖+1

ℎ = 2𝑢𝑖,ℓ𝑖+1
ℎ −𝑚𝑖

ℎ

and 𝑤𝑖+1
ℎ = 2𝑧𝑖,ℓ𝑖+1

ℎ −𝑤𝑖
ℎ belong to ℳℎ and 𝒦ℎ

[︀
𝑚𝑖+1

ℎ

]︀
, respectively.

Proposition 3.5(ii) shows that, under suitable assumptions, the mapping defining the fixed-point iteration is
a contraction. Therefore, under the same assumptions, Banach fixed-point theorem ensures that (3.9) admits a
unique solution so that Algorithm 3.2 is well-posed.

In view of the stability and convergence analysis, we observe that, for all 𝑖 ∈ N0, the iterates
(︀
𝑚𝑖+1

ℎ ,𝑤𝑖+1
ℎ

)︀
∈

ℳℎ ×𝒦ℎ

[︀
𝑚𝑖+1

ℎ

]︀
of Algorithm 3.4 satisfy

⟨︀
𝑑𝑡𝑚

𝑖+1
ℎ ,𝜑ℎ

⟩︀
ℎ

= −
⟨
𝑚

𝑖+1/2
ℎ ×𝑤𝑖+1/2

ℎ ,𝜑ℎ

⟩
ℎ

+
⟨
𝑚

𝑖+1/2
ℎ × 𝑟𝑖

ℎ,𝜑ℎ

⟩
ℎ
,

𝜏
⟨︀
𝑑𝑡𝑤

𝑖+1
ℎ ,𝜓ℎ

⟩︀
ℎ

=
⟨
𝑚

𝑖+1/2
ℎ × Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁
,𝜓ℎ

⟩
ℎ
− 𝛼

⟨
𝑚

𝑖+1/2
ℎ × 𝑑𝑡𝑚

𝑖+1
ℎ ,𝜓ℎ

⟩
ℎ

−
⟨
𝑚

𝑖+1/2
ℎ ×𝑤𝑖+1/2

ℎ ,𝜓ℎ

⟩
ℎ

for all (𝜑ℎ,𝜓ℎ) ∈ 𝒮1(𝒯ℎ)3 × 𝒮1(𝒯ℎ)3, where 𝑟𝑖
ℎ := 𝑧𝑖,ℓ𝑖+1

ℎ − 𝑧𝑖,ℓ𝑖

ℎ ∈ 𝒮1(𝒯ℎ)3 satisfies
⃦⃦
𝑟𝑖

ℎ

⃦⃦
ℎ
≤ 𝜀.

3.3. Stability and convergence results

In the following proposition, we establish the discrete energy laws satisfied by the algorithms. Its proof is
postponed to Section 5.2.

Proposition 3.6 (Discrete energy law and stability). Let 𝑖 ∈ N0.

(i) Suppose that the mesh 𝒯ℎ satisfies angle condition (3.4). The approximations generated by Algorithm 3.1
satisfy the discrete energy law

𝒥ℎ

(︀
𝑚𝑖+1

ℎ ,𝑣𝑖+1
ℎ

)︀
+ 𝛼𝑘

⃦⃦
𝑣𝑖+1

ℎ

⃦⃦2

ℎ
+

𝜏𝑘2

2

⃦⃦
𝑑𝑡𝑣

𝑖+1
ℎ

⃦⃦2

ℎ
+

𝑘2

2

⃦⃦
∇𝑣𝑖+1

ℎ

⃦⃦2

𝐿2(Ω)
≤ 𝒥ℎ

(︀
𝑚𝑖

ℎ,𝑣𝑖
ℎ

)︀
. (3.15)

(ii) The approximations generated by Algorithm 3.2 satisfy the discrete energy law

𝒥ℎ

(︀
𝑚𝑖+1

ℎ ,𝑤𝑖+1
ℎ

)︀
+ 𝛼𝑘

⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦2

ℎ
= 𝒥ℎ

(︀
𝑚𝑖

ℎ,𝑤𝑖
ℎ

)︀
. (3.16)

(iii) The approximations generated by Algorithm 3.4 satisfy the discrete energy law

𝒥ℎ

(︀
𝑚𝑖+1

ℎ ,𝑤𝑖+1
ℎ

)︀
+ 𝛼𝑘

⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦2

ℎ
+ 𝑘

⟨
𝑚

𝑖+1/2
ℎ × 𝑟𝑖

ℎ, Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁
− 𝛼 𝑑𝑡𝑚

𝑖+1
ℎ

⟩
ℎ

= 𝒥ℎ

(︀
𝑚𝑖

ℎ,𝑤𝑖
ℎ

)︀
. (3.17)

In the energy law satisfied by Algorithm 3.1, besides the LLG-intrinsic dissipation, we observe the presence
of numerical dissipation due to the use of the backward Euler method; cf. the last two terms on the left-hand
side of (3.15). Algorithm 3.2 fulfils a discrete energy identity, which reflects the fact that the midpoint rule is
symplectic. The same identity, apart from an additional term coming from the inexact solution of the nonlinear
system, is satisfied by Algorithm 3.4.
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From each algorithm, we obtain a sequence of approximations {𝑚𝑖
ℎ}𝑖∈N0 , which we can use to define the

piecewise affine time reconstruction 𝑚ℎ𝑘 : (0,∞) → 𝒮1(𝒯ℎ)3 (denoted by 𝑚𝜀
ℎ𝑘 in the case of Algorithm 3.4) as

𝑚ℎ𝑘(𝑡) :=
𝑡− 𝑡𝑖

𝑘
𝑚𝑖+1

ℎ +
𝑡𝑖+1 − 𝑡

𝑘
𝑚𝑖

ℎ for all 𝑖 ∈ N0 and 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1);

see (3.1). In the following theorem, we show that, under appropriate assumptions, the sequence {𝑚ℎ𝑘} (resp.,
{𝑚𝜀

ℎ𝑘} for Algorithm 3.4) converges in a suitable sense towards solutions of iLLG as ℎ, 𝑘 (and 𝜀) go to 0. Its
proof is postponed to Section 5.3.

Theorem 3.7. Let the approximate initial conditions satisfy

𝑚0
ℎ →𝑚0 in 𝐻1(Ω) and 𝑣0

ℎ → 𝑣0 in 𝐿2(Ω) as ℎ → 0. (3.18)

(i) For Algorithm 3.1, assume that each mesh 𝒯ℎ satisfies the angle condition (3.4) and that 𝑘 = 𝑜
(︁
ℎ

𝑑/2
min

)︁
as ℎ, 𝑘 → 0. For Algorithm 3.2, assume that the scheme is well-posed. Then, there exist a global weak
solution 𝑚 : Ω × (0,∞) → S2 of iLLG in the sense of Definition 2.1 and a (nonrelabeled) subsequence of
{𝑚ℎ𝑘} which converges towards 𝑚 as ℎ, 𝑘 → 0. In particular, as ℎ, 𝑘 → 0, it holds that 𝑚ℎ𝑘

*
⇀ 𝑚 in

𝐿∞(0,∞; 𝐻1(Ω; S2)) and 𝑚ℎ𝑘|Ω𝑇
⇀ 𝑚|Ω𝑇

in 𝐻1(Ω𝑇 ) for all 𝑇 > 0.
(ii) For Algorithm 3.4, assume that the scheme is well-posed and that 𝜀 = 𝒪(ℎmin) as ℎ, 𝜀 → 0. For all

𝑇 > 0, there exist 𝑚 : Ω × (0, 𝑇 ) → S2, which satisfies the requirements (i)–(iv) of Definition 2.1, and a
(nonrelabeled) subsequence of {𝑚𝜀

ℎ𝑘} such that 𝑚𝜀
ℎ𝑘|Ω𝑇

*
⇀ 𝑚 in 𝐿∞(0, 𝑇 ; 𝐻1(Ω; S2)) and 𝑚𝜀

ℎ𝑘|Ω𝑇
⇀ 𝑚 in

𝐻1(Ω𝑇 ) as ℎ, 𝑘, 𝜀 → 0.

In order to refer to the limit of the approximations generated by Algorithm 3.4, we have not used the
expression “global weak solution”. This is a consequence of the fact that, for this algorithm, the boundedness
result we are able to show (see Prop. 5.1 below) is not uniform with respect to the (arbitrary but fixed) final
time 𝑇 > 0.

To conclude, we summarise the results of our analysis for the proposed algorithms:

– Algorithm 3.1 is unconditionally well-posed, unconditionally stable (under the angle condition (3.4)), and its
convergence towards a global weak solution of iLLG requires the CFL condition 𝑘 = 𝑜

(︁
ℎ

𝑑/2
min

)︁
as ℎ, 𝑘 → 0.

– Algorithm 3.2 is well-posed if 𝑘 is sufficiently small and the CFL condition 𝑘 < 𝐶ℎmin holds. Assuming its
well-posedness, it is unconditionally stable and unconditionally convergent towards a global weak solution
of iLLG.

– Algorithm 3.4 is well-posed if 𝑘 is sufficiently small and the CFL condition 𝑘 < 𝐶ℎmin holds. Assuming
its well-posedness and choosing a stopping tolerance 𝜀 having the same order of ℎmin, for all 𝑇 > 0, it is
unconditionally stable and unconditionally convergent towards a function 𝑚 : Ω× (0, 𝑇 ) → S2 which fulfils
the properties (i)–(iv) of Definition 2.1.

Remark 3.8. For the sake of brevity, we restrict ourselves to the case of algorithms generating approximations
which satisfy the unit-length constraint at the vertices of the mesh, i.e. 𝑚𝑖

ℎ ∈ ℳℎ for all 𝑖 ∈ N0. For the
tangent plane scheme, this property is guaranteed by the use of the nodal projection. A theoretical consequence
is that the stability analysis requires the assumption of the angle condition (3.4), which turns out to be quite
restrictive in 3D. For LLG, a tangent plane scheme which avoids the nodal projection (and the related angle
condition) was proposed in [1]; see also [11,22]. We believe that a similar approach can be pursued to construct
a projection-free tangent plane scheme for iLLG.

4. Numerical results

Before presenting the proof of the results stated in Section 3, we aim to show the effectivity of the proposed
algorithms by means of two numerical experiments. For the sake of brevity, in this section, we refer to the
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Table 1. Experiment of Section 4.1: Average number of fixed-point iterations needed to reach
the prescribed tolerance 𝜀 = 1× 10−12 for ℓ = 5, 6, 7, 8 and 𝛿 = 0.1, 0.2, 0.3, 0.4.

𝛿 = 0.1 𝛿 = 0.2 𝛿 = 0.3 𝛿 = 0.4

ℓ = 5 4.99 7.99 13.87 35.66
ℓ = 6 4.93 7.89 13.82 35.39
ℓ = 7 4.84 7.75 13.66 34.55
ℓ = 8 4.78 7.72 13.44 33.74

tangent plane scheme (Algorithm 3.1) as TPS and to the angular momentum method (Algorithm 3.2 or, more
appropriately, its effective realisation given in Algorithm 3.4) as AMM. The computation presented in this
section were obtained with a MATLAB implementation of the proposed algorithms. All linear systems were
solved using the direct solver provided by MATLAB’s backslash operator.

4.1. Finite-time blow-up of weak solutions

We investigate the performance of the algorithms for different choices of the discretisation parameters ℎ and
𝑘 (and 𝜀 for AMM). At the same time, we numerically study for a weak solution 𝑚 of iLLG the occurrence of
a so-called finite-time blow-up, i.e. whether there exists 𝑇 * > 0 such that

lim
𝑡→𝑇*

‖∇𝑚(𝑡)‖𝐿∞(Ω) = ∞.

To this end, we adapt to iLLG the model problem studied in [9, 13, 27] for the wave map equation and in [14]
for LLG.

We consider the nondimensional setting presented in Section 2 for the unit square domain Ω = (−1/2, 1/2)2

in the time interval (0, 2). We set 𝛼 = 𝜏 = 1 in (2.6) and consider homogeneous Neumann boundary con-
ditions (2.2b) as well as the initial conditions 𝑚0(𝑥) =

(︁
2𝑎(𝑥)𝑥1, 2𝑎(𝑥)𝑥2, 𝑎(𝑥)2 − |𝑥|2

)︁
/
(︁
𝑎(𝑥)2 + |𝑥|2

)︁
with

𝑎(𝑥) = max{0, (1−2|𝑥|)4} for all 𝑥 = (𝑥1, 𝑥2) ∈ Ω and 𝑣0 ≡ 0. For the wave map equation (1.3) and LLG (2.4),
this setting leads to numerical approximations with large gradients, which suggests the occurrence of a finite-
time blow-up. For snapshots of numerical approximations which illustrate this phenomenon, we refer to, e.g.
Figures 3 and 4 of [13] or Figures 1 and 2 of [14].

First, we investigate the convergence of the fixed-point iteration in AMM analysed in Proposition 3.5(ii). For
ℓ = 5, 6, 7, 8, we consider a uniform mesh 𝒯ℎℓ

of the unit square consisting of 22ℓ+1 rectangular triangles. The
resulting mesh size is ℎℓ =

√
2 2−ℓ. In the stopping criterion (3.13), in order to better evaluate the convergence

of the fixed-point iteration, we use the small tolerance 𝜀 = 1× 10−12. The iteration is terminated either when
the stopping criterion (3.13) is met or when the number of iterations exceeds 1000. We use the time-step size
𝑘ℓ = 𝛿ℎℓ for different values of 0 < 𝛿 < 1.

In Table 1, we show the average number of fixed-point iterations needed to reach the prescribed tolerance 𝜀 for
𝛿 = 0.1, 0.2, 0.3, 0.4. The number of iterations increases as 𝛿 increases and decreases (very slightly) as the mesh
size decreases. For all ℓ = 5, 6, 7, 8, the fixed-point iteration does not converge (within the prescribed maximum
number of iterations) if 𝛿 is larger than a threshold value located between 0.46 and 0.47. This behaviour is
in agreement with the dependence of the contraction constant on the discretisation parameters which can be
inferred from the proof of Proposition 3.5(ii), i.e. 𝑞 ≃ 𝛿(1 + ℎ) (recall that the tolerance 𝜀 is fixed).

Next, we compare the performance of TPS and AMM. We consider the uniform mesh 𝒯ℎ6 (8192 elements
and mesh size ℎ6 = 0.0221) and 𝑘 = ℎ6/10. For AMM, we set 𝜀 = ℎ6/10 in (3.13).

In Figure 2, we plot the evolutions of the spatial average of the third magnetisation component, i.e.
⟨𝑚3(𝑡)⟩ := |Ω|−1 ∫︀

Ω
𝑚ℎ𝑘(𝑡) · 𝑒3, of the 𝑊 1,∞-seminorm ‖∇𝑚ℎ𝑘(𝑡)‖𝐿∞(Ω), and of the total discrete energy

𝒥ℎ(𝑚ℎ𝑘(𝑡), 𝜕𝑡𝑚ℎ𝑘(𝑡)) for 𝑡 ∈ [0, 2]. We observe that the algorithms capture the same average magnetisation
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Figure 2. Experiment of Section 4.1: comparison of the results obtained with TPS and AMM
for ℓ = 6, 𝑘 = ℎ6/10, and 𝜀 = ℎ6/10. (a) Evolution of the average magnetisation ⟨𝑚3⟩. (b)
Evolution of the 𝑊 1,∞-seminorm. (c) Evolution of the total energy.

Figure 3. Experiment of Section 4.1: comparison of the results obtained with TPS and AMM
for ℓ = 6, 𝑘 = ℎ6/100, and 𝜀 = ℎ6/100. (a) Evolution of the average magnetisation ⟨𝑚3⟩. (b)
Evolution of the 𝑊 1,∞-seminorm. (c) Evolution of the total energy.

dynamics. In particular, at 𝑡 ≈ 0.3, the approximations attain the largest possible value of the 𝑊 1,∞-seminorm
for functions in ℳℎ residing in 𝒯ℎ6 , which in general, for all ℓ = 5, 6, 7, 8, is given by

max
𝜑ℎ∈ℳℎ

‖∇𝜑ℎ‖𝐿∞(Ω) = max
𝜑ℎ∈ℳℎ

max
𝑇∈𝒯ℎ,ℓ

|∇𝜑ℎ|𝑇 | = 2/2−ℓ = 2ℓ+1. (4.1)

This value is obtained when the magnetisations of two neighboring vertices point to opposite directions. Indeed,
in our case, the magnetisation at (0, 0) points to the out-of-plane direction (1, 0, 0), while all surrounding vectors
point to the opposite direction. This configuration lasts for some time (see the “plateau” in Fig. 2b). Then, at
𝑡 ≈ 0.8, the magnetisation at (0, 0) is reversed. This gives rise to oscillations of decaying amplitude. Looking
at Figure 2c, we observe that, in agreement with (3.15), the total energy decays monotonically in the case of
TPS. In the case of AMM, the decay is nonmonotone. Note that possible lack of monotonicity is predicted by
the energy law of AMM; cf. the (unsigned) third term on the left-hand side (3.17). Moreover, we see that the
curve for TPS is well below the one of AMM. This fact can be justified by the dissipation of the backward Euler
method; cf. the second and third terms on the left-hand side of (3.15).

In Figure 3, we show the results obtained repeating the experiment using the same mesh 𝒯ℎ6 , but smaller
time-step size 𝑘 = ℎ6/100 and tolerance 𝜀 = ℎ6/100. The overall behaviour remains the same. However, we see
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Figure 4. Experiment of Section 4.1: evolution of the 𝑊 1,∞-seminorm obtained with AMM
for different mesh resolutions (a) and different symmetry properties (b). (a) 𝑊 1,∞-seminorm
for ℓ = 5, 6, 7, 8. (b) 𝑊 1,∞-seminorm for 𝒯ℎ6 and 𝒯ℎ.

that the numerical dissipation of TPS and the nonmonotonicity of the energy decay of AMM are reduced. This
observation confirms the validity of the energy laws established in Proposition 3.6, as the terms responsible for
the two above effects can indeed be controlled by time-step size 𝑘 and the tolerance 𝜀, respectively.

Finally, we investigate whether the resolution or the symmetry of the mesh have an influence on the detection
of the blow-up. In Figure 4a, we compare the evolution of the 𝑊 1,∞-seminorm obtained using the uniform meshes
𝒯ℎℓ

for ℓ = 5, 6, 7, 8 (𝑘 = ℎℓ/100 and 𝜀 = ℎℓ/100). The appearance of blow-up of the three approximations occurs
at the same time (𝑡 ≈ 0.3), but the length of the plateaux, i.e. the duration of the configuration in which the
magnetisation of the origin has the opposite direction of the surrounding vertices, decreases with the mesh size.
Moreover, for all ℓ = 5, 6, 7, 8, the maximum value attained by the 𝑊 1,∞-seminorm is always the maximum
value (4.1) allowed by the discrete space.

In Figure 4b, we compare the evolution of the 𝑊 1,∞-seminorm computed using 𝒯ℎ6 with the one obtained
using an unstructured mesh 𝒯ℎ of comparable number of elements and mesh size (7234 elements and ℎ = 0.0262).
We observe that a finite-time blow-up at 𝑡 ≈ 0.3 occurs also for the approximation residing in the unstructured
mesh 𝒯ℎ. However, the magnetisation configuration with maximum gradient is quickly left (no plateau in the
evolution of the 𝑊 1,∞-seminorm). We believe that the stagnation of the configuration with maximum gradient
observed for uniform meshes is a numerical artefact related to their symmetry.

Since the computations performed with TPS lead to the same conclusions, in order not to overload the plots,
in Figure 4 we have shown only the results computed using AMM.

It is not clear to the author whether the observed finite-time blow-up also occurs for the weak solution of iLLG
towards which the computed approximations converge as ℎ, 𝑘, 𝜀 → 0. However, the fact that the phenomenon has
been observed for approximations computed using two different schemes and various choices of the discretisation
parameters seems to provide a clear evidence in this direction.

4.2. Nutation dynamics in ferromagnetic thin films

With this experiment, we aim to illustrate the differences in the magnetisation dynamics induced by the
standard LLG (1.1) and iLLG (1.2). Moreover, we compare the performance of TPS and AMM in a simulation
with physically relevant geometry and material parameters.

The domain Ω is a planar thin film of the form 𝜔×(0, 𝑐) with cross section 𝜔 ⊂ R2 (parallel to the 𝑥1𝑥2-plane)
and thickness 𝑐 = 3 nm (aligned with 𝑒3). The cross section 𝜔 is an elliptic domain with semiaxis lengths 𝑎 =
100 nm and 𝑏 = 50 nm. The axes of the ellipse are parallel to 𝑒1 and 𝑒2, with the major axis being parallel to
𝑒1. It is well known [18, 20, 24] that the magnetisation of thin films is usually homogeneous in the out-of-plane
component, so that an adequate description of the energetics of the magnet can be obtained using a 2D energy
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functional ℰ [𝑚] posed only on the cross section 𝜔. Accordingly, we consider the energy functional

ℰ [𝑚]/𝑐 = 𝐴

∫︁
𝜔

|∇𝑚|2 + 𝐾

∫︁
𝜔

[︀
1− (𝑚 · 𝑒1)2

]︀
− 𝜇0𝑀s

∫︁
𝜔

𝐻ext ·𝑚+
𝜇0𝑀

2
s

2

∫︁
𝜔

(𝑚 · 𝑒3)2.

Here, 𝜇0 = 4𝜋·10−7 N A−2 is the vacuum permeability, 𝑀s, 𝐴, 𝐾 are positive material parameters (see below),
while 𝐻ext denotes an applied magnetic field (in A m−1). The four energy contributions in ℰ [𝑚] are exchange
interaction, uniaxial anisotropy (with easy axis 𝑒1 parallel to the major axis of the ellipse), Zeeman energy,
and magnetostatic interaction, respectively. Note that the nonlocal magnetostatic energy is replaced by a
local planar anisotropy contribution penalising out-of-plane magnetisation configurations, which is admissi-
ble for magnetic thin films [18, 20, 24]. In (1.1) and (1.2), for the gyromagnetic ratio, we consider the value
𝛾0 = 2.211× 105 m A−1 s−1, while the effective field 𝐻eff [𝑚] is related to the energy ℰ [𝑚] via the relation
𝜇0𝑀s𝐻eff [𝑚] = − 𝛿ℰ[𝑚]

𝛿𝑚 . For the material parameters, we use the values of permalloy (see, e.g. [33]): 𝑀s =
8× 105 A m−1, 𝐴 = 1.3× 10−11 J m−1, 𝐾 = 5× 102 J m−2, and 𝛼 = 0.023. For the angular momentum relax-
ation time 𝜏 in (1.2), we consider the value 𝜏 = 𝛼 𝜉 with 𝜉 = 12.3 ps; see [32]. As initial conditions, we consider
the constant fields 𝑚0 ≡ 𝑒1 and 𝑣0 ≡ 0. Note that 𝑚0 is a global minimum for the energy ℰ [𝑚] if 𝐻ext ≡ 0.

The overall simulation time is 30 ps. The experiment consists in perturbing the equilibrium state 𝑚0 ≡ 𝑒1

with a perpendicular and spatially uniform high-frequency pulse field 𝐻ext(𝑡) = 𝐹 (𝑡)𝑀s 𝑒2, where 𝐹 (𝑡) =
0.01 sin(2𝜋𝑓𝑡) 𝜒{0≤ 𝑡≤ 2× 10−12}(𝑡) with 𝑓 = 500 GHz; see Figure 5a. In order to assess the resulting magneti-
sation dynamics, we analyse the time evolution of the spatial average of the third magnetisation component
⟨𝑚3⟩.

For the spatial discretisation we consider a triangular mesh of 𝜔 made of 5998 elements. Its mesh size
(3.760 nm) is well below the exchange length of the material ℓex =

√︀
2𝐴/(𝜇0𝑀2

s ) = 5.686 nm. For the time
discretisation, we consider three different time-step sizes (∆𝑡 = 1, 10, 100 fs). In the stopping criterion (3.13),
we use the tolerance 𝜀 = 1× 10−6.

In Figure 5b, we compare the evolution of ⟨𝑚3⟩ for LLG and iLLG. We show the results computed using
TPS with ∆𝑡 = 1 fs. Note that TPS for LLG can be obtained from Algorithm 3.1 by omitting the first term
on the left-hand side of (3.8); see [2, 17]. The dynamics induced by the two models are completely different.
For LLG, the magnetisation reacts to the pulse field and returns straight to the equilibrium state. For iLLG,
the deflection from the equilibrium state gives rise to oscillations with approximately the same frequency of
the inducing pulse field (500 GHz). Due to damping, the amplitude of the oscillations decays with time and the
magnetisation regains the initial equilibrium state. This experiment provides a numerical evidence of the inertial
nutation dynamics predicted by the model, which has been experimentally observed only very recently [32].

In Figure 5c, we plot the evolution of ⟨𝑚3⟩ computed using TPS with ∆𝑡 = 1, 10, 100 fs. For larger time-step
sizes, we observe a faster decay of the oscillations. This phenomenon is a consequence of the artificial damping
of the backward Euler method used for the time discretisation. The observed dependence on ∆𝑡 reflects the
fact that the artificial damping can be controlled by the time-step size; see (3.15). Finally, in Figure 5d, we
show the same plot for AMM. Unlike TPS, AMM is robust with respect to variations of the time-step size. This
reflects the energy conservation properties of the symplectic midpoint rule; see (3.16)–(3.17). All the considered
time-step sizes are sufficiently small to guarantee the convergence of the fixed-point iteration, which requires
1–2 iterations for ∆𝑡 = 1, 10 fs and 2–3 iterations for ∆𝑡 = 100 fs. Note that using larger time-step sizes is not
advisable, as they cannot resolve the pulse field and the resulting magnetisation dynamics.

This experiment shows the importance of designing a numerical scheme which respects the energy law of the
underlying model. This general statement, which holds true for any PDE with a physical background (and, in
particular, for LLG), is a key aspect for iLLG due to the small extent and the ultrafast time scale of the nutation
dynamics. As a consequence, this experiment suggests that for iLLG, between TPS and AMM, AMM should be
the method of choice. Indeed, besides ensuring an accurate evolution of the discrete energy, its main drawback,
i.e. the requirement of smaller time-step sizes to have a well-posed fixed-point iteration, does not represent a
restriction, since small time-step sizes are necessary anyway in order to resolve the ultrafast dynamics of the
magnetisation.
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Figure 5. Experiment of Section 4.2: (a) Plot of the function 𝑡 ↦→ 𝐹 (𝑡) which modulates the
amplitude of the pulse field. (b) Evolution of ⟨𝑚3⟩ for LLG and iLLG computed with TPS for
∆𝑡 = 1 fs. (c) Evolution of ⟨𝑚3⟩ computed with TPS for different time-step sizes. (d) Evolution
of ⟨𝑚3⟩ computed with AMM for different time-step sizes.

5. Proofs

In this section, we present the proofs of the results stated in Section 3. In view of their later use, we recall
some facts: the mass-lumped product

⟨︀
·, ·

⟩︀
ℎ

defined in (3.2) is a scalar product on 𝒮1(𝒯ℎ)3 and the induced
norm ‖·‖ℎ satisfies the norm equivalence

‖𝜑ℎ‖𝐿2(Ω) ≤ ‖𝜑ℎ‖ℎ ≤
√

𝑑 + 2 ‖𝜑ℎ‖𝐿2(Ω) for all 𝜑ℎ ∈ 𝒮1(𝒯ℎ)3.

Moreover, there holds the error estimate⃒⃒⟨︀
𝜑ℎ,𝜓ℎ

⟩︀
−

⟨︀
𝜑ℎ,𝜓ℎ

⟩︀
ℎ

⃒⃒
≤ 𝐶ℎ2‖∇𝜑ℎ‖𝐿2(Ω)‖∇𝜓ℎ‖𝐿2(Ω) for all 𝜑ℎ,𝜓ℎ ∈ 𝒮1(𝒯ℎ)3, (5.1)

where 𝐶 > 0 depends only on the shape-regularity of 𝒯ℎ; see Lemma 3.9 of [10]. Finally, we recall the following
relations between the 𝐿𝑝-norm of a discrete function and the ℓ𝑝-norm of the vector collecting its nodal values
(see [10], Lem. 3.4):

‖𝜑ℎ‖
𝑝
𝐿𝑝(Ω) ≃

∑︁
𝑧∈𝒩ℎ

ℎ𝑑
𝑧 |𝜑ℎ(𝑧)|𝑝 and ‖𝜑ℎ‖𝐿∞(Ω) = max

𝑧∈𝒩ℎ

|𝜑ℎ(𝑧)| for all 𝜑ℎ ∈ 𝒮1(𝒯ℎ)3. (5.2)

Here, ℎ𝑧 > 0 denotes the diameter of the nodal patch associated with 𝑧 ∈ 𝒩ℎ.
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5.1. Properties of Algorithm 3.2 and well-posedness of Algorithm 3.4

We start with proving the conservation properties of Algorithm 3.2.

Proof of Proposition 3.3. Let 𝑧 ∈ 𝒩ℎ. Choosing 𝜑ℎ = 𝜙𝑧𝑚
𝑖+1/2
ℎ (𝑧) in (3.9a), we infer that

⃒⃒
𝑚𝑖+1

ℎ (𝑧)
⃒⃒

=
⃒⃒
𝑚𝑖

ℎ(𝑧)
⃒⃒
.

Since 𝑚0
ℎ ∈ ℳℎ by assumption, we conclude that 𝑚𝑖+1

ℎ ∈ ℳℎ.
Choosing 𝜑ℎ = 𝜙𝑧𝑤

𝑖+1/2
ℎ (𝑧) in (3.9a) and 𝜓ℎ = 𝜙𝑧𝑚

𝑖+1/2
ℎ (𝑧) in (3.9b), we obtain the identities 𝑑𝑡𝑚

𝑖+1
ℎ (𝑧) ·

𝑤
𝑖+1/2
ℎ (𝑧) = 0 and 𝑑𝑡𝑤

𝑖+1
ℎ (𝑧) ·𝑚𝑖+1/2

ℎ (𝑧), respectively. It follows that

𝑚𝑖+1
ℎ (𝑧) ·𝑤𝑖+1

ℎ (𝑧)−𝑚𝑖
ℎ(𝑧) ·𝑤𝑖

ℎ(𝑧) = 𝑑𝑡𝑚
𝑖+1
ℎ (𝑧) ·𝑤𝑖+1/2

ℎ (𝑧) + 𝑑𝑡𝑤
𝑖+1
ℎ (𝑧) ·𝑚𝑖+1/2

ℎ (𝑧) = 0.

Since 𝑚0
ℎ(𝑧) ·𝑤0

ℎ(𝑧) = 𝑚0
ℎ(𝑧) · (𝑚0

ℎ(𝑧)× 𝑣0
ℎ(𝑧)) = 0, we conclude that 𝑤𝑖+1

ℎ ∈ 𝒦ℎ

[︀
𝑚𝑖+1

ℎ

]︀
. �

Next, we show that the fixed-point iteration designed for the solution of (3.10) is well-posed and converges.

Proof of Proposition 3.5. Let ℓ ∈ N0. The bilinear forms on the left-hand side of both (3.11) and (3.12) are
elliptic. Therefore, existence and uniqueness of solutions 𝑢𝑖,ℓ+1

ℎ and 𝑧𝑖,ℓ+1
ℎ in 𝒮1(𝒯ℎ)3 follow from the Lax–

Milgram theorem.
Let 𝑧 ∈ 𝒩ℎ be an arbitrary vertex. Testing (3.11) with 𝜑ℎ = 𝜙𝑧𝑢

𝑖,ℓ+1
ℎ (𝑧) ∈ 𝒮1(𝒯ℎ)3, we obtain that⃒⃒⃒

𝑢𝑖,ℓ+1
ℎ (𝑧)

⃒⃒⃒2
= 𝑢𝑖,ℓ+1

ℎ (𝑧) ·𝑚𝑖
ℎ(𝑧). Hence,

⃒⃒⃒
𝑢𝑖,ℓ+1

ℎ (𝑧)
⃒⃒⃒
≤

⃒⃒
𝑚𝑖

ℎ(𝑧)
⃒⃒

= 1. This shows that
⃦⃦⃦
𝑢𝑖,ℓ+1

ℎ

⃦⃦⃦
𝐿∞(Ω)

≤ 1 and

concludes the proof of part (i).
Let 𝑢𝑖,ℓ+1

ℎ and 𝑢𝑖,ℓ+2
ℎ (resp., 𝑧𝑖,ℓ+1

ℎ and 𝑧𝑖,ℓ+2
ℎ ) be two consecutive iterates satisfying (3.11) (resp., (3.12)).

Taking the difference of the equations satisfied by 𝑧𝑖,ℓ+2
ℎ and 𝑧𝑖,ℓ+1

ℎ and choosing 𝜓ℎ = 𝑧𝑖,ℓ+2
ℎ −𝑧𝑖,ℓ+1

ℎ , we obtain
the identity

2𝜏
⃦⃦⃦
𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⃦⃦⃦2

ℎ
= 𝑘

⟨
𝑢𝑖,ℓ+2

ℎ × Pℎℎeff

[︁
𝑢𝑖,ℓ+2

ℎ

]︁
− 𝑢𝑖,ℓ+1

ℎ × Pℎℎeff

[︁
𝑢𝑖,ℓ+1

ℎ

]︁
, 𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⟩
ℎ

+ 2𝛼
⟨(︁
𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ

)︁
×𝑚𝑖

ℎ, 𝑧𝑖,ℓ+2
ℎ − 𝑧𝑖,ℓ+1

ℎ

⟩
ℎ

− 𝑘
⟨
𝑢𝑖,ℓ+2

ℎ × 𝑧𝑖,ℓ+2
ℎ − 𝑢𝑖,ℓ+1

ℎ × 𝑧𝑖,ℓ+1
ℎ , 𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⟩
ℎ
.

(5.3)

Taking the difference of the equations satisfied by 𝑢𝑖,ℓ+2
ℎ and 𝑢𝑖,ℓ+1

ℎ and choosing the test functions 𝜑ℎ =
𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ and 𝜑ℎ = 𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ , we obtain the identities

2
⃦⃦⃦
𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ

⃦⃦⃦2

ℎ
= −𝑘

⟨
𝑢𝑖,ℓ+1

ℎ ×
(︁
𝑧𝑖,ℓ+1

ℎ − 𝑧𝑖,ℓ
ℎ

)︁
,𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ

⟩
ℎ
, (5.4)

2
⟨
𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ , 𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⟩
ℎ

+ 𝑘
⟨
𝑢𝑖,ℓ+2

ℎ × 𝑧𝑖,ℓ+1
ℎ − 𝑢𝑖,ℓ+1

ℎ × 𝑧𝑖,ℓ
ℎ , 𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⟩
ℎ

= 0. (5.5)

From (5.4), since
⃦⃦⃦
𝑢𝑖,ℓ+1

ℎ

⃦⃦⃦
𝐿∞(Ω)

≤ 1 from part (i), we deduce that⃦⃦⃦
𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ

⃦⃦⃦
ℎ
≤ 𝑘

2

⃦⃦⃦
𝑧𝑖,ℓ+1

ℎ − 𝑧𝑖,ℓ
ℎ

⃦⃦⃦
ℎ
. (5.6)

Combining (5.3) and (5.5), we obtain that

2𝜏
⃦⃦⃦
𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⃦⃦⃦2

ℎ
= 𝑘

⟨(︁
𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ

)︁
× Pℎℎeff

[︁
𝑢𝑖,ℓ+2

ℎ

]︁
, 𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⟩
ℎ

+ 𝑘
⟨
𝑢𝑖,ℓ+1

ℎ ×
(︁
Pℎℎeff

[︁
𝑢𝑖,ℓ+2

ℎ

]︁
− Pℎℎeff

[︁
𝑢𝑖,ℓ+1

ℎ

]︁)︁
, 𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⟩
ℎ

+ 2𝛼
⟨(︁
𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ

)︁
×𝑚𝑖

ℎ, 𝑧𝑖,ℓ+2
ℎ − 𝑧𝑖,ℓ+1

ℎ

⟩
ℎ

+ 2
⟨
𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ , 𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⟩
ℎ

+ 𝑘
⟨
𝑢𝑖,ℓ+1

ℎ ×
(︁
𝑧𝑖,ℓ+1

ℎ − 𝑧𝑖,ℓ
ℎ

)︁
, 𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⟩
ℎ
.
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It follows that

2𝜏
⃦⃦⃦
𝑧𝑖,ℓ+2

ℎ − 𝑧𝑖,ℓ+1
ℎ

⃦⃦⃦
ℎ
≤

(︂
2 + 2𝛼

⃦⃦
𝑚𝑖

ℎ

⃦⃦
𝐿∞(Ω)

+ 𝑘
⃦⃦⃦
Pℎℎeff

[︁
𝑢𝑖,ℓ+2

ℎ

]︁⃦⃦⃦
𝐿∞(Ω)

)︂⃦⃦⃦
𝑢𝑖,ℓ+2

ℎ − 𝑢𝑖,ℓ+1
ℎ

⃦⃦⃦
ℎ

+ 𝑘
⃦⃦⃦
𝑢𝑖,ℓ+1

ℎ

⃦⃦⃦
𝐿∞(Ω)

×
⃦⃦⃦
Pℎℎeff

[︁
𝑢𝑖,ℓ+2

ℎ

]︁
− Pℎℎeff

[︁
𝑢𝑖,ℓ+1

ℎ

]︁⃦⃦⃦
ℎ

+ 𝑘
⃦⃦⃦
𝑢𝑖,ℓ+1

ℎ

⃦⃦⃦
𝐿∞(Ω)

⃦⃦⃦
𝑧𝑖,ℓ+1

ℎ − 𝑧𝑖,ℓ
ℎ

⃦⃦⃦
ℎ
.

Using that
⃦⃦
𝑚𝑖

ℎ

⃦⃦
𝐿∞

= 1 and
⃦⃦⃦
𝑢𝑖,ℓ+1

ℎ

⃦⃦⃦
𝐿∞

≤ 1, together with the estimates [9, 12]⃦⃦⃦
Pℎℎeff

[︁
𝑢𝑖,ℓ+2

ℎ

]︁⃦⃦⃦
𝐿∞

≤ 𝐶2
invℎ

−2
min

⃦⃦⃦
𝑢𝑖,ℓ+2

ℎ

⃦⃦⃦
𝐿∞

,⃦⃦⃦
Pℎℎeff

[︁
𝑢𝑖,ℓ+2

ℎ

]︁⃦⃦⃦
ℎ
≤ 𝐶2

invℎ
−2
min

⃦⃦⃦
𝑢𝑖,ℓ+2

ℎ

⃦⃦⃦
ℎ

(where 𝐶inv > 0 depends only on the shape-regularity of 𝒯ℎ) and (5.6), we obtain (3.14) with 𝑞 =[︀
(2 + 𝛼 + 𝜏)𝑘 + 𝐶2

inv𝑘
2ℎ−2

min

]︀
/(2𝜏). Hence, if 𝑘 < 𝑘0 := 𝜏/(2 + 𝛼 + 𝜏) and 𝑘 < 𝐶ℎmin (with 𝐶 =

√
𝜏/𝐶inv),

then 0 < 𝑞 < 1. This proves part (ii).
By construction, 𝑚𝑖+1

ℎ = 2𝑢𝑖,ℓ𝑖+1
ℎ −𝑚𝑖

ℎ satisfies⟨︀
𝑑𝑡𝑚

𝑖+1
ℎ ,𝜑ℎ

⟩︀
ℎ

=
⟨
𝑚

𝑖+1/2
ℎ × 𝑧𝑖,ℓ

ℎ ,𝜑ℎ

⟩
ℎ

for all 𝜑ℎ ∈ 𝒮1(𝒯ℎ)3,

while 𝑤𝑖+1
ℎ = 2𝑧𝑖,ℓ𝑖+1

ℎ −𝑤𝑖
ℎ satisfies (3.9b). The argument used to prove Proposition 3.3 shows that 𝑚𝑖+1

ℎ ∈ ℳℎ

and 𝑤𝑖+1
ℎ ∈ 𝒦ℎ

[︀
𝑚𝑖+1

ℎ

]︀
. This shows part (iii) and concludes the proof. �

5.2. Discrete energy laws and stability

We prove the discrete energy laws satisfied by the approximations generated by the algorithms.

Proof of Proposition 3.6. Let 𝑖 ∈ N0. We test (3.8) with 𝜑ℎ = 𝑣𝑖+1
ℎ ∈ 𝒦ℎ

[︀
𝑚𝑖

ℎ

]︀
and multiply the resulting

equation by 𝑘. We obtain the identity

𝜏
⟨︀
𝑣𝑖+1

ℎ − 𝑣𝑖
ℎ,𝑣𝑖+1

ℎ

⟩︀
ℎ

+ 𝛼𝑘
⃦⃦
𝑣𝑖+1

ℎ

⃦⃦2

ℎ
+ 𝑘2

⃦⃦
∇𝑣𝑖+1

ℎ

⃦⃦2

𝐿2(Ω)
= −𝑘

⟨︀
∇𝑚𝑖

ℎ, ∇𝑣𝑖+1
ℎ

⟩︀
Since the angle condition (3.4) is satisfied, Lemma 3.2 of [7] yields that⃦⃦

∇𝑚𝑖+1
ℎ

⃦⃦
𝐿2(Ω)

≤
⃦⃦
∇𝑚𝑖

ℎ + 𝑘∇𝑣𝑖+1
ℎ

⃦⃦
𝐿2(Ω)

. (5.7)

Hence, we obtain that

ℰ
[︀
𝑚𝑖+1

ℎ

]︀ (5.7)

≤ 1
2

⃦⃦
∇𝑚𝑖

ℎ + 𝑘∇𝑣𝑖+1
ℎ

⃦⃦2

𝐿2(Ω)
= ℰ

[︀
𝑚𝑖

ℎ

]︀
+ 𝑘

⟨︀
∇𝑚𝑖

ℎ, ∇𝑣𝑖+1
ℎ

⟩︀
+

𝑘2

2

⃦⃦
∇𝑣𝑖+1

ℎ

⃦⃦2

𝐿2(Ω)
.

Altogether, we obtain that

ℰ
[︀
𝑚𝑖+1

ℎ

]︀
+ 𝜏

⟨︀
𝑣𝑖+1

ℎ − 𝑣𝑖
ℎ,𝑣𝑖+1

ℎ

⟩︀
ℎ

+ 𝛼𝑘
⃦⃦
𝑣𝑖+1

ℎ

⃦⃦2

ℎ
+

𝑘2

2

⃦⃦
∇𝑣𝑖+1

ℎ

⃦⃦2

𝐿2(Ω)
≤ ℰ

[︀
𝑚𝑖

ℎ

]︀
.

Applying the vector identity

(a− b) · a =
1
2
|a|2 − 1

2
|b|2 +

1
2
|a− b|2 for all a,b ∈ R3

to the second term on the left-hand side yields (3.15). This proves part (i).
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To show the stability of Algorithm 3.2, we choose 𝜑ℎ = 𝑑𝑡𝑚
𝑖+1
ℎ in (3.9a), 𝜑ℎ = Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁
in (3.9a),

and 𝜓ℎ = 𝑤
𝑖+1/2
ℎ in (3.9b) to obtain the identities⃦⃦

𝑑𝑡𝑚
𝑖+1
ℎ

⃦⃦2

ℎ
= −

⟨
𝑚

𝑖+1/2
ℎ ×𝑤𝑖+1/2

ℎ , 𝑑𝑡𝑚
𝑖+1
ℎ

⟩
ℎ
,⟨

𝑑𝑡𝑚
𝑖+1
ℎ , Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁⟩
ℎ

= −
⟨
𝑚

𝑖+1/2
ℎ ×𝑤𝑖+1/2

ℎ , Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁⟩
ℎ
,

𝜏
⟨
𝑑𝑡𝑤

𝑖+1
ℎ ,𝑤

𝑖+1/2
ℎ

⟩
ℎ

=
⟨
𝑚

𝑖+1/2
ℎ × Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁
,𝑤

𝑖+1/2
ℎ

⟩
ℎ
− 𝛼

⟨
𝑚

𝑖+1/2
ℎ × 𝑑𝑡𝑚

𝑖+1
ℎ ,𝑤

𝑖+1/2
ℎ

⟩
ℎ
,

respectively. Combining these three equations, we obtain that⟨
𝑑𝑡𝑚

𝑖+1
ℎ , Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁⟩
ℎ

= 𝜏
⟨
𝑑𝑡𝑤

𝑖+1
ℎ ,𝑤

𝑖+1/2
ℎ

⟩
ℎ

+ 𝛼
⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦2

ℎ
.

Since ⟨
Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁
, 𝑑𝑡𝑚

𝑖+1
ℎ

⟩
ℎ

(3.3),(2.3),(2.1)
= −1

𝑘

(︀
ℰ
[︀
𝑚𝑖+1

ℎ

]︀
− ℰ

[︀
𝑚𝑖

ℎ

]︀)︀
,⟨

𝑑𝑡𝑤
𝑖+1
ℎ ,𝑤

𝑖+1/2
ℎ

⟩
ℎ

=
1
2𝑘

(︁⃦⃦
𝑤𝑖+1

ℎ

⃦⃦2

ℎ
−

⃦⃦
𝑤𝑖

ℎ

⃦⃦2

ℎ

)︁
,

we obtain (3.16). This proves part (ii). The proof of (3.17) from part (iii) can be obtained with the very same
argument. �

5.3. Convergence results

First, we prove the convergence of Algorithm 3.1.

Proof of Theorem 3.7 for Algorithm 3.1. The proof is largely based on the argument of [2,17,26]. We start with
recalling the estimates

⃒⃒
𝑚𝑖+1

ℎ (𝑧)−𝑚𝑖
ℎ(𝑧)

⃒⃒
≤ 𝑘

⃒⃒
𝑣𝑖+1

ℎ (𝑧)
⃒⃒

and
⃒⃒
𝑚𝑖+1

ℎ (𝑧)−𝑚𝑖
ℎ(𝑧)− 𝑘𝑣𝑖+1

ℎ (𝑧)
⃒⃒
≤ 𝑘2

2

⃒⃒
𝑣𝑖+1

ℎ (𝑧)
⃒⃒2

, (5.8)

which hold for all 𝑖 ∈ N0 and 𝑧 ∈ 𝒩ℎ; see [3, 14]. The first inequality in (5.8), together with (5.2), yields that⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦
ℎ
≤

⃦⃦
𝑣𝑖+1

ℎ

⃦⃦
ℎ

for all 𝑖 ∈ N0.
Let 𝑇 > 0 be arbitrary. With the uniform boundedness guaranteed by (3.15) and (3.18), we can construct

𝑚 ∈ 𝐿∞(0,∞;𝐻1(Ω)) ∩𝑊 1,∞(0,∞;𝐿2(Ω)), satisfying |𝑚| = 1 a.e. in Ω× (0,∞), such that, upon extraction
of (nonrelabeled) subsequences, there hold the convergences 𝑚ℎ𝑘,𝑚±

ℎ𝑘
*
⇀ 𝑚 in 𝐿∞(0,∞;𝐻1(Ω)), 𝑚ℎ𝑘|Ω𝑇

⇀

𝑚|Ω𝑇
in 𝐻1(Ω𝑇 ), 𝜕𝑡𝑚ℎ𝑘,𝑣+

ℎ𝑘
*
⇀ 𝜕𝑡𝑚 in 𝐿∞(0,∞;𝐿2(Ω)), as well as 𝑚ℎ𝑘,𝑚±

ℎ𝑘 → 𝑚 in 𝐿2(Ω × (0,∞)) and
pointwise almost everywhere in Ω× (0,∞). Moreover, we have that 𝑘∇𝑣+

ℎ𝑘 → 0 in 𝐿2(0,∞;𝐿2(Ω)) as ℎ, 𝑘 → 0.
Let 𝜙 ∈ 𝐶∞𝑐 ([0, 𝑇 );𝐶

(︀
Ω

)︀
) be an arbitrary smooth test function. Let 𝑁 ∈ N be the smallest integer such that

𝑇 ≤ 𝑘𝑁 = 𝑡𝑁 . Let 𝑖 ∈ {0, . . . , 𝑁 − 1}. We choose the test function 𝜑ℎ = ℐℎ[𝑚𝑖
ℎ ×𝜙(𝑡𝑖)] ∈ 𝒦ℎ

[︀
𝑚𝑖

ℎ

]︀
in (3.8) to

obtain

𝜏
⟨︀
𝑑𝑡𝑣

𝑖+1
ℎ , ℐℎ[𝑚𝑖

ℎ ×𝜙(𝑡𝑖)]
⟩︀

ℎ
+ 𝛼

⟨︀
𝑣𝑖+1

ℎ , ℐℎ[𝑚𝑖
ℎ ×𝜙(𝑡𝑖)]

⟩︀
ℎ

+
⟨︀
𝑚𝑖

ℎ × 𝑣𝑖+1
ℎ , ℐℎ[𝑚𝑖

ℎ ×𝜙(𝑡𝑖)]
⟩︀

ℎ

− 𝑘
⟨︀
Pℎℎeff

[︀
𝑣𝑖+1

ℎ

]︀
, ℐℎ[𝑚𝑖

ℎ ×𝜙(𝑡𝑖)]
⟩︀

ℎ
=

⟨︀
Pℎℎeff

[︀
𝑚𝑖

ℎ

]︀
, ℐℎ[𝑚𝑖

ℎ ×𝜙(𝑡𝑖)]
⟩︀

ℎ
,

where we extend 𝜙 by zero in (𝑇, 𝑡𝑁 ). Due to the presence of the mass-lumped scalar product, we can remove
the nodal interpolant from the first three terms on the left-hand side without affecting the value of the integrals.
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Then, multiplying the latter by 𝑘, summing over 𝑖 = 0, . . . , 𝑁 − 1, and using (2.3) and (3.3), we obtain the
identity

𝜏𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑑𝑡𝑣

𝑖+1
ℎ ,𝑚𝑖

ℎ ×𝜙(𝑡𝑖)
⟩︀

ℎ
+ 𝛼𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑣𝑖+1

ℎ ,𝑚𝑖
ℎ ×𝜙(𝑡𝑖)

⟩︀
ℎ

+ 𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑚𝑖

ℎ × 𝑣𝑖+1
ℎ ,𝑚𝑖

ℎ ×𝜙(𝑡𝑖)
⟩︀

ℎ

= −𝑘

𝑁−1∑︁
𝑖=0

⟨︀
∇

(︀
𝑚𝑖

ℎ + 𝑘𝑣𝑖+1
ℎ

)︀
, ∇ℐℎ[𝑚𝑖

ℎ ×𝜙(𝑡𝑖)]
⟩︀
.

Next, we rewrite the first term on the left-hand side using the summation by parts formula

𝑁−1∑︁
𝑖=0

(𝑎𝑖+1 − 𝑎𝑖)𝑏𝑖 = −
𝑁−1∑︁
𝑖=0

𝑎𝑖+1(𝑏𝑖+1 − 𝑏𝑖) + 𝑎𝑁𝑏𝑁 − 𝑎0𝑏0 for all sequences {𝑎𝑖}𝑁
𝑖=0, {𝑏𝑖}𝑁

𝑖=0 (5.9)

and performing some algebraic manipulations:

𝜏𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑑𝑡𝑣

𝑖+1
ℎ ,𝑚𝑖

ℎ ×𝜙(𝑡𝑖)
⟩︀

ℎ
= −𝜏

𝑁−1∑︁
𝑖=0

⟨︀
𝑣𝑖+1

ℎ ,𝑚𝑖+1
ℎ ×𝜙(𝑡𝑖+1)−𝑚𝑖

ℎ ×𝜙(𝑡𝑖)
⟩︀

ℎ

+ 𝜏
⟨︀
𝑣𝑁

ℎ ,𝑚𝑁
ℎ ×𝜙(𝑡𝑁 )

⟩︀
ℎ
− 𝜏

⟨︀
𝑣0

ℎ,𝑚0
ℎ ×𝜙(0)

⟩︀
ℎ

= −𝜏𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑣𝑖+1

ℎ , 𝑑𝑡𝑚
𝑖+1
ℎ ×𝜙(𝑡𝑖+1)

⟩︀
ℎ
− 𝜏𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑣𝑖+1

ℎ ,𝑚𝑖
ℎ × 𝑑𝑡𝜙(𝑡𝑖+1)

⟩︀
ℎ

+ 𝜏
⟨︀
𝑣𝑁

ℎ ,𝑚𝑁
ℎ ×𝜙(𝑡𝑁 )

⟩︀
ℎ
− 𝜏

⟨︀
𝑣0

ℎ,𝑚0
ℎ ×𝜙(0)

⟩︀
ℎ

= −𝜏𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑣𝑖+1

ℎ , (𝑑𝑡𝑚
𝑖+1
ℎ − 𝑣𝑖+1

ℎ )×𝜙(𝑡𝑖+1)
⟩︀

ℎ
+ 𝜏𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑚𝑖

ℎ × 𝑣𝑖+1
ℎ , 𝑑𝑡𝜙(𝑡𝑖+1)

⟩︀
ℎ

− 𝜏
⟨︀
𝑚𝑁

ℎ × 𝑣𝑁
ℎ ,𝜙(𝑡𝑁 )

⟩︀
ℎ

+ 𝜏
⟨︀
𝑚0

ℎ × 𝑣0
ℎ,𝜙(0)

⟩︀
ℎ
.

Using Hölder inequality, a combination of the second inequality in (5.8) and the norm equivalence (5.2), and
inverse estimates (see, e.g. [10], Lem. 3.5), the first term on the right-hand side can be estimated as

𝜏𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑣𝑖+1

ℎ ,
(︀
𝑑𝑡𝑚

𝑖+1
ℎ − 𝑣𝑖+1

ℎ

)︀
×𝜙(𝑡𝑖+1)

⟩︀
ℎ
. 𝑘

𝑁−1∑︁
𝑖=0

⃦⃦
𝑣𝑖+1

ℎ

⃦⃦
𝐿3(Ω)

⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ − 𝑣𝑖+1

ℎ

⃦⃦
𝐿3/2(Ω)

‖𝜙(𝑡𝑖+1)‖𝐿∞(Ω)

. 𝑘2
𝑁−1∑︁
𝑖=0

⃦⃦
𝑣𝑖+1

ℎ

⃦⃦3

𝐿3(Ω)
. 𝑘2ℎ

−𝑑/2
min

𝑁−1∑︁
𝑖=0

⃦⃦
𝑣𝑖+1

ℎ

⃦⃦3

𝐿2(Ω)
. 𝑘ℎ

−𝑑/2
min .

Altogether, using also the identity[︀
𝑚𝑖

ℎ(𝑧)× 𝑣𝑖+1
ℎ (𝑧)

]︀
·
[︀
𝑚𝑖

ℎ(𝑧)×𝜙(𝑧, 𝑡𝑖)
]︀

= 𝑣𝑖+1
ℎ (𝑧) ·𝜙(𝑧, 𝑡𝑖) for all 𝑧 ∈ 𝒩ℎ

(which follows from (3.6), 𝑚𝑖
ℎ ∈ ℳℎ and 𝑣𝑖+1

ℎ ∈ 𝒦ℎ

[︀
𝑚𝑖

ℎ

]︀
) and observing that 𝜙(𝑡𝑁 ) = 0, we thus obtain that

𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑣𝑖+1

ℎ ,𝜙(𝑡𝑖)
⟩︀

ℎ
= −𝑘

𝑁−1∑︁
𝑖=0

⟨︀
∇

(︀
𝑚𝑖

ℎ + 𝑘𝑣𝑖+1
ℎ

)︀
, ∇ℐℎ[𝑚𝑖

ℎ ×𝜙(𝑡𝑖)]
⟩︀

+ 𝛼𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑚𝑖

ℎ × 𝑣𝑖+1
ℎ ,𝜙(𝑡𝑖)

⟩︀
ℎ

− 𝜏𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑚𝑖

ℎ × 𝑣𝑖+1
ℎ , 𝑑𝑡𝜙(𝑡𝑖+1)

⟩︀
ℎ
− 𝜏

⟨︀
𝑚0

ℎ × 𝑣0
ℎ,𝜙(0)

⟩︀
ℎ

+ 𝑜(1).
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Using the approximation properties of the nodal interpolant and estimate (5.1) (see the argument of [2, 12]),
we can replace all mass-lumped scalar products by 𝐿2-products and remove the nodal interpolant from the first
term on the left-hand side at the price of an error which goes to zero in the limit. Rewriting the space-time
integrals of the resulting equation in terms of the time reconstructions (3.1), we obtain that∫︁ 𝑇

0

⟨︀
𝑣+

ℎ𝑘(𝑡),𝜙−𝑘 (𝑡)
⟩︀
d𝑡

= −
∫︁ 𝑇

0

⟨︀
∇(𝑚−

ℎ𝑘(𝑡) + 𝑘𝑣+
ℎ𝑘(𝑡)), ∇(𝑚−

ℎ𝑘(𝑡)×𝜙−𝑘 (𝑡))
⟩︀
d𝑡 + 𝛼

∫︁ 𝑇

0

⟨︀
𝑚−

ℎ𝑘(𝑡)× 𝑣+
ℎ𝑘(𝑡),𝜙−𝑘 (𝑡)

⟩︀
d𝑡

− 𝜏

∫︁ 𝑇

0

⟨︀
𝑚−

ℎ𝑘(𝑡)× 𝑣+
ℎ𝑘(𝑡), 𝜕𝑡𝜙𝑘(𝑡)

⟩︀
d𝑡− 𝜏

⟨︀
𝑚0

ℎ × 𝑣0
ℎ,𝜙(0)

⟩︀
+ 𝑜(1).

Using the available convergence results, we can pass to the limit as ℎ, 𝑘 → 0 the latter and obtain that each
term converges towards the corresponding one in (2.9). By density, it follows that 𝑚 satisfies (2.9) for all
𝜙 ∈ 𝐶∞𝑐 ([0, 𝑇 );𝐻1(Ω)). This shows that 𝑚 satisfies part (iii) of Definition 2.1.

The proof that 𝑚 attains the prescribed initial data
(︀
𝑚0,𝑣0

)︀
continuously in 𝐻1(Ω) × 𝐿2(Ω) (part (ii)

of Def. 2.1) follows the argument of [13], page 72. The energy inequality (2.10) (part (iv) of Def. 2.1) can
be obtained from the discrete energy law (3.15) using the available convergence results and standard lower
semicontinuity arguments. �

Next, we prove the convergence result for the nonlinear angular momentum method.

Proof of Theorem 3.7 for Algorithm 3.2. The proof follows the ideas of [9, 12, 27]. Testing (3.9a) with 𝜑ℎ =
𝑑𝑡𝑚

𝑖+1
ℎ , we infer that

⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦
ℎ
≤

⃦⃦⃦
𝑤

𝑖+1/2
ℎ

⃦⃦⃦
ℎ

for all 𝑖 ∈ N0.

Let 𝑇 > 0 be arbitrary. With the uniform boundedness guaranteed by (3.16) and (3.18), we can construct
𝑚 ∈ 𝐿∞(0,∞;𝐻1(Ω))∩𝑊 1,∞(0,∞;𝐿2(Ω)) and 𝑤 ∈ 𝐿∞(0,∞;𝐿2(Ω)) such that, upon extraction of a (nonre-
labeled) subsequence, we have the convergences 𝑚ℎ𝑘,𝑚+

ℎ𝑘,𝑚ℎ𝑘
*
⇀ 𝑚 in 𝐿∞

(︀
0,∞;𝐻1(Ω)

)︀
, 𝜕𝑡𝑚ℎ𝑘

*
⇀ 𝜕𝑡𝑚 in

𝐿∞
(︀
0,∞;𝐿2(Ω)

)︀
, 𝑚ℎ𝑘|Ω𝑇

⇀ 𝑚|Ω𝑇
in 𝐻1(Ω𝑇 ), 𝑚ℎ𝑘,𝑚+

ℎ𝑘,𝑚ℎ𝑘 →𝑚 in 𝐿2(Ω× (0,∞)) and pointwise almost
everywhere in Ω × (0,∞), as well as 𝑤ℎ𝑘,𝑤+

ℎ𝑘
*
⇀ 𝑤 in 𝐿∞(0,∞;𝐿2(Ω)). Moreover, it holds that |𝑚| = 1 and

𝑚 ·𝑤 = 0 a.e. in Ω× (0,∞).
Let 𝜁,𝜙 ∈ 𝐶∞𝑐 ([0, 𝑇 );𝐶

(︀
Ω

)︀
) be arbitrary smooth test functions. Let 𝑁 ∈ N be the smallest integer such that

𝑇 ≤ 𝑘𝑁 = 𝑡𝑁 . Let 𝑖 ∈ {0, . . . , 𝑁 − 1}. We choose the test function 𝜑ℎ = ℐℎ[𝜁(𝑡𝑖)] ∈ 𝒮1(𝒯ℎ)3 in (3.9a) and
𝜓ℎ = ℐℎ[𝜙(𝑡𝑖)] ∈ 𝒮1(𝒯ℎ)3 in (3.9b). Multiplying the resulting equation by 𝑘, summing over 𝑖 = 0, . . . , 𝑁 − 1,
and using (2.3) and (3.3) on the term which involves the effective field, we obtain the identities

𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑑𝑡𝑚

𝑖+1
ℎ , 𝜁(𝑡𝑖)

⟩︀
ℎ

= −𝑘

𝑁−1∑︁
𝑖=0

⟨
𝑚

𝑖+1/2
ℎ ×𝑤𝑖+1/2

ℎ , 𝜁(𝑡𝑖)
⟩

ℎ
,

𝜏𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑑𝑡𝑤

𝑖+1
ℎ ,𝜙(𝑡𝑖)

⟩︀
ℎ

= −𝑘

𝑁−1∑︁
𝑖=0

⟨
∇𝑚𝑖+1/2

ℎ , ∇
(︁
𝜙(𝑡𝑖)×𝑚𝑖+1/2

ℎ

)︁⟩
− 𝛼𝑘

𝑁−1∑︁
𝑖=0

⟨
𝑚

𝑖+1/2
ℎ × 𝑑𝑡𝑚

𝑖+1
ℎ ,𝜙(𝑡𝑖)

⟩
ℎ
− 𝑘

𝑁−1∑︁
𝑖=0

⟨
𝑚

𝑖+1/2
ℎ ×𝑤𝑖+1/2

ℎ ,𝜙(𝑡𝑖)
⟩

ℎ
,

where we extend 𝜁,𝜙 by zero in (𝑇, 𝑡𝑁 ). Next, we rewrite the first term on the left-hand side of both equations
using the summation by parts formula (5.9):

−𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑚𝑖+1

ℎ , 𝑑𝑡𝜁(𝑡𝑖+1)
⟩︀

ℎ
−

⟨︀
𝑚0

ℎ, 𝜁(0)
⟩︀

ℎ
= −𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑚

𝑖+1/2
ℎ ×𝑤𝑖+1/2

ℎ , 𝜁(𝑡𝑖)
⟩︀

ℎ
,
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−𝜏𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑤𝑖+1

ℎ , 𝑑𝑡𝜙(𝑡𝑖+1)
⟩︀

ℎ
− 𝜏

⟨︀
𝑤0

ℎ,𝜙(0)
⟩︀

ℎ
= −𝑘

𝑁−1∑︁
𝑖=0

⟨
∇𝑚𝑖+1/2

ℎ , ∇
(︁
𝜙(𝑡𝑖)×𝑚𝑖+1/2

ℎ

)︁⟩
−𝛼𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑚

𝑖+1/2
ℎ × 𝑑𝑡𝑚

𝑖+1
ℎ ,𝜙(𝑡𝑖)

⟩︀
ℎ
− 𝑘

𝑁−1∑︁
𝑖=0

⟨︀
𝑚

𝑖+1/2
ℎ ×𝑤𝑖+1/2

ℎ ,𝜙(𝑡𝑖)
⟩︀

ℎ
.

Rewriting the space-time integrals of both equations in terms of the time reconstructions defined in (3.1), we
obtain that

−
∫︁ 𝑇

0

⟨︀
𝑚+

ℎ𝑘(𝑡), 𝜕𝑡𝜁𝑘(𝑡)
⟩︀

ℎ
d𝑡−

⟨︀
𝑚0

ℎ, 𝜁(0)
⟩︀

ℎ
= −

∫︁ 𝑇

0

⟨︀
𝑚ℎ𝑘(𝑡)×𝑤ℎ𝑘(𝑡), 𝜁−𝑘 (𝑡)

⟩︀
ℎ
d𝑡,

−𝜏

∫︁ 𝑇

0

⟨︀
𝑤+

ℎ𝑘(𝑡), 𝜕𝑡𝜙𝑘(𝑡)
⟩︀

ℎ
d𝑡− 𝜏

⟨︀
𝑤0

ℎ,𝜙(0)
⟩︀

ℎ
= −

∫︁ 𝑇

0

⟨︀
∇𝑚ℎ𝑘(𝑡), ∇

(︀
𝜙−𝑘 (𝑡)×𝑚ℎ𝑘(𝑡)

)︀⟩︀
d𝑡

−𝛼

∫︁ 𝑇

0

⟨︀
𝑚ℎ𝑘(𝑡)× 𝜕𝑡𝑚ℎ𝑘(𝑡),𝜙−𝑘 (𝑡)

⟩︀
ℎ
d𝑡−

∫︁ 𝑇

0

⟨︀
𝑚ℎ𝑘(𝑡)×𝑤ℎ𝑘(𝑡),𝜙−𝑘 (𝑡)

⟩︀
ℎ
d𝑡.

Using the available convergence results and (5.1), we can proceed as in Section 3 of [12] and pass the latter
equations to the limit as ℎ, 𝑘 → 0. Rearranging the terms, we obtain that

−
∫︁ 𝑇

0

⟨︀
𝑚(𝑡), 𝜕𝑡𝜁(𝑡)

⟩︀
d𝑡 = −

∫︁ 𝑇

0

⟨︀
𝑚(𝑡)×𝑤(𝑡), 𝜁(𝑡)

⟩︀
d𝑡 +

⟨︀
𝑚0, 𝜁(0)

⟩︀
, (5.10)

−
∫︁ 𝑇

0

⟨︀
𝑚(𝑡)×𝑤(𝑡),𝜙(𝑡)

⟩︀
d𝑡 = −

∫︁ 𝑇

0

⟨︀
∇𝑚(𝑡), ∇(𝜙(𝑡)×𝑚(𝑡))

⟩︀
d𝑡

+𝛼

∫︁ 𝑇

0

⟨︀
𝑚(𝑡)× 𝜕𝑡𝑚(𝑡),𝜙(𝑡)

⟩︀
d𝑡− 𝜏

∫︁ 𝑇

0

⟨︀
𝑤(𝑡), 𝜕𝑡𝜙(𝑡)

⟩︀
d𝑡− 𝜏

⟨︀
𝑚0 × 𝑣0,𝜙(0)

⟩︀
. (5.11)

To conclude, following Section 3.3 of [27], we observe that (5.10) reveals that

𝜕𝑡𝑚 = −𝑚×𝑤 a.e. in Ω× (0, 𝑇 ). (5.12)

Since |𝑚| = 1 and 𝑚 ·𝑤 = 0, using (3.6), it follows that

𝑤 = 𝑚× 𝜕𝑡𝑚 a.e. in Ω× (0, 𝑇 ). (5.13)

Using (5.12) and (5.13) in the term on the left-hand side and in the third term on the right-hand side of (5.11),
respectively, we obtain the variational formulation (2.9). By density, it follows that 𝑚 satisfies (2.9) for all
𝜙 ∈ 𝐶∞𝑐 ([0, 𝑇 );𝐻1(Ω)). This shows that 𝑚 satisfies part (iii) of Definition 2.1. The verification of part (ii)
and (iv) can be performed using the argument employed for Algorithm 3.2. This proves the desired convergence
and concludes the proof. �

In the following proposition, we establish the boundedness of the approximations generated by Algorithm 3.4.

Proposition 5.1. Let 𝑗 ∈ N. Assume that 𝜀 = 𝒪(ℎmin) as ℎ, 𝜀 → 0. Then, there exist thresholds ℎ0, 𝑘0, 𝜀0 > 0
such that, if ℎ < ℎ0, 𝑘 < 𝑘0, and 𝜀 < 𝜀0, the approximations generated by Algorithm 3.4 satisfy the inequality

⃦⃦⃦
∇𝑚𝑗

ℎ

⃦⃦⃦2

𝐿2(Ω)
+

⃦⃦⃦
𝑤𝑗

ℎ

⃦⃦⃦2

ℎ
+ 𝑘

𝑗−1∑︁
𝑖=0

⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦2

ℎ
≤ 𝐶(1 + 𝑗𝑘) exp(𝑗𝑘). (5.14)

The thresholds ℎ0, 𝑘0, 𝜀0 > 0 and the constant 𝐶 > 0 depend only on the shape-regularity of 𝒯ℎ and the problem
data.
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Proof. Let 𝑖 = 0, . . . , 𝑗 − 1. Proposition (3.6)(iii) yields (3.17). Taking the sum over 𝑖 = 0, . . . , 𝑗 − 1, we obtain
the identity

1
2

⃦⃦⃦
∇𝑚𝑗

ℎ

⃦⃦⃦2

𝐿2(Ω)
+

𝜏

2

⃦⃦⃦
𝑤𝑗

ℎ

⃦⃦⃦2

ℎ
+ 𝛼𝑘

𝑗−1∑︁
𝑖=0

⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦2

ℎ

=
1
2

⃦⃦
∇𝑚0

ℎ

⃦⃦2

𝐿2(Ω)
+

𝜏

2

⃦⃦
𝑤0

ℎ

⃦⃦2

ℎ
− 𝑘

𝑗−1∑︁
𝑖=0

⟨
𝑚

𝑖+1/2
ℎ × 𝑟𝑖

ℎ, Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁
− 𝛼 𝑑𝑡𝑚

𝑖+1
ℎ

⟩
ℎ
.

A straightforward application of the discrete Young inequality yields the inequalities
𝑗−1∑︁
𝑖=0

⃦⃦⃦
∇𝑚𝑖+1/2

ℎ

⃦⃦⃦
𝐿2(Ω)

≤ 𝑗

2
+

1
2

𝑗−1∑︁
𝑖=0

⃦⃦
∇𝑚𝑖

ℎ

⃦⃦2

𝐿2(Ω)
+

1
4

⃦⃦⃦
∇𝑚𝑗

ℎ

⃦⃦⃦2

𝐿2(Ω)
,

⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦
ℎ
≤ 1

2
+

1
2

⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦2

ℎ
.

Since
⃦⃦⃦
𝑚

𝑖+1/2
ℎ

⃦⃦⃦
𝐿∞(Ω)

≤ 1,
⃦⃦
𝑟𝑖

ℎ

⃦⃦
ℎ
≤ 𝜀, and

⃦⃦⃦
Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁⃦⃦⃦
ℎ
≤ 𝐶ℎ−1

min

⃦⃦⃦
∇𝑚𝑖+1/2

ℎ

⃦⃦⃦
𝐿2(Ω)

(where 𝐶 > 0

depends only on the shape-regularity of 𝒯ℎ), we obtain that

𝑘

𝑗−1∑︁
𝑖=0

⟨
𝑚

𝑖+1/2
ℎ × 𝑟𝑖

ℎ, Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁
− 𝛼 𝑑𝑡𝑚

𝑖+1
ℎ

⟩
ℎ

≤ 𝑘

𝑗−1∑︁
𝑖=0

⃦⃦⃦
𝑚

𝑖+1/2
ℎ

⃦⃦⃦
𝐿∞(Ω)

⃦⃦
𝑟𝑖

ℎ

⃦⃦
ℎ

(︁⃦⃦⃦
Pℎℎeff

[︁
𝑚

𝑖+1/2
ℎ

]︁⃦⃦⃦
ℎ

+ 𝛼
⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦
ℎ

)︁
≤ 𝜀𝑘

𝑗−1∑︁
𝑖=0

(︂
𝐶ℎ−1

min

⃦⃦⃦
∇𝑚𝑖+1/2

ℎ

⃦⃦⃦
𝐿2(Ω)

+ 𝛼
⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦
ℎ

)︂

≤
(︀
𝐶ℎ−1

min + 𝛼
)︀
𝜀𝑗𝑘

2
+

𝐶𝜀ℎ−1
min𝑘

4

⃦⃦⃦
∇𝑚𝑗

ℎ

⃦⃦⃦2

𝐿2(Ω)
+

𝐶𝜀ℎ−1
min𝑘

2

𝑗−1∑︁
𝑖=0

⃦⃦
∇𝑚𝑖

ℎ

⃦⃦2

𝐿2(Ω)
+ 𝛼𝜀𝑘

𝑗−1∑︁
𝑖=0

⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦2

ℎ
.

Overall, we thus obtain that

1
2

(︂
1− 𝐶𝜀ℎ−1

min𝑘

2

)︂⃦⃦⃦
∇𝑚𝑗

ℎ

⃦⃦⃦2

𝐿2(Ω)
+

𝜏

2

⃦⃦⃦
𝑤𝑗

ℎ

⃦⃦⃦2

ℎ
+ 𝛼(1− 𝜀)𝑘

𝑗−1∑︁
𝑖=0

⃦⃦
𝑑𝑡𝑚

𝑖+1
ℎ

⃦⃦2

ℎ

≤ 1
2

⃦⃦
∇𝑚0

ℎ

⃦⃦2

𝐿2(Ω)
+

𝜏

2

⃦⃦
𝑤0

ℎ

⃦⃦2

ℎ
+

(︀
𝐶ℎ−1

min + 𝛼
)︀
𝜀𝑗𝑘

2
+

𝐶𝜀ℎ−1
min𝑘

2

𝑗−1∑︁
𝑖=0

⃦⃦
∇𝑚𝑖

ℎ

⃦⃦2

𝐿2(Ω)
.

Using this estimate, the convergence (3.18), and the assumption 𝜀 = 𝒪(ℎmin) as ℎ, 𝜀 → 0, (5.14) can be shown
by applying the discrete Gronwall lemma (assuming the discretisation parameters to be sufficiently small). �

The boundedness result established in Proposition 5.1 is the starting point to prove Theorem 3.7(ii). We
omit the presentation of the proof, since this follows line-by-line the argument used to show the convergence
of Algorithm 3.4. We only stress that, in the proof of the variational formulation (2.9) and the energy inequal-
ity (2.10), the additional contributions arising from the inexact solution of the nonlinear system are always
uniformly bounded by 𝜀 and therefore vanish in the limit.
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